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Abstract: This paper investigates self-powering online condition monitoring for rotating machines by
the piezoelectric transducer as an energy harvester and sensor. The method is devised for real-time
working motors and relies on self-powered wireless data transfer where the data comes from the
piezoelectric transducer’s output. Energy harvesting by Piezoceramic is studied under real-time
motor excitations, followed by power optimization schemes. The maximum power and root mean
square power generation from the motor excitation are 13.43 mW/g2 and 5.9 mW/g2, which can be
enough for providing autonomous wireless data transfer. The piezoelectric transducer sensitivity to
the fault is experimentally investigated, showing the considerable fault sensitivity of piezoelectric
transducer output to the fault. For instance, the piezoelectric transducer output under a shaft-
misalignment fault is more than 200% higher than the healthy working conditions. This outcome
indicates that the monitoring of rotating machines can be achieved by using a self-powered system
of the piezoelectric harvesters. Finally, a discussion on the feasible self-powered online condition
monitoring is presented.

Keywords: piezoelectric; energy harvesting; motor; bearing; shaft-misalignment

1. Introduction

The global energy crisis and environmental pollution have made optimal machine
operations vital, demanding less stoppage and repair costs. Online condition monitoring
(OCM) is a tool to reach this optimal machine use [1]. A typical fault diagnosis involves
analyzing current signals during transient start-up behavior, but some studies provide
OCM methods under real-time operation [2]. The vibration characteristics from different
practical fault types, e.g., electric motors, unbalanced, mechanical looseness, misalignment,
bent shaft, broken bar, and bearing fault, have been previously investigated [3]. For an
electrical motor, various electrical and mechanical faults have been reported. Many of
these mechanical faults influence mechanical vibration and, therefore, can be detected by
vibration or acoustic methods [2]. Broken rotor bar, unbalanced rotor, shaft looseness, shaft
misalignment, bent shaft, and bearing faults are among the most frequently occurring
faults [4]. These faults will change the characteristics of vibration measurements, either
in the amplitude or frequency spectrum. Ugwiri et al. [5] used vibration signals in the
frequency domain for detecting broken bar faults in asynchronous motors. Gangsar and
Tiwari [6] employed time-frequency domain signals and support vector machines as the
classifier for the multi-fault diagnosis. Kudelina et al. [7] investigated the motor’s bearing
fault effect on the vibration level and showed that the vibration level would change
noticeably. Supervised and unsupervised learning techniques are widely used in OCM.
While the information about the fault is known in supervised learning techniques, there is
no information on the fault state for unsupervised techniques [8]. Outlier analysis has been
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extensively used for fault detection as an unsupervised method [9]. The distance between
the signal features is used for fault detection in the outlier analysis.

However, the traditional OCM techniques require wired sensory measurements and
wire data transfer, which will make the OCM’s development complex. One revolutionary
solution are self-powered OCM methods, which are now accessible thanks to low power
consumption due to advancements in microelectromechanical systems (MEMS) [10]. Regen-
erative energy harvesting recovers the waste energy from the environment and structures’
vibration to fabricate self-powered electronic devices [11]. Developing self-powered devices
from sustainable energy sources has a revolutionary impact on industrial applications, as it
will reduce energy consumption globally, eliminate the use of wiring, replace the battery,
and place multi-sensors for structural monitoring will be easy. Consequently, the battery
and wire production energy will be saved by achieving self-powered electronic devices.

For overcoming the conventional OCM problems, wireless sensor networks (WSNs)
have been previously outlined [12]; however, the battery-powered WSNs suffer from a
short battery lifetime [13]. Surrounding energy harvesting, an emerging technology [14],
provides self-powered OCM systems [13]. Among energy harvesting technologies, Piezo-
electricity has a relatively high power density and is easily integrated [15,16]. There are
studies on the self-powered sensors for OCM applications, but the lack of practical fault
demonstrations and a short lifetime can be seen. For instance, railway health monitoring
by triboelectricity [17] suffers from a short lifetime because triboelectric works with friction
and will be corroded over time. Alternatively, the bridge piezoelectric-based self-powered
condition monitoring [17] and electromagnetic self-powered sensor [18] only focused on
energy harvesting and did not study the fault and OCM. Moreover, the previous studies fo-
cused on infrastructures and large structures such asbridges [16] or wind turbine blades [19]
and carried out structural imperfections such as crack and delamination. At the same time,
there is a lack of self-powered OCM methods for high-speed rotating machines such as
motors despite their widespread applicability and a high potential for energy harvesting.

Rotating machines with a motor are suitable kinetic energy sources as they inevitably
vibrate during use. Moreover, the motor’s rotation speed is typically high, which is appro-
priate for piezoelectric vibration energy harvesting (PVEH). Khazaee et al. [18] analyzed
the piezoelectric generator (PG) power generation under the water pump vibration, and
the PG voltage output under a DC motor vibration which was shown to be 0.7 V [20].
The output power from a rotational motor ranged from 83.5–825 µW depending on the
rotation speeds between 7 to 13.5 Hz [21]. Converting the motor’s rotational motion for
PVEH is another idea that has been investigated by parametric (lengthwise) [22] and bend-
ing [23] mechanisms. Some PG designs are complicated or bulky, so integrating them into
practical machines is difficult. The straightforward designs of PGs, which can be simply
installed on currently operational machines, need more real-time testing. Moreover, in the
PVEH literature, the studies only focus on the power output estimation, not the real-time
fault detection.

Despite extensive studies in self-powered PVEH sensors [24–27], much of the literature
is devoted to numerical/analytical simulations or laboratory-controlled sinusoidal input
tests. These simulations and controlled vibrations can be different from the real-time work-
ing systems as real-time vibration is stochastic with variable statistical features. Moreover,
the fault’s effects on the vibration signals can be unpredictable, so OCM performance must
be evaluated under real-time tests. To sum up, testing the PGs’ performance on practical
machines and real-time operational machine tests for OCM evaluation are unmet goals.
This study tries to fill these unmet goals. The main novelty is the real-time investigations
of the PG power output versus the electrical load and rotation speed under stochastic
vibration and the fault effect on piezoelectric transducer output.

The study proposes a self-powered system that detects motor faults that change the
vibration level or dominant frequency. The sensor and harvester are the piezoelectric
transducers. The fault detection is based on the unsupervised outlier method by the Ma-
halanobis Distance (MD). The structure of this paper is organized as follows. Section 2
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presents the methodology behind the paper and contains Section 2.1 on the OCM by
the self-powered sensor and Section 2.2 on the design of the energy harvester. Section 3
presents the experimental motor setup working at various rotation speeds and faulty con-
ditions. The piezoelectric generator model verification is presented in Section 4. Section 5
presents the results and the following discussions on the energy harvesting from the DC
motor and moving toward a self-powering OCM system. Section 6 concludes the study’s
main findings.

2. Methodology
2.1. Online Condition Monitoring (OCM) by the Self-Powered Sensor

The presented self-powered OCM technique is based on data analysis from the piezo-
electric transducer outputs. Since the piezoelectric output depends on the vibration level
and frequency content, faults that change the vibration level or the dominant frequency
can be detected. Table 1 summarizes the faults and their effect on the machine vibration.
Due to the shift in the frequency or the vibration level, the piezoelectric transducer output
can detect their effect on the vibration characteristics.

Table 1. Effects of different faults on the vibration characteristics.

Fault Type Frequency Shift (Hz) Vibration Amplitude Change (%)

Bearing corrosion [7] −2.16 100.4%
Separator damage [7] +0.80 59.0%
Hot temperature [7] +0.61 86.9%
Without lubricant [7] 1.85 66.1%

Shaft misalignment [28] 0.0 200.0%
Shaft looseness [28] 0.0 48.2%
Broken rotor bar [2] ±4.35 N/A

Bearing defect (hole in case) [2] +120 N/A
Bent shaft [3] 0.0 351.0%

The self-powered OCM flowchart is shown in Figure 1a. Piezoelectric serves as both
sensor and energy harvesting element because of the transducing capability of piezoelectric
materials and the linear mapping of vibration into a meaningful electrical signal. For the
energy harvesting domain, PG generates AC power; therefore, an AC/DC converter is
required, which is then connected to a DC/DC converter for regulating the voltage output.
As the wireless data transfer consumes considerable energy, power storage is required to
transfer the data at regular time intervals. The microprocessor regulates the data transfer
intervals based on the stored electric power.

Figure 1b shows the fault detection method that is based on the outlier method
using the Mahalanobis Distance (MD) function. The concept of the outlier method is
that a different mechanism, probably a fault, generates observatory data that deviates
considerably from the other observatory data. The MD function considers the feature
covariance matrix and the average distance. The training step extracts three statistical
features from piezoelectric outputs: maximum, minimum, crest factor, and one frequency
feature. Since the piezoelectric output is frequency-dependent, normalized piezoelectric
outputs are used. The same three features are extracted in the testing step, and the MD is
calculated for each signal. The damage index is defined as the MD square value.

Let ϑ(t) be the frequency normalized piezoelectric voltage with V/Hz unit, then the
feature vector F is defined as:

F =

[
max(ϑ(t)), min(ϑ(t)), Crest =

max(ϑ(t))
min(ϑ(t))

]T
(1)

The covariance of the features is denoted by COV . According to the training features
and the covariance, the MD for an unknown machine state is defined as:

MD2 =
(
Ftest −F train

)TCOV−1
train

(
Ftest −F train

)
(2)
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Figure 1. (a) Flowchart of the online condition monitoring by a self-powered piezoelectric transducer,
and (b) flowchart of the fault detection by the outlier method using Mahalanobis Distance (MD).

By the outlier hypothesis, the unknown machine state is classified by the MD based
on the following equation: {

Defect− free : MD2 ≤ ε

Defected : MD2 > ε
(3)

wherein ε is the threshold.
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There is a vital need to investigate whether the piezoelectric transducer is sensitive to
common motor faults. It has been shown that the motor faults change either their amplitude
or frequency contents. If a PG works at a linear excitation range, e.g., low-level vibration,
then the PG has a power frequency response function (FRF), showing the power generation
at a specific vibration excitation. The power FRF is permanently fixed during the motor’s
operation, while the acceleration signal changes due to the faults. As a result, the power
output is different at different faults; thus, the piezoelectric sensor is fault-sensitive and
regularly sends the PG vibration data. Figure 2 illustrates the PG fault sensitivity.
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Figure 2. Sensitivity analysis of a piezoelectric transducer to the fault.

The goal is that the PG generates enough energy for the wireless data transfer and
self-powers the system as well as being damage sensitive. Thus, the PG location should
satisfy two goals, be sensitive to the damage, and generate enough power.

The primary bearing health is crucial for condition monitoring [29]. Moreover, many
other mechanical faults can be detected from the primary bearing vibration [30]. Fur-
thermore, the main bearing vibration is less influenced by noise and is more reliable for
condition monitoring. The main bearing often emits vibration regarding energy harvesting,
making it a suitable location for the PG. Therefore, an energy harvesting box is designed to
be attached to the main bearing.

2.2. Energy Harvesting System and Piezoelectric Generator Modeling

The energy harvesting box will be attached to the main bearing. Figure 3 demonstrates
the energy harvesting box attached directly to the main bearing external wall. Because
of the round shape of the external bearing wall, a circular attachment point is created.
The energy harvesting box contains the slots so that multiple piezoelectric beams can be
attached to the box. However, only one piezoelectric generator (PG) is attached to the box
in this study. Due to the box’s complex shape and fabricating an object this lightweight,
the box is fabricated using 3D printing from the plastic filament.
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Figure 3. The energy harvesting box demonstrates the bearing attachment point and piezoelectric
beam with the clamping box.

Moreover, a clamping box consisting of a bottom clamp base and a top clamp bar is
used to create clamped-free boundary conditions for the piezoelectric energy harvesting
beams. The top bar of the clamping end should have the minimum possible width to
reduce the support loss damping [31]. Here, a width of 5 mm is set. Figure 3 shows the
energy harvesting box and one typical attachment of one piezoelectric beam to the energy
harvesting box.

Piezoceramic PZTs as high conversion materials [32] are employed. A typical piezo-
electric beam consists of piezoelectric layers, substrate shim, contact layers, and added tip
mass. Each of these elements has specific effects on power generation [33].

The piezoelectric output wires are directly connected to the resistive load, and the
instantaneous voltage measurement is carried out using an oscilloscope. Ohm’s law can
measure the current, and then the power is calculated by multiplying the voltage and
the current.

The required power consumption can be obtained from state-of-the-art experimental
studies on wireless data transfer. The reported power requirements are 109.76 µW [34],
900 µW [35], and 400 to 600 µW depending on the transmission frequency [36], and the RF
CMOS transmitter with 300 µW [37]. Therefore, on average, a power generation of 400 µW
will provide power for a self-powered sensor; thus, by typical 3.3V-output power storage,
at least 120 µA current is needed.

Figure 4 shows the piezoelectric generator (PG) with a rectangular tip mass. The
inducing base excitation on the PG is a stationary random vibration denoted with

..
aB(ω),

and the Fast Fourier Transform (FFT) is ΦB(ω). Figure 5a shows the time domain typical
random vibration, and Figure 5b shows the FFT of the time domain signal. The FFT signal
shows the dominant frequencies that are induced by the system operation. The rotor
rotation speed, which is often known as the rotation speed, is one of the main dominant
frequencies in the FFT. The rotation speed is called 1X frequency (the first rotation speed).
The multipliers of rotation speed are discernible in the FFT signal, e.g., 2X (the first rotation
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speed times 2), 3X the first rotation speed times 3), etc. This rotation speed can be seen from
the zoomed-in view of the FFT signal in Figure 5c.
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The PG has a narrow bandwidth, generating a maximum voltage from the signal
within its natural frequency. On the other hand, the acceleration FFT is also narrowband.
These narrowband signals for the piezoelectric voltage FRF and the vibration FFT are
shown in Figure 6. Due to the narrowband signals, the acceleration in the dominant
frequency around the PG’s natural frequency contributes most to the power generation.
Thus, for simplicity, the single-mode harmonic excitation is considered.
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The motor’s rotation speed ranges from 9.5 Hz to 23.0 Hz, while the harvester’s natural
frequency with an 8.9-g tip mass is 33.2 Hz. There is a considerable gap between the natural
frequency and the 1X motor’s rotation speed. Nevertheless, the second motor’s harmonic
acceleration, e.g., 2X, lies within the harvester’s natural frequency, as shown in Figure 6.
Therefore, the 2X frequency is considered as the exaction for the simulation model, e.g., ωk
(excitation frequency of the PG) is 2 fr, where fr is the motor’s rotation speed.

It is considered that the input acceleration has a dominant frequency of ωk with

magnitude of
..
YB, and these parameters are estimated from the real-time experimental tests.

From an analytical beam model [38], if the piezoelectric linear generator is excited by a

harmonic load that is given by
..
YB(t) =

..
YB cos(ωkt) (

..
YB is the vibration acceleration in

m/s2 and ωk is the excitation frequency in rad/s), then the steady-state voltage output per
acceleration (voltage transfer function) can be expressed by:

HVα(ω) =
Vsteady

YBω2
k

=

∣∣∣∣∣∣
jωkΛσ

ω2
n−ω2

k+j2ζiωkωn

1
Reff

+ jωk
CP
2 + ωkΛY

ω2
n−ω2

k+j2ζωkωn

∣∣∣∣∣∣ (4)

wherein ωn and ζ are the natural frequency and damping coefficients, which are the pure
mechanical vibration features of the PG, and σ, Λ, CP, and Y are the electromechanical
coupling features of the PG. These parameters are given in Table 2.

Table 2. Modal electromechanical parameters that are associated with vibration and electrical
equations [38].
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Table 2. Cont.

Definition Definition

ωn (λL)2
√

YI
m∗L4 CP

Series
connection

ε33bL
2hp

Parallel
connection

ε33bL
hp

φ(x) χ[cosh(λx)− cos(λx) + αi(sinh(λx)− sin(λx))] Reff

Series
connection RL

Parallel
connection 2RL

As seen from Equation (4), any change in the excitation signal characteristics, either
amplitude YB or frequency ω, varies the piezoelectric voltage output. Therefore, the
piezoelectric voltage generation is damage sensitive, as demonstrated in Figure 2.

3. Experimental Setup for Measurement

All the experimental tests were carried out on a V88.57 DC motor from Drive Systems,
as shown in Figure 7. This DC motor was a 1.7 kW motor that consumed a maximum
current of 85A with a 24 V voltage supply and could reach 1500 Rpm (≈25 Hz). The
motor’s output shaft was connected to three bearings (numbered 1 to 3), a coupling, and
a brake system. Figure 7 shows the DC motor setup, locations of the bearings, and the
energy harvesting box. An oscilloscope was used to record the voltage output from the
piezoelectric harvester. Besides, a B&K4517 accelerometer with a B&K3676 data acquisition
system was employed for measuring the DC motor’s acceleration that was acting on the
piezoelectric base.
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The motor rotational speed can be varied by changing the supply voltage. There is a
linear relationship between the supply voltage and the rotational speed, as seen in Figure 8.
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Figure 8. The motor’s supply voltage and rotation speed are linear relationships.

Figure 9a shows a typical acceleration signal that is measured in the radius (R) direction.
The Fast Fourier Transform (FFT) can convert this acceleration into a frequency-domain
signal, see Figure 9b. The FFT represents a signal with a series of harmonic functions;
therefore, the motor’s rotation speed and its higher multipliers exist in the FFT signal.
In the FFT signal in the 5-to-55-Hz-span, two dominant frequencies can be seen, the first
dominant frequency (1X) (the motor’s rotation speed) and the second dominant frequency
(2X) (the second multiplier of the motor’s rotation speed). Accordingly, Figure 9b shows
the FFT signals at all the rotation speeds in a frequency range containing the first (1X)
and second rotation speeds (2X). The acceleration peaks for the 1X and 2X frequencies are
shown in Figure 9c. The 2X’s peak amplitude is considerably higher than 1X’s, making the
2X frequency more appropriate for the piezoelectric harvester design.

Sensors 2022, 22, 3395 11 of 24 
 

 

 

(a) 

 

 

(b) 

 

(c) 

Figure 9. The acceleration on the main bearing in (a) R direction for 23 Hz rotation, (b) the FFT 

signals at different rotation speeds, and (c) the FFT acceleration peak at 1X and 2X rotation speeds. 

4. Piezoelectric Generator Model Verification 

For model verification, a pre-wired bimorph from piezo.com [39] made from Pie-

zoceramic PZT-5H, with an 8.9-g tip mass, served as the piezoelectric energy harvester, 

Figure 10a. This commercial bimorph is called PZT-QuickPack (PZT-QP) here. The output 

of the PG analytical model was compared with the piezoelectric voltage output under the 

DC motor working conditions. Young’s modulus for piezoelectric and substrate were 66.9 

and 111.4 GPa, and the density for piezoelectric and substrate were 7750 and 8300 kg/m3. 

DC motor

main bearing

accelerometer
Z

R

First dominant frequency 

(1X) = motor’s rotation 

speed  

Second dominant frequency (2X) = 2×motor’s rotation 

speed 

Figure 9. Cont.



Sensors 2022, 22, 3395 11 of 22

Sensors 2022, 22, 3395 11 of 24 
 

 

 

(a) 

 

 

(b) 

 

(c) 

Figure 9. The acceleration on the main bearing in (a) R direction for 23 Hz rotation, (b) the FFT 

signals at different rotation speeds, and (c) the FFT acceleration peak at 1X and 2X rotation speeds. 

4. Piezoelectric Generator Model Verification 

For model verification, a pre-wired bimorph from piezo.com [39] made from Pie-

zoceramic PZT-5H, with an 8.9-g tip mass, served as the piezoelectric energy harvester, 

Figure 10a. This commercial bimorph is called PZT-QuickPack (PZT-QP) here. The output 

of the PG analytical model was compared with the piezoelectric voltage output under the 

DC motor working conditions. Young’s modulus for piezoelectric and substrate were 66.9 

and 111.4 GPa, and the density for piezoelectric and substrate were 7750 and 8300 kg/m3. 

DC motor

main bearing

accelerometer
Z

R

First dominant frequency 

(1X) = motor’s rotation 

speed  

Second dominant frequency (2X) = 2×motor’s rotation 

speed 

Figure 9. The acceleration on the main bearing in (a) R direction for 23 Hz rotation, (b) the FFT signals
at different rotation speeds, and (c) the FFT acceleration peak at 1X and 2X rotation speeds.

4. Piezoelectric Generator Model Verification

For model verification, a pre-wired bimorph from piezo.com [39] made from Piezo-
ceramic PZT-5H, with an 8.9-g tip mass, served as the piezoelectric energy harvester,
Figure 10a. This commercial bimorph is called PZT-QuickPack (PZT-QP) here. The out-
put of the PG analytical model was compared with the piezoelectric voltage output
under the DC motor working conditions. Young’s modulus for piezoelectric and sub-
strate were 66.9 and 111.4 GPa, and the density for piezoelectric and substrate were
7750 and 8300 kg/m3. The damping coefficient was derived from the bandwidth anal-
ysis as 4.0%. The relative dielectric coefficient and piezoelectric constant d31 were 3800 and
−320 × 10−12 C/N. The piezoelectric layers in this commercial sample were in parallel
connection.
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Figure 10. Experimental verification of the model, (a) PZT QuickPack model, (b) power versus
electrical load at 2X-rotation-speed motor excitation, and (c) voltage versus frequency at Rl = 110 kΩ
(g = 9.81 m/s2).

Table 3 compares the first natural frequency with and without the tip mass. The
present model estimates the non-tip mass natural frequency at 79.3 Hz, which agrees with
the manufacturer’s datasheet [39] and the finite element method [40]. Adding an 8.9-g tip
mass reduces the natural frequency to 33.6 Hz, similar to the identified finite element result.
Therefore, the present model simulates the mechanical PG behavior accurately.

Table 3. The first natural frequency comparison between the present model, manufacturer’s datasheet,
and the finite element.

Natural Frequency
(Hz)

Datasheet
[39]

Finite Element
[40]

Present Model
(from Table 2)

No tip mass 78.0 79.2 79.3
8.9-g tip mass N/A 32.5 33.6

Various electrical loads and rotation speeds were examined, and the power and voltage
outputs are plotted in Figure 10b,c, respectively. In Figure 10b, the overall trend in the
power-load graph between the experiment and the model agrees that the voltage increases
from small loads to the maximum power and decreases in the high loads. The agreement
is satisfactory, especially 104 to 105 Ω. Moreover, Figure 10c shows the voltage versus the
frequency. The agreement between the model and the experiment is reasonable. However,
there are differences between the model and experiments for off-resonant excitations. This
change can be due to the harmonic assumption while the DC motor has stochastic vibration.
Overall, the trend for power and voltage estimation using this simple beam model is
satisfactory.

5. Results and Discussions

The results section presents the energy harvesting aspects of the experimental DC
motor, fault effects on the piezoelectric transducer, and the fault detection results

5.1. Energy Harvesting from the Motor’s Main Bearing

This subsection investigates the optimum power output from the energy harvesting
box under the DC motor excitation. While the energy harvesting box can accommodate
more than one PG, as the initial investigation, only one PG is attached to the harvesting
box. Figure 11 shows the PZT-QP sample and its location on the main bearing.
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Figure 11. The pre-wired bimorph (PZT-QP) for the energy harvesting from the DC motor at different
rotation speeds. A is the energy harvesting box in detail.

The optimum PG power generation is obtained while the optimum load and fre-
quency matching are implemented. Though the optimum load is frequency-dependent,
the resonant excitation is often considered for designing a resonator. Similarly, the PG
power generation is studied under the resonance excitation from the motor vibration,
which occurs at approximately 2 × 18.3 Hz. The voltage and power versus the resistance
load were measured and are plotted in Figure 12a,b under 12 × 8.3-Hz stochastic motor
vibration. Typically, in single harmonic excitation, the voltage increases with increasing
the electrical load resistance [16], same as here with stochastic vibration. Increasing the
resistance load increases the voltage output, from 0.45 V/m·s−2 at 10 kΩ to 3.45 V/m·s−2

at 2 MΩ. The current, on the other hand, reduces by increasing the resistance. Thus,
the power, the product of the voltage and current, has an optimum value at a specific load
resistance. Specifically, the power output peak with the Ropt = 110 kΩ is maximum with
69.21 µW/m2·s−4 power at 25.08 µA/m·s−2 current and 2.76 V/m·s−2 voltage.

The motor’s rotation speed dictates the dominant frequencies in the vibration signal
from the DC motor, which naturally affects the piezoelectric power output. From the
theoretical model [18], if the dominant frequencies in the stochastic practical vibration
signal are close to the harvester’s natural frequency, then the piezoelectric harvester will
generate higher power. To test this hypothesis under a practical test, the effect of changing
the motor’s rotation speed on the piezoelectric power generation was investigated. First,
the rotation speed was varied, and the power output was recorded.

The power versus rotation speed is shown in Figure 13; the power at a specific fre-
quency is three times greater than the power generation at the other frequencies. Therefore,
the maximum power was 139.6 µW/m2·s−4 and obtained for the 2× 17.8 Hz rotation speed.
Moreover, if the rotation speed slightly increases to 2 × 18.3 Hz, a sharp drop occurs in
the power generation. Therefore, the theoretical hypothesis is also proven by the practical
stochastic vibration. Thus, it can be concluded that the power output is maximum when
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the dominant frequency of the vibration signal matches the harvester’s natural frequency.
In addition, there is a strong dependency of the output power on the rotation frequency,
proving that the narrow bandwidth also exists in the practical stochastic vibration case.
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Figure 12. Finding the optimum load for the highest power generation. (a) The voltage and power
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The power generation is highly rotation-speed-dependent and generates more signifi-
cant power at the rotation frequency of 2 × 17.8 Hz than the 2 × 18.3 Hz rotation speed
and reaches over 140 µW/m2·s−4, as shown in Figure 13. As a sign of resonance matching,
the beating phenomena can be seen in the power output signal in Figure 13. A 1.0-Hz
difference in the rotation speed causes an 84% power increase in the RMS of power output.
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5.2. Toward a Self-Powered Online Condition Monitoring System

An energy of 360 µJ is needed for a fully autonomous wireless vibration [34]. For
energy-storing investigation, a 100 µF capacitor is connected to the PG, and the stored
energy at various motor rotation speeds is measured, as shown in Figure 14. As can be
seen from Figure 14, at ωk equals to 2 × 14.9 and 2 × 18.3 Hz, the stored energy crosses the
threshold, while for low-rotation speeds, the stored energy does not reach the threshold in
100 s. For satisfying the autonomous condition monitoring, the power requirements shall
be met at all the operating rotation speeds. Thus, in some rotation speeds, more than one
PG is required.
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The autonomous online condition monitoring system requires 400 µW power at 3.3 V
and 120 µA. The piezoelectric energy harvesting box should provide this power and
current at all the rotation speeds. For estimating the number of required PGs at each
rotation frequency, an efficiency of 80% is considered for the AC/DC converter, DC/DC
converter, and a microprocessor and storage. Assuming the same standard configuration
for the PG, eight piezoelectric generators can achieve a fully self-powered wireless data
transfer by eight piezoelectric generators, as shown in Table 4.
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Table 4. The required number of PGs for autonomous wireless data transfer using the standard PG
configuration.

fr, Rotation Speed (Hz) 9.5 11.5 14.9 17.83 18.3 20.75 22.95

Generated power with R = 110 kΩ, µW 99.0 256.5 401.3 1581.6 1029.2 238.3 236.5
Minimum required number of PGs 8 4 2 1 1 4 4

The number of required PGs 8

5.3. Fault Effects on the Piezoelectric Transducer as a Sensor

As an experimental study for assessing the DC motor’s health condition on the piezo-
electric power generation, a shaft misalignment was created by deviating one shaft end
1.5% from the center. Figure 15 shows an exaggerated view of the shaft misalignment.
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As a result of the shaft misalignment, the DC motor’s acceleration increases consider-
ably. Figure 16a shows that the acceleration ranges from 6.1 m·s−2 at Vinput-motor = 10 V to
13.3 m·s−2 at Vinput-motor = 22 V, which is substantially higher than the healthy-condition
DC motor acceleration (see Figure 16b). As the input acceleration is changed due to the
motor’s health condition, and the piezoelectric power generation depends on the input
acceleration, the voltage generation is expected to change meaningfully.
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(b) comparison of the acceleration in healthy and shaft-misalignment conditions.

Figure 17 shows the open-circuit voltage output from the piezoelectric bimorph in
the shaft-misalignment condition at different rotation speeds. As shown in Figure 17a,
the time-domain voltage signals show that the voltage generation increases by increasing
the rotation speed to 18.3 Hz. This trend was described in Figure 13, where the piezoelectric
harvester generates the maximum power when there is a frequency match. The DC motor’s
voltage output in the shaft-misaligned condition is 1.9 V for fr = 9.5 Hz and 10.2 V for
fr = 18.3 Hz. The FFT of the voltage signals, shown in Figure 17b, gives the frequency
content and the resonant peaks. The first and second resonances in the FFT plot are shown
in Figure 17b.
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As demonstrated in Figure 18, the DC motor’s voltage generation under the shaft-
misaligned conditions is considerably higher than the healthy condition at all the tested
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rotation speeds. This increase is between 85% to over 100%, depending on the rotation
speeds. This conclusion agrees with the numerical study results on a water pump [18],
where the shaft-misaligned condition increases the voltage generation. Based on these
piezoelectric voltage outputs, the damage index is evaluated.
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Figure 18. The comparison of voltage density from the DC motor at healthy and shaft-misaligned
conditions.

5.4. Fault Detection

The fault detection is proposed using the unsupervised outlier method based on the
MD function. The three statistical features (maximum, minimum, and crest factor) of
the piezoelectric outputs at the defect-free and fault conditions are shown in Figure 19a.
Even though the piezoelectric outputs are frequency normalized, the features are still
frequency-dependent since the relationship between the piezoelectric output and frequency
is nonlinear, see Equation (4). Thus, the dominant frequency in the Fourier Transform of
the piezoelectric output is also considered the fourth feature. Nevertheless, the defect-free
and fault states’ features are reasonably separated; therefore, the outlier method can be a
suitable classifier. The damage index (DI) from the MD function is shown in Figure 19b.
The damage indexes are clearly above zero, demonstrating a good separability from the
defect-free state data.
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The presented fault detection results are obtained from the measurements in a short
period, while the long-term performance of such OCM systems needs further studies. Envi-
ronmental and operational variables (EOVs) can hide the damage effects in the extracted
features by changing the excitation amplitude or stiffness changes [41].

Fatigue behavior due to cyclic loads and temperature rise due to long-term machine
operation can be two important EOVs. Figure 20a shows the temperature effect on the
piezoelectric output for Piezoceramic PZT-5A [42], and Figure 20b shows the piezoelectric
output versus the number of cycles for the Piezoceramic PZT-5H [43]. For our case study
with ≤6 N excitation force, a temperature change from 20 ◦C to 100 ◦C reduces the piezo-
electric output by 14.3%. Moreover, 3× 106 cycles reduce the piezoelectric power output by
11%. Thus, EOV influences the piezoelectric sensor performance, and their effects shall be
considered. If the EOV effects are experimentally investigated, their effects can be explicitly
included in the training model. The EOV factors can be a limitation for this type of sensor;
however, their effects can be minimized by encapsulating the piezoelectric transducer,
similar to the commercial sensors.
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6. Conclusions

This paper investigates piezoelectric transducers’ autonomous online condition mon-
itoring when the rotating machine works at a fully operational capacity. A DC motor is
studied as the real-time showcase, and a model investigates the piezoelectric generator
(PG) performance. The PG power output is investigated at different rotation speeds when
it is connected to the main bearing for the self-powering aspect of wireless data transfer.
Under the DC motor case, the optimal electrical load and the maximum generated power
are measured, indicating a maximum and root mean square power of 13.43 mW/g2 and
5.9 mW/g2, where g = 9.81 m/s2. For the fault sensitivity, comments are made about the
piezoelectric voltage output that are influenced by the damage. Moreover, experimen-
tally, the PG voltage under defect-free and shaft-misaligned motor excitation is calculated,
demonstrating a more than 200% voltage increase due to the shaft-misalignment. This
conclusion opens the door to the autonomous online monitoring of rotating machines to
detect faults that substantially change the vibration amplitude or frequency spectrum.

The current method has the limitation that a piezoelectric transducer can detect
the mechanical faults that change the vibration level or frequency contents amplitude.
Advanced fault detection techniques using machine learning techniques are proposed for
future work for more advanced online condition monitoring systems. Moreover, the long-
term performance and temperature effects are proposed for future works.
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