Pattern-Reconfigurable Yagi-Uda Antenna Based on Liquid Metal

Hao, Jiaxiang; Ren, Jian; Du, Xiaoyu; Mikkelsen, Jan H.; Shen, Ming; Yin, Ying Zeng

Published in:
IEEE Antennas and Wireless Propagation Letters

DOI (link to publication from Publisher):
10.1109/LAWP.2021.3058115

Publication date:
2021

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Abstract—A pattern reconfigurable Yagi-Uda antenna based on liquid metal is presented. The antenna consists of a balun-fed active dipole and a pair of stretchable passive parasitic dipoles, which are implemented by EGaIn alloy embedded in microfluidic channels. The parasitic dipoles are driven at each end by two low-cost, 3-D printed media rods. Afterwards, spinning the rods at different angles leads to varying degrees of stretching upon the stretchable dipoles. Note the length of passive parasitic dipoles is a vital factor for antenna radiation reconfiguration. The antenna exhibits bidirectional radiation if the parasitic dipoles are equal in length. Otherwise, directional radiation towards the shorter parasitic dipole direction can be obtained. Based on the above-mentioned working principle, a pattern reconfigurable antenna working in WLAN band is fabricated and measured. Apart from the reconfigurable capability, the proposed antenna keeps operating in the WLAN band of 2.4 – 2.48 GHz during the whole shape deformation.

Index Terms—3-D printing, bidirectional radiation, directional radiation, Ecoflex elastomer, liquid metal, microfluidic channels, pattern reconfigurable, Yagi-Uda antenna.

I. INTRODUCTION

RECONFIGURABLE antennas, being able to meet the increasing demands in communication systems with diverse functions, have become a hotspot [1]–[4]. According to the capability, reconfigurable antennas can be roughly classified into frequency reconfigurable antennas [1], polarization reconfigurable antennas [2], pattern reconfigurable antennas [3] and hybrid reconfigurable antennas [4]. Among them, by switching state to desired radiation pattern, pattern reconfigurable antenna has gained continuous attention. However, traditional rigid metal antennas used in wireless communication systems are suffering several limitations in terms of elasticity and toughness. With fixed antenna shapes, any deformation like bending, meandering and folding, would cause a deterioration in performance. In [5], the eutectic gallium-indium (EGaIn) alloy, a kind of liquid metal at room temperature, was first applied for liquid metal antennas. This new type of alloy material with many novel material properties, provides a promising prospect for interdisciplinary research for reconfigurable antenna designs [6]–[8]. By stretching the flexible material, a frequency reconfigurable antenna in [5] can be obtained according to the varying length of the dipole made of EGaIn alloy. Though excellent electrical properties of EGaIn alloy has been verified in [6], excitation directly upon this alloy could still lead a possibility of leakage of liquid. In this situation, coupling feed [9]–[11] as well as excitation upon rigid part of antennas [12]–[15] can effectively avoid that possibility. Both solutions either suffer the complexity of precisely continuous control or residue after times of pushing/withdrawing of liquid metal. Therefore, fulfilling microfluidic channels in a fully-enclosed flexible carrier with liquid metal has been studied and researched. Flexible materials like Kapton polyimide [16], benzycclobutene (BCB) [17], Ecoflex [18] and polydimethylsiloxane (PDMS) [19], are widely used in reconfigurable antenna designs [20]–[25]. Most of those antennas are naturally broadband. Reconfigurable characteristics realized by deformation in antenna shapes could also lead to a deviation of operating band.

In this letter, a pattern reconfigurable antenna based on liquid metal is presented, as shown in Fig. 1. The dipole is fed by a balun, while the two parasitic dipoles made of liquid metal are coupled aside. Then, the possibility of the leakage of liquid metal as well as the unstable port match can be avoided. Also, a platinum-catalyzed silicone elastomer (EcoFlex) is applied for making flexible containers. The ability to vary the length of those parasitic dipoles renders the proposed antenna a pattern reconfigurable radiation characteristic. And the realization of this characteristic is quite simple: When the parasitic dipoles is equal in length, the antenna exhibits bidirectional radiation. By stretching one dipole but shortening the other one, the radiation would be enhanced along the shortened dipole’s direction, while the radiation towards longer side suppressed. Therefore, the antenna switches to a directional radiation state. Also, the shape deformation caused by switching action would not deviate antenna from the preset WLAN band.

II. ANTENNA DESIGN

A. Antenna configuration

The antenna topology and all details of each part are shown
Fig. 1. The layout of pattern reconfigurable Yagi-Uda antenna.

Fig. 2. Details of each part of the antenna. (a) dipole substrate, a gap in the center for connecting with balun substrate, two penetrated holes aside for fixing rotating rods, (b) balun substrate, a gradient line from a width of characteristic impedance of 50 Ω to active dipole width, (c) flexible parasitic dipoles with liquid metal sealed in its microfluidic channels. (d) rotating rod (3-D printed) for driving Ecoflex elastomer.

Fig. 3. Simulated currents distribution on the dipoles and its 3D radiation patterns for different rotating angle. (a) $\alpha=5^\circ$ (b) $\alpha=0^\circ$ (c) $\alpha=-5^\circ$.

B. Pattern Reconfigurable Principle

The pattern radiation reconfigurable function is realized under the working principle of the Yagi-Uda antenna. As depicted in [26], the antenna is composed of a fed dipole, a reflector lightly longer than the fed dipole, and several directors slightly shorter than the fed dipole. The length of the passive elements and their position relative to that fed dipole are vital to the antenna radiation pattern. On the one hand, the passive element with marginally longer length can act as a reflector and hence suppress the radiation of the dipole in its direction. On the other hand, the radiation of the dipole can be enhanced towards a slightly shorter element post in the opposite direction. Thus, by changing the length of those parasitic dipoles, the pattern radiation pattern of the antenna can be changed.

To specifically explain above radiation characteristic, an antenna designed to work at 2.45 GHz has been simulated in professional full-wave simulation software ANSYS HFSS. As shown in Fig. 3, Spinning the two rotating rods at opposite angles reduces the length of the flexible parasitic dipole on one side but increases the other one on the opposite. Accordingly, the microfluidic channel and the liquid metal strip of each side follow the identical changing trend as the corresponding parasitic dipoles. Obviously, the currents on the shorter side are stronger than that on the longer side. Therefore, directional radiation can be observed when the parasitic dipoles are different in length. In contrast, the pattern would switch to bidirectional radiation when the parasitic dipoles are equal.

III. EXPERIMENT VALIDATION

To verify the above reconfigurable characteristic, an antenna applied for WLAN band (2.4–2.48 GHz) has been designed, fabricated and measured. As far as possible to obtain a maximum front-to-back ratio at directional radiation state, under the condition of operating band within WLAN band during the whole shape deformation, the antenna has been optimized in the software of HFSS. Thus a maximum rotation angle of $\alpha = \pm 5^\circ$ has been decided. At the maximum rotation angle, the channel on one side is stretched to 47.3 mm and the other side stretched to 38.6 mm. Therefore, the working tuning range of the microfluidic channel is 38.6 mm to 47.3 mm. And all the final parameters of the antenna are listed in TABLE I.

A. Fabrication Process

In this work, the proposed reconfigurable pattern radiation is realized by changing the length of the parasitic dipoles. Those
parasitic dipoles are bonded to rotating rods by super glues. The active dipole and balun are connected by welding at their joint point. They can be prepared following standard PCB fabrication process while the rotating rods and molds required for making micro-channels rely on 3-D printing technology.

Fig. 4 shows the fabrication process of the microfluidic channels, specific steps are described as follows:

Step1, pour a 1:1 fully mixed Ecoflex A and B solution into a 3-D printed Mold A;

Step2, cast the cured Elastomer A into another 3-D printed Mold B upside down (the channel on top);

Step3, fill the channel in Elastomer A with EGaIn alloy;

Step4, fill Mold B with mixed Ecoflex solution.

Different from the fabrication process proposed in [19], [24], without the help of a hotplate, we peeled the semi-closed elastomer A in step1 and the fully-enclosed elastomer B in step4 off from Molds after a 4-hour room-temperature cure. And in step2, instead of injecting the EGaIn alloy into a fully-enclosed microfluid channel, the semi-closed channel is filled with this alloy in Mold B in air. When exposed in air, a thin oxide “skin” of gallium can be quickly formed by these EGaIn alloys reacting with oxygen, which can not only stop further chemical reaction but also show no significant effect on electrical transport of the alloy [6]. It is worth mentioning that in step3 the operation of the filling must be gentle so that the alloy already in the microchannel would not be affected as the density of the solution is distinct from that of EGaIn alloy.

Depicted in Fig. 5, the antenna prototype and measured environment are illustrated. The length of the channel can be changed by stretching the elastomer. When the channel is prolonged, its width will naturally change. However, verified in software of HFSS, this change in width has little influence to the proposed antenna. It is found this flexible dipole stretched up to 2 times compared to its initial length suffers no severe deterioration in physical structure or its connection with rotating rods, which guarantees its stability. Moreover, the cylindrical parts of those rotating rods are similar with the holes on dipole substrate in size. Thus, when rotating the rods, the retraction of the parasitic dipoles can be ignored. The antenna can be fixed at a desired state.

B. Antenna Performance

The simulated reflection coefficient is shown in Fig. 6. Depicted in the figure, the antenna realized a -10dB bandwidth over the WLAN band of 2.4–2.48 GHz. Moreover, the comparison of the results in Fig. 6 indicates an excellent agreement between the experiment and simulation results with

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>W, L, Wd, Ld, Wg, Lg, W1, L1, W1, L1, Hg, Lg, Ls, Ls</td>
<td>9, 22.2, 0.813, 22, 35, 80, 1.9, 1, 53</td>
</tr>
<tr>
<td>W1, L1, W1, L1, W2, L2, W2, L2, H1, L1, R</td>
<td>5, 3.8, 30, 10, 20, 84, 24, 1, 1.5</td>
</tr>
<tr>
<td>W3a, L3a, H3a, H3a, L1, L2, W1, W2</td>
<td>3, 43, 2.25, 0.75, 50, 42, 5, 8</td>
</tr>
</tbody>
</table>

Fig. 7. Antenna efficiency and measured gain for different rotating angle. (a) 0° (b) 3° (c) 5°.
Fig. 8. Simulated and measured radiation patterns of E-plane (xy-plane) and H-plane (xz-plane) for different rotating angle. (a) 5° (b) 3° (c) 0° (d) -3° (e) -5°.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>feeding method</th>
<th>possibility of leakage</th>
<th>Realization of reconfigurability</th>
<th>possibility of residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>Directly fed</td>
<td>Yes</td>
<td>stretch</td>
<td>No</td>
</tr>
<tr>
<td>[24]</td>
<td>Directly fed</td>
<td>Yes</td>
<td>blow</td>
<td>No</td>
</tr>
<tr>
<td>[9]</td>
<td>Coupling fed</td>
<td>No</td>
<td>push/withdraw</td>
<td>Yes</td>
</tr>
<tr>
<td>[12]</td>
<td>Rigid part fed</td>
<td>No</td>
<td>push/withdraw</td>
<td>Yes</td>
</tr>
<tr>
<td>Pro.</td>
<td>Balun fed</td>
<td>No</td>
<td>stretch</td>
<td>No</td>
</tr>
</tbody>
</table>

Table II: Comparison of Liquid Metal Antennas

A deviation of merely 0.8% (20 MHz). Furthermore, the measured and simulated gain (dBi) and efficiency (%) versus frequency in each state are shown in Fig. 7. Antenna efficiency measured in WLAN band is no less than 60% at each state.

As Fig. 8 shows, by rotating the angle of the dielectric rods on both sides from 5° to 0° and 0° to -5°, the antenna radiation pattern switches from directional radiation towards one dipole’s direction to bidirectional radiation and from bidirectional radiation to directional radiation, respectively, exhibiting reasonable radiation reconfiguration ability. The simulated gain of this antenna at 2.45 GHz increases from 5.8 dBi at 0° to 7.8 dBi at ±5°. And antenna obtains a maximum front-to-back ratio >16 dB at this directional radiation state.

C. Discussion

In this work, a combination of the concept of traditional Yagi-Uda antenna, the flexibility of Ecoflex material and the fluidity of the liquid metal in room temperature has been implemented to obtain a pattern reconfigurable antenna. As shown in Table II, compared with other works, the possibility of leakage as well as residue can be avoided through applied methods. The stability and safety of this antenna can be guaranteed. What’s more, the electrical control of the proposed antenna can be realized by applying a planar dielectric elastomer actuator (DEA) [22] upon the rotating rods.

IV. Conclusion

A pattern reconfigurable Yagi-Uda antenna based on liquid metal has been presented. The antenna consists of a balun-fed active dipole, a pair of passive parasitic dipoles and two rotating rods. Different from the other works, the microfluidic channels are fabricated without furnace, along with mentioned semi-closed channel, which greatly simplifies the preparation. And no drawback compared with those made by a furnace has been found. Meanwhile, the stability of the proposed antenna in practice can be guaranteed with both physical (welding) and chemical (gluing) connection in the joints of each part. By spinning the desired angle of those rotating rods, the antenna can realize a pattern reconfigurable characteristic switching from bidirectional radiation to directional radiation. The maximum gain of proposed antenna is improved about 2.4 dBi from bidirectional to directional state. And a maximum F/B ratio >16 dB at directional radiation state can be obtained.
REFERENCES

