

Aalborg Universitet

A Reusable Software Architecture for Small Satellite AOCS Systems

Alminde, Lars; Bendtsen, Jan Dimon; Laursen, Karl Kaas

Published in:
Proceedings of Small Satellites Systems and Services conference 2006

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Alminde, L., Bendtsen, J. D., & Laursen, K. K. (2006). A Reusable Software Architecture for Small Satellite
AOCS Systems. In Proceedings of Small Satellites Systems and Services conference 2006 Eurpean Space
Agency.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 24, 2024

https://vbn.aau.dk/en/publications/51e8c3d0-a7c0-11db-b942-000ea68e967b

A Reusable Software Architecture for Small
Satellite AOCS Systems

Lars Alminde, Karl Kaas Laursen and Jan Dimon Bendtsen
Aalborg University

Department of Electronic Systems, Automation and Control
Fredrik Bajers Vej 7C

9220 Aalborg E
Denmark

Email: {alminde, dimon, karl}@space.aau.dk

Abstract— This paper concerns the software architecture called
Sophy, which is an abbreviation for Simulation, Observation, and
Planning in HYbrid systems. We present a framework that allows
execution of hybrid dynamical systems in an on-line distributed
computing environment, which includes interaction with both
hardware and on-board software.

Some of the key issues addressed by the framework are auto-
matic translation of mathematical specifications of hybridsystems
into executable software entities, management of execution of
coupled models in a parallel distributed environment, as well as
interaction with external components, hardware and/or software,
through generic interfaces.

Sophy is primarily intended as a tool for development of model
based reusable software for the control and autonomous functions
of satellites and/or satellite clusters.

KEYWORDS

Hybrid systems, Autonomy, Java, Software Architecture,
Satellites

I. I NTRODUCTION

Small satellite missions tend to be far less costly than their
conventional counterparts, which makes it possible to carry
out missions that previously were seen as infeasible. Various
measures can be considered when attempting to drive the costs
down; the satellite hardware itself can be made miniaturized
and simplified, off-the-shelf components can be used rather
than custom-made ones, and software components can be
made generic, allowing to cut down development manhours.
This paper describes a software architecture that intends to
reduce the time it takes to implement model-based software
components such as attitude control, orbit control and fault
detection/handling algorithms for small satellites.

The key element is a lightweight application server, named
Sophy [Laursenet al., 2005], which is loaded with specifi-
cations of hybrid dynamical systems that for instance could
represent an attitude controller, a sensor fusion algorithm or
a supervisory controller. Each of these models are described
in human-readable eXtendable Mark-up Language (XML)
documents[Consortium, 2006], which can be reused from
mission to mission. The interconnection between the on-line
components is specified in another XML file along with
parameters specific for the mission.

The Sophy server is written in JAVA, allowing designers
to exploit the garbage collecting feature of the Java Virtual
Machine [Lindholm and Yellin, 1999], which increases the
robustness of the software development process by eliminating
the risk of so-called “dangling pointers”. Further, objectseri-
alization techniques and networking capabilities are employed
to enable the dynamical transfer of components between
processing resources (e.g. redundant on-board computers). In
fact, the architecture allows the components to be distributed
across any persistent network; This means that a Sophy-
enabled satellite cluster can share software resources such
as e.g. environmental models. From a user perspective, the
distribution and networking is completely transparent.

The components are able to interact with sensors and
actuators on all platforms in the Sophy network. On each
platform the user must extend simple classes to interact with
the particular on-board hardware.

Sophy is built around a number of plug-in interfaces that
allow users to customize and tailor the framework towards
specific needs. This interface also facilitates research, e.g., by
making stringent comparison between various algorithms easy.

The design of Sophy was first presented in[Laursenet al.,
2005], while this paper describes a second iteration of ideas
and interfaces, based on the lessons learned so far.

The paper is organised as follows; First, in Section II,
the motivation and objectives of Sophy are explained. Then,
Section III presents the formulation of hybrid dynamical
systems used in the Sophy framework, whereupon it is shown
how these models are mapped to human readable XML files
(Section IV). Section V gives an overview of the overall
software architecture and a case study (a simulation model of
the AAUSAT-II pico-satellite) that involves interaction with
Matlab is presented in Section VI. Finally, some conclusions
and perspectives are given in Section VII.

II. SOPHY OBJECTIVES

The Sophy framework takes its starting point in three current
trends in control engineering systems today, which will be
described in this section.

A. Hybrid Systems Modeling

In recent years, hybrid dynamical systems, i.e. systems that
exhibit both continuous and discrete dynamics, have been the
subject of intense research interest. This paradigm is often
well suited when modeling real-life complex systems such
as spacecraft, which are describing both continuous variables
such as e.g. battery capacity, attitude or propellant masses, as
well as discrete variables such as e.g the power-down statusof
(redundant) subsystems or a commanded mode of operation.

Previous research into hybrid systems theory has focused
on hybrid modeling, simulation and verification, see e.g.
[Henzinger, 1996]. More recent research has begun to ad-
dress application of hybrid systems theory to control and
estimation problems, see e.g.[Williams and Hofbaur, 2004;
Barton and Lee, 2002; Branickyet al., 1998]. In terms of
autonomous systems, the potential of hybrid systems used in
concert with model-based methods such as optimal nonlinear
filtering and model predictive control is huge due to their
expressiveness and generality.

So far, however, the research community has not been able
to converge on one standard description of hybrid dynamical
systems, and one of the objectives of the Sophy project is to
develop a specification and corresponding terminology thatfits
well with spacecraft control applications.

B. Mapping Specifications into Software

Figure 1 (Left) depicts a typical development cycle for
model based software. First, requirements are specified and
then a simulation model is built that is used to design the
algorithms that implement the requirements on the system. The
algorithms are evaluated using the simulation model and when
found satisfactory, the flight code is written from that basis
and verified against the model. Any changes in requirements
or models requires a new development cycle in the simulated
environment, which then needs to be translated into flight code
and tested again etc.

In Sophy, the goal is to bypass the need to write flight
code in the design loop, as illustrated in Figure 1 (Right), by
automating the process of going from mathematical specifica-
tions to an executable software object for simulation and/or on-
line execution. The use of JAVA enables use of the same code
both on desktop computers and on flight computers and the
plug-in interfaces, together with the distribution capabilities,
allow a gradual transition from 100% simulation through
hardware-in-the-loop simulation and finally execution on the
completed flight system.

Similar features for automatic code generation can also
be found in other tools, such as Matlab or MatrixX, but
in addition Sophy provides functionality directly supporting
hybrid systems theory and distributed computing architectures.
These features will be explained in greater depth in the
following.

C. Distributed Computing

Traditionally, spacecraft have been controlled from a main
on-board computer (possible with redundant backups) —

Fig. 1. Workflow for a traditional development cycle (Left) and for
development using Sophy (Right)

refer to, e.g.,[Abildsten and Blanke, 1997]. However, the
last decades’ rapid advances in digital technology has made
ubiquitous computing available even in space. Modern space-
craft typically employ a number of dedicated computers in
charge of specific tasks and/or subsystems; one example of
small spacecraft employing this strategy is the AAU-Cubesat
[Alminde et al., 2004].

As documented in[Laursenet al., 2005], Sophy is designed
from the bottom up with the understanding of a distributed
architecture in mind, allowing to distribute the responsibilities
of e.g., flight control systems across a network of nodes and
delegate specific tasks to each node.

III. H YBRID DYNAMICAL SYSTEMS

This section defines the view of hybrid dynamical systems
taken in Sophy, including key definitions of major concepts
and practical derivations of the specification. The view that
is taken is a control systems-oriented view quite similar to
[Branicky et al., 1998], rather than a discrete-events oriented
view such as the one found in e.g.,[Grasso, 2002].

The specification starts with a very abstract view and then
presents some useful restrictions on that. It is the objective of
Sophy to support these various views through a highly flexible
plug-in-based structure.

A. Abstract Definition of Hybrid System

In the following Rn will denote the n-dimensional Eu-
clidean space andZ+ will the positive integers. A hybrid
system is an 8-tuple:

H = (Q, X, U, Y, E,F ,G, T) (1)

in which

• Q = {1, 2, . . . , s} ⊂ Z
+ is the set of location indexes

with cardinal numbers

• X = {{x|x ∈ Xq}q∈Q|Xq = Rnq} is the continuous
state-space with dimensionnq∈Q ∈ Z+

• U = {{u|u ∈ Uq}q∈Q|Uq = Rmq} is the continuous
input-space with dimensionmq∈Q ∈ Z+

• Y = {{y|y ∈ Yq}q∈Q|Yq = Rpq}: is the continuous
output-space with dimensionpq∈Q ∈ Z+

• E =
{

e|e ∈ 2Σ
}

: is the set of possible input/output event
labels, whereΣ is an appropriate set of labels

• F : Q × X × U → Ẋ is the forcing function on the
continuous state-space

• G : Q × X × U → Y is a continuous output map
• T : Q × X × U × E → Q × X × E is a transition map

Note how both the continuous (F ,G) and discrete dynamics
(T) are allowed to depend on the discrete location (operation
mode or similar) as well as the continuous states and inputs,
while events affect only the discrete dynamics.

Remark 1 Time is not explicitly included in the definition
of the system. However, with no loss of generality the modeler
can include an extra state in the continuous map to represent
explicit time. �

Remark 2 In most practical applications the dimensions
of the state-, input-, and output-spaces will not change with
different q ∈ Q (see definition of CDS systems later). �

B. Definition of Hybrid Deterministic Systems (HDS)

A HDS imposes the following restrictions on the above
definition:

• The maps,F ,G, andT , must be deterministic functions
of the state and input

• At any time the total state of the HDS is defined by the
triple: S = (q ∈ Q, x ∈ Xq, u ∈ Uq)

• The initial state of a HDS is defined by:S0 = (q0 ∈
Q, x0 ∈ Xq0

, u0 ∈ Uq0
)

• If the total state is indexed withq ∈ Q, e.g.Sq, it means
that the location is fixed, thus:Sq = Xq × Uq

To define a HDS the initial total state must be included in
the definition, and to make the specification of the HDS more
convenient the mapsF andG will be defined as sets of vector
fields indexed byq ∈ Q and the transition map will be broken
up into a set of different maps:

HHDS = (Q, X, U, Y, E,F ,G, T ,S0) (2)

where
• Q, X, U, Y, E are defined as above
• F =

{

{fq}q∈Q
|{q} × Xq × Uq → Ẋq

}

is the set of
forcing functions on the continuous state-space

• G =
{

{gq}q∈Q
|{q} × Xq × UQ 7→ Yq

}

is the set of
continuous output maps

• T =
{

{tr}r∈{1,..,ρ} |Q × X × U × E → Q × X × E
}

are transition maps indexed from 1 toρ
In the above, each transition is described as a 4-tuple:

τr =
(

j(Sq), r(Sq), ein ∈ 2Σ, eout ∈ 2Σ
)

(3)

wherej(Sq) : Sq → {true, false} is the transition domain
which triggers the transition when true,r(Sq) : Sq → Q×X :

is an algebraic reset of the state,ein is an input event that
causes the transition to trigger andeout is an output event that
is emitted when the transition is taken.

In this definition, the use of the location indexed stateSq

rather thanS makes it convenient to group transitions,τr,
according to source location. For purposes of implementation
the transition domain must be specified as a number of
logically combined inequalities, for example:

j(Sq) = j1(Sq) > 0 ∧ (j2(Sq) > 0 ∨ j3(Sq) > 0) (4)

C. Constant Dimension Systems (CDS)

For compositions of hybrid systems, which will be described
in the next subsection, the possibility that the dimensions
of input, output and state-space changes with each location
requires that there are up tos1×s2 different specifications for
composing two systems, which can make compositions quite
inmanagable.

Therefore, in this paper we will limit the definition of
composition to what is called Constant Dimension Systems
(CDS). For these system we can use fixed-dimension vectors
to represent elements in the spaces, as follows:

• n-dimensional statex ∈ Xq∈Q ∀q ∈ Q

• m-dimensional inputu ∈ Uq∈Q ∀q ∈ Q

• p-dimensional outputy ∈ Yq∈Q ∀q ∈ Q

Many practical systems are CDS and it is always possible to
embed a HDS in a CDS formulation by looking at the union
of spaces over all locations of a system. This may entail that
in some locations some inputs or outputs that are unused (kept
constant) in the CDS formulation.

Sophy can simulate both HDS and CDS systems, but
compositions are always between systems on CDS form.

D. Composition

In the following section we define the parallel composition
of two CDS systems,HCDS

1 and HCDS
2 , as shown in Fig-

ure 2. This operation yields a new hybrid systemHCDS
3 .

Composing two hybrid systems into one involves two main
steps:

• A vector of external inputsuH3
and outputsyH3

is
selected for the composed system.

• A set of mapping functions that maps the input to the
composed system and the output from the two component
hybrid systems,yH1

and yH2
, to the input to the two

component hybrid systems,uH1
anduH2

, and the output
from the composed system, is selected for the composed
system.

The parallel composition offers the possibility of modeling
a complex hybrid system as a number of individual sub-
models instead of as a single monolithic hybrid system. The
composition is parallel in the sense that the execution of the
models happens concurrently.
The composition of two hybrid systems is defined over the
domain:

||M : HCDS
1 ×HCDS

2 → HCDS
3 , (5)

H2

H1

M

yH2

yH1

yH3

uH1

uH3

H3 = H1||MH2

uH2

Fig. 2. Composition of two hybrid systems

i.e., composition is an operator that takes two hybrid systems,

HCDS
1 = (Q1, X1, U1, Y1, Σ1, F1, G1, T1) (6)

HCDS
2 = (Q2, X2, U2, Y2, Σ2, F2, G2, T2) (7)

and yields a new hybrid system,HCDS
3 . It is specified via the

matrix mapping:

uH1

uH2

yH3

 = M

yH1

yH2

uH3

 . (8)

with the following restrictions in order to avoid algebraic
loops:

• There must only be zeros in the entries mapping between
y1 andu1

• There must only be zeros in the entries mapping between
y2 andu2

Note that the dimensions ofu3 (m) and y3 (p) is implicitly
defined by the dimensions ofM . It is then immediately con-
cluded thatQ3 = {q3 : q3 ∈ Q1 × Q2} must be the location
set of the composed hybrid system,x3 = [xT

1 xT
2]T is the

new continuous state vector (with dimensionn3 = n1 + n2),
andE3 =

{

e|e ∈ 2(Σ1∪Σ2)
}

is the set of possible input/output
events

Furthermore, the maps of the composed system can be
expressed as follows. Firstly, the composed forcing function
is given by:

F
(

q3,

[

x1

x2

]

,

[

u1

u2

])

=

[

F1(projQ1
q3, x1, u1)

F2(projQ2
q3, x2, u2)

]

(9)
whereprojαβ denotes set projection ofα onto the setβ. Next,
the continuous output map is given by:

G
(

q3,

[

x1

x2

] [

u1

u2

])

=

[

G1(projQ1
q3, x1, u1)

G2(prQ2
q3, x2, u2)

]

(10)

and finally, the transition map is given by

T
(

q3,

[

x1

x2

] [

u1

u2

]

, e

)

=

[

T1(projQ1
q3, x1, u1, e)

T2(projQ2
q3, x2, u2, e)

]

(11)
Remark 3As seen from the composition, spaces are simply

merged and the matrixM distributes information toHCDS
1

andHCDS
2 as appropriate. �

Remark 4 As the newHCDS
3 itself is a hybrid CDS,

the composition operator is closed. This provides formal
justification for the modular design approach outlined in the
previous Section. �

IV. XML S PECIFICATIONS

As mentioned above, Sophy relies on the XML format for
information exchange about models. Specifically, it accepts
three kinds of input files:

• Hybrid systems specification
• Specifications of Input/Output connectors
• Specifications of system interconnections

The format of these documents are specified using Docu-
ment Type Definitions (DTDs). In the following, each docu-
ment type will be explained.

A. Hybrid System Specification

These documents describe subsystems, such as individual
components, in terms of hybrid system formulations. The input
files contain XML-encoded representations of the mathemat-
ical expressions given in Section III. An XML code snippet
is given below, illustrating how a specific location is declared
with differential equations, output map, and transitions with
transition domains and reset conditions.

<location>
<name>Nominal</name>

<diffequation state="M">0</diffequation>
<diffequation state="C">

(2.7e-4*(M*Pin-20))/V</diffequation>
<outputmap output="V"> 18+10.6*C
</outputmap>

<transitions>
<transition>
<name> toPayload</name>
<domain>C > HFull)</domain>
<reset>
<destination> Payload </destination>
<statereset state="M">0</statereset>

</reset>
</transition>
<transition>
<name> toSafe</name>
<domain>C < LCritical)</domain>
<reset>
<destination> Safe </destination>

</reset>

</transition>
</transitions>

</location>

In the XML file the declaration of locations is preceeded by
specifications of the input and output channels of the system,
as per the CDS specification III-C, as well as declaration of
numerical constants used in the systems (to simplify expres-
sions in each location). A full example of such a specification
is given in the appendix of[Alminde et al., 2006].

B. I/O Connectors

I/O connectors are bridges to the world outside Sophy, e.g.
sensors and/or actuators. They can also be used to access data
generated by an environmental simulation running in a another
software environment such as Matlab before deployment in the
proper context.

An I/O connector specification contains information about
inputs and outputs to allow composition with other systems by
means of the CDS formulation according to the mechanism
presented in Section III-D. In addition, it contains the name
of a Java class file that acts a a device plug-in. The user most
code this small function, as described in Section V.

The I/O connector mechanism is also used for data sinks
such as plotting and/or logging.

C. System Interconnections

This XML file contains references to hybrid system spec-
ifications and I/O connectors, which are to be loaded and
distributed to the network nodes specified in the declaration.
Furthermore, it contains information on which input and output
channels must be connected between these systems.

V. SOPHY ARCHITECTURE

As outlined in the introduction, Sophy is a framework
architecture aimed at implementing advanced autonomy in
systems that can be described as hybrid dynamical systems;
in general, this concerns complex systems often composed by
multiple subsystems. So far, the full architecture of Sophy
has been defined and a hybrid simulation component has
been implemented and tested. The framework architecture is
outlined in Figure 3 and the components are described in
greater detail in the following.

A. Input Models

A key architectural point in the framework is that it is
declarative, in the sense that the user should only be con-
cerned about describing a system and not be concerned about
implementing specific controllers and observers for the system
at code-level. This is a major break from traditional thinking
in automatic control.

To facilitate this, the only human inputs to the framework
are hybrid models described in human-readable XML files.
On Figure (3) these are indicated as rectangles at the top
constituting hybrid models of the different subsystems in the
system and a file describing the interconnections between the
different subsystems. Any I/O connections to hardware or

Fig. 3. Overview of the key components in the Sophy framework.

other software is also declared in XML files. Obviously, as the
system models are separated from the simulation architecture
in this way, modular design and model reuse is made easier.

B. Hybrid Executor

The Hybrid Executor (HE) is the architectural element in
the framework that is responsible for simulation, observation
and control of a single subsystem including managing any I/O
interaction with hardware or other software.

A hybrid simulator is implemented and tested in various
cases, and a general hybrid observer is scheduled for devel-
opment within the framework together with a general purpose
hybrid controller. General purpose control and observation is
envisioned to be implemented using e.g. Unscented Kalman
Filtering (UKF) for observation and Model Predictive Control
(MPC) for control. Both of these techniques are suited to
operate in a declarative environment with a system model
as their only input and without the need for comprehensive
manual tuning.

The IO Unit also residing in the hybrid executor is a ver-
satile component enabling Sophy to interact with the outside
world. This is described in detail in section V-E.

The hybrid executor is not an executable program in itself,
but works as a thread spawned by the Sophy Server (see the de-
ployment diagram in Figure 5. When the Sophy Server detects
an incoming network connection from a Sophy Composer, it
spawns a hybrid executor which is ready to start the internal
components required in the current scenario.

C. Composer

The Composer coordinates the information flow between
the attached HEs. The switchboard connects data-channels on
a subscription basis, meaning that any HE can subscribe to an
output of another HE as described in the ”Composed System
Structure” XML file. The composer is in this way the central

point of interaction in Sophy, and it is supported by a graphical
user interface called the Sophy Desktop Suite.

Fig. 4. Screenshot of the graphical user interface, the Sophy Desktop Suite
(SDS). SDS encapsulates all the components of Sophy and manages start-
up of plug-ins and servers such as the Sophy server which is the host for
launching the hybrid executor components on the local platform. The Sophy
embedded simulator can be run as a plug-in within the suite along with the
PlotViewer visualization tool. Also, a simple XML text editor is integrated
into the program

D. Deployment

Sophy is implemented in the Java 1.5 language and all data
traffic in the distributed framework nominally uses the TCP/IP
protocol nominally; however, if required, a user can write plug-
ins that enable Sophy to operate on other network protocols.
This is done by extending a simple base class representing a
networked connection, the IOManager class.

This allows the components to be distributed as depicted in
Figure 5 where a computer is appointed the role of composing
the activities carried out on a number servers running the
Sophy Server application each hosting one or more Hybrid
Executors. When running the Sophy Desktop Suite, all the
servers are automatically set up on the local host, but if
Sophy servers are running on remote hosts, these may also be
exploited when using the suite; addresses for hosts are defined
in the Composed System Structure XML file.

A typical simulation scenario involving I/O will start with
reading in data from XML files and then distributing the tasks
to the desired computational units. The steps are illustrated in
Figure 6.

Figure 7 depicts the simulation algorithm in slightly more
detail. A simulation is managed by the composer-switchboard,
which requests the simulators involved to propagate one time
step into the future using the hybrid system models provided
during the set-up phase. The simulators do the propagation

Fig. 5. Deployment of the software components

Fig. 6. The deployment sequence of a typical simulation scenario with some
I/O in the loop.

and report back to the switchboard with the resulting output
signals, and the switchboard then relays outputs to the input
of any simulators that have subscribed to other simulator’s
outputs. The switchboard performs these operations in an
infinite loop until the simulation has reached the designated
stop time.

E. I/O Infrastructure

The I/O infrastructure of Sophy is one of the features
that truly sets it apart from other tools, as it enables in-
terconnection with hardware and third-party software, thus
making the framework truly versatile. For example, in the
case study presented in Section VI, the I/O infrastructure is
employed to build a bridge between Sophy and the commercial
Matlab/Simulink package.

The component managing the inputs and output of Sophy
is the IO Unit in the Hybrid Executor. The IO Unit has two
interfaces to its surroundings: IOManager and IOAdapter. The
IOManager is the internal connection to Sophy; as described
in the previous subsection, the default IOManager, which uses
the TCP/IP protocol, can be overridden to use other network
protocols instead.

Fig. 7. The overall sequence carried out at each step in a simulation scenario.

The IOAdapter encapsulates a number of implemented
drivers to communicate outside Sophy. An example of such
a driver is the MatlabAdapter used in the case study. By
extending an abstract Java class, the MatlabAdapter allows
the IO Unit to send data to and receive data from Matlab,
which is then relayed to the Sophy Composer Switchboard.
In Matlab, the communication is handled through a Simulink
block designed specifically for interconnection with Sophy.
Figure 8 gives an overview of the classes comprising the IO
Unit package.

Fig. 8. The Java classes that constitute the IO infrastructure of Sophy. The
child classes at the bottom are specializations of the abstract GenericIOAd-
apter class, which allow Sophy to interact with e.g. Matlab and CSV files
during a control or simulation scenario.

VI. AAUSAT-II C ASE STUDY

The AAUSAT-II mission is a successor mission to the AAU-
Cubesat mission[Alminde et al., 2004], again designed and
built by university students. It is built adhering to the cubesat
concept specifications, meaning that the dimensions must be
only 10× 10× 10cm and a mass of one kilogram. An artist’s
rendition of the satellite is given in figure 9

The satellite builds on technology from AAU-cubesat and
has a number of technical goals:

• demonstrate a new type of Gamma ray burst detection
instrument

Fig. 9. Artist’s rendition of AAUSAT-II in orbit

• demonstrate the use of reaction wheels for three-axis
control for such a small platform

• after nominal mission; demonstrate a mechanism to de-
ploy a 40x10cm paddle to provide an extended area for
power generation by photo voltaic cells

The satellite will be launched in June 2007 from the Satish
Dhawan Space Centre in India to a sun synchronous orbit with
an altitude of 600km.

A. Attitude Control System

The attitude control system is based on a combination
of magneto-torquers and tiny reaction wheels. A supervisory
controller switches between various control modes according
to the given conditions at any times. The design of the
supervisory control system can be seen on figure 10.

Detumbling Pointing

norm<threshold

telecommand

Fig. 10. Supervisory control of AAUSAT-II

In the Detumbling location the so called B-dot control
law is used to detumble the satellite down to an acceptable
momentum for commanding and receiving data from the
satellite. The control algorithm only makes use of derivative
information about the local magnetic field. Detumbling is a
prerequisite to start pointing control in order not to saturate
the reaction wheels.

In the Pointing location the satellite stabilizes inertially in
accordance with a quaternion command signal. This controller
is based on optimal control (LQG) designed for a linearized
model of the satellite dynamics and kinematics.

1) Control law implementation for B-dot:The B-dot con-
troller has been implemented as PD controller for channel

(x,y,z) which is represented by the following transfer function:

H(s) = −80 · 12.6s + 2.69 × 10−4

s + 12.6
(12)

2) Control law implementation for Pointing:The pointing
controller is a state-space controller which takes the angular
velocity, ω, and an error quaternion,q1:3, as input and pro-
duces the commanded reaction wheel torque,Nmv, as output:

Nmv = K[ω q1:3]
T (13)

The gain matrixK has been found as an LQR controller
based on a linearized model assuming the angular velocity
is zero. This helps to ensure that the reaction wheels do not
get saturated when canceling the angular momentum of the
satellite body.

3) Transitions between Control Laws:The transition con-
dition for going from B-dot to pointing is:

√
ωT ω < 0.017 (14)

To go from the pointing controller and back again, a tele-
command (i.e., an external event) is required.

B. Simulation Case

A detailed simulation model of the attitude control system
for AAUSAT-II has been implemented in Simulink, based on
[Amini et al., 2005]. In the simulation case presented in this
paper this Simulink model is used to simulate the satellite
dynamics and kinematics, while the supervisory controllerand
associated control laws is implemented in Sophy, as depicted
in figure 10. Furthermore, theIOAdapter interface is used to
facilitate the exchange of data between Simulink and Sophy
during the distributed simulation, as described in sectionV.

Ephemeris

Kinematics

Dynamics

MatlabAdapter IOAdapter

Supervisory

SophyMatlab

TCP

Fig. 11. Simulation setup distributed between Matlab and Sophy

For this simulation, theIOAdapterinterface has been used
to implement a plug-in for Sophy that exchanges data using a
line oriented protocol running over a TCP socket connection.
A library for Matlab has then been developed which through
the use of S-functions communicates with this socket during
the simulation. During the simulation Sophy is in charge of
global time and dictates to what time Matlab should proceed in
each step. The simulation has been carried out using a standard
desktop PC, running both Simulink and Sophy.

C. Simulation Results

This subsection presents the results from the simulation
case. Figure 12 shows the norm of the angular velocity. It
can be seen that initially the B-dot controller slowly dissipates
angular velocity and then at time 240s the threshold is reached
and the pointing controller takes over. This results in a
temporary rise in angular velocity as it controls the satellite
to the proper attitude, where also the angular velocity reaches
zero.

0 50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time [s]

no
rm

 o
f a

ng
ul

ar
 v

el
oc

ity
 [r

ad
/s

]

The norm of the angular velocity

Fig. 12. The norm of the angular velocity

Figure 13 shows the corresponding attitude evolution. The
reference for the controller is:q = [0 0 0 − 1], which is
quickly reached once the pointing controller takes over.

0 50 100 150 200 250 300 350 400 450
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

qu
at

er
ni

on
 c

om
po

ne
nt

s
[]

Satellite attitude

q

1

q
2

q
3

q
4

Fig. 13. The attitude Quaternion

Figure 14 shows the control input (voltages) to the magneto-
torquers. It can be seen that the controller is active until
the pointing control takes over and that the amplitude of

the actuation gradually declines as angular velocity is slowly
decreased.

50 100 150 200 250 300 350 400
−5

−4

−3

−2

−1

0

1

2

3

4

time [s]

m
ag

ne
to

to
rq

ue
r

co
nt

ro
l s

ig
na

l [
V

]

Applied magnetotorquer control signal

M

x

M
y

M
z

Fig. 14. Control signal to magnetometers

Figure 15 shows the command torque from the torque
controller and it can seen how it becomes active at time 240s
and quickly points the satellite in the correct direction.

0 50 100 150 200 250 300 350 400 450
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

time [s]

ap
pl

ie
d

to
rq

ue
 [N

m
/s

]

Reaction wheel control signal

N

x

N
y

N
z

Fig. 15. Torque provided by reaction wheels

VII. C ONCLUSIONS ANDPERSPECTIVES

This paper described the current status of the Sophy project
with emphasis on its mathematical foundation in hybrid sys-
tems theory, along with its main interfaces for plug-in develop-
ment, which open up possibilities for connectivity with many
other systems. A case study focusing on supervisory control
of a satellite attitude control system for a pico-satellitewas
presented, demonstrating Sophy’s abilities to execute hybrid
systems directly based on mathematical specifications and

its ability to interface with external systems during run-time
through the use of a generic plug-in architecture.

Future work will focus on deploying Sophy on other archi-
tectures more in line with the current computing capabilities
on flight systems in order to analyze and optimize performance
and make a thorough case study to pin-point any problems that
must be addressed.

REFERENCES

[Abildsten and Blanke, 1997] Soeren Abildsten and Mogens Blanke.Fault
Tolerant Control A Case Study of the Ørsted Satellite. IEEE, 1997. Fault
Diagnosis in Process Systems (Digest No: 1997/174), IEEE Colloquium
on , 21 April 1997.

[Alminde et al., 2004] Lars Alminde, Morten Bisgaard, Dennis Vinther, Tor
Viscor, and Kasper Østergaard.AAU-Cubesat Architectual Overview and
Lessons Learned. IFAC, 2004. Proceedings of the 16th IFAC Symposium
on Automatic Control in Aerospace, 2004, Sct. Petersburg, Russia.

[Alminde et al., 2006] Lars Alminde, Jan Dimon Bendtsen, and Jakob Stous-
trup. A Quantized State Approach to On-line Simulation for Spacecraft
Autonomy. American Institute of Aeronautics and Astronautics, 2006.
In 2006 Modeling and Simulation Technologies Conference Proceedings.
American Institute of Aeronautics and Astronautics, Keystone, Colorado,
August 2006.

[Amini et al., 2005] Rouzbeh Amini, Jesper A. Larsen, Roozbeh Izadi-
Zamanabadi, and Dan D. V. Bhanderi. Design and implementation of
a space environment simulation toolbox for small satellites. In In Proc.:
25th International Astronautical Congress, October 2005.

[Barton and Lee, 2002] Paul I. Barton and Cha Kun Lee.Modeling, Simu-
lation, Sensitivity Analysis, and Optimization of Hybrid Systems. ACM,
2002. ACM Transactions on Modelling and Computer Simulation, Vol 12,
No. 4, October 2002, pages 256-289.

[Branicky et al., 1998] Michael S. Branicky, Vivek S. Borkar, and Sanjoy K.
Mitter. A Unified Framework for Hybrid Control: Model and Optimal
Control Theory. IEEE, 1998. IEEE Transactions on Automatic Control,
Vol 43, NO. 1, January 1998.

[Consortium, 2006] World Wide Web Consortium. XML Specification.
WWWC, 2006. http://www.w3.org/XML/.

[Grasso, 2002] C. A. Grasso.The fully programmable spacecraft: procedural
sequencing for JPL deep space missions using VML (Virtual Machine
Language). IEEE, 2002. Aerospace Conference Proceedings Pages:1-75-
1-81 vol.1.

[Henzinger, 1996] Thomas A. Henzinger.The Theory of Hybrid Automata.
IEEE, 1996. Logic in Computer Science, 1996. LICS ’96. Proceedings.,
Eleventh Annual IEEE Symposium on , 27-30 July 1996 Pages:278 - 292.

[Laursenet al., 2005] Karl Kaas Laursen, Martin Fejrskov Pedersen, Jan Di-
mon Bendtsen, and Lars Alminde.The SOPHY Framework: Simulation,
Observation and Planning in Hybrid Systems. IEEE, 2005. Fifth
International Conference on Hybrid Intelligent Systems (HIS05), p 457-
462.

[Lindholm and Yellin, 1999] Tim Lindholm and Frank Yellin. The Java
Virtual Machine Specification, 2nd Ed. Sun Microsystems, 1999.
http://java.sun.com/docs/books/vmspec/.

[Williams and Hofbaur, 2004] Brian C. Williams and Michael W. Hofbaur.
Hybrid Estimation of Complex Systems. IEEE, 2004. IEEE Transactions
on Systems, Man, and Cybernetics. Part B, Vol. 34 No. 5, October.

