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Abstract—Marine growth challenges the structural integrity of
offshore facilities due to increased hydro dynamical loads. As a
consequence, marine growth cleaning on offshore structures has
been performed for many years. While the industry has shifted
from diver-assisted to cleaning driven by remotely operated
vehicles, the process remains costly and ineffective. This paper
explores the possibilities for introducing an increased level of
automation for marine growth inspection and classification.
Specific attention is given to sensor technologies and methods
for constructing a 3D representation of the offshore structures
in order to assess the thickness and composition of marine
growth. While optical-based methods show positive potential
further work is needed to investigate the robustness to flicking
sunlight and turbidity issues experienced in areas close to the
water surface. The review of classification methods reveals several
promising approaches where deep learning is applied for the
categorization of marine growth. The training relies on large
databases of relevant images which are not currently available
for marine growth on offshore structures. Further work is needed
for investigating if virtual images can be used in combination with
a reduced set of real images.

Index Terms—ROV, Marine Growth, 3D reconstruction, SfM,
Stereo Vision, Structured Light, Time of Flight, Machine Learn-
ing, Classification

I. INTRODUCTION

Marine growth (MG), also termed bio-fouling, is a phe-
nomenon occurring for a hard-surfaced structure submerged
in seawater. Over time, the surface of such structures will be
populated by marine organisms. Affecting the weight, size,
and surface of submersed structures, marine growth poses a
significant issue for both the marine transportation sector and
offshore structures in the energy sector. This work takes an
offset in the latter, which is currently dominated by the Oil &
Gas (O&G) production and offshore wind turbines.

Offshore O&G production facilities and shallow water wind
turbines are predominantly installed on jacket-type structures.
Such grid element structures are especially sensitive to marine
growth due to a drastically enlarged surface area and rough-
ness, which increases the hydrodynamic loads from waves
and tidal streams [1]–[5]. The increase in hydrodynamic loads
is a lifetime limiting factor and dependent on the thickness
and composition of marine growth, often categorized as hard
or soft. To accommodate the increase in these loads, the
jacket structures are designed to handle marine growth up to

a specified thickness and composition [6]. A marine growth
removal campaign is issued if the specifications are exceeded.

The need for inspection and removal of marine growth is not
expected to be affected by future decommissioning of O&G
production facilities. In fact, an increase is expected with the
introduction of deep water renewable energy facilities such
as floating wind turbines and wave point absorbers which are
both susceptible to issues caused by marine growth [7], [8].

II. CURRENT STATE OF MARINE GROWTH INSPECTION

Historically, inspection has been facilitated by divers. Due to
the safety of the personnel working close to the structures, the
allowable weather conditions reduce the window of operation
significantly, which causes high operational costs. Currently,
the inspection process has almost entirely shifted to the use of
Remotely Operated Vehicles (ROV) manually controlled by
personnel located on a vessel. ROVs can be deployed in a
wider range of weather conditions which reduces the duration
of a cleaning campaign.

The current state of the cleaning process is seen in Fig. 1.
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Fig. 1. Marine growth removal process. The grey boxes indicate the events
investigated in this paper with a focus on the potential for automation.



The process is initialized by an inspection phase where an
ROV is used for conducting spot checks on the structure.
Figure 2 shows the method used during the initial inspection
phase. Spot checks are made using a probe acting as a ruler

Fig. 2. Manual ROV assisted marine growth inspection [9]

mounted on the ROV which is pushed into the marine growth.
The operator then evaluates the thickness, composition, and
percentage cover of marine growth based on video feedback
from the ROV. The composition of MG is considered due
to the effective diameter difference for soft vs. hard MG
as illustrated in Fig. 3. The forces from waves and tidal
streams are proportional to the effective diameter. Therefore,
a greater thickness of soft MG is allowed before cleaning is
issued. Mussels, barnacles, and tube worms are examples of
hard MG while sea squirts, seaweeds, and sea anemones are
examples of soft MG. Since MG depends on sunlight and the
thickness is usually larger near the water surface and reduces
as light is attenuated. Usually the effect and thickness of MG
is negligible below 30m. Typical examples of allowable MG
thicknesses range from 0.1m for hard MG to 1m for soft MG.
Other than the thickness and composition, also the percentage
of the structure covered is used for planning the extent of
cleaning.
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e

Fig. 3. Effective thickness illustration for hard and soft marine growth on a
structural element.

A detailed inspection employing a more extensive grid of
spot checks is issued if the MG specifications are exceeded.
A cleaning campaign is then planned and performed to the
affected areas of the structure. After cleaning, the amount
of removed MG is verified. The verification is conducted by
performing a manual evaluation of video feedback from spot
checks on the structure.

Despite the use of ROVs, a cleaning campaign remains one
of the most labor and cost-intensive maintenance operations of
offshore structures. In addition, the precision obtained using
only manual spot checks on the structure leads to significant
uncertainties on both the initial MG inspection and final
verification of removed MG.

This paper will explore the available methods for reducing
both the operational costs and uncertainty of inspection results
by means of automation. Firstly, the instrumentation technolo-
gies applicable for autonomous marine growth detection will
be reviewed, followed by a review of methods on the clas-
sification of the marine growth composition. It is recognized
that automation of the MG removal process itself will further
reduce the cost of the cleaning campaign. The possibilities for
automation of MG removal are investigated in the work by
Pedersen et al. [10].

III. SENSOR TECHNOLOGIES FOR MARINE GROWTH
INSPECTION

This section will explore the available sensor technologies
and techniques needed for assessing MG on subsea structures.
The range and field of view requirements are dependent on the
diameter of the structural elements considered for inspection.
In this study, we use the diameter of jacket-type, monopile,
and floating foundations as given in Tab. I. It is noted that

TABLE I
SUBSEA STRUCTURAL ELEMENT DIAMETERS FOR DIFFERENT

FOUNDATIONS TYPES.

Foundation type Diameter range [m] Reference
Jacket (wind and O&G) 0.95 - 1.8 [11]
Monopile 3 - 9.5 [11], [12]
Floating 2.2 - 4.3 [13]

dimensions of monopile foundations for wind turbines are
typically selected to withstand the increased forces from MG
and, therefore, require no cleaning. Nevertheless, monopiles
are considered since the trade-off between maintenance costs
of cleaning and material costs can shift due to the advantages
of automation of MG removal.

The review is divided into optical and acoustical sensor
technologies. The reviewed technologies applicable for MG
inspection are listed in Tab. II.

TABLE II
SENSOR TECHNOLOGIES APPLICABLE FOR MG INSPECTION. PRIMARILY

BASED IN REVIEWS BY CHIMESKY ET AL. [14], MENNA ET AL. [15],
MASSOT-CAMPOS AND OLIVER-CODINA [16], AND XI ET AL. [17]

Technology Range [m] Cost
Optical

Structure from Motion (SfM) <3 Low
Stereo Vision (SV) <3 Low
Structured Light (SL) <10 Medium
Laser Line Scanner (LLS) <10 High
Time-of-Flight (ToF) <10 Medium-High

Acoustical
Multi Beam Sonar (MBS) (>1Mhz) <10 High



A. Optical methods
Conceptually, the current spot-check method for MG thick-

ness estimation relies on a manual inspection of optical
feedback from a camera facing toward the probe. However, to
reduce the uncertainty inflicted by spot-checking, the reviewed
methods focus on recreating a 3D representation of the MG
on the structure. Optical 3D reconstruction techniques are
extensively researched and have found many applications on
e.g. ground robots and Unmanned Areal Vehicles (UAVs) [18].
However, the in-air optical methods are not directly applicable
in an underwater scenario. Non-homogeneous and irregular
light attenuation in the water column, narrow transmission
window (470-580nm), sediment-induced light scattering, and
polarization are among the challenges faced for underwater
optical methods [16], [19], [20].

With additions, the following description is based on the
comprehensive reviews of optical methods for underwater
applications conducted by Chemisky et al. [14], Menna et al.
[15], Massot-Campos and Oliver-Codina [16], and Xi et al.
[17].

1) Passive methods: Two of the typical passive optical
reconstruction techniques are Structure from Motion (SFM)
and Stereo Vision (SV), which both use images of the scene
to reconstruct 3D information.

Structure from Motion (SfM) uses a series of images from
a single camera source for reconstructing a 3D scene. The 3D
scene is constructed from triangulation of detected identical
features from a series of images [21]. A scaling problem
arises for the constructed 3D scene since the distance from
the observer to the features is unknown. This ambiguity can
be resolved using calibration targets with known sizes, which
can be either inherent in the scene (e.g. known structural
elements) or ones added manually (e.g. tape measure, printed
calibration targets). Several underwater experimental results
(with calibrated targets) showed an accuracy of 10mm using
the Scale Invariant Feature Transform (SIFT) [22], [23] and the
highest accuracy of 0.7mm was obtained using the Speed Up
Robust Features (SURF) [24]. While this accuracy is sufficient
for MG thickness estimation, the range limitation below 3m
and drift issues are the main challenges for using this method
on larger diameter structures [14].

As marine growth classification often relies on color im-
agery, Bryson et al. showed that color information could be
recreated on 3D models obtained from SfM by using full water
attenuation color correction [25]. Liu et al. [26] reviewed tech-
nology for Underwater Hyperspectral Imaging (UHI), which
in combination with color enhancement techniques provide an
opportunity for improving subsequent MG classification based
on SfM 3D scenes.

While SfM is easy to employ and yields a very cost-
effective solution due to the simple equipment requirement
(a monocular camera), the method is only viable at close
range and needs rigid scenes with clear textures to achieve full
coverage. Specifically, soft MG is non-rigid which imposes
an issue when triangulation is performed. The method is
also affected by poor visibility and flickering from sunlight

when operating close to the surface, which is where structures
are known to be most affected by MG [14], [16]. Further
investigation is also needed to assess if the textures of MG are
sufficient for SfM in a setting close to an offshore structure.

Stereo Vision (SV), a technique related to SFM, uses
triangulation from detected features similarly to SfM but
applies two cameras pointed toward a common scene. By
utilizing the known distance and orientation of the cameras, the
scaling problem of SfM is avoided. Apart from providing fixed
scaling, and some redundancy in the images, SV is generally
affected by the same problems known for SfM. A stereo vision
technique has increased cost over SfM since a minimum of one
extra camera is needed [14].

The passive methods both rely on robust feature detection,
which can be difficult to reliably achieve in real-world subsea
conditions; Reggiannini and Moroni [27] highlight, in a recent
review, the advantage of using machine learning for feature
detection to increase the performance of feature detection in
low texture underwater environments.

Passive reconstruction methods have additionally found use
in several applications of SLAM on subsea robotics [28],
where it is also possible to fuse the signals from onboard
motion sensors [29]. This yields the advantage of combining
MG inspection (mapping) and ROV positioning (localization),
which motivates further investigation.

For both SfM and SV, many well-demonstrated implemen-
tations are available; however, the calibration of the cameras
usually assumes knowledge of the refractive index between
the camera lens and surrounding medium (water), which
is influenced by changing environmental conditions such as
pressure, temperature, and salinity, thereby complicating the
application [16]. On a general note, calibration is needed in
any case where the camera-based 3D reconstruction is used
for precision purposes.

In summary, there are many well-demonstrated applications
of passive optical reconstructions techniques, and by applying
various mitigation strategies towards the physical effects in-
herent to the subsea environment (light attenuation, scattering
etc.), these methods can and have been used with some success
underwater. However, further experimental work is needed to
clarify if MG provides sufficiently distinctive and detectable
features.

2) Active methods: Structured Light (SL) is, in contrast
to SfM and SV, an active method where a known pattern is
projected onto the unknown scene. The intersection between
the scene and pattern is reflected and used for reconstructing
3D points along the distorted pattern by triangulation. A 3D
point cloud of the scene can then be created by multiple inter-
sections obtained from changing the position of the observer or
changing the pattern. Since features are actively projected onto
the scene, the method is highly applicable in environments
with few or no features [30]. The disadvantage in comparison
to SfM/SV methods is that only spatial information is recre-
ated, and color information valuable for MG categorization
is lost. Pattern projection can be performed by a commercial
light projector or a blue/green 532nm laser, where the latter



is widely used in underwater applications due to the low
attenuation of that specific wavelength [31]–[33]. The accuracy
and range of SL methods are on par or slightly better than
SfM/SV [16].

Laser Line Scanner (LLS) can be categorized into three;
Continuous Wave (CW), Pulse Gated (PG), and Modulated
(Mod). Continuous Wave-LSS utilizes a receiver (camera,
photomultiplier tube, or photon counter) scanning back and
forth along a line. A laser is pointed in a known direction along
the line. The receiver detects the position of the laser point and
determines the distance to the scene by triangulation. Pulse
Gated-LLS uses the same general approach but synchronizes
the laser source and the receiver such that the receiver opens
with a delay and thereby avoids the incoming light from
backscatter in the water column. Consequently, PG-LSS shows
a longer working range than CW-LLS, up to 10m [34].
Modulated-LSS operates similarly to sonar by comparing a
modulated source to the received reflection. The phase shift
between the signals can be used to determine the distance
to the object. The range and accuracy are similar to PG-
LSS [16]. While the LSS only provides spatial information
of a scene, Yang et al. [35] showed the feasibility of using
a red/green/blue laser setup for reconstructing a small-scale
underwater 3D color scene.

Time-of-Flight (ToF) utilizes the same principles as PG-
LLS or Mod-LLS, but instead of scanning a single 1D line
of the scene, a special ToF camera synchronized to a light
source is used to capture a 3D image in one shot. Distance
and grayscale information for the scene is given for each pixel.
Mack et al. [36] described challenges of adapting commercial
off the shelf time of flight cameras to applications underwater
and demonstrated a proof-of-concept setup and initial results.
UTOFIA (Underwater Time of Flight Image Acquisition) was
a Horizon 2020 research project aiming to fill the gap between
short-range, high-resolution conventional video and long-range
low-resolution sonar systems. During the project a prototype
of a range-gated ToF imaging system was developed and tested
[37]. The results showed effective distance measurement at 4.5
attenuation lengths which is less than the 7 attenuation lengths
obtained by PG-LSS [34]. McLeod et al. [38] published a
paper covering the testing of a commercial ToF sensor. An
accuracy of 1mm was obtained at a distance of 8m in a test
tank, and 7mm accuracy at 30m in good visibility conditions
in the ocean.

B. Acoustical methods

While light is attenuated to a much further extent in water
than in air, the opposite is evident for sound. Consequently,
sound has historically been extensively applied for subsea
navigation and surveying over great (>1000m) distances. For
the purpose of MG inspection, the distance is an order of
magnitude smaller, which narrows this brief review to high
frequency (>1Mhz) sonar systems. The significant advantage
obtained by using sound instead of light is the independence
of sonar to water turbidity. Multi-Beam Sonar (MBS) provides
a thin profile image based on backscatter from objects in the

trajectory of the sound beam. The range and accuracy depend
on the sound frequency, where commercially available high-
frequency MBS report a range of 7m and an accuracy of
0.6mm [39]. Several studies have pursued the idea to create 3D
scenes from a fusion of acoustic and optical methods termed
opti-acoustic imaging [40], [41]. Ferreira et al. conclude in
a review of opti-acoustic imaging techniques that a general
problem arises from matching acoustic and optical features
[42]. During MG inspection, the size and contours of the
underlying structural elements are usually known. Further
work is needed to investigate if this information can be used
for solving the feature matching problem in opti-acoustic
imaging.

IV. MARINE GROWTH CLASSIFICATION METHODS

Detection and classification of marine growth from images
using deep learning have been investigated in various studies
with a focus ranging from the classification of species in
coral reefs [43], to bio-fouling under vessels [44], [45] and
finally marine fouling on offshore structures [9], [46]. As with
the sensor technologies presented in the previous section, the
underwater environment poses a challenge in the classification
of marine growth due to the risk of poor image quality in
both training images and inspection campaigns, caused by
water turbidity. Furthermore, marine growth species often have
indefinite shapes and ambiguous boundaries between different
species leading to another challenge.

For offshore structures, the distribution of different MG
species affects the loading on the structure, and various
species may also affect the surface of the structure differently.
Therefore the classification of the MG species, as opposed to
the current spot checks, gives a better indication of the effect
of the marine growth on the structure. Additionally, the ability
to detect and classify MG can also lead to an estimate of
the percentage cover of marine growth on structure surfaces.
This knowledge will give a better basis for decision-making
on cleaning campaigns. Using deep learning for the detection
and classification of MG as part of the inspection of offshore
structures can help automate the inspection process. However,
to build a robust deep learning model, large datasets of images
for training and validation are needed.

A. Datasets for training and validation

Xu et al. [47] presented a review of deep learning for marine
species recognition and described a remarkable performance
of deep convolutional neural networks (CNN) in visual recog-
nition tasks, when there is a large amount of labeled data
for training available. Therefore obtaining high-quality images
from inspection of offshore structures is essential for achieving
good results.

Chin [48] shared a dataset with a total of 1326 labeled
images divided in 10 classes (algae, balanus, blue mussel,
christmas tree worm, finger sponge, gooseneck barnacle, kelp,
rock oysters, stinging hydrozoan and zebra mussel). Similarly,
publicly available datasets exist for identification of species



in coral reefs [49]. However, for the detection and classifi-
cation of MG on offshore structures, larger datasets must be
generated. The datasets must contain the specific MG species
expected to be present at the locations of the structures to be
inspected. This requires high-quality images from the current
inspection sites, which can be troublesome and expensive to
obtain.

Gormley et al. [9] classified MG on offshore structures using
CoralNet (https://coralnet.ucsd.edu/). CoralNet, is a resource
for benthic (bottom-dwelling) image analysis using deep learn-
ing, which supports fully automated annotation of images.
CoralNet also works as a data repository and collaboration
platform. This platform to share training data can help over-
come the lack of available data. A part of the development of
CoralNet is described by Beijbom et al. (2015) [50]. Using
CoralNet, a number of annotation points are distributed in the
images. Around each annotation point, a local image patch is
extracted for classification. This helps overcome the challenge
of ambiguous boundaries between MG species. An example
of the ambiguous boundaries between MG species is shown
in Figure 4. Gormley et al. [9] compared results of using
20 random annotation points per image, 50 points stratified
random and 100 points in a uniform grid.

Fig. 4. Example of ambiguous boundaries between MG species, leading to
the need for annotation points as used in CoralNet and in the work presented
by Gormley et al. [9]. The image is from the port of Esbjerg.

Another way to overcome the problem of obtaining images
for training deep learning models was presented by O’Byrne
et al. [46], who developed a virtual scene of an underwater
inspection site and trained a deep encoder-decoder network
with 2500 annotated synthetic images. O’Byrne et al. [46]
used two classes: soft fouling marine growth and uncolonized
background. The work focused on semantic segmentation of
the images, meaning that each pixel in the input image is
classified. Similar to the approach with annotation points pre-
sented by Beijbom and Gormley, semantic segmentation help
overcome the challenge of ambiguous boundaries between MG
species. O’Byrne et al. [46] validated their proposed technique
on 32 real-world underwater inspection images with 94%
accuracy.

Gómez-Rı́os et al. [43] aimed to enable tracking and de-
tection of threatened and vulnerable coral species and noted
that the existing publicly available databases of coral images

contain texture images only. Texture images are defined as
close-up images containing only part of the coral species.
Gómez-Rı́os et al. [43] wanted to develop a classifier that can
classify coral species irrespective of the portion of the coral
contained in each image. Therefore Gómez-Rı́os et al. [43]
presented a database of structure images containing a large
part of a coral or the whole coral in each image. The texture
image and structure image databases were used in a two-level
classifier. The first level identifies if an image is a texture
image showing only a small part of the coral or a structure
image containing a large part of the coral or the whole coral.
The second layer identifies the species. With the two level
classifier, Gómez-Rı́os et al. [43] showed that roughly 94% of
test images were classified correctly.

High water turbidity may lead to a need of conducting
inspection campaigns with the ROV very close to the offshore
structure to get proper visual output. Oppositely, in very clear
water, a larger distance to the structure may be preferred.
Therefore, it should be considered to include both texture
images and structure images in the training and validation
datasets to make the deep learning model more robust. When
a good dataset is in place, it must be decided what information
is needed from the deep learning model.

B. Classification classes

It is important to consider which classes are necessary to
obtain the most useful results of detection and classification.
Different approaches to defining these classes have been used.

Chin et al. [44] defined 10 classes of different species
of MG (algae, balanus, blue mussel, christmas tree worm,
finger sponge, gooseneck barnacle, kelp, rock oysters, stinging
hydrozoan and zebra mussel). Using transfer learning Google’s
Inception V3 convolutional neural network was trained to
classify MG in the 10 defined classes using a dataset of
1825 labeled images. As mentioned, 1326 of these images
are publicly available [48].

Xu et al. [47] noted that binary classification problems
perform best. Therefore a simplification into classification of
marine growth into marine growth and structure surface may
lead to improved accuracy, and be sufficient to estimate the
density of marine growth on the structure. Alternatively, the
classes soft marine growth, hard marine growth, structure
surface, and background may contain more information which
is useful for determining if a cleaning campaign is needed.

Bloomfield et al. [45] used a dataset of 10263 images which
were collected from underwater surveys of vessels. Instead
of focusing on the marine growth species, the images were
classified into three levels of growth:

• No fouling organisms, but biofilm or slime may be
present

• Fouling organisms (e.g. barnacles, mussels, seaweed or
tubeworms) are visible but patchy (1-15% of the surface
covered)

• A large number of fouling organisms are present (16-
100% of the surface covered)



Bloomfield et al. [45] used pre-trained ImageNet weights
for transfer learning on different convolutional neural network
architectures. These networks were used to create a network
ensemble where the image class was predicted by more
networks to get better performance.

If knowing the level of marine fouling is the most criti-
cal aspect of inspection campaigns, the classification classes
presented by Bloomfield et al. [45] may be the most useful.
However, the classes used by Chin et al. [44] do give more
detailed information on the species, if that is of interest during
inspection campaigns.

V. CONCLUSION

This paper has explored the available sensors and techniques
for reducing both the operational costs and uncertainty of MG
inspection results by means of automation. The two main
processes showing great potential for automation are MG
thickness estimation and categorization.

Several sensor technologies show potential for marine
growth thickness estimation by 3D recreation of offshore
structures. Low-cost optical methods such as structure from
motion and stereo vision show promising results, however,
main challenges such as sensitivity to low turbidity and flick-
ering sunlight disturbances are specific issues that need further
investigation for showing the usability for marine growth
inspection. A possible solution for increasing robustness to
low turbidity and flickering sunlight is to combine optical and
acoustic sensors.

Available methods for MG classification showed to be based
on deep learning relying on a large database of relevant
images for training. Access to these can be difficult even
though some publicly available databases exist. O’Byrne et al.
proposed using virtual scenes for training to reduce the need
for real images. Classification categories vary from detailed
classification into several MG species to classification of the
level of marine growth. The level of detail needed to deter-
mine if a cleaning campaign is required must be considered
when choosing classification classes for inspection of offshore
structures.
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[43] A. Gómez-Rı́os, S. Tabik, J. Luengo, A. Shihavuddin,
and F. Herrera, “Coral species identification with texture
or structure images using a two-level classifier based
on Convolutional Neural Networks,” Knowledge-Based Systems,
vol. 184, p. 104891, 11 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0950705119303569

[44] C. S. Chin, J. T. Si, A. S. Clare, and M. Ma, “Intelligent Image Recog-
nition System for Marine Fouling Using Softmax Transfer Learning and
Deep Convolutional Neural Networks,” Complexity, vol. 2017, 2017.

[45] N. J. Bloomfield, S. Wei, B. A. Woodham, P. Wilkinson, and
A. P. Robinson, “Automating the assessment of biofouling in
images using expert agreement as a gold standard,” Scientific
Reports, vol. 11, no. 1, p. 2739, 12 2021. [Online]. Available:
http://www.nature.com/articles/s41598-021-81011-2

[46] M. O’Byrne, V. Pakrashi, F. Schoefs, and B. Ghosh, “Semantic segmen-
tation of underwater imagery using deep networks trained on synthetic
imagery,” Journal of Marine Science and Engineering, vol. 6, no. 3,
2018.

[47] L. Xu, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, “Deep
Learning for Marine Species Recognition,” 2019, pp. 129–145. [Online].
Available: http://link.springer.com/10.1007/978-3-030-11479-4 7

[48] C. Chin, “Marine Fouling Images,” IEEE Dataport, 2019. [Online].
Available: https://ieee-dataport.org/documents/marine-fouling-images

[49] A. SHIHAVUDDIN, “Coral reef dataset,” Mendeley Data, vol. V2, 2017.
[50] O. Beijbom, P. J. Edmunds, C. Roelfsema, J. Smith, D. I. Kline,

B. P. Neal, M. J. Dunlap, V. Moriarty, T.-Y. Fan, C.-J. Tan, S. Chan,
T. Treibitz, A. Gamst, B. G. Mitchell, and D. Kriegman, “Towards
Automated Annotation of Benthic Survey Images: Variability of Human
Experts and Operational Modes of Automation,” PLOS ONE, vol. 10,
no. 7, 7 2015.


