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a b s t r a c t

In this paper, I show how neural networks can be used to
simultaneously estimate all unknown parameters in a spatial
point process model from an observed point pattern. The method
can be applied to any point process model which it is possible to
simulate from. Through a simulation study, I conclude that the
method recovers parameters well and in some situations provide
better estimates than the most commonly used methods. I also
illustrate how the method can be used on a real data example.

© 2022 The Author(s). Published by Elsevier B.V. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Briefly, a point process X may be defined as a countable random subset of Rd. Usually, a
realization of the process is only observed within a bounded set W ⊂ Rd. A common problem
is to fit a parametric spatial point process model to a realization x. This can be a difficult problem
since the likelihood function is intractable except in the very simple case of a Poisson process. Many
alternative approaches have thus been suggested including estimation based on pseudo-likelihood,
composite likelihood, and minimum contrasts (see the review in Møller and Waagepetersen, 2017).
However, it is possible to define meaningful spatial point process models for which both the
intensity and other moment characteristics of X , the density, and the Papangelou conditional
intensity (see e.g. Møller and Waagepetersen, 2004) are not expressible in closed form. Then, the
above methods are not feasible. An example of such a point process model is the LGCP-Strauss
process presented in Vihrs et al. (2022) where the authors found it necessary to consider parameter
estimation in a Bayesian setup because it was then possible to use the method of approximate
Bayesian computations (ABC) which is based entirely on the ability to simulate under the model
(see e.g. the overview of some ABC methods in Beaumont (2010)).
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The purpose of this paper is to explore the possibility to estimate parameters in spatial point
process models by using neural networks. The idea is to consider the estimation problem as a
prediction problem where parameters of the model are to be predicted from a realization. This
prediction problem can be handled with machine learning methods, such as neural networks,
trained on a suitable training data set. Thus the only requirement for this approach is to be able
to construct a number of training cases consisting of values for the unknown parameters and
realizations of the model corresponding to these parameter values. If it is known how to simulate
from the model, the training data set for the chosen machine learning method can be constructed
from simulations of the model. Thus the approach, like ABC, only requires the model to be equipped
with a feasible simulation procedure. The idea is somewhat similar to the concept behind the ABC
technique in Marin et al. (2019) where random forests are used to predict mean, variance, and
quantiles in the posterior distribution. However, I instead use neural networks for the prediction
task, and is furthermore only interested in obtaining point estimates for the unknown parameters
and do not attempt to get knowledge about a posterior distribution. Gabrielli et al. (2017) have
used neural networks to predict parameters in acoustic physical modeling, but the idea has to the
best of my knowledge not been explored in relation to spatial point process models. I explain the
suggested approach for using neural networks to obtain point estimates of unknown parameters of
spatial point process models in Section 2.

Neural networks have proven useful in many different prediction problems and are well suited to
handle many different types of input including images and curves. Their ability to handle different
input formats is an advantage when attempting to pass information about a relatively complex
data structure like a point pattern. In Section 2.1, I discuss how to pass information about a point
pattern to a neural network aiming at predicting unknown parameters; I decide on summarizing
important aspects of the point pattern by means of a functional summary statistic and then passing
this information to the neural network, thereby using the possibility to handle input data in the
form of curves.

As I mentioned above, there are many different estimation procedures for spatial point process
models, and which one it is preferable to use depends on the type of model and the theoretical
knowledge available for that class of models. A clear advantage of simulation based methods, like
the neural network approach in this paper, is that they are generally applicable to all point process
models for which it is possible to generate realizations. Since the ability to simulate from the
model must be considered necessary for any model of practical value, this requirement is not
very restrictive. Good simulation based methods thus allow us to use almost any type of spatial
point process model without being limited by lack of theoretical knowledge when it comes to
parameter estimation. Another clear advantage of the suggested neural network approach in this
paper is that all unknown parameters can always be estimated simultaneously, which is not always
the case in traditional estimation procedures. For instance, I consider the example of a Strauss
process in Section 3.2 where parameters are usually fitted with the method of maximum pseudo
likelihood estimation, but the Strauss process contains an interaction radius R, and this parameter
cannot be estimated alongside the other parameters when using maximum pseudo likelihood
estimation. Finally, I show through the simulation study in Section 3 that the suggested neural
network approach recovers parameters well, and compared to the most commonly used estimation
procedures it gives either better or similar results.

All statistical computations in this paper were made with the open source software R version
4.0.2 (R. Core Team, 2020). The R-packages ggplot2 version 3.3.2 (Wickham, 2016), spatstat
version 2.1-0 (Baddeley et al., 2015), and keras version 2.3.0.0 (Allaire and Chollet, 2020; Chollet,
2018) were used to make plots, handle spatial point patterns, and train neural networks, respec-
tively. The R-scripts I wrote for the simulation studies and data example in this paper are available
in Supplementary Material.

2. The neural network approach

In this section, I explain the suggested neural network approach to parameter estimation in
spatial point process models. I restrict attention to models without covariates and leave the case
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of inhomogeneous models to future research. The objective is to train a neural network to predict
the values of parameters in a chosen point process model based on a realization from the process.
When the neural network has been trained, it can be used to estimate the parameters of the point
process model based on an observed point pattern xobs.

2.1. Considerations regarding training data

In order to train the neural network, training data is constructed by simulating a number of
point patterns from the chosen model for different values of the parameters. Neural networks are
known to be able to take input data in many forms including pixel images and sequences. One way
to pass a point pattern dataset to a neural network would be to represent it as a pixel image where
the pixel values correspond to the number of points within the pixel. I tried to send data in this
form through a 2-dimensional convolutional neural network, which is a good choice for handling
image input, but this method seemed to be less successful than summarizing the point pattern
dataset with functional summary statistics as explained below. This may be because the behavior
of a point pattern at a very small scale is important for estimating some parameters accurately, and
such information was lost in the discretization of the pattern but not when summarizing aspects
of the pattern with a functional summary statistic. The need to choose an appropriate summary
statistic brings some arbitrariness and subjectivity to the method which would not have been the
case if using the entire point pattern as input, but it is not uncommon to estimate parameters in
spatial point process models based on some functional summary statistic as this is also done in
the popular method of minimum contrast estimation (see Section 3.1). In this paper, I therefore
choose to use some appropriate summaries calculated from the point pattern as input to the neural
network.

A common way to summarize many important aspects of a point pattern is by means of
functional summary statistics where I briefly describe some common choices here and refer the
reader to Baddeley et al. (2015) for more details. A common choice is Ripley’s K -function which
depends on an inter point distance r . Assuming stationarity of the point process, if ρ is the intensity
of the process, the interpretation of K is that ρK (r) is the expected number of further points
falling in a ball with radius r centered at a typical point of the process. One often consider its
transformation L(r) =

d
√
K (r)/ωd where ωd is the volume of a d-dimensional unit sphere. It is

known that L(r) = r in case of a stationary Poisson process, which is the case of complete spatial
randomness. If L(r) − r < 0 (L(r) − r > 0), it is usually interpreted as the point process exhibiting
regularity/repulsion (clustering/attraction) at interpoint distances r . Non-parametric estimates of K
and L from a point pattern x = {x1, . . . , xn} on an observation window W are

K̂x(r) =
|W |

n(n − 1)

n∑
i=1

n∑
j̸=i,j=1

1[∥xi − xj∥ ≤ r]eij(r), L̂x(r) =
d
√
K̂x(r)/ωd

where |W | is the Lebesgue measure of W and eij(r) is an edge correction weight to account
for the unobserved points outside W . Baddeley et al. (2015) noted that it is not so important
which edge correction method to use as long as some correction is used; I used Ripley’s isotropic
correction (Ripley, 1988; Ohser, 1983). I use L̂(r)−r as input to the neural network since parameters
of point processes are usually related to regularity and clustering, and it was found to give better
results than using Ripley’s K -function or the L-function directly, which may suggest that this
transformation of K allows the neural network to learn more efficiently. Note however that the
suggested neural network approach can easily be used with a different functional summary statistic
as input.

Other popular summary functions for point processes include the so-called F-, G-, and J-functions
defined for a stationary point process X by

F (r) = P(X ∩ b(0, r) ̸= ∅), (2.1)

G(r) = P((X \ {u}) ∩ b(u, r) ̸= ∅ | u ∈ X), and (2.2)

J(r) =
1 − G(r)
1 − F (r)

, F (r) < 1, (2.3)
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where b(u, r) is the ball centered at u with radius r , see e.g. Møller and Waagepetersen (2004) and
the references therein. Stationarity implies that the definition of G(r) does not depend on the choice
of u. The F-, G-, and J-functions are however not considered further as input to the neural network,
since they can usually only be estimated reliably for a smaller range of r-values than K , and this
was found to be a disadvantage for the example in Section 3.3 where large scale properties had to
be summarized.

The number of points in the point pattern was also included in the input to the neural network,
since this is important knowledge regarding some parameters of most point process models which
the L-function is generally not able to provide.

2.2. The suggested neural network approach

The suggested method for estimation is as follows:

1. Choose a homogeneous spatial point process model M(θ ) with unknown parameters θ =

(θ1, . . . , θk), a number of training cases ntrain, and optionally a number of test cases ntest.
2. Construct training data:

(a) For i = 1, . . . , ntrain, sample the parameters θ̃ i
= (θ̃ i

1, . . . , θ̃
i
k) from some pre-chosen

distribution for θ . In this paper, I sample the θ̃ i
j ’s independently and uniformly on

bounded intervals.
(b) For i = 1, . . . , ntrain, sample x̃i from M(θ̃ i).
(c) Choose some values r1, . . . , rm. For i = 1, . . . , ntrain calculate the functional summary

statistic Li = (̂Lx̃i (r1)− r1, . . . , L̂x̃i (rm)− rm) and n(x̃i) where n(·) is the number of points
in a point pattern.

(d) Standardize each component of {Li, n(x̃i), θ̃ i
1, . . . , θ̃

i
k}

ntrain
i=1 , by subtracting the mean and

dividing by the standard deviation (for {Li}
ntrain
i=1 the mean and standard deviation were

calculated both over all ntrain simulations and over all m values for r meaning that all
values of {Li}

ntrain
i=1 were scaled by the same amount.) After standardization the training

data is {Li, n(x̃i), θ̃1, . . . , θ̃k}
ntrain
i=1 .

3. (Optional) Construct test data:

(a) Construct ntest test cases {Li, n(x̃i), θ̃ i
1, . . . , θ̃

i
k}

ntest
i=1 with the same procedure as in items

2a–2c.
(b) Scale the test data according to item 2d, i.e. subtract the means and divide by the

standard deviations calculated in item 2d.

4. Use the training data to train a neural network to predict θ .
5. (Optional) Send the test data through the trained neural network, and assess its predictive

performance.
6. Calculate Lobs = (̂Lxobs (r1) − r1, . . . , L̂xobs (rm) − rm) and n(xobs); scale these according to item

2d; feed them to the trained neural network; and return the (rescaled) prediction θ̂ as the
estimated vector of parameters.

Regarding the choice of the values r1, . . . , rm in item 2c there is a sensible default in the spatstat
implementation for estimating L(r), which I used. Even though it is optional to construct test data, I
strongly recommend to do this in order to assess the performance of the method in a given situation.

As I write in item 2a, I sample each parameter in the training data uniformly on a bounded
interval, in which case there should be strong reasons to believe that the parameters corresponding
to the observed point pattern fall within these intervals. Otherwise, the trained neural network
cannot be expected to do well for the observed point pattern. Note however, that it is possible to
consider wide intervals of the parameters, so it is not necessary to have very specific knowledge
about the ranges of the parameters. It will usually be possible to obtain some range for each
parameter by combining knowledge about the effect of the parameters in the model with a
preliminary investigation of the point pattern, which may include interpreting some functional
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Fig. 1. Visual overview of the neural network architecture.

summary statistics and looking at some simulations. I give an idea of how this could be done for
the example in Section 4.

The neural network architecture which I chose to use in item 4 is illustrated in Fig. 1. The
functional summary statistic L̂(r) − r , which constitutes a sequence, is send through a number
of 1-dimensional convolution layers and max pooling operations, which is a good way to handle
sequenced data.

A 1-dimensional convolution layer takes as input a number of sequences say si = (si1, . . . , s
i
k),

i = 1, . . . ,m, and returns p sequences of the form s̃i = (s̃i1, . . . , s̃
i
k−(q−1)), i = 1, . . . , p, where p is

some chosen number and s̃ij = f (bi +
∑q−1

l=0
∑m

h=1 a
i
lhs

h
j+l) for some activation function f , chosen size

q, constant bi, and weights ailh, l = 0, . . . , q − 1, h = 1, . . . , q. I used p = 64 in each convolution
layer and q = 7, so in the first convolution layer m = 1 (the functional summary statistic is just
one curve) and in the subsequent layers m = 64 (the output from the previous layer constitutes 64
curves).

5
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The max pooling operation used between the convolution layers splits every input sequence into
sub-sequences of a specified length (I chose 5) and replaces each sub-sequence with its highest
value yielding a new sequence usually of much smaller size.

After the convolution layers, the output is fed to two densely connected layers (the output is
now considered as individual values instead of sequences) together with the number of points in
the observed point pattern. In a densely connected layer which gets input values I1, . . . , In, the
output is O1, . . . ,Oh where h is some chosen number of hidden units and Oi = f (bi +

∑n
j=1 a

i
jIj)

for some activation function f , constant bi, and weights aij, j = 1, . . . , n. The final output of the
network is a prediction of the unknown parameters of the spatial point process model based on
the functional summary statistic and number of points which was given as input to the model. This
final layer is actually also a dense layer where the activation function is just the identity and the
number of output values corresponds to the number of unknown parameters in the spatial point
process model which is to be estimated.

As the activation function I used f (·) = relu(·) = max(0, ·) both for the convolution and dense
layers, which is a very common choice for the activation function in neural networks. All the above
mentioned weights of the linear combinations taken in the neural network and the constants bi
constitute the unknown parameters of the neural network, which should be learned based on the
training data. For some details about how these unknown parameters of the neural network were
learned see Appendix A.2. For more information about neural networks and how to use them in R
see e.g. Chollet (2018).

I also tried to use a network only with densely connected layers, which is much faster to train,
but it generally gave poorer results than including the convolution layers.

3. Simulation study for examples of point process models

In this section, I consider three classes of parametric spatial point process models as examples:
log-Gaussian Cox processes (LGCP) (Møller et al., 1998), Strauss processes (Strauss, 1975; Kelly and
Ripley, 1976), and LGCP-Strauss processes (Vihrs et al., 2022). I briefly define these in the following
subsections and refer to the above references for more details about these models. The preferred
method for estimating parameters in spatial point process models depends on the type of model.
Through simulations, I assess the accuracy of estimates obtained with the neural network approach
and compare this to the most commonly used estimating procedure in each case, which I briefly
describe in each of the following subsections. I will not go into details about simulation methods
and instead refer to Møller and Waagepetersen (2004) and Baddeley et al. (2015). In this section,
W is always a 2-dimensional unit square. Considerations about how many simulations to use for
the training data in each example are provided in Appendix A.1, which also shows histograms of
the number of points in the simulations in the training data sets.

3.1. LGCP processes

An LGCP is a popular process for modeling aggregation in spatial point patterns. It is driven by
a stochastic intensity Z = exp(Y ) where Y is a Gaussian random field with mean function m and
covariance function c(u, v). I use m = µ for a constant µ and an exponential covariance function
c(u, v) = σ 2 exp(−∥u − v∥/s) with unknown parameters σ 2 and s. The model is then stationary,
and the vector of unknown parameters which are to be estimated is (µ, σ 2, s). Note that if σ 2

= 0,
s becomes irrelevant, so any estimation procedure may be expected to struggle with estimating s if
σ 2 is small.

Seemingly, the most common way to estimate parameters in Cox processes is to use the method
of minimum contrast estimation (Diggle, 1983; Diggle and Gratton, 1984), although composite
likelihood estimation (Guan, 2006) is a popular alternative. I have chosen to compare my method
to that of minimum contrast estimation. In minimum contrast estimation, the theoretical value of a
summary function (e.g. Ripley’s K -function) is compared to a non-parametric estimate of it. I used

6
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Fig. 2. Estimated parameters obtained with the neural network approach (top row) and minimum contrast estimation
(bottom row) plotted against true parameters in an LGCP. The solid gray line is the identity line. In the case of minimum
contrast estimation, 15, 43, and 77 cases where the estimate of µ was below 3, σ 2 was above 5, and s was above 0.15,
respectively, were omitted from the respective plots; the smallest estimate of µ was −0.174, the highest estimate of σ 2

was 10.7, and the highest estimate of s was 78,738.35.

this method to estimate σ 2 and s based on an observation x and Ripley’s K -function, which depends
on σ 2 and s, by finding the values of σ 2 and s which minimize∫ a2

a1

|K (r)q − K̂x(r)q|
p
dr

for some user specified 0 ≤ a1 < a2 and exponents p and q. Subsequently, µ can be estimated from
the unbiased estimation equation of the intensity ρ̂ = n(x)/|W | by using that ρ = exp(µ + σ 2/2)
for my considered model. For finding the minimum contrast estimates I used the function kppm
from spatstat with the default settings, which include p = 2 and q = 1/4.

I made the training data for the neural network approach based on 10,000 simulations of an LGCP
with parameters sampled uniformly in the intervals µ ∈ (4, 6), σ 2

∈ (0, 4), and s ∈ (0.001, 0.1).
For justification of the number of simulations in the training data see Appendix A.1. I made further
5000 simulations for a test set, and Figs. 2–4 show some plots for the estimated parameters obtained
with the neural network approach and the method of minimum contrast estimation. In the case
of minimum contrast estimation, some extreme estimates were omitted in Figs. 2 and 3, see the
captions for more details. Overall, there is less variation in the error of the estimates obtained with
the neural network approach compared to the method of minimum contrast estimation, especially
when the true parameter is high. Furthermore, the neural network approach does not give the same
kind of extremely wrong estimates as sometimes seen with minimum contrast estimation, probably
because it has only seen training data with parameters in the same intervals as in the test set.

For µ, both methods recover the parameter well, but the neural network approach has unlike
the method of minimum contrast estimation a slight tendency to overestimate the parameter when
the true value is small.

7
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Fig. 3. Estimate of s minus the true value plotted against σ 2 for a log-Gaussian Cox process. In the plot to the left,
estimates were obtained with the neural network approach; in the plot to the right, estimates were obtained with
minimum contrast estimation. In the case of minimum contrast estimation, 34 cases where the error fell outside the
showed range were omitted.

Fig. 4. Boxplot of the errors (estimated minus true value) for the parameter of an LGCP stated at the top of each plot. The
estimates were obtained with the neural network approach (dark gray) and minimum contrast estimation (light gray).
For the parameter s, cases where σ 2 > 1 were omitted.

For σ 2, the neural network approach recovers the parameter well when the true value is less
than three, especially when the true value is very small where it also performs considerably better
than minimum contrast estimation since the latter quite often seems to estimate the parameter to
be near one when it is in fact near zero. When the true parameter is high, both methods have a
tendency for underestimation. However, in the case of minimum contrast estimation, this tendency
starts to be clear when the true value gets above circa 2.5 whereas it for the neural network
approach only starts to be clear when the true value gets above circa 3.5.

For s, Fig. 3 shows that both methods as expected struggle to recover s when σ 2 is near 0. In this
case, the neural network approach has a tendency to estimate s to be near the mean in the training
data whereas the method of minimum contrast has a tendency to estimate it to be near 0. There
is no reason to prefer any of these strategies above the other, so for a more fair comparison, cases

8



N. Vihrs Spatial Statistics 51 (2022) 100668

Fig. 5. Estimated minus true value plotted against the number of points in the point pattern. The parameter of the LGCP
is stated at the top of each column. In the top row, estimates were obtained with the neural network approach; in the
bottom row, estimates were obtained with minimum contrast estimation. In the case of minimum contrast estimation, 2
cases of µ, 19 cases of σ 2 , and 100 cases of s where the error fell outside the showed ranges were omitted.

where σ 2 < 1 has been excluded from the plot for s in Fig. 4 and we see that the excluded cases
include the most extreme estimates of s achieved with minimum contrast estimation. Both methods
recover s well when the true value is small (and σ 2 is not near 0). When the true value of s gets
above circa 0.3, the method of minimum contrast develops a tendency for underestimation, which
gets more severe as s increases, and the neural network approach starts to slightly overestimate s
until the true value gets above circa 0.8 after which it also underestimates s, but not as severely as
minimum contrast estimation.

In order to assess how the method performs on point patterns with few points, I made a
second simulation study where I considered µ ∈ (3, 4) for the training and test data. I used 1000
simulations in the test set and everything else was as above. Fig. 5 shows the errors of the estimates
obtained with the neural network approach and minimum contrast estimation for each parameter
for the test cases where the number of points was below 200. This shows that it is mainly the
estimation of s which benefits from more points in the point pattern. It is also seen that minimum
contrast estimation has a tendency to underestimate µ and s and overestimate σ 2 if there are very
few points in the point pattern, but the neural network approach shows no such tendencies.

3.2. Strauss processes

A Strauss process is a popular model for regularity. A Strauss process defined on a bounded
set S ⊂ Rd has density f (x) ∝ βn(x)γ SR(x) with respect to a unit rate Poisson process for x =

{x1, . . . , xn} ⊂ S where n(x) is the number of points in x, SR(x) =
∑

i<j 1[∥xi − xj∥ ≤ R] is the
number of R-close pairs, and the unknown parameters are β > 0, γ ∈ [0, 1], and R ≥ 0. I assume
that W ⊂ S but that S is unknown, so when simulating from the Strauss process, I simulate it on an

9
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extended window determined by the default settings in the function rmh from spatstat, which
in this case is to add a margin of width 2R around all sides of the square W . Note that if γ = 1, R
becomes irrelevant; and if R = 0, γ becomes irrelevant. Both these special cases collapse into the
same model namely a homogeneous Poisson process.

The density of the Strauss process involves an intractable normalizing constant, so instead of
using maximum likelihood estimation it is more common to use maximum pseudo likelihood
estimation (Besag, 1975; Ripley, 1988; Jensen and Møller, 1991; Baddeley and Turner, 2000), which
is known to be a fast and reliable alternative. The pseudo likelihood function for an observed point
pattern x is

PLA(θ ) = exp
(

−

∫
A

f (x ∪ {u})
f (x)

du
) ∏

u∈x∩A

f (x)
f (x \ {u})

for some set A ⊂ S chosen in order to account for edge effects. The pseudo likelihood function is
maximized in order to find the maximum pseudo likelihood estimate of an unknown parameter
vector θ of the density f . This method is particularly tractable if the model is on exponential family
form, that is the unnormalized density h is of the form h(x) = exp(t(x)θ T ) for a canonical parameter
vector θ and canonical statistic t(x). This is the case for the Strauss process if R is given with
θ = (log(β), log(γ )) and t(x) = (n(x), SR(x)). Thus, maximum pseudo-likelihood estimation can
easily be used to obtain estimates of β and γ . In order to also obtain an estimate for R, the method of
profile maximum pseudo likelihood can be used in the following way: consider a finite set R1, . . . , Rk
of possible values for R, find the maximum pseudo likelihood estimates β̂i and γ̂i of β and γ given
R = Ri, and choose the combination of parameters (β̂i, γ̂i, Ri) which gives the highest value of PLA.
For finding the profile maximum pseudo likelihood estimates I used the function profilepl from
spatstat where I forced the method to yield a valid model (γ ∈ [0, 1]) and considered 50 equally
spaced values of R in the interval [0.001, 0.05].

For the neural network approach, I used 5000 simulations of a Strauss process with parameters
sampled in the intervals β ∈ (200, 900), γ ∈ (0, 1), and R ∈ (0, 0.05) for the training data and made
further 5000 simulations for a test data set. For justification of the number of simulations in the
training data see Appendix A.1. The simulation of Strauss processes which I used involves Markov
chains, and a shared burnin for all simulations was chosen based on trace plots of the number of
points and R-close pairs for certain combinations of the parameters believed to require the most
iterations. Based on this, I used 100,000 iterations of the Markov chain. Figs. 6–8 show some plots
for the estimated parameters for the point patterns in the test set. The estimates were obtained
with either the neural network approach or profile maximum pseudo likelihood estimation. A clear
advantage of the neural network approach is that all parameters can be estimated simultaneously,
and the estimate of R is thus not restricted to a finite set of values.

For β , there is overall less variation in the error obtained with the neural network approach
compared to the method of profile maximum pseudo likelihood estimation where the variation
increases with the true value of β , something which does not happen with the neural network
approach. The method of profile maximum pseudo likelihood estimation have a tendency to un-
derestimate β , which gets worse as the true value increases whereas the neural network approach
has an overall tendency to slightly overestimate it.

For γ , both methods struggle when R is small as seen by Fig. 7, but the neural network approach
seems to overall handle it better than profile maximum pseudo likelihood estimation since it can
apparently handle the estimation of γ well for smaller values of R than profile maximum pseudo
likelihood. For a better comparison of the methods, cases where R < 0.01 are excluded from the
plot for γ in Fig. 8. The neural network approach recovers γ very well if the true value is not
above circa 0.8, and in this case it also performs better than profile maximum pseudo likelihood
estimation which has a tendency for overestimating γ . If the true value of γ is above circa 0.8, the
neural network approach in general underestimates γ whereas profile maximum pseudo likelihood
estimation either estimates it to be near 1, as it should, or near 0.

For R, both methods struggle when γ is high, so cases where γ > 0.7 are excluded from the
plot for R in Fig. 8. The neural network approach has difficulties recovering R when the true value
is small in which case profile maximum pseudo likelihood estimation shows better performance;
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Fig. 6. Estimated parameters obtained with the neural network approach (top row) and profile maximum pseudo
likelihood (bottom row) plotted against true parameters in a Strauss process. The parameter is stated at the top of
each column. The solid gray line is the identity line.

Fig. 7. Estimates of γ and R minus their true value plotted against R and γ , respectively, for a Strauss process. Estimates
were obtained with the neural network approach (left) and maximum profile pseudo likelihood estimation (right).
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Fig. 8. Boxplot of the errors (estimated minus true value) for the parameter of a Strauss process stated at the top of
the plots. The estimates were obtained with maximum profile pseudo likelihood estimation (light gray) and the neural
network approach (dark gray). For the parameters γ and R, cases where R < 0.01 and γ > 0.7, respectively, were omitted.

however, if the true value is above circa 0.01, the neural network approach recovers R very well and
the results are comparable to those obtained with profile maximum pseudo likelihood estimation.
Remember though, that the performance of profile maximum pseudo likelihood estimation depends
much on how fine a grid of R-values one considers.

In order to asses how the method performs on point patterns with few points, I made a second
simulation study where I considered β ∈ (20, 200) for the training and test data. I used 1000
simulations in the test set, and in this case I only trained the network for 10 epochs because a
plot like in Fig. A.19 revealed problems with overfitting when training the network for longer.
Everything else was as above. Fig. 9 shows the errors of the estimates obtained with the neural
network approach and profile maximum pseudo likelihood estimation for each parameter for the
test cases where the number of points was below 200. The plots reveal no clear tendencies in
the estimates obtained with the neural network approach. In the case of maximum profile pseudo
likelihood estimation there are no clear tendencies for β , but for γ there is a general tendency to
underestimate and for R there is a tendency to overestimate if there are very few points in the point
pattern.

3.3. LGCP-Strauss processes

An LGCP-Strauss process is a model for repulsion at small scale and clustering at a larger scale.
It is a combination of an LGCP and a Strauss process, and, defined on W , it has density

f (x) = E

[
1

Cθ (Y )
exp

(
n∑

i=1

Y (xi)

)
γ SR(x)

]
for x = {x1, . . . , xn} ⊂ W with respect to the unit rate Poisson process where θ is the parameter
vector; Y = {Y (u)}u∈W is a Gaussian random field; the expectation is with respect to Y ; and Cθ (Y )
is the normalizing constant obtained when conditioning on Y . For Y , I used a parametrization as
in Section 3.1 with parameters µ, σ 2, and s, so θ = (µ, σ 2, s, γ , R) where γ ∈ [0, 1]. If γ = 1 or
R = 0, it collapses to an LGCP; if σ 2

= 0, it collapses to a Strauss process.
I made the training data for the neural network based on 40,000 simulations of an LGCP-Strauss

process with parameters sampled in the intervals µ ∈ (4.5, 6), σ 2
∈ (0, 4), s ∈ (0.001, 0.1),
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Fig. 9. Estimated minus true value plotted against the number of points in the point pattern. The parameter of the Strauss
process is stated at the top of each column. In the top row, estimates were obtained with the neural network approach;
in the bottom row, estimates were obtained with profile maximum pseudo likelihood estimation.

γ ∈ (0, 1), and R ∈ (0, 0.05). For justification of the number of simulations in the training data see
Appendix A.1. I made further 5000 simulations for a test set for which I estimated the parameters
with the neural network approach. The simulation of LGCP-Strauss processes which I used involves
Markov chains, and a shared burnin for all simulations was chosen based on trace plots of the
number of points and R-close pairs for certain combinations of the parameters believed to require
the most iterations. Based on this, I used 200,000 iterations of the Markov chain.

Regarding estimating the parameters of an LGCP-Strauss process Vihrs et al. (2022) noted that
the usual methods for estimating parameters in point process models are intractable for this model
and thus used ABC. I therefore compare the estimates obtained with the neural network approach
to approximate posterior means obtained with an ABC technique. Specifically, I used the method of
ABC via random forests as implemented in the R-package abcrf version 1.8.1 (Marin et al., 2019).
In short, this method trains a regression random forest on a reference table consisting of chosen
summary statistics calculated for a number of prior predictions with the aim of predicting posterior
expectations, variances and quantiles for a parameter. A regression random forest consists of a
number of regression trees trained on bootstrap samples of the training data. In each regression
tree the input is subjected to a number of binary decision rules after which a leaf of the tree will
be reached. The prediction made by this regression tree is then the mean of the response variables
from its training data which are associated to this leaf. The prediction of the random forest is then
the mean of the predictions from each individual tree. I refer to Raynal et al. (2019) for more details
about ABC via random forests.

In this paper, I am only interested in the approximate posterior means obtained with ABC via
random forests, and these are the predictions of the parameters made by trained random forests.
The approach is thus quite similar to the neural network approach except that the training data is
used to train random forests instead of a neural network. As recommended in Raynal et al. (2019),
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Fig. 10. Estimated parameters obtained with the neural network approach plotted against true parameters in an
LGCP-Strauss process. The parameter is stated at the top of each plot. The solid gray line is the identity line.

I trained an independent random forest for each parameter, and the parameters are thus estimated
separately instead of simultaneously as with the neural network approach. I used random forests
with 500 trees (the default in abcrf) and made the check recommended in Raynal et al. (2019)
for whether this was sufficient. As a reference table, I used the same training data as for the neural
network since both methods are based on machine learning techniques and I wanted to compare
their performance when given the exact same information; for the same reason I did not investigate
whether the ABC technique would benefit from more simulations in the training data. So in the ABC
approach, the independent uniform distributions used to sample the parameters for the training
data serve as prior distributions.

The estimates obtained with the neural network approach and the posterior means obtained with
ABC via random forests are plotted against the true parameter values in Figs. 10–11. Fig. 12 shows
boxplots of the errors where some cases are omitted in the plots for s, γ , and R due to arguments
similar to those in Sections 3.1 and 3.2. The results obtained with the two methods are very similar,
except that the neural network approach performs slightly better for µ and σ 2 near the endpoints
of the considered intervals. It is apparently easiest to estimate γ and R, which are recovered very
well except that there is again a tendency to underestimate γ when the true value is high and to
overestimate R when the true value is small. The estimate for s is again best when the true value is
small. There is a tendency for overestimating σ 2 unless the true value is above circa 3 in which case
it is usually underestimated. Vihrs et al. (2022) also found it to be difficult to make inference about
the parameters of the Gaussian random field in an LGCP-Strauss process and related it to the fact
that it can be difficult to see the effect of changes in the Gaussian random field from a realization
of the process because it is obscured by the small scale regularity.

The LGCP-Strauss process models quite complex behavior in point patterns, so I do not think
it is appropriate to fit it to point patterns with few points. I therefore do not consider a second
simulation study focusing on point patterns with few points as I did in Sections 3.1–3.2.
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Fig. 11. Approximate posterior means obtained with ABC via random forests plotted against true parameters in an
LGCP-Strauss process. The parameter is stated at the top of each plot. The solid gray line is the identity line.

3.4. Some remarks about speed

The purpose of this section is to give an idea of how time consuming the neural network
approach is even though this will of course depend heavily on implementation, software, the data
a model should be fitted to etc. All the below timings were made using just a single core, but some
of the calculations can also be run in parallel.

In the situations in Sections 3.1–3.3, it took about 5.4, 17, and 115 minutes, respectively, to
make the training data and 2.6, 1.5, and 9.7 min, respectively, to train the neural network. The
most time consuming part of the procedure is to make the training data, especially to make the
simulations. However, the process of making simulations and calculating summary statistics can
easily be parallelized if multiple cores are available. I also recommend to always take the extra
time to make a test data set which can be used to assess the performance of the method in a given
situation. After the network was trained, it took about 1 s in all three cases to fit the point process
model to the 5000 simulations in the test data.

With the method of minimum contrast estimation it took about 100.8 min to fit LGCP models
to the 5000 simulations in the test data in Section 3.1, and it thus took 1.21 s on average to fit one
model; with the method of profile maximum pseudo likelihood estimation it took about 154 min
to fit Strauss process models to the 5000 simulations in the test data in Section 3.2, and it thus
took 1.85 s on average to fit one model (these timings of course depend heavily on how many
values of the parameter R one considers). When fitting a single model, it is thus much faster to use
minimum contrast estimation or profile maximum pseudo likelihood estimation than to use the
neural network approach. However, after the neural network has been trained, it can be used to
fit the spatial point process model to multiple point patterns as long as they are well represented
in the training data, and this can be done very fast. If a model is to be fitted to multiple point
patterns and it is possible to train a neural network which is suitable for all these cases, the neural
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Fig. 12. Boxplot of the errors (estimated minus true value) for the parameter of an LGCP-Strauss process stated at the
top of each plot. The estimates were obtained with an ABC technique (light gray) and the neural network approach (dark
gray), respectively. For the parameters s, γ , and R, cases where σ 2 > 1, R < 0.01 and γ > 0.7, respectively, were omitted.

network approach can be faster. With the ABC method in Section 3.3 it took about 93.4 min to fit
the random forest objects and 34 minutes to make the predictions which include predictions of the
posterior means. The ABC procedure also needs the time for making the training data. Thus, the
neural network approach was faster in this case, but it is possible to use parallelization in the ABC
method in order to speed it up.

4. Data example

The left panel in Fig. 13 shows the part of the Allogony data set from the R-package ads version
1.5-5 (Pélissier and Goreaud, 2015) which contains the locations of 256 oak trees which suffer from
frost shake in a 125 × 188 m rectangular region of Allogny in France (this rectangular region is
W ). The right panel shows L̂(r) − r together with a 95% global envelope for the null hypothesis
that data comes from a homogeneous Poisson process. Briefly, a 95% global envelope is a region
for which the functional summary statistic calculated from the observed data will fall completely
within if and only if the null hypothesis cannot be rejected at level approximately 5%. The envelope
was calculated from 2499 simulations (thereby following the recommended number of simulations
in Myllymäki et al. (2017)) of a homogeneous Poisson process and based on the extreme rank
length (see Myllymäki et al. (2017), Mrkvička et al. (2020), Myllymäki and Mrkvička (2019) for
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Fig. 13. Left: Point pattern of the locations of 256 oak trees which suffer from frost shake in a 125 × 188 m rectangular
region of Allogny in France. Right: L̂(r) − r together with a 95% global envelope calculated from 2499 simulations of a
homogeneous Poisson process.

more information about global envelopes and the R-package GET (version 0.2-4), which I used to
calculate them). The plots indicate that the point pattern exhibits repulsive behavior at a small scale
and some clustering at a larger scale. As an example, I now show how the neural network approach
can be used to fit an LGCP-Strauss process to this point pattern (an LGCP-Strauss process model
was previously fitted to this data in Vihrs et al. (2022)).

Regarding the ranges of parameters to use in the training data for the neural network, I used
γ ∈ (0, 0.7) and R ∈ (1, 5) since Fig. 13 shows clear evidence of repulsion in the observed point
pattern and Vihrs et al. (2022) noted that the interaction radius R is often near the r-value which
gives the smallest value of L̂(r) − r . For the parameters of the Gaussian random field, I decided to
use µ ∈ (−5.6, −3), σ 2

∈ (0, 2), and s ∈ (0.001, 15) after having looked at some simulations of
LGCP-Strauss processes. I then used 40,000 simulations on W where the parameters were sampled
uniformly on the above intervals to construct the training data for the neural network approach.
Fig. 14 shows a histogram of the number of points in the point patterns in the training data and a
95% global envelope calculated from the 40,000 estimates of L(r)− r in the training data. The same
summaries obtained from the oak point pattern are also shown in the plots, where we see that both
the observed number of points and the behavior of L̂(r)−r are well represented in the training data,
which is crucial in order to get reliable estimates with the neural network approach. A check like
this may both reveal if the intervals for the parameters have been chosen inappropriately or if the
considered class of model is ill-suited for fitting the observed point pattern.

I also made 5000 simulations for a test data set, and Fig. 15 shows the estimated parameters for
these plotted against the true values. This shows that in this situation µ, γ , and R are recovered
well whereas there is more uncertainty in the estimates of σ 2 and s.

When using the trained neural network to estimate the parameters for the point pattern of
oak trees, I got the estimates µ̂ = −4.54, σ̂ 2

= 0.32, ŝ = 10.93, γ̂ = 0.21, and R̂ = 1.91.
The most popular way to validate a fitted point process model is to consider global envelopes
and corresponding tests calculated for some functional summary statistic. I did not want to use
the L-function for this global envelope and test since it plays a major part in the estimating
procedure. I therefore used the J-function given in (2.3) instead. I used the non-parametric estimate
Ĵ(r) = (1 − Ĝ)/(1 − F̂ ) where Ĝ and F̂ are the so-called Kaplan–Meier estimators of G and F , which
account for edge effects, see Baddeley et al. (2015, Section 8.11.4) for how these estimators are
given. Regarding the considered range of r-values for Ĵ(r), the function Jest from spatstat which
is used to estimate J gives a recommendation, which I have followed.
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Fig. 14. Left: Histogram of the number of points in the simulations in the training data where the vertical dashed line
indicates the number of points in the observed point pattern of oak trees. Right: A 95% global envelope calculated from
the 40,000 estimates of L(r)− r in the training data (gray area), the mean (dashed curve) and L̂(r)− r obtained from the
observed point pattern of oak trees (solid curve).

Fig. 15. Estimated parameters of the test data obtained with the neural network approach aimed at fitting an LGCP-Strauss
process to the oak point pattern plotted against true parameters. The parameter is stated at the top of each plot.

Fig. 16 shows a 95% global envelope and the p-value of the corresponding global envelope test
based on the J-function and calculated from 2499 simulations under the fitted model. This indicates
that the fitted model describes the point pattern of oak trees very well.

18



N. Vihrs Spatial Statistics 51 (2022) 100668

Fig. 16. A 95% global envelope based on the J-function calculated from 2499 simulations under the LGCP-Strauss process
model fitted to the oak point pattern (gray area), the mean obtained from the simulations (dashed curve), and the estimate
calculated from the observed point pattern (solid curve). The p-value of the corresponding global envelope test is stated
at the top.

5. Discussion and future research

I have presented a method which is generally applicable to estimate parameters in all spatial
point process models which it is possible to simulate from. The method recovers parameters well
compared to common estimating techniques since it gives either better or similar results. The
advantages of the method are that the only necessary information about the model is a tractable
simulation procedure and that all unknown parameters can be estimated simultaneously. The
method is more time consuming than minimum contrast estimation and profile maximum pseudo
likelihood estimation when it comes to fit a single model. However, the most time consuming part
of the method is to make training data and to train the neural network, so if it is possible to train
a neural network which can be reused to fit a model to many point patterns, the neural network
approach can be faster than using minimum contrast estimation or maximum pseudo likelihood
estimation on each point pattern. Compared to ABC, the neural network approach is also potentially
faster.

Future research may include how to use the neural network approach to estimate parameters
in inhomogeneous point process models which include covariate information. It could also be
interesting to explore the possibility to pre-train large neural networks which could be applicable
to a wide range of point patterns which are often encountered in practice thereby obtaining a very
fast estimation procedure for such point patterns.
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Appendix A. Details for the neural network approach

A.1. Training data

It is possible to get as much training data as desired since it is merely a matter of making
more simulations, but simulation procedures may be time consuming. Fig. A.17 shows the mean
squared errors obtained with the neural network approach for test sets with 5000 simulations
in the situations of the first simulation studies in Sections 3.1–3.3 plotted against the number of
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Fig. A.17. Mean squared errors calculated for test sets with 5000 simulations for the situations of the first simulation
studies in Sections 3.1–3.3 as stated at the top plotted against the number of simulations in the training data.

Fig. A.18. Histogram of the number of points in the point patterns in the training data used in the first simulation studies
in Sections 3.1–3.3 as stated at the top of each plot. The light gray column indicates the count of point patterns where
the number of points is above 2000, the highest value being 6116 and 6497 in the cases of the LGCP and LGCP-Strauss
processes, respectively.

simulations in the training data. The necessary number of simulations depends on how complicated
the model is. Based on Fig. A.17 I used 10,000 simulations in the case of an LGCP in Section 3.1;
5000 simulations in the case of a Strauss process in Section 3.2; and 40,000 simulations in the case
of an LGCP-Strauss process in Section 3.3.

Fig. A.18 shows histograms of the number of points in the training data sets used for the first
simulation studies in Sections 3.1–3.3.

A.2. Network training

The unknown parameters of the neural network should be learned based on the training data.
This is done by minimizing a loss function with some optimization technique. I used the mean
squared error as loss function and the Adam optimizer (Kingma and Ba, 2014) for optimization.
During training, the training data was send through the network in smaller batches of size 100. An
iteration over the entire training data is referred to as an epoch. During training, I also monitored
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Fig. A.19. Mean squared error calculated from test sets with 5000 simulations plotted against number of epochs for the
situations of the first simulation studies in Sections 3.1–3.3 as stated at the top of each plot. The number of simulations
in the training data were as in Sections 3.1–3.3.

the mean squared error of a test set again constructed from simulations of the point process model
as described in Section 2.2. The mean squared error of the test set was among other things used to
decide on the number of epochs where the choice in general fell on 20 epochs based on Fig. A.19,
which also revealed that with the choices I made, there is no apparent problem with overfitting.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.
spasta.2022.100668.

References

Allaire, J., Chollet, F., 2020. Keras: R interface to ’Keras’. R package version 2.3.0.0 URL https://CRAN.R-project.org/packag
e=keras.

Baddeley, A., Rubak, E., Turner, R., 2015. Spatial Point Patterns: Methodology and Applications with R. Chapman and
Hall/CRC Press, London.

Baddeley, A., Turner, R., 2000. Practical maximum pseudolikelihood for spatial point patterns. Aust. Zeland J. Stat. 42,
283–322.

Beaumont, M.A., 2010. Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41,
379–406.

Besag, J.E., 1975. Statistical analysis of non-lattice data. Statistician 24, 179–195.
Chollet, F., 2018. Deep Learning with R. Manning Publications, Shelter Island, NY.
Diggle, P., 1983. Statistical analysis of spatial point patterns. Academic Press, London.
Diggle, P.J., Gratton, R.J., 1984. Monte Carlo methods of inference for implicit statistical models. J. R. Stat. Soc. Ser. B Stat.

Methodol. 46, 193–2012.
Gabrielli, L., Tomassetti, S., Squartini, S., Zinato, C., 2017. Introducing deep machine learning for parameter estimation in

physical modelling. In: Proceedings of the 20th International Conference on Digital Audio Effects.
Guan, Y., 2006. A composite likelihood approach in fitting spatial point process models. J. Amer. Statist. Assoc. 101,

1502–1512.
Jensen, J.L., Møller, J., 1991. Pseudolikelihood for exponential family models of spatial point processes. Ann. Appl. Probab.

3, 445–461.
Kelly, F.P., Ripley, B.D., 1976. A note on Strauss’s model for clustering. Biometrika 63, 357–360.
Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint ArXiv:1412.6980.
Marin, J.-M., Raynal, L., Pudlo, P., Robert, C.P., Estoup, A., 2019. Abcrf: Approximate Bayesian computation via random

forests. R package version 1.8.1 URL https://CRAN.R-project.org/package=abcrf.
Møller, J., Syversveen, A.R., Waagepetersen, R.P., 1998. Log Gaussian Cox processes. Scand. J. Stat. 25, 451–482.
Møller, J., Waagepetersen, R.P., 2004. Statistical Inference and Simulation for Spatial Point Processes. Chapman and

Hall/CRC, Boca Raton.
Møller, J., Waagepetersen, R.P., 2017. Some recent developments in statistics for spatial point patterns. Annu. Rev. Stat.

Appl. 4, 317–342.
Mrkvička, T., Myllymäki, M., Jilik, M., Hahn, U., 2020. A one-way ANOVA test for functional data with graphical

interpretation. Kybernetika 56, 432–458.

21

https://doi.org/10.1016/j.spasta.2022.100668
https://doi.org/10.1016/j.spasta.2022.100668
https://doi.org/10.1016/j.spasta.2022.100668
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb2
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb2
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb2
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb3
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb3
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb3
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb4
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb4
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb4
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb5
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb6
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb7
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb8
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb8
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb8
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb9
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb9
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb9
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb10
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb10
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb10
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb11
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb11
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb11
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb12
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
https://CRAN.R-project.org/package=abcrf
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb15
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb16
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb16
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb16
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb17
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb17
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb17
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb18
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb18
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb18


N. Vihrs Spatial Statistics 51 (2022) 100668

Myllymäki, M., Mrkvička, T., 2019. GET: Global envelopes in R. arXiv preprint ArXiv:1911.06583.
Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H., Hahn, U., 2017. Global envelope tests for spatial processes. J. R. Stat.

Soc. Ser. B Stat. Methodol. 79, 381–404.
Ohser, J., 1983. On estimators for the reduced second moment measure of point processes. Math. Oper. Und Stat. Series

Stat. 14, 63–71.
Pélissier, R., Goreaud, F., 2015. Ads package for R: A fast unbiased implementation of the K -function family for studying

spatial point patterns in irregular-shaped sampling windows. J. Stat. Softw. 63, 1–18.
R. Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,

Vienna, Austria, URL https://www.R-project.org/.
Raynal, L., Marin, J.-M., Pudlo, P., Ribatet, M., Robert, C.P., Estoup, A., 2019. ABC random forests for Bayesian parameter

inference. Bioinformatics 35 (10), 1720–1728.
Ripley, B.D., 1988. Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge.
Strauss, D.J., 1975. A model for clustering. Biometrika 62, 467–475.
Vihrs, N., Møller, J., Gelfand, A.E., 2022. Approximate Bayesian inference for a spatial point process model exhibiting

regularity and random aggregation. Scand. J. Stat. 49, 185–210.
Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, URL https://ggplot2.tidyverse

.org.

22

http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://arxiv.org/abs/1911.06583
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb20
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb20
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb20
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb21
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb21
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb21
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb22
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb22
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb22
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb24
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb24
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb24
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb25
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb26
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb27
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb27
http://refhub.elsevier.com/S2211-6753(22)00042-2/sb27
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org

