Aalborg Universitet

Negative Sequence Controllers to Reduce Power Oscillations During Electric Faults in the Offshore Wind Power Grid

Chaudhary, Sanjay Kumar

Publication date: 2010

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Chaudhary, S. K. (2010). Negative Sequence Controllers to Reduce Power Oscillations During Electric Faults in the Offshore Wind Power Grid. Poster presented at IEEE PES General Meeting 2010, Minnesota, United States.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Negative Sequence Controllers to Reduce Power Oscillations During Electric Faults in the Offshore Wind Power Grid

Researcher: S. K. Chaudhary, Aalborg Univ. and Univ. of Manitoba, email:skc@et.aau.dk

Main Objectives:

To reduce the power oscillations and subsequent dc voltage oscillations in the VSC-HVDC transmission connecting an offshore wind power plant to an onshore grid.

- ► To develop a PSCAD/EMTDC simulation model of an offshore WPP with VSC-HVDC connection to the Onshore grid.
- ► To simulate the symmetrical and asymmetrical faults in the offshore grid and study the oscillations in the VSC-HVDC transmission system
- ► To estimate the content of positive and negative sequence voltage and current components in real time using DSOGI filters.
- ► To propose a negative sequence current control algorithm and compare the results with the negative sequence voltage control algorithm.

System Layout and Single Line Diagram

A 400MW offshore wind power plant has been modeled as 4 aggregated wind turbines with full scale converters. VSC-HVDC transmission connects the offshore grid to the onshore grid.

Advisor: Dr. R. Teodorescu (AAU), Dr. P. Rodriguez (T.U. Catalonia) Co-Advisors: Dr. A. M. Gole (UoM), Dr. P. C. Kjær (Vestas A/S)

VSC-HVDC Controllers **Onshore VSC Controller:** Control of dc voltage and reactive

power or ac voltage measured at the point of common coupling.

Offshore VSC Controller: Control of offshore grid terminal ac voltage and frequency.

Negative Sequence Controller (for offshore VSC Controller)

Negative Sequence Voltage Control: Negative sequence voltage references in the d and q axes are set to 0. The outer PI controller generates the negative sequence current references.

Negative Sequence Current Control: Negative sequence current references in the α and β axes are solved from the equations given below, in the stationary reference frame,

$$v_{\alpha n}i_{\alpha p} + v_{\alpha p}i_{\alpha n} + v_{\beta n}i_{\beta p} + v_{\beta p}i_{\beta n} = 0$$
$$v_{\beta n}i_{\alpha p} + v_{\beta p}i_{\alpha n} - v_{\alpha n}i_{\beta p} - v_{\alpha p}i_{\beta n} = 0$$

-ve sequence current The references are transformed into the d-q axes components before applying to the controller.

Fault Simulations and Comparison of the Controller Performance

Electrical faults of both symmetric (LLLG & LLL) and asymmetric (LG, LLG & LL) types were simulated at points A/B/C (shown in the layout).

Fault resistance of magnitude 0.10 pu and duration 150ms was used.

DC voltage at the onshore VSC-HVDC terminal, power evacuated from the offshore grid and power injected into the onshore grid have been shown below for some selected cases.

Plots for L-G fault at point A

Plots for L-G fault at point B

Legends:

- 1. Without negative sequence controller
- 2. With negative sequence voltage
- controller 3. With negative sequence current controller

Conclusion

Negative sequence current controller is effective in decreasing the power and voltage oscillations in the VSC-HVDC system.

Even in the case of symmetric faults, the peak overvoltage arising out of sudden power unbalance is reduced.

► However, the power and voltage oscillations could not be elimiated completely.