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A B S T R A C T   

Plug and produce robot assistants have been developed to support flexible automation in smart factories as a 
shared resource on the shop floor. However, although the technology is reaching commercial maturity, there is 
still a scarcity of methods to support analysing their implementation feasibility, making it difficult to evaluate 
their use in real-world operations. In this study, we propose an approach that combines physical experiments and 
hybrid simulation to support analysing the feasibility and viability of operating plug and produce robot assistants 
before making considerable investments and without disturbing the running production. The applicability and 
usefulness of this new approach have been demonstrated through an in-depth case study conducted in a large 
manufacturing company. The results show that the approach supports verifying, analysing and improving the 
operation of plug and produce robot assistants as shared resources in dynamic production environments.   

1. Introduction 

Manufacturing automation seeks to reduce operation time or save 
human labor time, supporting the business capital by increasing the 
efficacy and effectiveness of processes [1,2]. Although companies are 
making massive investments in advanced technologies and robotics, a 
survey from PWC [3] found that the majority of companies expect to see 
a return on investment (ROI) for their manufacturing automation and 
Industry 4.0 projects within two years or less. Meanwhile, the increasing 
need for more frequent product innovation results in a significantly 
increased need for change on the production shop floor. This makes 
many automation solutions unfeasible from an economic point of view 
due to the high cost of equipment compared to its low utilization rate if 
implemented purely as a static, dedicated resource [4]. In this way, the 
smart factories of the future, especially those dealing with high-mix 
low-volume production systems (HMLV) [5], will depend on flexible 
and reconfigurable manufacturing equipment to cope with the 
increasing consumer need for product customization [6]. In parallel, 
approaches to increase the utilization rate enables higher return on in
vestment and shorter payback periods for automation. Many studies 
have been carried out to understand how shared resources and flexible 
automation provide greater utilization of resources available on the 
shop floor [7], while strategies for easing flexible automation have 

evolved [8]. 
Such strategies have been wildly applied to ease the integration of 

collaborative robots (cobots), a category of robots that perform tasks in 
collaboration with workers in industrial settings [9]. Although cobots 
support automation to replace repetitive and trivial manual work while 
improving the workflow, inefficient utilization is one of the main chal
lenges for companies to adopt cobots [10,11]. The high cost of cobot 
acquisition makes the adoption financially unrealistic for applications 
whose utilization rate is low. Thus, finding new ways to enable the use of 
the same cobot in different stations, and thereby decreasing their idle 
time, can potentially make various automation projects more viable. In 
such context, plug and produce collaborative robot assistants (from here 
on referred to as robot assistants) have been developed to support flexible 
automation in smart factories focusing on being a shared resource able 
to complete a multitude of heterogeneous tasks [6]. 

The technical feasibility of robot assistants and their integration with 
manufacturing systems have been extensively addressed in prior 
research [6,10], and the technology is reaching commercial maturity 
[12]. Consequently, research should start to address the operational 
implications of deploying robot assistants [13]. However, evaluating 
their deployment in real-world operations is not straightforward. In 
complex environments like shop floors, the vast number of possible 
scenarios makes it difficult for practitioners to analyse at the same time 

* Corresponding author. 

Contents lists available at ScienceDirect 

Journal of Manufacturing Systems 

journal homepage: www.elsevier.com/locate/jmansys 

https://doi.org/10.1016/j.jmsy.2022.03.004 
Received 23 November 2021; Received in revised form 25 January 2022; Accepted 9 March 2022   

www.sciencedirect.com/science/journal/02786125
https://www.elsevier.com/locate/jmansys
https://doi.org/10.1016/j.jmsy.2022.03.004
https://doi.org/10.1016/j.jmsy.2022.03.004
https://doi.org/10.1016/j.jmsy.2022.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2022.03.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Manufacturing Systems 63 (2022) 107–117

108

(i) the implementation feasibility of a shared resource, (ii) in which 
cases automation based on a shared resource becomes a more viable 
option than a dedicated automation or a manual process, (iii) and make 
the necessary tests without disturbing the running production. 

Consequently, the use of virtual environments to run tests and vali
date hypotheses can be highly supportive, and simulation has been used 
to plan and optimize decision-making, from design to operations of 
complex and smart production systems [14]. While physical experi
ments support collecting realistic cycle and changeover times, simula
tion can be used to extend the physical tests by evaluating multiple 
scenarios in a risk-free environment, that besides compressing the time 
for observations, also decrease the entailed costs of physical tests [15]. 
Although the simulation research field is well developed, it most often 
tackles problems with standalone solutions. Literature still lacks studies 
addressing the use of hybrid simulations to evaluate the feasibility and 
viability of using shared resources in smart factories. 

Therefore, in this study, we propose a 3-step approach that combines 
physical experiments and hybrid simulation to analyse the feasibility 
and viability of operating robot assistants as a shared resource in fac
tories. The applicability and usefulness of this new approach have been 
demonstrated through an in-depth case study conducted in a Danish 
manufacturing company. The aims of the proposed approach are 
twofold: first, support manufacturing companies to increase the viability 
of automation using cobots by reducing idle time through shared 
resource usage; and second, identify and verify potentially viable use 
cases for robot assistants faster, more accurately, prior to purchase, and 
without disturbing the running operations. 

The remaining of the article is organized as follows: Section 2 pre
sents a background review on hybrid simulation and the main charac
teristics of the plug and produce paradigm and its implication for 
implementing robots as shared resources in production. Next, Section 3 
describes the research design followed in the empirical study, while 
Section 4 shows the results from the in-depth case study developed in a 
large company. Finally, implications, contributions, and final remarks 
are discussed in Section 5. 

2. Theoretical background 

This section explores related work on robot assistants and the im
plications of using the plug and produce approach to allow deploying 
robot assistants into production as shared resources easily and quickly, 
with minimal or no setup needed. Finally, the background of hybrid 
simulation is discussed, as well as its role in evaluating robotics 
deployment feasibility. 

2.1. Robot assistants 

In the last decade, the development and application of assistive ro
botic solutions in industrial environments, e.g. production, have 
increased significantly. This rise in assistive robotic solutions can be 
traced back to the development of collaborative-enabled manipulators 
like the KUKA LWR 4 [16], ABB Yumi [17], and Universal Robots 
UR-Series [18]. 

In combination with various advanced technologies, they reduce the 
required safety distance between manipulators and humans within in
dustrial settings leading to closer, more complex, and immersive inter
action between humans and robots. These improvements in human- 
robot collaboration and interaction have roots in various technological 
advancements. One of them is the development of advanced control 
strategies presented by Lachner et al. [19], Osorio et al. [20,21], 
Mohammed et al. [22], Landi et al. [23], which enable the manipulator 
to safely handle or avoid physical interactions with autonomous entities 
within their work environments. Additionally to the technical progress 
in mechanical design and control strategies, the utilization of artificial 
intelligence (AI) has enabled humans to express their intentions to such 
robotics systems, as presented by Li et al. in [24] and Neto et al. [25], as 

well as to transfer human knowledge and skills to a manipulator [24]. 
These advancements have enabled research institutions as well as 

companies to create mobile robot assistants like the Enabled Robotics 
[26] and the Little Helper platform [27–29] (see Fig. 1), among others. 
Their design enables them to support the human operator by overtaking 
various routine tasks (e.g., replenishing components from storage racks 
and repetitive assemblies), which would otherwise take the focus and 
time from the human worker. 

Such collaborative robot assistants have already been demonstrated 
in several industrial applications, e.g. the collaborative assembly of 
products [31] and disassembly of products [32]. The flexible nature of 
robot assistants makes them well suited for handling multiple, 
low-volume and ad-hoc tasks during the working day. However, to 
remain economically feasible, the transition of the robot from one task 
to another must be fast and easy; i.e., it must follow the vision of plug 
and produce. 

2.2. Plug and produce for robotics 

Derived from the term plug and play from the IT domain, plug and 
produce entails quick and seamless connection of production equipment 
with minimal or no setup required. Although the idea sounds simple, 
designing plug and produce capable systems has proven to hold 
numerous technical challenges that must be overcome. Consequently, 
since the introduction by Arai et al. [33] in 2000, research on the 
concept of plug and produce has almost solely addressed technical and 
integration challenges. A comprehensive overview of many of these 
challenges along with technical requirements in implementing plug and 
produce is presented by Schleipen et al. [13]. They highlight four main 
requirements:  

- Component description: Representation of equipment information 
must be formalized 

- Component selection: Matching equipment capabilities with task re
quirements must be partly automated.  

- Component access: Interfaces and communication protocols towards 
the equipment must be standardized.  

- Component control: Control architectures must allow equipment to be 
used across a wide range of tasks. 

Focusing on plug and produce for robotics, Schou and Madsen [34] 
propose a roadmap to enable shop floor operators to reconfigure in
dustrial collaborative robots easily and quickly. The roadmap highlights 
the need for modularity in both hardware and control systems and the 
need for intuitive tools supporting the configuration task for the oper
ator. Thus, it aligns well with the four key requirements identified by 
Schleipen et al. [13]. 

2.2.1. Component description 
On the challenge of component description, Schleipen et al. [13]. 

propose the use of AutomationML as a formal language for encoding 
equipment information, such as capabilities, spatial, communication, 
and logic parameters. Several have adopted ontologies for storing 
equipment information and combined this with semantic information 
[35–37]. 

Ye et al. [38] use the Asset Administration Shell (AAS) [39] to store 
component information. AAS is a symbolic model constituting the vir
tual representations of components in the IT domain. It is closely tied to 
the Reference Architectural Model for Industry 4.0 (RAMI), and AAS is 
under development to become an international standard. 

Importing and exporting scenarios is AAS requires a serialization of 
the AAS model which can be done in a number of formats. Lüder et al. 
[40] present a serialization using the AutomationML format. Being a 
free, open and already widely used format, serialization using Auto
mationML would enable easier sharing of component descriptions be
tween AAS models. AutomationML can in fact be used as a component 
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description model on its own, as done by Heymann et al. [41] as part of 
the Smart Factory Web IIC Testbed [42]. In which four smart factories 
are interconnected, and the sharing and reuse of component descriptions 
is a central enabler to achieving plug and produce capabilities. 

2.2.2. Component selection 
Pairing the equipment information with semantic information be

comes an enabler for partly or fully automating the selection of appro
priate equipment for a given task. Schou et al. [37] demonstrate this by 
creating a selection wizard which is partly manual and partly automatic. 
The system derives all valid configurations, and the user afterwards 
selects the desired specific configuration. During this process, 
inter-equipment dependencies are continuously evaluated, and the list 
of valid components is updated. 

Engel et al. [43] apply a two-stage selection approach. Firstly, 
logic-based matching filters are used to match task requirements with 
equipment capabilities, deriving a weighted ranking amongst the 
equipment. Secondly, semantic behavior models are used to determine 
and match continuous behaviors of the processes, e.g., throughput or 
energy consumption. 

2.2.3. Component access 
Enabling equipment to access and communicate with each other is 

the foundation for most automation solutions. However, as the indus
trial landscape includes a large variety of different protocols and in
terfaces, integration has traditionally been an engineering task. In a plug 
and produce environment, the establishment of communication be
tween equipment should be automatic, with little to no configuration. 
Several researchers approach this challenge by implementing architec
tures and frameworks adopting one or more protocols as a common, 
well-defined interface implemented on all equipment. Schleipen et al. 
[13], Profanter [36], and Heymann et al. [41] all use OPC/UA as the 
communication protocol between equipment, and Profanter [36] 
furthermore shows how automatic device discovery integrated into the 
OPC/UA protocol can be utilized to avoid pre-registering devices and 
can be tied with the semantic information in their ontology. Heymann 
et al. [41] show how the AutomationML component description models 
can be mapped to an OPC/UA data structure, and thus structuring the 
component interface accordingly. A detailed description of the possi
bilities in combining of AutomationML and OPC/UA is presented by 
Schleipen [44]. 

Schou and Madsen [45] build a framework for plug and produce of 
robot components on top of Robot Operating System (ROS) and thus use 
the ROS-communication layer as an access protocol. ROS already fa
cilitates communication across a network of computers and provides 
node management, which is utilized in the access and management of 
connected devices. 

2.2.4. Component control 
Both Antzoulatos et al. [46] and Michalos et al. [35] propose the use 

of an agent-based architecture for configuring and controlling plug and 
produce assembly systems. Schou and Madsen [45] propose an archi
tecture and control framework that allows commercial robotic 

components to be adapted into plug and produce components for 
building industrial robot setups. The architecture introduces a generic 
function layer called primitives, abstracting away from specific vendor 
syntax and implementations, and thus resembling a service-oriented 
architecture. Similarly, Profanter et al. [36] also propose an architec
ture for commercial, industrial robot components. Closely related to that 
of Schou and Madsen [45], the commercial components are physically 
augmented with a device adapter to make them all adhere to a common, 
standardized interface both physically and interface-wise. In terms of 
control, generic functions are implemented as software blocks termed 
skills. 

2.2.5. Feasibility tests 
Wojtynek et al. [47] present a scheme promoting robot autonomy for 

the robot to self-adapt to a given task context in a modular production 
system. Hence, the task of the human operator only includes plugging 
the robot in and omits any complicated setup and installation. Maeda 
et al. [48] developed and conducted a feasibility test on a multi-robot 
setup. Three fixed manipulators were amended with a plug and pro
duce, movable robot for assembly tasks. Maeda et al. [48] emphasized 
the need for semi-automatic or fully automatic calibration as a central 
element of plug and produce robotics, meanwhile using a 
semi-automatic, vision-based calibration method. Zimmer et al. [49] see 
plug and produce enabled resources as a key to decreasing the ramp-up 
time of assembly systems. 

2.2.6. Operations 
Looking at the operation of plug and produce resources, Colledani 

and Angius [50] propose a method for combined planning of both 
operation and reconfiguration tasks for modular plug and produce sys
tems. The method optimizes batch completion time and sequence for 
maximizing the system utilization. 

While reporting on recent standardization efforts towards equipment 
modules for plug and produce, Bernshausen et al. [12] view this as the 
final maturity level before rendering plug and produce concepts 
commercially ready. In a final reflection on commercialization, 
Schleipen et al. [13] highlight the need for research on how production 
plants can benefit from plug and produce solutions. 

Despite a significant body of research within the paradigm of plug 
and produce, we have not been able to find research explicitly on how to 
evaluate the operational benefits of using plug and produce robot as
sistants in a dynamic production setting. Given this gap in research, the 
authors of this paper have in a prior study [6] proposed an approach 
combining physical experiments for deriving actual operation timing 
with discrete event simulation for evaluating production scenarios. The 
approach was in [6] tested on an industrial-like laboratory setup. In this 
paper, we extend our prior approach with a hybrid simulation step, 
reducing the need for physical experiments in the actual production 
environment. Furthermore, this time we assess our approach in a real 
industrial case from a large Danish company. 

Fig. 1. Iterations of the Little Helper platform [30].  
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2.3. Hybrid simulation modeling 

Simulation has been a method to design and analyse manufacturing 
systems since the 50s, given its risk-free way to test different scenarios 
without the need for physical resources [51]. However, with emergent 
Industry 4.0 technologies, state-of-the-art simulation platforms provide 
resources to better predict behavior both in terms of output and inte
gration, such as the Internet of Things and cloud computing, providing 
extended interoperability and real-time data exchange [52]. 

Digital simulation is a key technology to optimize decision-making 
and the design and operation of complex and smart production sys
tems. Simulation-based approaches allow gaining insight into complex 
manufacturing systems to develop and test new operating policies and 
concepts without disturbing the physical system. Besides, it also allows 
the experimentation and validation of products, processes, and system 
design to predict system performance in various abstraction levels [14, 
53]. 

Many modeling and simulation methods exist, and a list of several of 
the methods can be found in an extensive literature review conducted by 
Diallo et al. [54]. Some of these methods are predominantly used in 
specific domains, while in manufacturing, discrete event simulation and 
3D process simulation are seen as essential methods, especially for 
productivity analysis. 

The 3D process simulation provides the ability to simulate different 
tasks for a given workplace, supporting analyses of dependencies such as 
collision avoidance and pathfinding for both workers and robots. Based 
on the layout, waypoints are generated for the agent to reach a target 
position. Generating realistic movements in the simulation is critical 
since they greatly influence operation cycle times. The implementation 
of well-established methods from the field of robotics for the movement 
calculation allows the generation of realistic behaviors for a worker, 
equipment, or robot, which grants precise insights to processing and 
cycle times without prior real-world implementation [55,56]. This 
method can be applied for individual processes but also to complex 
manufacturing lines, supporting validating manufacturing processes and 
interactions. Several recent studies have used 3D process simulation to 
explore the use of collaborative robots in a manufacturing context 
[57–61]. 

Discrete event simulation (DES), on the other hand, is process- 
oriented, i.e., the system is considered as a list of events to be pro
cessed or a flow chart in which the entities and resources flow through 
the processes [62,63]. These entities have a number of attributes and can 
be connected to resources, so they can be processed during an event if 
the necessary resources are available, and despite being a static repre
sentation, the DES inputs can be randomized to examine the impacts of 
different changes in the system [64,65]. This type of simulation is by far 
the most utilized in the manufacturing context, and it is commonly 
applied to investigate productivity, bottlenecks, line balancing, routing, 
scheduling, queueing, and supply chains [15]. 

Finally, hybrid simulation is characterized by the combination of two 
or more simulation methods or a combination of simulation with opti
mization approaches [66]. In this study, we take a hybrid simulation 
approach by combining 3D process simulation and discrete event 
simulation to evaluate the use of robot assistants as shared resources in 
smart factories while analysing the productivity for each scenario 
developed. 

In the next section, we present our research design and detail how 
each simulation is used. 

3. Research design 

In this paper, we introduce a 3-step approach for simulating and 
evaluating the operation of robot assistants. The aim is to support 
simulation-based design and optimization of flexible resource utiliza
tion. The approach is composed of three main steps: (i) data retrieval 
and physical experiments to verify and obtain plug and produce related 

parameters; (ii) 3D process simulation for validation of manufacturing 
process and interactions; (iii) discrete-event simulation to analyse pro
ductivity and resource allocation. Each step and respective inputs and 
outputs are described below. 

Step 1. The use of plug and produce systems requires knowledge 
about the system configuration and resource interaction. This first step 
focuses on verifying the technical implementation feasibility, consid
ering both hardware and software integration. This includes interactions 
between the physical resources, system controllers, and resources 
planning/execution systems integration. Note that the integration of the 
robot can be both local at the given workstation or global with direct 
communication with higher-level system controllers. Thus, extensive 
integration with legacy systems is not required, and standalone robot 
programming can be utilized. Essential information should be retrieved 
from the physical experiments to be used later, such as the (a) setup time 
that involves the times for changing tools or any other needed manual 
work, (b) accurate calibration time that is difficult to estimate in the 
simulation, and (c) relocation parameters (e.g., speed) that vary 
depending on the assistant robot design and configuration. Furthermore, 
specific data related to the case (e.g., production demand, resource 
availability, operational hours) can be retrieved from the company 
systems in this step. 

Step 2. This second step focuses on verifying the processes feasibility 
in different scenarios by using a 3D process simulation. This step sup
ports analysing multiple scenarios taking into account the many re
sources and restrictions involved in the shopfloor dependencies. First, 
the simulation supports validating the process feasibility (e.g., robot 
reaching a target position or checking for interlock in process flow) even 
when a physical scenario is not available for testing; second, it supports 
gathering accurate processing and cycle times based on realistic move
ments, considering the robot and worker movements, the path for 
collision avoidance, interactions with other resources, and more. 
Essential information can be retrieved from this step to be used later, 
such as (a) accurate processing and cycle times, (b) detailed analysis of 
resources utilization in each process. Note this step also comprises the 
test and validation of new automation solutions, as described in Section 
2.3 and exemplified in Section 4.2. 

Step 3. The final step focuses on verifying the processes imple
mentation viability for utilizing a shared resource. For such, discrete- 
event simulation is used to investigate multiple scenarios in terms of 
resources utilization, resources allocation, and productivity. By using 
the data gathered on Step 1 and Step 2, this simulation supports ana
lysing the resources needed to cope with the demand in the several 
workstations. Note that data exchange between the 3D process simula
tion and discrete event simulation tools can be done either manually or 
automatically (eg, through PLM systems). Stochastic behavior can be 
applied to avoid biased results, and layout aspects must be taken into 
account to ensure relocation feasibility. 

In the following section we introduce the case study and describe 
how the 3-step approach was applied and tested, while the feasibility 
and benefits of using robot assistants are analysed. 

4. Case study 

The case study was held at one business segment of the global Danish 
group Danfoss A/S, the Danfoss Drives A/S. The company is the global 
leader in the variable speed control of the electric motors segment. The 
company has approximately 5.000 employees, having as core products 
low- and medium-voltage AC drives used to control electric motors’ 
speed, convert energy from natural or renewable resources, and transmit 
it to the electrical network. Given their strategy of providing highly 
customized products to their clients, their production line is also focused 
on keeping a high degree of flexibility. 

At the time of this study, most of the assembly lines, apart from 
testing and material handling, are semi-automatic throughout different 
plants. However, the company aims to transition towards Mixed-Product 
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Assembly Lines, a type of assembly line that, while flexible, contributes 
to creating product variety and absorbing volume fluctuations [67]. 
Therefore, over the last years, Danfoss implemented collaborative robots 
to increase automation while keeping the needed flexibility. However, 
cobots have been mainly adopted in fixed stations, and since they usu
ally are not planned to be flexible enough to move among stations, the 
utilization rate is usually low. 

We expect that the 3-step approach proposed in this paper enables 
adopting robot assistants as a shared resource in the Danfoss context. 
The procedure for collecting and analysing potential cases involved the 
following steps: (i) we identified cases in which cobots are used in fixed 
stations and their idle times are high, thus the remaining capacity could 
be used elsewhere if adapted to a mobile solution; (ii) with potential 
cases identified, we selected processes that happen similarly in different 
lines, which facilitates implementation given the reduced types of tasks; 
(iii) finally, we selected the process with the highest combined cobot idle 
time. 

Therefore, our unit of analysis consists of three similar cells in the 
company, each of them tasked with preparing components that are used 
on nearby assembly lines. These sub-assembly stations are today 
partially automated, in which a worker and a collaborative robot work 
simultaneously. The process consists of a thermal paste application into 
a component used later in the production line. Currently, the human 
worker performs the product placement in a fixture plate, while 
dispensing the thermal paste is the robot’s only task. Thus, currently, 
three collaborative robots are required for such an operation. However, 
since the majority of the time the cobots are awaiting part delivery or 
conclusion of the human tasks, the utilization rate remains low. 

Therefore, our goal is twofold in this case study. First, automate the 
process further to reduce the number of person-hours needed, and; 
second, evaluate the adoption of robot assistants, to increase the flexi
bility of resources while increasing cobots’ utilization rate by allocating 
the remaining capacity for different activities in the factory. For such, 
the application of the 3-step approach is now detailed for this specific 
case study. 

4.1. Step 1: Physical experiments and data retrieval 

The first step in our approach is to gather data that cannot be 
determined from the simulation, but rather serves as input for the sim
ulations in Steps 2 and 3. This data consists of two main parts, (i) data on 
the plug-in and plug-out procedure of the robot determined using 
physical experiments, and (ii) scenario-specific production data. 

4.1.1. Physical experiments 
The purpose of the physical experiments is to first validate the 

technical feasibility of the integration of robot assistants in the scenario, 
and second to accurately determine the timing of the plug-in and plug- 
out procedures, including setup time, calibration, etc. When using our 3- 
step approach to estimate the potential of a currently manual task, as it is 
the case here, the experiments cannot be carried out on the real pro
duction equipment, as this has not yet been prepared for integration 
with the robot assistant. To overcome this, the experiments can be 
carried out on a mock-up of the intended setup in a decoupled envi
ronment, or results from similar tasks may be applicable. Here in this 
study, we make use of experiments carried out in a previous study [6] by 
the authors on comparable production tasks. 

In [6] the robot assistant used was composed of a Universal Robots 
UR5 manipulator mounted to a manually movable platform and 
equipped with a 4TECH Kelvin tool-changer, a calibration tool, an 
OnRobot RG2 gripper, a 4TECH pneumatic gripper and an AIM Robotics 
glue dispenser tool. The scenario included an assembly station and a 
glue-dispensing station which could be controlled by either a human 
operator or a robot assistant. The communication between the robot 
assistant and production line in this case was facilitated using MODBUS. 
The scenario was set up in an industrial-like lab environment at Aalborg 

University, see Fig. 2. 
The plug-in and plug-out procedure included retrieving the idle 

robot from within 15 m or the target station. The results of the physical 
experiments conducted in [6] verified the technical feasibility of the 
integration, and the plug-in and plug-out timing is summarized in  
Table 1. 

4.1.2. Data retrieval 
Case-specific production data is retrieved at the company. The de

mand per station to fulfill the production of each line was extracted from 
the enterprise resource planning (ERP) system based on the average 
demand of the previous year. Note that although the three stations 
selected for this case are similar in terms of processes, they differ in the 
number of units produced given the different line demands. Table 2 
shows the daily demand per line. 

Other general parameters, such as maintenance and availability 
(mean time before failure and mean time to repair) was also collected, as 
shown in Table 3. Note that both programmed and non-programmed 
maintenance is already considered on the availability. Besides, the 
company production operates in three shifts. Therefore 24 h daily 
operation is assumed in this study. 

4.2. Step 2: Simulation-based process automation and process feasibility 
evaluation 

After demonstrating the technical feasibility in Step 1, this second 
step focuses on evaluating the process feasibility, analysing further 
process automations, and determining operation cycle times. Therefore, 
we first analyse the current scenario, and by using a 3D process simu
lation we evaluate feasible solutions to further automate the operation 
and later calculate their operations cycle times. The simulation software 
Visual Components is used to perform the analyses. 

First, the current manufacturing process was mapped along with the 
company’s production engineers to better understand the production 
requirements and restrictions. Then, the process sequence from the 
process mapping at the company was introduced in the 3D process 
simulation. Later, the tasks allocated to the robot and the worker were 
analysed in terms of times and restrictions. In this way, we proposed a 
new solution to convert the semi-automatic station into an automated 
process. We equipped the robot assistant with various tools and a quick 
tool changer that support automation of several pick-and-place tasks 
currently allocated to the human worker, while additional equipment 
for machine tending was used to substitute load and unload activities 
also currently executed by the worker. Fig. 3 illustrates the resources 
and tools used. 

As shown in Fig. 3, for this case we simulated the robot assistant with 
similar tools as specified in the physical experiments (see Section 4.1.1), 
with additional and case-specific tools that support further process 
automation. The setup consists of a Universal Robots UR10 collaborative 
robot, a 4TECH Kelvin quick tool changer, and a manual trolley that 
carries three tools: an OnRobot RG6 gripper, a tailored tool to dispense 
thermal paste on the product, and a calibration tool (a vision-based 
system can be a substitute for the calibration tool if needed). The Pro
feeder X is a licensed product by EasyRobotics with ten flexible trays 
that accommodate the parts to be produced. Finally, a tailored fixture 
plate that has both an automatic dispenser that deposits thermal paste 
on a robotic tool and a base for part placements. 

The simulation-based proof of concept was robust, showing the 
feasibility of automating almost the entire process. The new process now 
requires human interactions only for relocating the robot assistant be
tween stations and loading the ProFeeder. The processes at the station 
run step by step as follows:  

1. Loading the ProFeeder: This process is done manually, where an 
operator loads the ProFeeder X with parts before the operation starts. 
The parts to be processed come in cardboard boxes that can be 

E. Ribeiro da Silva et al.                                                                                                                                                                                                                      



Journal of Manufacturing Systems 63 (2022) 107–117

112

directly placed in the trays. Product models vary in size, but each 
tray accommodates six cardboard boxes with 12 products each, 
regardless of the model. Therefore, the ProFeeder accommodates up 
to 720 parts at a time.  

2. Production request: The robot assistant receives the order from the 
manufacturing execution system (MES). This determines which tool 
the robot assistant should select and from which tray the parts should 
be picked. Alternatively, if the company does not want to connect the 
robot assistant with the MES, different pre-configurations can be set 
to determine the tool and materials to be used. In this case, we used 
the manual configuration for simulation purposes.  

3. Robot calibration: The robot assistant performs an autonomous 
calibration using the calibration tool. This calibration procedure 

works by placing the tool to a reference point at the station, from 
which all the task-relevant poses are described from. After the robot 
has been calibrated, the poses expressed locally in reference to the 
station are now expressed by the robot world-frame. Thus, the same 
robot can be quickly calibrated when moved to a different cell.  

4. Operation: The robot attaches the gripper to pick the part from the 
ProFeeder and place it on the fixture plate. Next, it changes the tool 
from the gripper to the tailored dispenser tool. The automatic 
dispenser deposits thermal paste on the tool, which is then applied to 
the part. This tool is needed for process quality reasons and cannot be 
replaced only by the automatic dispenser. Next, the robot assistant 
changes the tool again, now to pick the part from the fixture plate 
and place it back to the cardboard box. Note that the robot assistant 
can operate autonomously until all parts are finished since the robot 
assistant can also be programmed to open the trays with the same 
gripper, either when parts in a tray are concluded or when the MES 
request a different model placed in a different tray. 

Operational processing times were obtained from the 3D process 
simulation that uses the in-built robot controller to calculate processing 
times for each operation following the robot motion planning. Within 
the simulation software, the Universal Robot connectivity plugin en
ables connecting to a Universal Robot controller and running a simu
lated robot with realistic movements. That allows calculating cycle 
times accurately with low variance compared to a real-world setup. 
Besides that, the 3D process simulation allows testing path sequencing, 
collision detection, reachability analysis, and more that support ana
lysing the process feasibility without replicating all designed scenarios 
in the real world. Given the different reach points in the ProFeeder, 
minor differences in cycle times can be observed. Therefore, a triangular 
distribution is used in the simulation. Table 4 shows the operation cycle 
times. 

While this 3D process simulation has demonstrated the technical 
feasibility for process automation, the processing time to produce each 
part increased since operations now are performed only by the robot 
assistant without the support of a human operator. Hence, it remains 
unclear how the automation optimizes resource use and how the robot 
assistant should be allocated to deal with the demand for each line. 

Fig. 2. Physical experiments. Left: The robot assistant shown at the assembly station. Right: The robot assistant operating at the glue-dispensing station.  

Table 1 
Timing of the plug-in and plug-out procedure deter
mined using physical experiments in [6].  

Activity Timing [seconds] 

Plug-in  187 
Plug-out  62  

Table 2 
Average daily demand per line.  

Production line Demand [units] 

Line 1  1408 
Line 2  496 
Line 3  352  

Table 3 
Production parameters.  

Maintenance parameters Values 

Availability 99.5% 
Mean time to repair (MTTR) 600 s 
Operation hours 24 h/day  
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Therefore, next we apply the discrete-event simulation to analyse how 
the system behaves in different scenarios to support the resources 
analyses. 

4.3. Step 3: Simulation-based resource analysis 

Finally, in this step we verify the processes implementation viability 
for utilizing a shared resource. Several scenarios are developed and 
analysed to evaluate how resource allocation influence productivity and 
utilization rate. The simulation uses the data retrieved from Step 1 
(demand, robot assistant availability, mean time to repair, setup time, 
changeover time, and robot movement parameters), and Step 2 (oper
ation cycle times). Note that data exchange between the simulation tools 
was done manually in this case due to the use of different platforms and 
the lack of features for integration. In total, seven scenarios are devel
oped and tested, covering the use and relocation of one to three robot 
assistants with different workloads in three different stations. Since the 
simulation uses a stochastic approach, experiments for each scenario 
were run five times, and the average result was used for mitigating bias. 
The simulation software Enterprise Dynamics is used to conduct the 
experiments. 

As seen in Table 2, demand varies between the production lines, 
which makes it important to investigate the availability of robot assis
tants to create a buffer of parts for production. Therefore, we investigate 
how many robot assistants are needed and how often they can be moved 
from one line to another. Note that the more often a robot can be relo
cated without risking the total production, the more flexible we turn the 
manufacturing system, avoiding high buffers. On the other hand, the 
movements are at the cost of production time, in which non-added time 
for relocation and calibration is spent. Thus, scenario-based analyses are 
conducted. 

The scenarios consider the total number of robot assistants and the 
percentage workload per station before the robot assistant is relocated. 
We tested scenarios with up to three robot assistants – in which the three 
collaborative robots already available at the company can be used for – 

and three different workloads (25%, 50%, and 100%) before relocation. 
The workload means that after producing a percentage of the line de
mand, the robot assistant is relocated to the next line in which a robot 
assistant is not available. Note that in Scenario 3, one assistant robot is 
allocated for each line, consequently no relocation is needed. Hence, 
seven scenarios are explored in total, as illustrated in Fig. 4. 

The results presented in the following sections aim to demonstrate 
that the described methodology is capable of (i) modeling, analysing, 
and improving process automation, and (ii) improving the utilization 
rate, which is critical to minimize costs and enhance future project 
viability. 

4.3.1. Scenario analyses 
The results presented throughout this section discuss the results of 

using a different number of robot assistants and workloads. Stochastic 
simulations were run multiple times for all scenarios to mitigate the risks 
of biased results. 

First, we analyse the results for Scenarios 1.1–1.3 that uses only one 
robot assistant. Table 5 presents the results related to the total time spent 
to cope with the demand and the percentage of the time the robot as
sistant is busy, idle, not available, or traveling to a different station. All 
percentages are related to the total daily operation time. 

As seen in Table 5, regardless of the workload strategy used, the total 
time to cope with the daily demand surpasses the 24 h available daily. 
This shows that more robot assistants are needed. Besides, because of the 
high availability and low setup time, the workload strategy accounts for 
a low difference in total time. This difference can also be seen as the 
required time from a human worker time to relocate the robot assistant 
from one station to another since the trolley, in this case, is manual. 
Next, we see the results of Scenarios 2.1–2.3. 

As seen in Table 6, now with two robot assistants, the total required 
time is below the available time, showing the demand can be fulfilled 
with this setup, and the idle time indicates that the excess capacity could 
be used to handle an increase of up to 25% in demand. As expected, 
Scenario 2.3 outperforms the other two configurations needing only 
21.37 h to fulfill the demand, while the ‘travel to job’ is highly mini
mized. Note that the indicator ‘travel to job’ indicates the time the robot 
assistant is being relocated to another station, and in this case study the 
three stations are relatively close to each other, which contributes to a 
low percentage compared to the operation. However, in cases where 
stations are far from each other, or the total availability in daily oper
ation is lower (e.g., one shift), this will potentially have a greater in
fluence on the results. 

Fig. 3. Automated production setup with a robot assistant.  

Table 4 
Production parameters.  

General parameters Values [seconds] 

Cycletime (min)  52 
Cycletime (mean)  54 
Cycletime (max)  56  
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The total time difference between Scenario 2.1 and Scenario 2.3 is 
almost one production hour, which illustrates that the flexibility 
increased, but often relocation is not for free. However, idle time is 
identified in all three scenarios, which potentially allows new strategies, 
such as relocating for a different line/operation to use the remaining 
capacity or modifying the workloads for more often relocation if higher 
flexibility is required. 

Note that, even though the simulation already considers both pro
grammed and non-programmed maintenance, the immediate worker 
availability is not considered. Thus, when choosing a manual trolley for 
relocation, a security margin (e.g., 90% utilization rate) is preferable to 
absorb times regarding possible unavailability of human workers for 

immediate robot assistant relocation. 
Next, we see the results of Scenario 3, which uses three robot assis

tants, making no robot assistant relocation needed among the three 
production lines. 

As seen in Table 7, now with three robot assistants, the total busy 
time is high for the station with the higher demand, while the other two 
robot assistants are idling most of the time. The production time of 
21.17 h daily accounts for the highest utilization (robot assistant 1), 

Fig. 4. Description of scenarios.  

Table 5 
Results of Scenario 1.1–1.3.    

Scenario 
1.1 

Scenario 
1.2 

Scenario 
1.3  

Number of robot 
assistants 

1 1 1  

Workload per station 25% 50% 100% 

Robot 
assistant 1 

Busy (%)  99.20%  99.35%  99.44% 
Idle (%)  0.00%  0.00%  0.00% 
Not Available (%)  0.48%  0.48%  0.47% 
Travel to Job (%)  0.32%  0.17%  0.09% 
Time for production 
(hours)  

33.92  33.76  34.14  

Table 6 
Results of Scenario 2.1–2.3.    

Scenario 
2.1 

Scenario 
2.2 

Scenario 
2.3  

Number of robot 
assistants 

2 2 2  

Workload per station 25% 50% 100% 

Robot 
assistant 1 

Busy (%)  92.38%  89.65%  88.46% 
Idle (%)  7.02%  10.04%  10.95% 
Not Available (%)  0.40%  0.27%  0.54% 
Travel to Job (%)  0.20%  0.04%  0.06% 

Robot 
assistant 2 

Busy (%)  48.16%  54.23%  53.39% 
Idle (%)  51.20%  45.25%  46.13% 
Not Available (%)  0.53%  0.40%  0.40% 
Travel to Job (%)  0.17%  0.11%  0.07%  
Time for production 
(hours)  

22.34  21.59  21.37  
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while the demand for the other two lines can be fulfilled in less than 
7.5 h, that is, less than one shift time. In other words, it demonstrates a 
resource waste that can be potentially used elsewhere in the factory. 

4.4. Case summary and key takeaways 

This section summarizes the key takeaways for the case study 
focusing on analysing the feasibility of implementing the robot assistant 
in a Danish company. The 3D process simulation showed that process 
automation is feasible, and the human worker that was needed over the 
entire process is now needed only shortly a few times a day to feed the 
trays and move the robot from one station to another. The total time 
required by the human worker will depend on the strategy used, but it is 
similar to the results of the ‘travel to job’ indicator, summed to the filling 
process that can take up to 15 min per shift. One of the main re
quirements to make it feasible was autonomous calibration. A manual 
robot calibration was previously evaluated as very time-consuming, 
making it unfeasible from a financial point of view. With the autono
mous calibration provided by a plug and produce approach, the process 
is simplified, making it possible to make better utilization of resources, 
both person-hours and the number of robot assistants needed to cope 
with the demand. 

From the seven scenarios analysed, those with two robot assistants 
have shown to be the most appropriate. Results demonstrated that two 
robot assistants are enough to fulfill the demand while keeping a sig
nificant idle time as a security margin. Therefore, bottlenecks would not 
be created even if a more flexible approach that relocates the robot as
sistants more often is employed. Among the three strategies with two 
robot assistants, the most appropriate one will be based on the company 
needs in terms of flexibility and human-worker availability, which can 
vary depending on the order. 

Although the number of cobots can be reduced when used as a shared 
resource, new equipment is needed, both for further automation and to 
convert the collaborative robot arms into mobile robot assistants. For 
instance, developing the new setup would require grippers, calibration 
tools, quick tool changers, tailored 3D printed fixture plates, manual 
trolleys, and the Profeeder X. It is critical to consider the additional 
equipment since it highly influences payback analysis. The payback 
analysis is made by analysing the initial acquisition cost of equipment 
subtracted the person-hours and a collaborative robot arm that is now 
available to be used elsewhere in the factory. Note that the exact 
payback number was not calculated because it involves worker salary 
and cost of tailored tools, which is out of this project’s scope. 

Finally, the purpose of sharing a resource that adapts to different 
stations is not only significant from a financial point of view, but also 
supports fast production adaptations when necessary. Thus, it also de
creases the risk of technology obsolescence and support better reaction 
to sudden changes in demand, as resources can be quickly repurposed. 

Besides, for green-field automation projects, there is still potential to 
reduce initial investment since not every station would need to be fully 
equipped with robots and the required tools to operate. Combined, this 
reduces the pressure on operational efficiency for dedicated resources, 
often a trade-off with several manufacturing strategies. 

On the other hand, as a shared resource, the failure of a robot as
sistant could negatively impact several production lines due to in
terdependencies. Therefore, backups or a more cautious maintenance 
strategy should be considered. Moreover, contrarily to this case study 
that used manually moveable robot assistants, it is highly important to 
notice that when evaluating autonomous robot assistants, the MTTR and 
availability measures gathered from the legacy system should not be 
straightforwardly used because the compounding risks of failures be
tween the autonomous vehicle and the robot, which cannot be neglected 
and requires careful calculations. 

5. Conclusion and future research 

The majority of existing research on plug and produce robot assis
tants address technical development and integration aspects, and only 
very few researchers have addressed how to assess the operational as
pects. Thus, we have in this paper addressed exactly this gap in research, 
and proposed a 3-step approach for evaluating the production perfor
mance and equipment utilization when applying robot assistants. The 
approach combines physical experiments on the technical feasibility and 
plug-in/plug-out timing with hybrid simulation evaluating first the 
process performance and finally the overall system performance. A case 
study at the large Danish manufacturer Danfoss has been used to both 
exemplify the application of the 3-step approach and also to preliminary 
verify its validity. 

Our proposed approach is also valuable to practitioners, to whom it 
provides a tangible way to assess the potential of automating manual 
tasks using robot assistants prior to the technical investment. The 
exemplification of our approach shown through the case study at Dan
foss furthermore provides a pragmatic view on how to step-by-step 
apply it and the level of results that it may provide. Although exempli
fied on a partly green-field scenario in the case study, the method does 
not favor either brown- or green-field setups, as long as the constraints 
imposed by the scenario are modeled accordingly in the simulation 
steps. Besides, the simulation supports obtaining accurate results for 
various scenarios without running physical experiments for all of them, 
reducing resource use. 

However, in this study, we could identify three main limitations that 
could motivate further studies. First, data interoperability is a technical 
limitation that requires manual data input among the different steps. 
Although eased data sharing between simulation applications is prom
ised by many Product Lifecycle Management system providers, in 
practice, such integration is still rare even when using a similar plat
form, and intensified when cross-platform solutions are needed. Plat
form independent standards will provide a solution to this, and the 
Functional Mock-up Interface (FMI) shows promise, that future work 
could investigate. Second, the case study proved to be not highly sen
sitive to the time associated with the relocation of the robot assistant. 
Therefore, for scenarios consisting of multiple micro-tasks, the time 
associated with the robot relocation would gain significance with 
regards to the productivity of the lines, which requires further in
vestigations to understand the consequences and limitations. Lastly, 
data from lab-experiments comes with uncertainties. Since the lab itself 
can only emulate a fully operational production line to a certain extent, 
some uncertainty is attached to the results obtained in Step 1. Similarly, 
uncertainty is to be expected from the simulation results in Step 2 and 3 
as these also are approximations of the real world. Consequently, de
cisions made based on final results obtained from the 3-step approach 
should factor the accumulated uncertainties in. 

Therefore, the following future research directions are presented as 
possibilities to expand this research effort and surpass some of the 

Table 7 
Results of Scenario 3.    

Scenario 3  

Number of robot assistants  3  
Workload per station  100% 

Robot assistant 1 Busy (%)  87.94% 
Idle (%)  11.78% 
Not Available (%)  0.28% 
Travel to Job (%)  0.00% 

Robot assistant 2 Busy (%)  30.99% 
Idle (%)  69.01% 
Not Available (%)  0.00% 
Travel to Job (%)  0.00% 

Robot assistant 3 Busy (%)  21.99% 
Idle (%)  78.01% 
Not Available (%)  0.00% 
Travel to Job (%)  0.00%  
Time for production (hours)  21.17  
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aforementioned limitations. Firstly, the presented approach could be 
evaluated further by applying it to different industrial scenarios to 
provide a better understanding to practitioners about e.g. plug-in/plug- 
out time distributions rather than fixed values, which potentially 
decreased simulation uncertainty. Secondly, it would be of interest to 
investigate using the proposed approach for scenarios that mainly 
consist of micro-tasks and require frequent relocations since such times 
might have a greater productivity impact. Thridly, an investigation on 
how robotic solutions with increased autonomy minimize the time 
needed to relocate and calibrate the robot assistant to the various sta
tions. Lastly, applying the presented approach to several, diverse tasks 
would create a data-foundation from which general indicators for suc
cessful deployment of robot assistants could be extracted. This would 
help practitioners set strategic directions for adopting robot assistants. 
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