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Emergency Landing Decision Method for Unmanned Aircraft

Aitor Ramirez Gomez∗ and Anders la Cour-Harbo

Abstract— This paper describes a framework to generate a
computationally low-cost decision function to automate emer-
gency landings for drones. Specifically, this function makes
a choice of which is the most suitable location to land an
unmanned aircraft from a given list of candidate ground
locations. The candidate ground locations are described by a
distance metric from the aircraft to the landing location and
by a probability safety measure associated to how safe it is to
land in that particular location. In addition, an urgency level,
associated with the current healthy status of the unmanned
aircraft, and a tuning parameter that models its robustness are
included in the decision function. These four parameters are
assumed to be given and to have some particular properties,
which are described further in the paper.

I. INTRODUCTION

The unmanned aircraft systems (UAS) usage for industry
and military operations have become more appealing within
the past years. Commercial and health-care applications that
are subjected to fly across urban areas, such as package or
medical product delivery, are also showing their interest [1],
[2]. However, the accident rate of UAS is still significantly
higher than the equivalent rate for manned aircraft, with the
former being around 1 per 1000 hours of flight [3]. In the
same direction, students proved using failure mode effect
and analysis (FMEA) having an average of 2.17 failures
leading to flight termination per 100 flight hours of an Ultra
Stick 120 [5]. These numbers are rather high for UAS to
achieve functional status and full social acceptance, and
hence, a clear way to reduce the concern is by incorporating
contingency strategies to the system to mitigate the risks of
undesired hazardous events that could also lead to third-party
damage, injuries, or even casualties. These undesired events
could be modeled by probability distributions that would
be used to design a contingency plan, but the amount of
flight hours required in the same specific conditions prevents
this task from being affordable in any sense [6]. This is
the main motivation for the context of this work. In the
research project SafeEYE [7], we have previously proposed
a framework able to mitigate the risk of UAS operations and
prevent escalation, namely, an automated emergency landing
system. This type of system requires various subsystems
to cope with the outcome of such demanding task, and
this paper focuses on one of these subsystems. Some of
these subsystems are related to self-awareness of the drone,
by introducing sensors and developing algorithms able to
understand the safety status of the drone and/or its remaining
life-time. Other subsystems are related to the environment
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sensing, which gives insight on the surroundings of the
aircraft and how to navigate. The work presented here focus
on one particular task of the latter, i.e. decision-making. An
efficient low-complexity algorithm is then proposed, which
incorporates three essential safety features related to the
emergency landing problem:

1) Urgency to perform landing, being an emergency level
associated to remaining flight time of the drone.

2) Metric describing distance/time to travel from the
current position to a potential landing locations.

3) Probabilistic measure associated to the risk of landing
on the potential locations.

In addition, a fourth parameter that models the robustness of
the particular aircraft is introduced in the decision problem
to allow the user some flexibility. This parameter is assumed
completely tune-able, and providing guidelines on how to
determine a specific value of this parameter for a given
aircraft is out of the scope of this paper.

A. Background
The work presented here is part of the SafeEYE project,

which implements an automated system for safe emergency
landing. SafeEYE is divided into three conceptually different
steps, which are

1) Detection of malfunction (Detect)
2) Recognizing landing spots (Find)
3) Planning and guidance for landing (Land)

A more detailed description of the SafeEYE project is
provided in [7], where the manner in which the different steps
are interconnected and dependent on each other is described.
The focus of this paper is on the third step Land, which
is highly dependent on the two previous steps. The basic
objective of Detect is to quantify the urgency of landing
at any given instant during flight by detecting potential
component malfunctions. The basic objective of Find is to
visually identify and store possible ground landing locations
and their probability measure (safety to land) by classifying
ground images from an on-board camera. The basic objective
of Land is to determine the best place to attempt landing,
given the information from the two previous steps, and to
design a scheme of consecutive actions to autonomously
guide a faulty aircraft to the best ground landing location, in
the safest way possible according to a criteria based on these
three parameters. In some severe situations, these actions
should accommodate the possibility of guiding the drone to
a certain location in order to perform a crash landing. Such
task is achieved by answering two basic questions: “where to
land” and “how to land”. In this paper, we present the design
of a tool that gives answer to the first question: where to land.



B. Related Work

Different criteria are used in the literature to select the
most appropriate decision among a discrete set of options.
Despite some of them being designed for purposes other than
emergency landings, ideas can still be borrowed. In [4], [8],
stereo cameras are used to map and classify the terrain as
safe according to height, roughness, slope, land-able space
and other parameters, and then optimizing the distance with
respect to certain points of interest to select the final landing
site. Other optimal approaches include [9], in which terrain,
fuel consumption and performance are incorporated in the
optimization problem to select the landing site in a planetary
landing mission. In [10], a weighted sum with different
normalized measures that contribute to safety is employed to
generate scores that are eventually used to rank the landing
sites. Similarly, in [13] a weighted sum is utilized to select at
every instant the best action to be executed by a self-driving
car. Machine learning methods are also extensively used in
the literature for ground image classification. However, the
landing site selection is still not linked to the classification
problem, but rather set as a posterior problem to solve. For
instance, in [12] the K-nearest neighbor method is employed
to classify ground images as clear, partially clear, and
unclear in three different lightning conditions to perform
safe landing. The selection of the final landing locations is
basically made by taking the next image classified as clear, if
time is not critical. When time is critical, the algorithm goes
through the last n images processed looking for a clear or
partially clear classification, and if an empty set is returned
it keeps analyzing new ground images until one is finally
found.

C. Contribution

The major contribution presented in this work is a frame-
work to generate a low-complexity function that can be
combined with three essential safety-related independent pa-
rameters in order to determine in real-time where to attempt
an emergency landing procedure. That is, a function able
to take the decision by accommodating: the current urgency
level of landing, and the pair distance and probability mea-
sure of the classified landing locations. By combining these
parameters, a decision function is proposed in Section II to
select the most suitable ground location to land from the
set of detected locations. The function also accommodates
a tuning parameter that allow the user to act directly in the
decision process for a more refined tuning. The process of
verifying the proposed decision function in an automated
manner in order to earn statistical significance of the results
is complex due to restricting ourselves from working with
data models, but also due to the lack of one such database.
Subsequently, a brief analysis of the proposed function is
performed in Section III supported by simulations conducted
to prove the performance of the solution under several
randomized scenarios. Experimental tests meant to show the
effectiveness of the solution under real scenarios are left
as future work, after completion of the SafeEYE project

and once all the functionalities (Detect, Find and Land) are
operating together.

II. METHOD

The landing location selector is a mathematical function
that takes three arguments, and produces a single cost value.
The arguments taken are related to one landing location, and
the cost function quantifies how risky is to perform landing
in this specific landing location. Notation is introduced to
facilitate the formulation of the problem mathematically.

1) µ ≥ 0 is the current urgency level,
2) Rp > 0 is the distance from aircraft to landing location

p, and
3) λp ∈ [0, 1] is the probability measure showing the

confidence level that location p is a safe landing site.
The cost for a specific location p is named Jp, and R is a
vector of all Rp values.

In our use, R is the Euclidean distance between the
aircraft and the landing location, but the formulation of the
problem allows for R to be another measure, such as the
total trajectory distance travelled, or the total time needed to
reach the landing location. Since λp and Rp are, in any case,
independent, their contributions to the cost Jp are introduced
separately. However, in order to generate the cost function,
the parameter Rp has been normalized using the one-norm
‖·‖1 as

R̄p =
Rp
‖R‖1

, (1)

so that its contribution to Jp is comparable to λp. To perform
(1) two assumptions have to be considered: 1) the vector R
is never empty, meaning that at least one location has been
detected and stored, and 2) Rp is never zero when there is
only one location stored. With this, the parameters λp and
R̄p are now equally bounded and can be utilized to generate
the cost function. Eventually, Jp will form a changing multi-
criteria cost function that takes the contribution of λp and R̄p
to the cost for a given urgency level, namely the contribution
of these two location parameters can vary depending on µ.
In this project only µ, λp and R̄p are tackled to assess a first
iteration of the problem, but clearly this can be upgraded by
adding the contribution of other parameters, e.g. the velocity
of the drone, wind, clusters of landing locations, etc., to the
cost function, which also add extra degrees of complexity to
solve the problem.

A. Decision Function

Taking µ, λp, and R̄p, the function Jp : R3 → R has
been expressed as an elliptic paraboloid, meaning that the
level curves of Jp are ellipses, and the principal axes of
the level curves are aligned with the parameters λp and
R̄p. This choice was made due to the well-known quadratic
properties, making it easy to model in order to fit the
requirements. Furthermore, the shape of the paraboloid, or
more specifically the magnitude of the principal axes of the
level curves, also change by effect of the urgency level µ.



Such a function, able to quantify the suitability of the landing
spot according to this, is shown below.

Jp(µ, λp, R̄p) = w1(µ)α

(
1− λp

)2
a

+w2(µ)(1−α)
R̄2
p

b
(2)

Note that a sufficiently good landing site p is defined by a
big enough value of λp and a small enough value of R̄p.
In order to be coherent with the direction of optimization,
the penalization is instead applied to the uncertainty mea-
sure of the landing site defined as (1 − λp) as it can be
seen in (2), rather than the confidence measure itself. With
this, it is sought for a small enough value of both terms,
which leads to an overall small value of the general cost
Jp. Henceforth, for a general set Λ of P landing spots,
Λ =

{
(λ1, R̄1), (λ2, R̄2), ..., (λP , R̄P )

}
, the most suitable

landing spot is the element whose cost Jp is minimal. This
is mathematically expressed as

min
(λp,R̄p)∈Λ

Jp(µ, λp, R̄p) . (3)

Then, it can be deduced that the terms (1−λp) and R̄p in (2)
are the penalizations applied to the probability measure and
the distance of the location p, respectively, and w1(µ) and
w2(µ) are weights applied to each of the penalizations whose
values change with µ. Parameter µ is changing according to
the urgency level of the current status of the aircraft in a
monotone way, either linearly or in any non-linearly, and
depends on the malfunctions and the method employed to
determine µ. The assumptions is that increase of the urgency
value means that the remaining time to perform a safety
landing is shortened. This increase in µ, then, demands a
similar change in the penalizations of λ and R̄, which has
been modeled as

w1(µ) = e−µ, and
w2(µ) = eµ .

This means that the importance of closer locations will be
more relevant than higher values of λ, for increasing urgency
values. The parameter α ∈ [0, 1] can be found in both terms
of (2), and has the function of being a tune-able parameter
for the user given the variability of the possible aircraft using
the algorithm. It allows the user to alter the balance of the
contribution of λ and R̄ in the cost function, providing the
opportunity for selecting landing locations further away if
the aircraft is thought to be robust enough, or the other
way around otherwise. In order to standardize the work
presented in this paper, it has been deemed convenient to
proceed with α = 0.5. It is the responsibility of the user to
adjust this parameter for a more refined tuning, suited for
the specifications of the aircraft at hand.

The parameters a and b in (2) are the paraboloid param-
eters used to shape the function Jp. In order to find proper
a and b values, two things are considered.

1) a constraint in the parameters a and b, and
2) multiple pair points (µ, λp, R̄p) that are assumed to

provide similar cost values.

i 1 2 3 4 5
µi 0 0 0.5 1 2
λi,1 0.4 0.93 0.8 0.6 0.3
R̄i,1 0.2 0.9 0.1 0.8 0.8
λi,2 0.4 0.97 0.9 0.65 0.35
R̄i,2 0.05 0.9 0.2 0.8 0.8

TABLE I: Containing N = 5 pairs of (µ, λp, R̄p) points that
are considered to have roughly the same cost value. The pairs
can be read column-wise, each of the points in the same pair
(column) sharing the parameter µ.

These points are chosen out of the intuition of the authors
provided by their experience in the field, and thus present
no analytical dissemination.

The constraint on the parameters a and b is meant to
achieve balance between the axes of the paraboloid, as well
as to simplify the optimization problem. Such constraint will
be of the form a+b = C, Where C ∈ R+ is a strictly positive
constant, since negative values of C would solve for negative
values of a and b, turning the cost function upside down, and
for C = 0 the solution becomes trivial (a = b = 0). Despite
the solution for a and b also changing with positive values
of C, the shape of the paraboloid remains the same for any
value of C chosen. Therefore, C = 1 has been used for the
sake of simplicity. Now, the problem is reduced to finding
one of the parameters, given that b = 1−a. Thus, a is found
by solving an optimization problem where multiple pairs of
(µ, λp, R̄p) points that are assumed to, according to author
experiences, have roughly the same cost value, are fitted as
close as possible to the function (2). The reason why the
cost of pairs of points are considered, instead of the cost
of single points, is to minimize their difference, voiding the
need of guessing/estimating the actual cost value for each of
the points which, in fact, is not relevant. Then, by having a
set of N pair of points J =

[
(J1,1, J1,2), ..., (JN,1, JN,2)

]
,

assuming that Ji,j ≈ Ji,j+1, ∀i ∈ {1, ..., N} (that is, the
different points are assumed to have roughly the same cost),
the following optimization problem is to be solved.

arg min
a

N∑
i=1

(
Ji,1 − Ji,2

)2
(4)

In Table I, a set of N = 5 pairs of points is listed, with
which the optimization problem is solved. The solution of (4)
for the set of points in Table I is a = 0.75757, and for
this value of a the level curves of (2) are represented in
Figure 1, where the pairs of points used to fit the parameters
a and b have also been depicted. The set of pairs in Table I,
except for pair i = 3, are meant to force the cost function
Jp to have almost vertical or horizontal level curves in
certain regions of the domain. When a local region contains
vertical curves, according to the axes in Figure 1, changes in
the parameter R̄p result only in insignificant change to the
cost value. Similarly, local regions where the level curves
are horizontal lines are regions where λp become almost
irrelevant, since changes in this parameter will not affect the
value of the cost Jp. With this methodology, it is possible



Fig. 1: Level curves of cost function Jp in (2), with a =
0.75757 and b = 1 − a, fitted using the pairs of points in
Tab. I.

to tune the cost function more accurately by determining at
which urgency levels the cost function should become more
(or less) sensitive to certain values of each of the parameters.
In the special case of pair i = 3, the pair of points are chosen
to achieve an even contribution of both parameters around
µ = 0.5, meaning that the cost should be equally sensitive to
both, λp and R̄p around this level of urgency (see the middle
plot in Figure 2).

The yellow zones in Figure 1 represent high cost regions,
namely, undesired landing locations. The blue zones, by
contrast, represent low cost regions, being the better locations
to land. Note, thus, how the yellow and blue regions are
flowing, continuously moving the high cost regions from the
left side to the upper side with the increase of the urgency
level µ. This change is motivated by the fact that for low
µ levels the drone should be able to travel further with
relative low risk, aiming for higher confidence landing spots.
However, the drone should land as soon as possible if the
urgency increases, due to the high probability of imminent
loss of control. Hence, the decision function will always
aim for the closest landing spots detected if the urgency is
high, in expense of a possible deteriorated confidence level
of the landing spot. Besides, in spite of the possibility that
by taking the closest location the confidence level of the
landing spot, λ, becomes extremely deteriorated, it is still
safer (to some extent) to attempt a landing (or crash-landing)
procedure there rather than some other landing point that has
not even been detected and processed by the aircraft, which
could potentially happen if the aircraft losses control in an
attempt to reach further landing spots.

B. Sensitivity of the Decision Function

An easy way of identifying the contribution of the param-
eters to the cost is by inspecting the partial derivatives of

the function, which will provide a measure of the sensitivity
of Jp with respect to each of the parameters. However, only
the partial derivatives with respect to λ and R̄ are taken in
this case, which will be evaluated for increasing values of
µ to see how the sensitivity of Jp changes with the urgency
level. In the same manner, the derivatives will be evaluated
in three different values of α to emphasize the effect of this
tuning coefficient. Recall that high values of α simulate a
more robust drone.

The partial derivatives are

∂J

∂λ
=2αw1(µ)

(1− λp)
a

, (5a)

∂J

∂R̄
=2(1− α)w2(µ)

R̄p
b
. (5b)

Given that (2) is quadratic with respect to λ and R̄, it is
obvious that its partial derivatives are curves with a slope
dependent on µ and α. Since a and b were found for the
standard case α = 0.5, which represent an aircraft with
average technical characteristics, the sensitivity of the cost
will also be shown for α = 0.2 and α = 0.8 in order to
examine how the penalizations are modified for aircraft that
are less or more reliable and robust, respectively.

In Figure 2 the partial derivatives in (5) are evaluated
for µ ∈ [0, 2] (see first axis) to visualize the change due
to for increasing urgency level, and also for three arbitrary
drones with coefficients α = {0.2, 0.5, 0.8}, plots from left
to right. The contribution, or relevance, of each parameters
with respect to the cost is related to the slopes in (5) given
the linearity of the partial derivatives.

Notice that the partial derivative associated to λ has
negative gradient, whereas the partial derivative associated to
R̄ has positive gradient, for any value of µ and α. Negative
gradients mean that low values of that parameter at hand
are more penalized, and the other way around for positive
gradients. If the gradient is 0, or close to, it means that
the parameter has roughly no contribution to the cost. In
this interpretation, it does not matter whether the gradient is
negative or positive, because our interest is in the absolute
contribution of the parameter. Therefore, the absolute value
of the gradients are plotted in Figure 2. This makes it easier
to compare the relevancy of both parameters to the cost
function. Note that the middle plot in Figure 2, corresponding
to α = 0.5, has a mark at µ = 0.5. At this point, the absolute
values of the slopes for both partial derivatives are almost
equal. When solving the optimization problem as shown in
Figure 1, this was indeed intended to happen by finding a
solution where, among other characteristics, the contribution
of both parameters λ and R̄ were approximately equal for
µ = α = 0.5.

Inspecting Figure 2 becomes easier now, and multiple
things can be noticed. Firstly, independently of α, the
relevance of λ in the cost tends to zero as µ increases.
Secondly, R̄ contributes more as the urgency level increases.
This makes reference to the situation described previously,
where an increase in urgency makes landing sooner more
important, leading to prioritizing the closest landing spots



Fig. 2: Sensitivity of Jp with respect to λp (blue) and R̄p (green), based on the partial derivatives (5). The partial derivatives
are evaluated for increasing values of µ ∈ [0, 2] (see x-axis), representing an increase on the urgency to land, and for three
different values of α (from left to right: α = 0.2, 0.5, 0.8), simulating three kind of drones with different robust characteristics.
The slope value of the partial derivatives (see y-axis) represents the maximum contribution that each parameter can offer to
the cost function for every urgency level.

with less concern for the probability measure (or confidence)
of the landing spot. Thirdly, if α increases, the parameter
λ gains relevance over R̄. This still means that, when the
urgency level increases, the relevance of λ in the cost decays
(exponentially according to w1(µ)). However, it decays with
a certain delay with respect to lower values of α, which allow
drones associated to higher α values to pick slightly further
landing spots, given that the confidence level λ still plays a
role in the decision.

III. TESTS AND RESULTS

A. The role of α

To illustrate the differences between choosing various
values of the tuning parameter α, a test is conducted with 11
(λp,R̄p) points, placed uniformly along one of the diagonals
of the λ − R̄ domain as shown in the left plot of Figure 3.
These points are located from the best λ and worst R̄ possible
(point 1), to the worst λ and best R̄ possible (point 11),
by changing their values equally so that the points form a
straight line. On the right plot of Figure 3 it is shown the
landing location selected, among the previous 11 points, by
three different functions Jp, each with a different α value
and for every urgency level µ up until all decisions function
have chosen the last point.

Fig. 3: Eleven (λp, R̄p) points are uniformly placed along
one of the diagonals of the domain (left). They are all
evaluated in Jp through µ ∈ [0, 3], for α = {0.2, 0.5, 0.8}.
The point showing the minimum cost value is plotted for
each α (right).

This shows how for low urgency values the decision

functions prioritize λ over R̄. With the increase of urgency
level, R̄ becomes more relevant than λ and, therefore, closer
locations are selected. It can also be seen as α allowing the
curves to shift towards the sides, so that further and better
spots can be reached. Note that when the decision cost is
jumping between the middle points, it does it faster than
when getting closer to the points in the corners due to the
elliptic shape of the cost function and the weights w1 and
w2.

Finally, to see the effect of α in action, a simulation is
performed where a set of (λp,R̄p) points are drawn from
a uniform distribution, each of these points representing a
landing location detected and processed by Find for suit-
ability. The position of the points are shown in Figure 4.
These points are evaluated on the cost function Jp for µ = 0
(low urgency) and µ = 1 (high urgency) and compared for
the values α = {0.2, 0.5, 0.8}. The selected landing spot
(lowest cost) is marked with a red circle. The level curves
of Jp are also shown in the figures. With the decision taken
for µ = 0 as reference, it is worth noticing how the jump
to closer landing locations for µ = 1 is larger the smaller
the value of α is, while the initial decision is maintained for
α = 0.8.

B. The role of µ

A final general test has been conducted for α = 0.5, where
the same procedure of drawing random points has been
used. This time, five random sets of random (λp,R̄p) points
have been drawn, representing five different cases where the
algorithm should take the decision of where to land. For
each case, 4 different urgency levels µ = {0, 0.5, 1, 2} are
studied presenting a total of 20 different scenarios as shown
in Figure 5. Yet again, each of the points are evaluated in the
cost Jp for the respective value of µ, and the point providing
the minimum cost is circled in red ◦, denoting the selected
landing location.

IV. CONCLUSION

This work proposes a relatively simple method for deter-
mining an appropriate landing location for a malfunctioning
unmanned aircraft. The method uses only three input param-
eters that can be generated either by the autopilot or by an



Fig. 4: Seven random (λp, R̄p) points sampled from a
uniform distribution are evaluated in the decision function
Jp for three different drone cases, i.e. α = {0.2, 0.5, 0.8},
and for two urgency scenarios, i.e. µ = {0, 1}. The point
with minimum cost value is circled in red ◦, denoting the
location selected to perform the landing procedure. The level
curves of Jp are also superposed in the plots.

additional device (such as SafeEYE). The development of the
method is based on considerations of how a human would
prioritize a landing (in a sense a feed forward approach)
rather than existing data on failed and successful landings of
error-stricken aircraft (in a sense a feedback approach). This
is mainly because there is no existing data set available to
train a decision function through a neural network or similar,
and the scope of the SafeEYE project does not envision the
creation of such data set.

The method proposed, based on a cost function, takes a
decision according to three parameters; the urgency level (µ),
and the probability measure and distance to the landing spot
(λ and R̄). In addition, the solution can be tune-able by the
action of a single parameter (α), depending on the robustness
of the type of drone at hand.

Notice that the selection of the landing location is based
solely in 3 parameters, plus the tune-able parameter α.
These are considered the most essential in order to solve the
decision problem, however, there is a lot of room to improve
and refine the method by including other parameters into the
cost function, such as wind, aircraft’s velocity, clusters of
landing locations, etc. The proper methodology to determine

Fig. 5: Random (λp, R̄p) points that simulate sets of landing
locations detected are evaluated into the cost function Jp
for a = 0.75757, b = 1 − a and α = 0.5. Each set of
random points drawn are evaluated for 4 different urgency
levels µ = {0, 0.5, 1, 2}, as represented in each column, and
the selected point according to the value of Jp is circled in
red ◦.

the value of the parameters µ, λ and α is left as future work.
However, a methodology on how to detect landing locations
and compute its associated probability λ is proposed in [7].
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