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The bidding strategies of large-scale battery storage in 100% renewable 
smart energy systems 

Meng Yuan a,b, Peter Sorknæs a,*, Henrik Lund a, Yongtu Liang b 

a Department of Planning, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark 
b China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, China   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Bidding strategies of large-scale battery 
storage in 100% RE systems are studied. 

• Hourly techno-economic analyses are 
conducted for both the battery and the 
energy system. 

• The impacts of price prognostic period 
and battery profit margin rates are 
identified. 

• Large-scale battery storage is not a ne-
cessity for the future 100% renewable 
smart energy systems.  

A R T I C L E  I N F O   

Keywords: 
Large-scale battery storage 
Bidding strategy 
Battery operation 
Energy storage 
100% renewable energy systems 
Smart energy systems 

A B S T R A C T   

Large-scale battery storage solutions have received wide interest as being one of the options to promote 
renewable energy (RE) penetration. The profitability of battery storages is affected by the bidding strategy 
adopted by the operator and is highly dependent on the operation of the rest of the energy system. Nevertheless, 
the coordination between the battery and the energy system has not been investigated in the literature yet. This 
paper provides a holistic hourly techno-economic analysis of the bidding strategies of large-scale Li-ion batteries 
in 100% renewable smart energy systems. As a case study, the 2050 Danish energy system is used to demonstrate 
the relationship between large-scale battery systems and the rest of the energy system. The results show that 
large-scale battery storage plays a limited role in future energy systems that follow the smart energy system 
concept. Likewise, the battery solution is only economically feasible in the Danish smart energy system at low 
battery storage capacities (few hours’ duration) with a low-profit margin rate (approx. 100%) and a short 
prognostic period (approx. 12 h) for operation planning. The finding of this study provides the general strategies 
of the battery bidding and operation in 100% RE systems.   

1. Introduction 

Accelerating the energy transition towards a 100% renewable energy 
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(RE) era requires joint efforts of all energy sectors in the energy systems, 
also known as Smart Energy Systems1 [1]. In a smart energy system 
approach, the idea is to make the best use of all types of energy pro-
duction, conversion and storage technologies. Electricity storage tech-
nology could be one of the solutions to enhance power system flexibility 
and integrate high levels of fluctuating RE such as wind and solar energy 
[2–4]. Among the diverse advanced technologies, the large-scale battery 
energy storage system (BESS), also referred to as grid-scale or utility- 
scale BESS, receives wide attention due to its attractive features of 
flexible installation, rapid response, high energy efficiency and a short 
construction cycle [5–7]. 

Driven by the optimization of manufacturing facilities and reduced 
use of materials, the total installed cost of BESS is expected to decrease 
by at least 50% by 2030 [8]. Despite the cost-reduction potential of 
batteries being considerable, their growth still faces the major barrier of 
high upfront investment and poor cost-effectiveness [5], which leads to 
few applications in current national energy systems. Some scientific 
studies also show that batteries have a limited role to play in renewable 
penetrations considering the economics [9,10]. Improving the available 
revenue streams is necessary for the future penetration of batteries. 
Energy arbitrage is one of the direct and major sources of income for 
batteries [11,12], which refers to the batteries get profits from elec-
tricity price differentials by buying energy at a low price and selling it at 
a higher price. 

In the future 100% renewable smart energy system, the battery 
operator seeks appropriate bidding strategies in the electricity market to 
maximize profit. From a societal perspective, the operation of batteries 
should also lower the costs of operating the surrounding energy system 
while allowing for increased utilisation of RE. This is important as the 
battery does not stand alone, and it will interact with not only the 
electricity sector but also other energy sectors in the energy system 
indirectly, as future RE systems will likely see increased sector 

integration. This increase in sector integration is sometimes referred to 
as the concept of Smart Energy Systems, which provides a coherent and 
integrated understanding of sector synergies to identify the most 
achievable and affordable strategies towards future 100% RE systems 
[1]. 

1.1. Research questions and scope 

Focusing on large-scale battery storage in 100% renewable smart 
energy systems, this paper aims to answer the following research 
questions:  

1) Which principles and strategies should the battery operator follow in 
the electricity market to maximize the battery profit and minimize 
the total cost of the energy system? Moreover, what is the relation-
ship between these two economic indicators?  

2) Will battery storage be feasible and profitable in a future 100% 
renewable smart energy system under different energy system con-
ditions? E.g., the different operation strategies of renewable 
generators.  

3) Which kinds of benefits will battery storage bring to the energy 
system and to what extent? 

To investigate the role of batteries in a national smart energy system, 
the 2050 Danish energy system is used as a case as it has a long-term 
national energy target of being a low-carbon society independent of 
fossil fuels by 2050 through extensive utilization of renewable energy. 
[13]. As a long-term national target could result in many different 
technical energy system scenarios, two different energy system scenarios 
made by two different actors are included in this paper. Having more 
energy system scenarios also allow for a better understanding of how the 
surrounding energy system affect the market potential of battery storage 
technologies. Despite different battery storage technologies, such as 
lithium-ion (Li-ion), sodium sulphur and lead acid batteries, can be used 
for large-scale applications, currently, Li-ion batteries represent over 
90% of the total installed capacity for global market of large-scale bat-
tery storage [13]. The Li-ion battery has advantages in high energy 
density, relatively high round-trip efficiency and relatively mature 
technology [13]. Due to the reasons mentioned above, we adopt the Li- 
ion battery for analysis in this paper. The battery revenue from energy 

Nomenclature 

BESS Battery energy storage system 
CAES Compressed air energy storage 
CEEP Critical excess electricity production 
CHP Combined heat and power plant 
CO2 Carbon dioxide 
GCA Danish energy system in cooperative mode 
IDA Danish energy system in independent mode 
LAES Liquid air energy storage 
LCOS Levelized cost of storage 
NB Negative bidding strategy of variable renewable energy 
NEC Number of equivalent cycles in a year 
PE Primary energy 
PHES Pumped hydroelectric energy storage 
PP Power plant 
RE Renewable energy 
REF Reference scenario 
VRE Variable renewable energy 
ZB Zero bidding strategy of variable renewable energy 
c A constant coefficient 
i Discount factor 

t The hours in a year 
x User-specific prognostic period of electricity price (in 

hours) 
ε The minimum profit margin increase rate specified by the 

battery operator 
αcharge Battery charge efficiency 
µdischarge Battery discharge efficiency 
Charget Battery charges in hour t 
Discharget Battery discharges in hour t 
FOMy Fixed operation and maintenance cost in year y of a 

lifespan 
INVy Investment expenditure in year y of a lifespan 
Pt

Average Average electricity market price of the upcoming user- 
specific period (x hours) 

Pt
SellMin Minimum selling price 

Pt
BuyMax Maximum buying price 

Pt
Diff The difference between the buying/selling prices and the 

average market price 
Pt

InitialDiff Initial price difference before considering profit margin 
VOMy Variable operation and maintenance cost in year y of a 

lifespan  

1 The term Smart Energy Systems was first mentioned in 2009, which is used 
mostly to express a holistic systems approach as opposed to a single sector 
approach. It takes an integrated holistic focus on the inclusion of more sectors 
(electricity, heating, cooling, industry, buildings and transportation) and allows 
for the identification of more achievable and affordable solutions to the 
transformation into future renewable and sustainable energy systems. 
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arbitrage is considered, and the other services such as operating reserves 
[14–16] and deferring network upgrade [17], frequency regulation and 
black start are excluded from the analyses due to uncertainties related to 
the size of the future demand of these services and the competition of 
other technologies for providing these services. 

1.2. Literature review and research gaps 

The transition towards low-carbon energy systems by integrating 
electricity storage, such as various kinds of batteries (Li-ion, NAS, VRB), 
compressed air energy storage (CAES), pumped hydroelectric energy 
storage (PHES) and liquid air energy storage (LAES), has received 
widespread attention from academia [18–20]. Researchers have con-
ducted energy system-level analysis for electricity storages or included 
them in the overall system as one of the key technologies. Energy system 
modelling tools [21] are the most common approach, including Ener-
gyPLAN [22–24], LUT [25–28] and TIMES [29]. To the best of our 
knowledge, none of the previous research explores the principle of 
battery market participation strategy and the corresponding mechanism 
in a 100% renewable smart energy system. 

Aiming at the arbitrage of various electricity storage technologies, a 
variety of research has been found and summarized in Table 1. The 
optimal scheduling of electricity storage systems to maximize the arbi-
trage profit is the most widely studied subject, which commonly adopts 
mathematical programming formulation such as mixed-integer linear 
programming [30,31], stochastic programming [12,32] and dynamic 
programming [33,34], a data-based approaches such as reinforcement 
learning [35], and self-developed optimization algorithms [11,36]. 
Given a set of electricity price series and other techno-economic 

constraints, these optimization approaches can determine the optimal 
size of storage, quantities and the time of charge and discharge based on 
different optimization criteria. 

Targeting the bidding strategy of the electricity storage, some studies 
investigated the impact of different approaches to processing the price 
information in the market on the arbitrage profit [37]. For instance, 
Lund et al. [33] proposed two bidding strategies for CAES, i.e., a prac-
tical historical strategy and a practical prognostic strategy, based on the 
average electricity price of the past 24 h and the upcoming 24 h, 
respectively. The strategies were implemented in an individual plant 
modeled in EnergyPLAN and were used to find the optimal char-
ge–discharge pairs. Connolly et al. [38] expanded the investigation to 
PHES and introduced a 24 h optimal strategy which finds the maximum 
theoretical operational income by inputting an hourly series of elec-
tricity prices over the next 24 h. Staffell and Rustomji [11] co-optimized 
the provision of the arbitrage and reserve for batteries, and the viability 
of arbitrage with a wind farm was analysed. 

Despite the above-mentioned studies contributing to the optimal 
arbitrage of the electricity storage units, gaps can still be found in 
research due to the following reasons: 1) The existing studies were 
carried out mostly for the storage system itself; the coordination with the 
external energy system was rarely considered (if any only the electricity 
system), and no one has analysed battery bidding strategies in a 100% 
renewable smart energy system that considers all energy sectors; 2) 
Previous studies commonly chose approx. 24 h as the price basis of 
arbitrage, but with no sufficient evidence provided to support its ratio-
nality. From the point view of the coordination between battery systems 
and the whole energy system, in principle other time horizons may 
reveal more suitable. Further, the influence of different durations of the 

Table 1 
Summary of the existing literature on energy arbitrage of electricity storage system. ‘‘–’’ means not included.  

References Year Technology Contributions Electricity price consideration Detailed battery 
bidding -consideration 

Energy system 
modelling 

This paper 2022 Li-ion battery Optimal bidding strategies in 
100% RE system 

Different levels of prognostic 
period from 12 h to a year 

Different levels of 
battery profit margin 
rates 

100% RE 
system 

Lund et al. [33] 2008 CAES Optimal bidding strategies Historical 24 h and future 24 h 
foresight 

– – 

Sioshansi et al. [39] 2009 PHES Parameter influence on 
profitability 

Two-week foresight and 
backcasting 

– – 

Kanakasabapathy and 
Swarup [40] 

2010 PHES Maximizing profit Weekly forecast – – 

Connolly et al. [38] 2011 PHES Optimal bidding strategies Historical 24 h and future 24 h 
foresight 

– – 

Jiang and Powell [34] 2015 Battery Hour-ahead bidding optimization Historical price training – – 
Mohsenian-Rad [32] 2016 Battery Optimal bidding, scheduling, and 

deployment 
Probability distribution functions 
for prices 

– – 

Staffell and Rustomji 
[11] 

2016 Li-ion & NaS 
batteries 

Maximizing profit of arbitrage and 
reserve 

24 h foresight and one-year 
historical price 

– Only wind farm 

Krishnamurthy et al. 
[12] 

2018 Battery Optimal arbitrage 24 h foresight – – 

Metz and Saraiva [30] 2018 Li-ion battery Optimizing the storage dispatch Non-specified – – 
Wilson et al. [41] 2018 PHES Investigate the level of revenues 

available 
24 h foresight – – 

Lin et al. [37] 2019 LAES Optimal operation strategies 12 h historical and 12 h future; 18 
h historical and 6 h future; 24 h 
historical 

– – 

Arcos-Vargas et al. [31] 2020 Li-ion battery Optimal electricity scheduling 
strategies 

Non-specified – – 

Cao et al. [35] 2020 Li-ion battery Optimal arbitrage 24 h foresight – – 
Pusceddu et al. [42] 2021 Li-ion & VRB 

batteries 
Synergies between arbitrage and 
fast frequency response 

24 h foresight – – 

Schneider et al. [36] 2021 Li-ion battery Economic evaluation for peak 
shaving and price arbitrage 

24 h price series – – 

Goteti et al. [43] 2021 Not specified Impact of energy storage on the 
operation and revenue of existing 
generation 

Actual electricity price – Only electricity 
system 

Beuse et al. [44] 2021 Flow battery, 
PHES, Li-ion 
battery 

Assessment of the electricity 
system emissions impacts of energy 
storage systems 

Exogenously given by the energy 
system model 

– Only electricity 
system  
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prognostic period should be investigated in depth; 3) The relationship 
between the battery profitability and the energy system costs is not 
revealed. This paper analyses the impact of profit margin rates of bat-
teries on the system economy in support of decision making. 

1.3. Research Contributions 

Filling the above research gaps, this paper presents the first 
comprehensive techno-economic analysis on the bidding strategies of 
large-scale batteries in a 100% renewable smart energy system. It is 
conducted by simulating a series of key battery bidding parameters 
under different scenarios consisting of various system configurations 
using the energy system modelling tool EnergyPLAN. The influences of 
different levels of price prognostic periods and battery profit margin 
rates, as well as the RE operation modes, on the battery profit and energy 
system cost are investigated in detail. The results reveal the general 
relationship between the battery system and the external energy system. 
The findings of this work are not limited to the studied case of Denmark 
but aim to serve as a reference also to other countries by using the 
general analysis framework for a national energy system. 

In the following, we first present our methodology framework in 
Section 2. Second, we describe the reference energy systems of 2050 
Denmark and propose corresponding scenarios in Section 3. Then we 
present the primary results and discuss the bidding strategy of large- 
scale battery and the surrounding energy system from the techno- 
economic aspects in Section 4. Later, the impacts of different energy 
system structure and the sensitivity of the future uncertainties on cost 
and technical progress are analysed in Section 5. Finally, the conclusions 
are derived. 

2. Methodology 

The methodology section first illustrates the approach of modelling 
100% RE systems adopted in this paper, followed by describing the basic 
bidding mechanism of the grid-scale battery in the electricity market 
and then providing the indicators employed to proceed with the tech-
nical–economic analysis. 

2.1. The modelling of 100% renewable smart energy systems 

This section first introduces the energy system modelling tool Ener-
gyPLAN, and then moves into the simulation strategies of the electricity 
market and variable RE. 

2.1.1. General description of EnergyPLAN 
EnergyPLAN [45] is an advanced simulation software that aims at 

aiding in the design of future 100% RE systems, which has been widely 
used in literature [46–49]. It simulates the hourly energy balance of a 
whole national or regional energy system including the electricity, 
heating, cooling, industry, and transport sectors in a user-specific year, 
which enables the full advantages of sector synergies expressed in the 
smart energy system concept [50]. In this paper, EnergyPLAN is 
employed to simulate the Danish 100% renewable energy systems in 
2050, which is described in detail in Section 3. 

This modelling framework is illustrated in Fig. 1. An energy system 
can be constructed by inputting a series of parameters that describe the 
system components, including energy demands, units and resources of 
energy production and conversion, technical limitation rules for each 
unit and the system, as well as costs [51]. Based on a series of endoge-
nous priorities in the model, the annual and hourly operation results of 
the system will be output, including the energy balance in different 
technical categories, imports/exports of electricity and gas grid, money 

Fig. 1. Energy flows of the smart energy systems constructed in EnergyPLAN [50].  

M. Yuan et al.                                                                                                                                                                                                                                   



Applied Energy 326 (2022) 119960

5

flows, primary energy consumptions, and CO2 emissions. A detailed 
description of the modelling of the technologies, resources, and pro-
cesses can be found in the previous work of the authors, Ref. [50]. 

2.1.2. Electricity market simulations 
EnergyPLAN allows for two principle simulation strategies, being: 

Technical where the aim is to minimize fuel consumption, and Market 
Economic where the aim is to reduce short-term business economic 
marginal costs of the different technologies. The market economic 
simulation strategy is chosen to simulate the electricity market in which 
the battery bids are found. This section provides a general description of 
the market economic simulation. The detailed executing process can be 
found in the Section 3.3 of Ref. [50]. 

As EnergyPLAN simulates the hourly operation of a specific energy 
system, an hourly electricity market price for surrounding electricity 
markets is used to identify the relevant import and export of electricity 
to reduce energy system costs. The hourly price on an external electricity 
market is an input in EnergyPLAN, which is calculated using an hourly 
price distribution file for a year to reflect the price fluctuations and two 
factors representing price elasticity and the corresponding basic price 
level, respectively, to reflect the response to electricity import/export. 
EnergyPLAN thereby use the externally given hourly prices alongside 
the factors to calculate resulting hourly electricity market prices based 
on the hourly operation of the modelled energy system. Moreover, in the 
energy system analysis, the electricity market price can go down to zero 
or negative. It is possible to limit the market price to the minimum and 
maximum bidding prices allowed in the market, e.g., -500 EUR/MWh 
and 3000 EUR/MWh, respectively, in Nord Pool Spot. The electricity 
exchange between the studied system and the external system is limited 
by the capacity of the defined transmission line. 

The least-cost solution of the entire energy system is found based on 
the identification of the market price at each hour resulting from the 
demand and supply of electricity. The operators of all production units 
are assumed to seek to optimize their business-economic profits; thus, 
the exact production of the various units can be identified when the 
resulting market price becomes equal to the short-term marginal pro-
duction price. Similarly, the marginal consumption prices can be 
determined for various electricity-consuming units. 

2.1.3. Operation strategies of variable renewable energy 
The electricity market price is affected greatly by the operation of 

wind turbines and PV, which will further have an indirect impact on the 

battery bidding in the market. The electricity market price can go to zero 
or even negative when the simulation is done on hourly basis. Reflecting 
different levels of flexibility in the price signal, two types of operation 
strategies of variable renewable energy (VRE) generators are investi-
gated in this paper, which are considered in the scenario design (see 
Section 3.3).  

• VRE zero bidding strategy (ZB) 

The VRE acts as an active market participant in the ZB strategy, 
where VRE will stop or reduce production during hours when its oper-
ation would result in negative electricity market prices. In other words, 
the lowest acceptable bid price of the VRE generators is zero in this case. 
This strategy is expected to represent the current trend where VRE 
generators are becoming more and more active participants in the en-
ergy markets, which in turn helps reduce problems of critical excess 
electricity production (CEEP). CEEP may occur when the capacity of the 
transmission line is limited unless other regulations on RE production 
are employed.  

• VRE negative bidding strategy (NB) 

Contrary to the ZB strategy, the VRE generators in the NB strategy act 
as passive market participants. The generators produce electricity 
regardless of the market price, even at very low or negative spot prices. 
The “negative” indicates that there is no limitation on the lowest bid 
price of renewable generators except for the minimum price in the 
electricity market. The NB strategy represents the status of the current 
electricity market in some countries. The feed-in support schemes that 
remunerate VRE on the basis of each unit of electricity generation are 
commonly used in the majority of EU member states, which enables VRE 
generators to largely feed in electricity at a negative price [52]. In the 
NB strategy, the problem of CEEP will be larger than for the ZB strategy. 

2.2. The bidding strategies of large-scale batteries 

The energy arbitrage operation of the battery is incorporated into 
EnergyPLAN v16.0. This section aims to provide an overview of the 
mechanism behind it and describe the simulation approach. 

2.2.1. Bidding mechanism of batteries 
The battery operator updates the market bids on an hourly basis. 

Fig. 2. Illustration of the operation mechanism of the battery in a 24 h prognostic period.  
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During each hour t of a year, the battery is traded based on the fore-
casting of the average electricity market price Pt

Average of the upcoming 
user-specific period (x hours), as shown in Eq. (1). The specific x period 
is defined as the prognostic period. To generate a profit, the battery only 
sells during the hours when the market price exceeds the buying prices 
(the price when the battery buys the electricity from the market). 
Therefore, a minimum selling price Pt

SellMin and a maximum buying price 
Pt

BuyMax exist. The difference between the Pt
SellMin and Pt

BuyMax is 2*Pt
Diff, as 

shown in Eqs. (2)–(3). 

PAverage
t =

∑t+x
k=tPk

x
(1)  

PSellMin
t = PAverage

t +PDiff
t (2)  

PBuyMax
t = PAverage

t − PDiff
t (3) 

Fig. 2 illustrates the operation mechanism of the battery in a prog-
nostic period of 24 h. The areas hatched in yellow illustrate the periods 
when the battery is able to charge, while the area hatched in green il-
lustrates when the battery can bid on the market to discharge. The 
distance between the orange/green line (maximum buying price/mini-
mum selling price for battery) and the blue line (average market price in 
the prognostic period) is Pt

Diff, which is equally distributed around the 
average price. Pt

Diff is an important operation parameter that can influ-
ence the profit of the battery by regulating the trading activity, which is 
adjustable depending on the requirements of the battery operator by 
specifying the profit margin rates. Eqs. (4)–(5) calculate Pt

Diff by an 
initial price difference Pt

InitialDiff together with a minimum profit margin 
increase rate ε specified by the battery operator. αcharge and µdischarge are 
the charge and discharge efficiency of the battery, respectively, and c is a 
constant representing the variable operational cost (VOC) of consuming 
one unit of electricity when battery operates, which is consisting of 1) 
the VOC of the charging (VOCcharge), and 2) the VOC of the discharge 
(VOCdischarge) corrected for losses in the process. The detailed derivation 
process of the equations can be found in [53]. 

PDiff
t = (1 + ε)PInitialDiff

t (4)  

PInitialDiff
t =

PAverage
t (1 − αchargeμdischarge) + c

αchargeμdischarge + 1
(5)  

c = VOCcharge +VOCdischargeαchargeμdischarge (6)  

2.2.2. Simulations of battery bidding in EnergyPLAN 
According to the above mechanism, there are two key parameters 

affecting the bidding activity of the battery, i.e., the prognostic period 
and the profit margin increase rate. As input data for EnergyPLAN v16.0, 
the two bidding parameters and other technical specifics of the battery 
(capacities and efficiencies) can be specified for the batteries modelled 
in the studied energy system. The possible range for the prognostic 
period is set by hours in a leap year, i.e., a range from 0 to 8784 h, and 
the profit margin increase rate is set by percentage. EnergyPLAN outputs 
the hourly energy charges and discharges of the batteries and the hourly 
electricity prices on the market for further analysis. 

2.3. Metric definitions for technical–economic analysis 

2.3.1. Indicators for battery energy storage system 
Different indicators for the operation of electricity storage exist in 

the scientific literature. In this paper, three indicators are used, being: 
number of equivalent cycles in a year (NEC), profit (annual and per 
discharge) and levelized cost of storage (LCOS).  

• Number of equivalent cycles in a year 

NEC reflects the degree to which the battery capacity is utilized 

during a year. It is defined as the total discharged energy during a year 
divided by the rated capacity of the battery, as shown in Eq. (7). The 
profitability of the batteries is highly dependent on its utilization of the 
stored energy. If the excess production of electricity is limited or the 
electricity price is not attractive enough, the batteries will be faced with 
the possibility of underuse [54]. NEC is used as a relative indicator for 
comparison between different sizes of batteries. 

NEC =

∑
tdischarget

batterycapacity
(7)    

• Annual battery profit and average battery profit per discharge 

Eqs. (8) and (9) calculates the annual battery profit [MEUR] and 
average battery profit per unit of discharged electricity [MEUR/TWh] 
from price arbitrage, respectively. The annual profit is the sum of the 
hourly incomes from discharging minus the hourly expenses from 
charging in a year. 

Annual battery profit =
∑

t
(dischargetPt − chargetPt) (8)  

Average battery profit =
Battery annual profit

∑
tdischarget

(9)    

• Levelized cost of storage 

LCOS [EUR/MWh] quantifies the discounted cost per unit of dis-
charged electricity for storage technology, as shown in Eq. (10). The 
INVy, VOMy and FOMy represent the investment expenditure, variable 
O&M cost and fixed O&M cost in year y of a lifespan, and i is the discount 
factor. The capital and operational expenditures and the discharged 
energy of each year during the technical lifetime are assumed to be the 
same, as EnergyPLAN only simulates the energy system for a specific 
year using annualized cost data, rather than a range of years. 

LCOS =

∑
y

(
INVy + VOMy + FOMy

)
(1 + i)− y

∑
ydischargey(1 + i)− y (10)  

2.3.2. Indicators for 100% renewable energy systems 
For the national energy system, annual CO2 emissions, primary en-

ergy (PE) consumptions, and CEEP are selected as the main technical 
indicators, while the economic evaluation is based on the total annual 
cost of the entire energy system. The total annual cost consists of 
annualized investment, fixed O&M costs, and variable costs. The vari-
able costs include fuel costs, electricity exchange costs, marginal oper-
ation costs, and CO2 emission costs. 

The economic feasibility of the battery integration scheme, defined 
as the total annual cost of the entire energy system after battery inte-
gration, should not exceed the annual cost of the original system without 
a battery, as the energy system would otherwise incur extra costs. 

3. Reference energy systems and scenarios 

The 100% renewable energy systems designed for Denmark in 2050 
are used to investigate the impacts of the bidding strategy of large-scale 
batteries under the context of Smart Energy Systems. This section first 
provides an overview of the reference energy systems, then describes the 
specifics of the BEES employed, and finally describes the generation 
process of scenarios. 

3.1. Description of the 100% renewable energy systems 

One energy system is used as the main system for investigation (IDA 
system), and another energy system (GCA system) is selected for com-
parison and sensitivity analysis. Both systems show a possible future 
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100% renewable energy system in Denmark. The two systems both aim 
for low-cost sustainable energy supply but vary in development strate-
gies and political ambitions, and neither include grid-scale electricity 
storage solutions. 

The background and general overview of the two energy systems are 
introduced in this section, and the detailed data of energy demand, 
technical specifics of production units and costs are provided in 
Tables A1-A3 in Appendix A. 

3.1.1. Reference energy system: IDA system 
The IDA’s Energy Vision 2050 [55] (IDA system) was developed by 

researchers at Aalborg University for the Danish Society of Engineers. 
The IDA energy system aims to provide inputs to the political discussion 
of how Denmark can get to 100% renewable energy in 2050. The IDA 
system is created based on the Smart Energy System concept and adopts 
a cross-sectoral approach that integrates all sectors in the energy system 
to make full use of sector synergies. The IDA system is characterized by 
strong internal flexibility that enables the domestic energy balance 
within Denmark as much as possible, therefore it is able to run in an 

“Independent Mode”. 
A Sankey diagram of the IDA energy system is provided in Fig. 3. 

Aside from the VRE installation such as onshore and offshore wind and 
PV, conventional gas-fired combined heat and power (CHP) plants and 
condensing power plants (PP) that utilize gaseous electrofuel and 
biomass are installed as well for periods when the VRE production is not 
sufficient. Some flexible consumption components are integrated as 
well, e.g., electrolysers and heat pumps in district heating. 7,100 MW 
electricity transmission line capacity is installed to other countries so as 
to allow for reduced costs and fuel consumption by being able to trade 
electricity with other countries. The detailed description of the IDA 
Energy System can be found in Ref. [55]. 

3.1.2. Energy system for comparison: GCA system 
The Global Climate Action energy system [56] (GCA system) is 

adopted for comparison in this paper. The GCA system is developed by 
the Danish transmission system operator Energinet based on an analysis 
of the efficient use of renewable energy considering the highly cross- 
border and international nature of the Danish energy system. Contrary 

Fig. 3. Sankey diagram of the IDA energy system.  

Fig. 4. Sankey diagram of the GCA energy system.  
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to the IDA system, the GCA system highly depends on cross-border 
electricity imports and exports to realize its electricity flexibility, and 
needs the electricity transmission to maintain a stable electricity system. 
The GCA system was designed to have strong cooperation across Europe, 
both in terms of infrastructure and regulation, therefore it can be viewed 
as an ambitious green system that runs in a way of “Cooperative Mode”. 
The GCA system was developed based on the Ten Year Network 
Development Plan from 2018 by ENTSO-E [57]. 

A Sankey diagram of the GCA energy system is provided in Fig. 4. 
Compared to the IDA system, the GCA system contains larger PV 
installation, but the CHP plant capacity is quite low and the system does 
not have any separate PP. Also, the capacity of electrolyser is lower at 
1,938 MW. The system has a relatively large transmission line capacity 
at 12,735 MW to satisfy the large need for electricity exchanges. The 
detailed description of the GCA system and its implementation in 
EnergyPLAN can be found in our previous report, Ref. [58]. 

3.2. Technical and cost specifics of BESS 

The Li-ion battery is considered in this paper, as it is the most widely 
used and by many seen as the most promising technology available on 
the market [13]. The cost and technical level of future batteries are 
influenced by technological progress, which is very uncertain, and it will 
affect the feasibility of battery integration into energy systems. In 
consideration of such uncertainties, this paper employs values for the 
cost and technical parameters of the 2050 Li-ion BESS that represent 
three different uncertain levels, i.e., MED, LOW and HIGH. 

Table 2 shows the specifics of the adopted 2050 grid-scale battery 
(type: Samsung SDI E3-R135), which are derived from the Danish En-
ergy Agency [59]. The battery unit investment cost represents the total 
capital cost of all components in the BESS including rack, battery 
management system, thermal management system, energy management 
system, and power conversion system. The replacement of the inverter is 
already included in the given cost. 

3.3. Scenario generation and description 

3.3.1. Overview of scenarios 
For a quick overview, Table 3 describes the used reference scenarios 

and two battery integration scenarios considering different VRE opera-
tion strategies, as described in Section 2.1.3. All the scenarios are 
simulated using the proposed methodology. The IDA energy system with 
the MED-level uncertainty of battery is employed for the main analysis 
in Section 4 to make the analysis concise, while the GCA energy system 
and the LOW- and HIGH-level uncertainties are considered for sensi-
tivity analysis in Section 5. 

3.3.2. Generation of battery integration scenarios 
Three key parameters correlated to the scale and bidding of the 

battery are employed to generate the battery integration scenarios, 
including battery sizes, prognostic period for electricity price, and bat-
tery profit margin increase rate. The variation of the techno-economic 
indicators of both the batteries and the entire energy system can be 
investigated by putting different key parameters into the reference en-
ergy system models while maintaining other components of the system 
unchanged. 

For each scenario, 1,521 (12 × 6 × 21) cases are simulated, which 
are the different combinations of 12 levels of battery sizes, six levels of 
prognostic periods, and 21 levels of profit margin increase rates. The 
details are provided below.  

• Battery energy capacity, charge capacity and discharge capacity 

The battery energy capacity can be calculated using Eq. (11). The 
charge and discharge capacities of the battery have a proportional 
relation to the battery energy capacity. The battery storage is assumed to 
be dimensioned so that it can cover the electricity demand that is only 
partly flexible or not flexible for a few hours. The partly or not flexible 
electricity demand includes all electricity demand that is fixed on an 
annual basis, e.g., conventional electricity demand, electric vehicles and 
individual heat pumps. Electricity demands that are seen as more flex-
ible are not included, e.g., district heating-based heat pumps and elec-
trolysis, because they do not have a required annual operation or 
connection to large storage facilities. 

Battery energy capacity = hours ×
Annual electricity demand

8784
(11) 

Here, the battery energy capacity equivalent to the electricity de-
mand from zero up to 24 h with an interval of two hours will be simu-
lated, i.e., 2 h, 4 h and up to 24 h. The battery energy capacity, charge 
capacity and discharge capacity tested in the IDA and GCA energy sys-
tems are provided in Table A4 and Table A5, respectively, in Appendix 
A.  

• Price prognostic period 

The length of the prognostic period will have an impact on the ability 
of the battery to respond to the variable future electricity market price. 
Six levels of prognostic periods are investigated for each variant sce-
nario, i.e., 12 h, 24 h, 48 h, a week, a month, a year.  

• Battery profit margin increase rate 

To explore the techno-economic influence of battery profit margin 
rate on the batteries and the energy system, a total of 21 levels of profit 
margin increase rates are simulated from 0 to 2000% with an interval of 
100%. The range is determined according to the results of pre- 
simulation of the reference energy systems. 

4. Results and discussions 

To help understand the large-scale battery penetration from an en-
ergy system-level perspective in the following sections, the principle of 
battery bidding strategy is illustrated firstly in Section 4.1. Then, the IDA 
energy system under the MED-level uncertainty of battery is used to 

Table 2 
Unit parameters of one unit (1 MWh) Li-ion battery system in 2050 considering 
future uncertainties [59].  

Uncertainty level MED LOW HIGH 

Costs 
Specific investment [MEUR/MWh] 0.255 0.166 0.975 
Fixed O&M [% of inv.] 0.19 0.15 0.06 
Variable O&M [EUR/MWh] 1.6 0.3 2.5 

Technical data 
Investment lifetime [years] 30 20 45 
Charge efficiency DC [%] 98.5 98 99 
Discharge efficiency DC [%] 97.5 97 98 
Charge capacity [MW] 0.5 0.53 0.39 
Discharge capacity [MW] 3 3.14 2.33  

Table 3 
Descriptions of the proposed four main scenarios.  

No. Scenarios Definition 

1 REF@ZB The reference 100% RE system without battery integration, in 
which the VRE adopts the ZB operation strategy. 

2 REF@NB The reference 100% RE system without battery integration, in 
which the VRE adopts the NB operation strategy. 

3 Battery@ZB The large-scale batteries are integrated into the 100% RE 
system, in which the VRE adopts the ZB operation strategy. 

4 Battery@NB The large-scale batteries are integrated into the 100% RE 
system, in which the VRE adopts the NB operation strategy.  
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show the primary results and corresponding discussions from the eco-
nomic and technical aspects in Sections 4.2 and 4.3, respectively. Later, 
in Section 4.4 the potential cost savings from the substitution of con-
ventional generators with batteries are discussed. 

4.1. Principle of battery system bidding strategy 

This section shows the general principle of battery bidding strategy 
utilised (i.e., the key operation parameters —prognostic period and the 
profit margin increase rate) from the aspects of both the battery itself 

and the surrounding energy system it belongs to. Specifically, three 
typical battery integration cases in the IDA energy system and GCA 
energy system under different scenarios are investigated as examples 
here. Similar trends can be observed in the curves of other battery 
specifics. 

Fig. 5 shows the variations in total annual profit, average battery 
profit per discharge, and the number of equivalent cycles of batteries, as 
well as the total annual cost of the energy system, with the increase of 
profit margin increase rates. To explore and explain the effect of the 
battery operation, the first results shown here are excluding battery 

Fig. 5. Principle illustration of the battery bidding strategy in different scenarios while adopting a prognostic period of 24 h. a, results of the Battery@ZB scenario in 
the IDA energy system with integrating batteries of 24 h capacity. b, results of the Battery@NB scenario in the IDA energy system with integrating batteries of 24 h 
capacity. c, results of the Battery@ZB scenario in the GCA energy system with integrating batteries of 2 h capacity. 
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investment and O&M costs. In this way all effects shown are only in 
relation to batteries effect and interaction with the electricity market. 
This also then show a best-case situation for the battery since the 
introducing of battery cost is expected to lower the battery profit. Fig. 5a 
and b show the cases of Battery@ZB and Battery@NB scenarios in the 
IDA energy system with 24 h’ battery capacity. Fig. 5c presents the case 
of Battery@ZB scenario in the GCA energy system with 2 h’ battery 
capacity. A prognostic period of 24 h is used for all the cases. 

Under both Battery@ZB and Battery@NB scenarios, with the in-
crease of the profit margin rate, the NEC is found to gradually decrease 
until zero, while the average battery profit per discharge continues to 
grow until the battery to the point where the battery barely operates, 
which is expected as the battery operator increases its threshold to price 
arbitrage. The annual battery profit first increases until a maximum peak 
and then decreases to zero. In contrast, the total annual cost of the entire 
energy system shows a different direction, which first declines and then 
increases until reaching the cost of the reference system where no bat-
tery is integrated. 

In Fig. 5c, the benefits for the battery and the energy system do not 
show apparent conflicts in the 2-hour case. The balance points of profit 
margin increase rates can be found (at around 800% of the profit margin 
increase rates) where the battery can maximize its profits, while the 
energy system is able to lower its costs at the same time. In the 24-hour 
cases of Fig. 5a and b, however, a zero profit margin increase rate is 
preferable for the energy system to achieve lowest total annual cost, 
while a relatively higher profit margin rate at around 300 ~ 500% is 
optimal for the battery to profit. 

To sum up, the choice of battery bidding strategy is case dependent, 
and the optimal profit margin increase rates need to be adjusted ac-
cording to different battery specifics. The following sections identify the 
balance points of the lowest system cost in proposed scenarios including 

the battery costs. 

4.2. Economic analysis: Energy system costs and battery profits 

A total of 1,521 cases are simulated respectively for each battery 
integration scenario Battery@ZB and Battery@NB with using the IDA 
energy system. This section provides the economic results and analyses. 

4.2.1. System total annual cost 
Fig. 6 shows the change in total annual cost of the energy system with 

the increase of battery capacity and profit margin increase rate ε in 
different scenarios and prognostic periods. The curves in each interval of 
battery capacity consist of 21 points, which represent the 21 levels of ε 
from 0 to 2000%. Instead of showing all data of 24 h of battery capacity, 
here the figure only shows the data up to the economically feasible ca-
pacity to ensure a clear comparison of results. 

Results show that the battery integration is only economically 
feasible from an energy system perspective in the case of low-capacity 
electricity storage, and only in the case where the VRE bids into the 
electricity market with the lowest possible negative bid. The maximum 
economically feasible capacity (referring to the cost not exceeding that 
in the REF scenarios) is 16 h for Battery@NB scenario. Comparing the 
two scenarios, it is apparent that the cost benefit brought by battery 
integration is very limited in a system adopting a ZB strategy for VRE, 
while it is of high potential in the NB scenario. The reason is that the 
average difference in electricity prices is lower in the ZB strategy as the 
price rarely, if at all, goes below zero. Thereby the operation strategy of 
the VRE has a large effect on the profitability of a grid-scale battery. 

Moreover, when comparing different prognostic periods, the prog-
nostic periods of 12 h and 24 h show greater advantages in lowering 
cost. Despite the choice of the optimal prognostic period being case 

Fig. 6. The total annual cost of the IDA energy system with different battery capacities, prognostic periods, and profit margin increase rates. a, results of the 
Battery@ZB scenario. b, results of the Battery@NB scenario. 
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dependent, a trend shows that a relatively shorter period (i.e., 12 h) is 
preferable in a low-capacity storage system (battery capacity less than 
10 h), and with the increase of storage capacity, a relatively longer 
period is preferable. 

4.2.2. Annual battery profits in variant scenarios 
Fig. 7 shows the results of annual battery profit of different scenarios. 

The structure is the same as Fig. 6. Looking at the battery itself, an 
optimal turning point of ε that brings the battery the highest profit can 
be found for each corresponding battery capacity and prognostic period. 
For a shorter prognostic period, like 12 h or 24 h, the turning point 
comes earlier at a lower ε, while for a longer prognostic period a rela-
tively larger ε is needed to pursue a higher profit. 

4.2.3. Optimal battery integration solutions in variant scenarios 
The battery integration solutions that achieve the minimum cost for 

the entire energy system can be identified according to the economic 
analysis, as provided in Table 4. 

The Battery@ZB scenario is regarded as economically infeasible, i.e., 
it cannot lower the total annual cost of the energy system even in the 
case of lowest battery capacity tested. This demonstrates that the battery 
is not a necessity in a well-structured and well-regulated 100% RE sys-
tem that relies largely on sector synergies, given that the operating mode 
of renewable generators is matched well with the electricity market. 

For the Battery@NB scenario, it can be seen that low-capacity stor-
age solutions (6 h) with a shorter prognostic period (12 h) and lower 
profit margin rates (100%) have the lowest costs. Electricity storage can 
bring a significant reduction in the variable cost of the energy systems 
adopting the NB strategy, with up to 27.9%, and the total annual energy 
system costs will be reduced by up to 2.2%. Hereby grid-scale batteries 
can be relevant for energy systems where it is not possible for VRE to 
close down at periods of low electricity prices, as the batteries can utilise 
the resulting lower electricity price periods to purchase electricity for 
later discharge at higher prices. 

4.3. Technical analysis: Impacts of battery integration on the energy 
system 

This section further analyses the technical aspects of the IDA energy 
system that adopts the optimal battery integration solutions identified in 
Section 4.2.3. Since the Battery@ZB has shown to be infeasible in all the 
tested cases, here only the reference scenarios and the Battery@NB 
scenario are discussed. 

Fig. 7. The annual battery profits under different scenarios with different battery capacities, prognostic periods, and profit margin increase rates. a, results of the 
Battery@ZB scenario. b, results of the Battery@NB scenario. 

Table 4 
The economic optimal battery integration solutions of IDA energy system under 
different scenarios.  

Scenarios REF@ZB Battery@ZB REF@NB Battery@NB 

Specifics of batteries 
Battery capacity – Infeasible – 31.58GWh 

(equiv. 6 h) 
Prognostic period – – – 12 h 
Profit margin 
increase rate 

– – – 100% 

Energy system costs [MEUR] 
Total annual cost 13,193 – 14,129 13,816 (↓2.2 %) 
Variable cost 1534 – 2471 1782 (↓27.9 %)  

M. Yuan et al.                                                                                                                                                                                                                                   



Applied Energy 326 (2022) 119960

12

4.3.1. Energy and environmental benefits 
Fig. 8 shows the comparison of the total annual CO2 emissions and PE 

consumptions among different scenarios. The reference scenarios both 
reach near-zero emissions. The CO2 emissions are related to a net gas 
export, where the CO2 emission factor of the gas is assumed to be the 
same as natural gas. As the European energy system is transitioning 

towards being more renewable, the import of gas could in principle be 
CO2 neutral gas, such as upgraded biogas, meaning that these emission 
changes are somewhat uncertain. It can be seen that the battery pene-
tration will help migrate the annual CO2 emissions to go below zero in 
the Battery@NB scenario to -0.18 Mton. 

In terms of PE consumption, the VRE productions from the REF@NB 

Fig. 8. CO2 emissions and primary energy consumption of the reference scenarios and the optimal battery integration option of the Battery@NB scenario.  

Fig. 9. Overview of the annual electricity production and consumption in different scenarios.  

Fig. 10. Monthly battery number of equivalent cycles in the Battery@NB scenario.  
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scenario are higher than the REF@ZB scenario. The differences in VRE 
between the two scenarios indicate the level of energy not produced due 
to different reactions to the market prices. Despite not too much, the 
integration of battery in Battery@NB scenario still shows benefit in 
reducing PE consumption (0.81 TWh) compared to REF@NB. 

4.3.2. Electricity system and seasonal differences 
Fig. 9 provides an overview of the annual electricity production 

(positive) and consumption (negative) in the variant scenarios. From the 
production side, it can be found that the share of VRE is up to 80% in all 
scenarios. From the electricity demand side, the IDA energy system has a 
large number of flexibility components with a 36% share of electrolyser. 
The battery integration reduces the electricity import and export activity 
compared to the REF case. Also, the electricity production from CHP 
plants and PP are reduced as well, with a reduction percentage of 10% in 
Battery@NB scenario. 

The electricity demand, RE production, and battery electricity stor-
age interact with each other. The generation of variable renewable 
power (PV, onshore and offshore wind) is largely affected by the 
weather conditions, which contain obvious seasonal differences. In 
Denmark, wind power predominates in winter, while solar energy does 
in the summer. Therefore, the seasonal differences of the battery activity 
can be identified. 

Here the economic optimal battery integration case of Battery@NB 
scenario is used as an example. Fig. 10 shows the monthly number of 
equivalent cycles of battery and Fig. 11 shows the monthly composition 
of electricity production and consumption. The electricity demand in 
winter is much higher than in summer due to a larger heating demand in 
the winter. The operation of the CHP plant and PP shows a strong 
electricity demand correlation, which compensates for the seasonal 
differences of the production of RE generators over a year, especially in 
the winter. The battery is active in the middle of the year with a peak 
number of equivalent cycles at 11.6 in May and the lowest at 4.7 in 
January. The battery electricity storage can further be regarded as 
compensation for the CHP plant and PP when these conventional gen-
erators run in a very low load during the year. 

4.4. Potential cost savings by substituting conventional generators 

According to the previous analysis in Section 4.3.2, the integration of 
battery electricity storage will reduce the operation and production of 
conventional generators, i.e., CHP and condensing PP. Therefore, cost 
savings could potentially be obtained from reducing the installation 
capacity of CHP and PP, which have not been included in the previous 
results. This section explores such potential savings, which is conducted 
by gradually reducing the capacities of CHP and PP in the energy system, 
while keeping the battery configuration at the optimal setting until 
finding the system minimum cost solution. The change of battery 
configuration is not considered here because this section aims to figure 
out to what extent the cost can be further saved and to provide a fair 
comparison among different scenarios. Note that here, only the large 
CHP extraction plants are assumed to be reduced in capacity. 

Table 5 summarizes the results of the identified new CHP and PP 
configurations and variations of the system economic-technical in-
dicators compared to the optimal battery integration solutions obtained 
in Section 4.2.3. The data for the Battery@ZB scenario is blank as it is 
still economically infeasible even with reduced conventional generators. 
The results show that only 6% of the capacities of CHP plants can be 
reduced in the Battery@NB scenarios, while the condensing PPs are kept 
in the system. This indicates that the battery storage has limited ability 
to serve as an alternative to the traditional generators. Results also show 
cost saving and decline in CO2 emissions and PE consumptions. Never-
theless, the impact of CHP and PP on the system’s total annual cost is 
very minor with less than 1%. 

5. Sensitivity analysis 

Two categories of sensitivity analysis on the battery bidding strategy 
are conducted in this section from the perspective of the energy system 
and the battery itself, respectively. The former investigates the impacts 
of different energy system structures, while the latter focuses on the 
impacts of different levels of battery uncertainties. 

5.1. Battery bidding strategies in various energy systems 

The GCA energy system introduced in Section 3.1.2 is employed here 
to reflect the differences of battery operation in various energy systems. 
Following the same process of the IDA system, the proposed 1,521 cases 
are simulated again for the GCA system. As mentioned, the GCA system 
differs from the IDA system in that the former has a higher electricity 
transmission line capacity and is dependent on electricity exchange 
between Denmark and other countries, while the latter is designed to 
support national energy self-sufficiency as much as possible and employs 
more flexible technologies on the demand side. 

Fig. 12 shows the total annual cost of the GCA energy system under 
different scenarios with different battery capacities, prognostic periods, 

Fig. 11. Monthly electricity consumption and production in the Battery@NB scenario.  

Table 5 
Results of potential savings by further substituting conventional generators 
compared to optimal battery integration solutions.  

Scenarios Battery@ZB Battery@NB 

Capacity reduction of conventional generators 
PP – 0 
CHP elec. – -6% 

Variation of system operation 
Total annual cost of energy System – -0.07 % 
CO2 emissions – -7.69 % 
PE consumption – -0.06 %  
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and profit margin increase rates. The red triangle represents the eco-
nomic optimal solution. It can be found that when the VRE adopts the ZB 
strategy in the electricity market, the GCA system shows a higher po-
tential of battery integration compared to the IDA system (battery ca-
pacity: 2 h vs infeasible). The two battery bidding parameters (i.e., 
prognostic periods and profit margin increase rates) in the IDA system 
show similar trends as the GCA system. The choice of the prognostic 
period is related to the battery capacity, while a low profit margin in-
crease rate (less than 200%) is preferable under most kinds of battery 
sizes from the perspective of the energy system. 

Table 6 shows the comparison of the battery specifics and 

Fig. 12. The total annual cost of the GCA energy system under different scenarios with different battery capacities, prognostic periods, and profit margin increase 
rates. a, results of the Battery@ZB scenario. b, results of the Battery@NB scenario. 

Table 6 
Comparison of the optimal battery integration solutions between the IDA energy 
system and GCA energy system under different scenarios.  

Scenarios Battery@ZB Battery@NB 

IDA GCA IDA GCA 

Specifics of batteries 
Battery capacity [GWh] – 13.72 

(equiv. 2 h) 
31.58 
(equiv. 6 h) 

27.44 
(equiv. 4 h) 

Prognostic period 
[hours] 

– 12 12 12 

Profit margin increase 
rate [%] 

– 0 100 100 

Performance of batteries 
Battery profit [MEUR] – 64.1 110.1 112.3 
Number of equivalent 
cycles 

– 257.2 94.8 187.3 

Average battery profit 
[MEUR/TWh] 

– 18.6 37.7 22.4 

LCOS [EUR/MWh] – 50.6 132.4 68.5  

Table 7 
Specifics of batteries and the energy system in the LOW-level uncertainty cases.  

Scenarios Battery@ZB Battery@NB 

IDA GCA IDA GCA 

Specifics of 
batteries     
Battery capacity 
[GWh] 

10.53 
(equiv. 2 h) 

13.72 
(equiv. 2 h) 

42.11 
(equiv. 8 h) 

41.15 
(equiv. 6 h) 

Prognostic period 
[hours] 

12 12 24 12 

Profit margin 
increase rate [%] 

0 100 600 0 

Variation of the batteries and energy system performance compared to MED 
cases 
Battery profit 29.3 MEUR 

a 
-1% -7% -15% 

Number of 
equivalent cycles 

159.6 
MEUR a 

-1% -29% 0% 

Average battery 
profit 

18.0 
MEUR/ 
TWh a 

1 % -2% -43% 

LCOS 74.2 EUR/ 
MWh a 

-8% 32% -8% 

CO2 emissions –222%b -5% -36% -1%  

a The IDA system is infeasible under the Battery@ZB scenario for battery 
integration, so the numbers here show the battery performance rather than the 
variations. 

b The numbers here show the variations compared to the reference scenario, 
because the IDA system is infeasible here. 
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performance of the optimal battery integration solutions between the 
IDA energy system and the GCA energy system under different scenarios. 
A smaller size battery tends to operate more actively in one year with a 
higher number of equivalent cycles. Among the four cases, the Batter-
y@ZB scenario in the GCA energy system has the highest annual 
equivalent cycles at 257 and the lowest LCOS at 50.6 EUR/MWh. Higher 
electricity exchanges in the GCA system promote battery activity 
compared to the IDA system. In the Battery@NB scenario, the GCA en-
ergy system owns almost half LCOS of that in the IDA energy system. 

5.2. Impacts of future uncertainties on battery penetration 

The sensitivity of the battery penetration to the future uncertainties 
is investigated in this section by simulating the LOW- and HIGH-level 
uncertainty. These uncertainties are related to the technology develop-
ment of the batteries. Results show that the HIGH-level battery is not 
economically feasible in any energy system and even the lowest-capacity 
battery (2 h) cannot bring down the total annual system cost. 

Table 7 shows the economically optimal battery configuration and 
corresponding technical indicators of the batteries and energy systems 
in the LOW-level cases. It is shown that the LOW-level case brings 
greater environmental and technical benefits compared to the MED- 
level case. Also, in the Battery@ZB scenario, the low capacity battery 
(2 h) is feasible in the IDA energy system. The CO2 emissions are lower 
from the perspective of the entire energy system, while the annual 
battery profit and number of equivalent cycles decrease from the 
perspective of the battery itself. 

Fig. 13 shows the cost components of the energy system in different 
scenarios. Looking at the overall economic performance, the role of 
battery integration in cost reduction is moderate under the Battery@ZB 
scenario with only a 0.2% reduction in the GCA system compared to the 

reference scenario, while the reduction in the Battery@NB strategy is up 
to 2.4%. From an uncertainty perspective, it can be seen that, despite the 
differences in cost components, especially the investment and variable 
costs are high, while the differences in total annual cost between the 
MED and LOW-level are minor. The LOW-level tends to install higher 
capacity batteries compared to the MED-level, which results in higher 
investment costs but lower variable costs due to the reduced fuel con-
sumption, CO2 emissions and electricity import. 

6. Conclusions 

This paper provides a comprehensive techno-economic analysis of 
the bidding strategies of large-scale battery storage in 100% renewable 
smart energy systems for the first time, with a case study of the Danish 
energy system in 2050 modelled in the energy system modelling tool 
EnergyPLAN. Two VRE operation strategies (zero bidding and negative 
bidding), two energy systems (cooperative mode and independent 
mode), and three levels of uncertainties in battery cost and technical 
development are considered. The feasibility and corresponding impacts 
of battery integration on the energy system are investigated by 
executing a series of experiments on key bidding parameters, i.e., bat-
tery sizes, price prognostic periods, and profit margin increase rates. 

Results show that only at relatively small sizes, the batteries prove to 
be economically feasible for energy arbitrage and only in MED- and 
LOW-level cost cases. The profit margin rate of batteries has a significant 
impact on the energy system cost. The battery profitability and the en-
ergy system cost will not have apparent conflicts when the battery ca-
pacity is low, and a lower profit margin rate (less than 100% in this 
paper) is preferable in such case, which is beneficial to both the high 
battery profit and the low energy system cost. 

Results show that the prognostic period correlates with the battery 

Fig. 13. Cost components of energy systems in different scenarios.  
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Table A1 
Input data of the 2050 reference energy systems in EnergyPLAN [58].  

Input IDA 
2050 

GCA 2050 

1. Electricity 
1.1 Electricity demand 

Fixed electricity demand (TWh/year) 32.92 39.12 
Flexible electricity demand (1 day) (TWh/year) 2.7 3.91 
Max-effect for flexible electricity demand (1 day) 

(MW) 
922 705 

Flexible electricity demand (1 week) (TWh/year) 0.74 – 
Max-effect for flexible electricity demand (1 

week) (MW) 
504 – 

1.2 Electricity production   
Wind (onshore) 

Capacity (MW) 5000 6,164 
Annual production (TWh) 10.9 14.55 

Offshore Wind 
Capacity (MW) 14,000 12,785 
Annual production (TWh) 52.93 50.59 

Photo Voltaic 
Capacity (MW) 5000 11,450 
Annual production (TWh) 4.91 14.57 

Thermal power production 
Large CHP units condensing power capacity 

(MW) 
4500 391 

Large CHP units condensing power efficiency 0.615 0.404 
Capacity of large steam turbines operating on 

excess heat from gasification (MW) 
– 100 

Annual electricity production by large steam 
turbines operating on excess heat from gasification 
(TWh) 

– 0.51 

1.3 Electricity exchange   
Transmission line capacity (MW) 7100 12,735 

2. District heating 
2.1 Decentralised district heating 

District heating production (TWh/year) 12.94 17.5 
Fuel boiler capacity (MW) 4400 5,928 
Fuel boiler efficiency 0.95 0.92 
Small-scale CHP - Electric capacity (MW) 1500 1,586 
Small-scale CHP - Electric efficiency 0.52 0.352 
Small-scale CHP - Thermal capacity (MW) 1125 2,370 
Small-scale CHP - Thermal efficiency 0.39 0.526 
Fixed boiler share (%) 0.5 33 
Grid loss 0.2 0.15 
Thermal storage capacity (GWh) 56 15 
Solar thermal input (TWh/year) 1.75 0.51 
Solar thermal storage (GWh) 30 – 
Industrial CHP heat produced (TWh/year) – 1.18 
Industrial CHP electricity produced (TWh/year) 1.2 0.254 
Industrial CHP heat demand (TWh/year) – 1.252 
Compression heat pump electric capacity (MW) 300 306 
Compression heat pump COP 3.5 3.5 
Compression heat pump maximum share of load 0.5 0.5 
Electric boiler capacity (MW) 300 20 
Industrial excess heat (TWh/year) 1.29 0.525 

2.2 Central district heating 
District heating production (TWh/year) 22.3 17.5 
Fuel boiler capacity (MW) 7600 5,928 
Fuel boiler efficiency 0.95 0.891 
Large CHP - Electric capacity (MW) 3500 391 
Large CHP - Electric efficiency 0.52 0.404 
Large CHP - Thermal capacity (MW) 2625 393 
Large CHP - Thermal efficiency 0.39 0.406 
Fixed boiler share 0.5 1 
Grid loss 0.2 0.15 
Thermal storage capacity (GWh) 56 15 
Industrial CHP heat produced (TWh/year) – 0.42 
Industrial CHP electricity produced (TWh/year) – 0 
Industrial CHP heat demand (TWh/year) – 0 
Compression heat pump electric capacity (MW) 400 714 
Compression heat pump COP 3.5 3.5 
Compression heat pump maximum share of load 0.5 0.81 
Electric boiler capacity (MW) 600 465 
Industrial excess heat (TWh/year) 4.05 – 

3. Fuel Distribution and Consumption  

Table A1 (continued ) 

Input IDA 
2050 

GCA 2050 

3.1 Fuel Distribution for Heat and Power ProductionThese relations indicate the 
fuel mix used for each plant type (Coal / Oil / Gas / Biomass) 
. 

Small-scale CHP units 0/0/1/0 0 / 0 / 2 / 0.73 
Large CHP units 0/0/1/0 0 / 0 / 1 / 0 
Boilers in decentralised district heating 0/0/0/1 0 / 0.12 / 1.19 

/ 5.61 
Boilers in central district heating 0/0/0/1 0 / 0 / 0.15 / 

0.02 
Condensing operation of large CHP units 0/0/1/0 0 / 0 / 1 / 0 
Condensing power plants 0/0/1/0 – 

3.2 Additional fuel consumption (TWh/year) 
Gas in industry – 4.58 
Biomass in industry 3.41 – 
Natural gas, various 8.41 – 

4. Transport 
4.1 Conventional fuels (TWh/year) 

Grid gas 0 8.16 
JP (Jet fuel) - electrofuel 10.12 11.17 
Diesel - electrofuel 21.01 0 
Petrol - electrofuel 0 2.78 

4.2 Electricity (TWh/year) 
Electricity - dump charge 2.64 5.94 
Electricity – smart charge 6.46 11.51 
Max. share of cars during peak demand 0.2 0.2 
Capacity of grid to battery connection (MW) 16,396 29,213 
Share of parked cars grid connected 0.7 0.7 
Efficiency (grid to battery) 0.9 0.9 
Battery storage capacity (GWh) 14.2 25.3 

5. Waste conversion 
5.1 Waste incineration in decentralised district heating 

Waste input (TWh/year) – 1.121 
Thermal efficiency – 0.894 
Electric efficiency – 0.076 

5.2 Waste incineration in central district heating 
Waste input (TWh/year) 7.3 0.169 
Thermal efficiency 0.7093 0.976 
Electric efficiency 0.2591 0 

6. Individual heating 
Coal boilers 

Fuel consumption (TWh/year) – 0.2 
Efficiency – 1 
Solar thermal input (TWh/year) – 0 

Biomass boilers 
Fuel consumption (TWh/year) 1.59 2.64 
Efficiency 0.9087 0.89 
Solar thermal input (TWh/year) 0.25 0 

Heat pumps 
Heat demand (TWh/year) 13.07 11.36 
COP 4.53 3.14 
Solar thermal input (TWh/year) 2 1.367 

Electric heating 
Heat demand (TWh/year) – 0.26 

7. Liquid and gas fuel 
7.1 Biogas production 

Biomass input (TWh/year) 0 26.24 
Biogas production (TWh/year) 11.7 18.78 
Biogas upgrade to grid efficiency 1 1 
Input to gas grid (TWh/year) 5.24 6.61 

7.2 Gasification plant 
Biomas input (TWh/year) 21.11 13.14 
Electricity share 0.011 0.0175 
Steam share 0.13 0.13 
Steam efficiency 1.25 1.25 
Coldgas efficiency 0.93 0.846 
DH central share 0.05 0.2085 

7.3 Electrolysers 
lectrolyser capacity (MW-e) 8510 1938 
Electrolyser efficiency (Biomass hydrogenation) 0.74 0.891 
Electrolyser efficiency (Biogas hydrogenation) 0.74 0.868 
Hydrogen storage [GWh] 532 7.66 

7.4 CO2 hydrogenation 
Liquid fuel output (TWh/year) 15.51  
CO2/Liquid fuel (Mton/TWh) 0.252  
Hydrogen/Liquid fuel (Mton/TWh) 1.153  

(continued on next page) 
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size, which should be determined case by case in order to achieve 
greater economic benefits. The general recommendation of this study is 
that a shorter prognostic period is suitable for low capacity batteries (12 
h for most cases presented in this paper), and a relatively longer prog-
nostic period, e.g., 24 h or longer, is better for batteries with higher 
capacity. 

Table A1 (continued ) 

Input IDA 
2050 

GCA 2050 

Electricity/CO2 (TWh/Mton) 0.289  
7.5 Biomass hydrogenation 

Liquid fuel output (TWh/year) 15.62 10.72 
Liquid fuel efficiency 0.992 0.764 
Hydrogen share 0.38 0.298 
DH central share 0.05 0.0955 

7.6 Biogas hydrogenation 
Gas fuel output (TWh/year) 8.41 15.33 
Gas fuel efficiency 0.82 0.8 
Hydrogen share 0.37 0.365 
DH decentral share 0.05 0.2 

7.7 Fuel storage Gas (GWh) 6000 –  

Table A2 
Costs and technical life of technologies in the 2050 reference energy systems [58].  

Technology Unit Costs [MEUR/unit] Fixed O&M [% of investment] Technical life [Year] 

GCA IDA GCA IDA GCA IDA 

1. Heat and electricity 
Small CHP units MWe 1.32 1.1 2.48 2.36 25 25 
Large CHP units MWe 0.8 0.8 3.25 3.25 25 25 
Steam turbines MWe 0.481 – 3 – 25 – 
Heat Storage CHP GWh 3 3 0.7 0.7 20 20 
Waste CHP TWh/year 215.62 215.62 7.37 7.37 20 20 
Heat Pump gr 2 + 3 MWe 2.66 2.66 0.26 0.26 25 25 
Boilers gr. 2 + 3 MWth 0.315 0.67 4.87 4.3 25 25 
Electr. boiler Gr 2 + 3 MWe 0.06 0.06 1.53 1.53 20 20 
Large power plants MWe 0.76 0.76 3.25 3.25 25 25 
Interconnection MWe 1.2 1.2 1 1 40 40 
Indust. CHP Electr. TWh/year 60.6 60.6 2.15 2.15 31 31 
Indust. CHP Heat TWh/year 68.3 68.3 7.3 7.3 25 25 
2. Renewable energy 
Wind - onshore MWe 0.7 0.7 1.62 1.62 30 30 
Wind - offshore MWe 1.78 1.78 1.82 1.82 30 30 
Photo Voltaic MWe 0.73 0.49 1.56 1.59 40 40 
Wave Power MWe – 1.6 – 4.9 – 30 
Solar Thermal TWh/year 307 307 0.15 0.15 30 30 
Heat storage solar GWh – 3 – 0.7 – 20 
Indust. Excess heat TWh/year 30 40 1 1 30 30 
3. Liquid and gas fuels 
Biogas Plant TWh/year 159.03 159.03 14 14 20 20 
Gasification Plant MW 1.397 1.33 2.4 2.4 20 20 
Biogas Upgrade MW 0.25 0.25 2.5 2.5 15 15 
Gasification Upgrade MW 0.68 0.68 1.7 1.7 20 20 
Carbon recycling MtCO/y – 60 – 4 – 20 
LiquidFuel synth (CO2) MW – 0.3 – 4 – 25 
LiquidFuel synth (biomass) MW 0.3 0.3 4 4 25 25 
Methanation (biogas) MW 0.2 0.2 4 4 25 25 
JP Synthesis MW 0.37 0.37 4 4 25 25 
SOEC Electrolyser MW-e 0.4 0.4 3 3 20 20 
Hydrogen Storage GWh – 7.6 – 2.5 – 25 
4. Heat infrastructure 
Indv. Boilers 1000-units 5.9 5.9 7.12 7.12 20 20 
Indv. Heat Pump 1000-units 7 7 2.75 2.75 19 19 
Indv. Electric heat 1000-units 2.5 – 0.84 – 30 – 
Indv. Solar thermal TWh/year 1233 1233 1.68 1.68 30 30 
5. Additional 
Electric grid – 2210 2475 1 1 45 45 
District heating grid – 16,703 16,703 1.25 1.25 40 40 
Interconnections – 1333 743 1 1 45 45 
Compression cooling (Refrigeration) – 559 559 0 0 15 15 
Compression cooling (room temp) – 5031 2795 4 4 15 15 
District cooling (only for room temp) – – 413 – 2 – 25 
Combined district cooling & heating (only for room temp) – – 1239 – 2 – 25 
Electricity savings in households – 1364 1364 0 0 10 10 
Electricity savings in industry – 2595 3491 0 0 15 15 
Fuel savings in industry – 10,011 10,011 0 0 20 20 
Flexible electricity demand in households – 222 222 1 1 20 20 
Flexible electricity demand in industry – 244 244 1 1 20 20 
District heating grid expansion – 5448 5448 1.25 1.25 40 40 
Heat savings existing buildings – 32,592 32,592 0 0 50 50  

Table A3 
Variable operation and maintenance costs of the 2050 reference energy systems.  

Technology [MEUR/unit] Unit IDA GCA 

Small and large CHP units MWhe 4 4.69 
Heat Pump gr 2 + 3 MWhe 0.43 0.43 
Boilers gr. 2 and 3 MWhth 0.5 1.05 
Electr. boiler Gr 2 + 3 MWhe 0.5 0.4 
Large power plants MWhe 4 4  
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In addition, the limited role of batteries in the smart energy system 
IDA demonstrates that the large-scale battery is just one of the solutions 
towards future 100% RE systems for energy arbitrage, but may not be a 
necessary solution. When the variable renewable generators work as 
active market participants by using the zero-bidding strategy, the room 
for battery arbitrage will shrink. The smart energy system itself is effi-
cient enough without the battery storage, as it employs flexible pro-
duction and demand components in a cross-sector approach. 

It should be noted that this paper only investigates arbitrage, and the 
batteries could be relevant for providing other services such as fre-
quency regulation and black start. Some evidence also shows that 
providing other services alternately aside from just delivering arbitrage 
can bring significant extra revenues for the battery and increase the final 
profitability of the battery application [11,42,60]. In the future study, 
the other services that the battery provided mentioned above can be 
included in the economic feasibility analysis. Also, a comparison anal-
ysis between batteries and other types of electricity storage technology 
can be further conducted. 
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