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Telefax: 6762655 editor@escuelaing.edu.co

Dirección editorial

Cristina Salazar Perdomo

cristina.salazar@escuelaing.edu.co

Coordinador editorial

Jorge Cañas Sepúlveda
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Introducción

La Escuela Colombiana de Ingenieŕıa Julio Garavito ha venido realizando desde ha-

ce algunos años el Seminario de Matemática Educativa, organizado por el Grupo de

Investigación Pentagoǵıa. Con este seminario se busca reunir a la comunidad ma-

temática del páıs en un encuentro de investigadores, profesores y estudiantes para

reflexionar sobre los problemas de la enseñanza y aprendizaje de las matemáticas, y

para hallarles soluciones a estos inconvenientes, intercambiando experiencias y co-

nociendo propuestas novedosas que se desarrollan en diferentes ámbitos educativos.

La idea es divulgar y socializar algunas de las experiencias que se desarrollan en la

enseñanza de la matemática a niveles medio y superior, contribuir a la actualización

en el quehacer del docente del área de la matemática, dar a conocer el avance y los

resultados de investigaciones en temas relacionados, y generar v́ınculos académicos

alrededor del tema de la educación matemática.

Los temas que se trataron en el presente seminario estuvieron relacionados con la

problemática de la enseñanza de los fundamentos de la matemática, tales como el

aprendizaje de conceptos básicos, nuevas metodoloǵıas, el uso de la tecnoloǵıa en el

aula, y en especial las experiencias exitosas de la enseñanza de la matemática. En

esta versión se contó con la participación de conferencistas nacionales e internacio-

nales de primera ĺınea, como Carlos León Caamaño Espinoza, doctor en didáctica de

la matemática de la Universidad de Barcelona; Alberto Campos Sánchez, doctor de

la Universidad de Paŕıs y profesor asociado de la Escuela Colombiana de Ingenieŕıa;

César Augusto Delgado Garćıa, doctor en didáctica de las ciencias experimentales

y de la matemática de la Universidad Autónoma de Barcelona; Crisólogo Dolores

Flores, maestro en ciencias de la Universidad Autónoma de Guerrero (México); Ole

Ravn Christensen, profesor asociado del Departamento de Educación, Aprendizaje

y Filosof́ıa de la Universidad de Aalborg (Dinamarca); Paola Valero Dueñas, pro-

iii



iv

fesora asociada de la misma universidad, y Carlos Eduardo Vasco Uribe, doctor en

matemáticas de la Universidad de Saint Louis (Estados Unidos).

Las conferencias magistrales a cargo de los profesores invitados fueron “Desarro-

llo del pensamiento y lenguaje variacional. El caso de la graficación covariacional”;

“Acercar el formalismo y el uso en la educación matemática en ingenieŕıa: el modelo

ABP en acción”; “La matemática para ingenieros. Una mirada desde la didáctica

de la matemática”; “Construcción de conocimiento matemático e inclusión. Expe-

riencia con ind́ıgenas y afrocolombianos en la Universidad del Valle”, y “Tres ideas

fuertes del cálculo: variación, tasa y acumulación”. Aśı mismo, contamos con los cur-

sillos “Graficación covariacional”, “Estudio epistemológico del desarrollo del álge-

bra lineal”, “Las densidades de rotación y expansión de un campo vectorial” y “La

computación a través de los juegos discretos”. Además, hubo un número importante

de ponencias que aparecerán al final de estas memorias.

Los organizadores



Índice general

1. Conferencias magistrales 1
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3.1.3. Metodoloǵıa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

3.1.4. Conclusiones y proyecciones . . . . . . . . . . . . . . . . . . . 178

3.2. Eder A. Barrios, Guillermo L. Muñoz & Irving G. Zetién.
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ÍNDICE GENERAL ix

3.11.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
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CAṔITULO 1

Conferencias magistrales

1.1. Desarrollo del pensamiento y lenguaje variacional. El

caso de la graficación covariacional

Dr. Crisólogo Dolores Flores1

El pensamiento y lenguaje variacional (PLV) es el campo en el que se estudian los

fenómenos de enseñanza, aprendizaje y comunicación de saberes matemáticos pro-

pios de la variación y el cambio, tanto en el sistema educativo como en el medio

social que le da cabida. Pone particular atención en el estudio de los procesos cogni-

tivos y culturales con que las personas asignan y comparten sentidos y significados,

utilizando diferentes estructuras y lenguajes variacionales (Cantoral y Farfán, 2000).

En cuanto vertiente investigativa, posee una triple orientación; en primera instancia,

se ocupa de estructuras variacionales espećıficas desde un punto de vista matemático

y fenomenológico; en segundo término, estudia las funciones cognitivas que los seres

humanos desarrollan mediante el uso de conceptos y propiedades de la matemática

del cambio, y en tercer lugar, tiene en cuenta los problemas y situaciones que se

1Cicata-IPN, Cimate-UAG. cdolores@prodigy.net.mx, cdolores1@hotmail.com.

Maestro en la especialidad de f́ısico-qúımica, Escuela Normal Superior de la Universidad Autónoma

de Guerrero. Licenciado en matemática educativa, Universidad Autónoma de Guerrero, México.

Maestŕıa en ciencias, Área de Matemática Educativa, Facultad de Matemáticas de la Universidad

Autónoma de Guerrero, México. Doctor en ciencias pedagógicas, Área Metodoloǵıa de la Enseñanza

de la Matemática, Instituto Superior Pedagógico Enrique J. Varona, Cuba. Investigador nacional

nivel I desde 1999. Miembro de la Academia Mexicana de Ciencias. Coordinador del Cimate de la

UAG desde 1998.
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2 CAPÍTULO 1. CONFERENCIAS MAGISTRALES

abordan y resuelven en el terreno de lo social mediante las estructuras variacionales

consideradas en la escuela y el laboratorio.

La investigación en matemática educativa ha partido tradicionalmente del principio

de que el conocimiento matemático es un saber fijo y preestablecido, ajeno a las

prácticas sociales. El PLV pone en el centro de la atención las prácticas sociales

asociadas a la variación en lugar del ĺımite, como lo presumen las aproximacio-

nes tradicionales (Dolores, 1999); por tanto, nuestros estudios se fundamentan en

la aproximación socioepistemológica, la cual confiere un lugar preponderante a las

prácticas sociales en la construcción del conocimiento matemático. En el contexto

del PLV me referiré a uno de los procesos de representación de la variación que

nosotros hemos llamado graficación covariacional (Salgado, 2007). Tanto en los tex-

tos como en la práctica escolar de la enseñanza de la matemática se conocen varios

métodos de graficación de funciones, pero estos métodos omiten los procesos de va-

riación y covariación subyacentes. En esta plática se discuten los fundamentos de

la graficación covariacional, que posibilita la construcción de la gráfica misma sobre

la base de tres elementos esenciales, introducidos por Dolores (1999) y Carlson et

ál. (2002): la representación de los cambios, la covariación como la relación causal

entre los cambios y el comportamiento de la variación atendiendo a la magnitud, la

dirección y las razones de cambio.
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Salgado, G. (2007). Graficación covariacional. Tesis de maestŕıa. Chilpancingo Gro.
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1.2. Acercar el formalismo y el uso en la educación

matemática en ingenieŕıa

Ole Ravn Christensen2

Paola Valero3

Resumen4.

Un problema común en el aprendizaje de las matemáticas tiene que ver con la bre-

cha entre el formalismo y los cálculos de las matemáticas abstractas, por una parte,

y su uso en un ámbito contextualizado espećıfico, por ejemplo, en el mundo de la

ingenieŕıa, por otra. Las destrezas adquiridas mediante el aprendizaje basado en

problemas (ABP), en el modelo especial que se usa en la Universidad de Aalborg,

en Dinamarca, nos puede dar alguna idea de cómo tender un puente para cerrar

esta brecha. A través del examen de varios ejemplos de proyectos que realizan estu-

diantes de primer ciclo de ingenieŕıa, donde se recontextualizan temas matemáticos

tales como matrices, ecuaciones diferenciales, análisis de clusters, teoŕıa de grafos,

etc., en el abordaje de problemas interdisciplinarios complejos, describimos y ana-

lizamos en detalle las competencias logradas por los estudiantes cuando hacen ese

tipo de proyectos. Trataremos de mostrar cómo el trabajo de los estudiantes en su

aprendizaje de las matemáticas, dentro de áreas contextuales, ofrece posibilidades

de aprendizaje que van más allá de la clásica distinción entre el aprendizaje formal

y los usos de las matemáticas universitarias.

2Ole Ravn Christensen es máster en matemáticas y filosof́ıa de la Universidad de Aalborg y

Ph.D. en teoŕıa de la ciencia del Danish Centre for Educational Development in University Science.

En la actualidad es profesor asociado en el Departamento de Educación, Aprendizaje y Filosof́ıa de

la Universidad de Aalborg. Investiga en educación matemática, con un foco especial en la relación

de las matemáticas con otras ciencias. Un punto especial de investigación es el uso del modelo

del aprendizaje basado en problemas en la pedagoǵıa universitaria en general y en la educación

matemática en particular.
3Paola Valero se ha interesado por desarrollar un enfoque sociopoĺıtico para la investigación

de la educación matemática, que permite relacionar las prácticas de enseñanza y aprendizaje en

el aula con prácticas fuera de ella. Ha sido profesora asociada del Departamento de Educación,

Aprendizaje y Filosof́ıa de la Universidad de Aalborg, en Dinamarca, donde lidera el grupo de

investigación en educación en ciencias y en matemáticas (Smerg). También es directora de estudios

doctorales del programa Ciencia y Tecnoloǵıa. Entre algunos de sus libros se encuentra Researching

the socio-political dimensions of mathematics education: issues of power in theory and methodology

(co-editado con Robyn Zevenbergen).
4Este art́ıculo se basa en “Closing the gap between formalism and application -PBL and mathe-

matical skills in engineering”, escrito por Ole Ravn Christensen en 2008 y publicado en la revista

Teaching Mathematics and its Applications, 27(3), pp. 131-139. Agradecemos a la revista por per-

mitir la traducción de este material al español, aśı como a Patricia Inés Perry Carrasco, de la

Universidad Pedagógica Nacional de Colombia, por la traducción al español del material original.
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1.2.1. Introducción

En la educación universitaria, las matemáticas son una asignatura especial que se

ha presentado tradicionalmente a los estudiantes como una entidad muy bien or-

ganizada. Los cursos de matemáticas se construyen a menudo sobre la estructura

axiomatizada de las teoŕıas matemáticas en cuestión. En un enfoque axiomatizado

para el aprendizaje de las matemáticas, se acostumbra mostrar una porción particu-

lar de las matemáticas a partir de ciertos supuestos básicos para llegar a más y más

verdades por medio de demostraciones. La presentación axiomatizada de los nuevos

temas matemáticos a los estudiantes en forma de presentaciones magistrales es el

modelo privilegiado para la enseñanza de las matemáticas. En este enfoque, el estu-

diante debe preocuparse por entender las estructuras de conceptos y procedimientos

expuestas por los profesores, patrón de enseñanza y aprendizaje predominante en la

mayor parte de las aulas de matemáticas de las universidades del mundo, y para la

mayoŕıa de los profesores y estudiantes, es una forma aceptada y hasta cierto punto

exitosa. Sin embargo, dicho enfoque presenta un problema central: es dif́ıcil recon-

textualizar el formalismo abstracto de las matemáticas en un campo profesional

dado. Si los estudiantes están aprendiendo matemáticas como parte de su educación

para la ingenieŕıa, necesitarán competencias especiales para utilizar el formalismo

abstracto en una contexto de conocimiento diferente, pues la transferencia o la apli-

cación de formas de conocimiento matemático abstracto a prácticas matemáticas

dentro de otras áreas de conocimiento puede ser extremadamente dif́ıcil, si no a

veces imposible. Esto puede dar como resultado una brecha en la competencia de

los estudiantes para usar matemáticas en sus prácticas de ingenieŕıa; incluso puede

presentarse el caso de que, sin importar cuántas matemáticas abstractas avanzadas

se enseñen a los estudiantes de ingenieŕıa, esto no ayude a cerrar tal brecha.

El problema de la transferencia de competencias de un ambiente de matemáticas

formales a un ambiente de matemáticas aplicadas se ha estudiado mediante la in-

vestigación educativa en ciencias y matemáticas a nivel universitario. Basado en las

teoŕıas del aprendizaje situado como el trabajo fundamental de Lave (1988) y el

avance de teoŕıas socioculturales del conocimiento para el estudio de la educación

cient́ıfica y matemática, Roth (2008) ofrece evidencia de que el supuesto de la trans-

ferencia de conocimientos de un área y de un contexto a otro no es sostenible como

un principio para la enseñanza de las matemáticas en la universidad. Al estudiar la

manera como distintos expertos desarrollan una competencia matemática general,

como la lectura de gráficas, Roth presenta pruebas de que cualquier tipo de persona

-desde el profesor titular de matemáticas, hasta el estudiante, pasando por gente

en ámbitos de trabajo- desarrolla habilidades espećıficas de lectura de gráficas con

respecto al tipo de gráficas y al tema con el que suelen trabajar. Estos hallazgos su-
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gieren que la incapacidad de transferir estudiantes del curso de matemáticas a otras

áreas, como la f́ısica o las ingenieŕıas, no son un problema de las capacidades de

conocimiento de los estudiantes, sino más bien un malentendido del sistema de en-

señanza y aprendizaje sobre cómo funciona el pensamiento humano, y en qué debeŕıa

consistir el aprendizaje de las matemáticas y las ciencias, aśı como las competencias

asociadas con ellas. Para abordar este problema en la enseñanza universitaria, Roth

recomienda el uso de pedagoǵıas activas como el aprendizaje basado en problemas

(ABP), como una forma que puede abrir posibilidades de generación de conocimiento

en relación con diversos contextos.

Como estamos de acuerdo con Roth, no hablamos de esta brecha en lo referente

a formalismo y “aplicaciones”. Dentro de la perspectiva teórica sociocultural a la

que nos adherimos para referirnos a los procesos de pensamiento y aprendizaje ma-

temático no tiene sentido hablar de “aplicaciones”, ya que este término señalaŕıa

que un conocimiento o una competencia puede emplearse simplemente de manera

indiscriminada, lo cual implicaŕıa que es posible hacer una transferencia de conoci-

mientos y habilidades de un contexto de conocimiento a otro. En cambio, decidimos

usar el término “usos”, que para nosotros se refiere al hecho de que cada tipo de

conocimiento y de competencia parte de un juego de lenguaje matemático asociado

con prácticas y reglas determinadas, y desarrollado en ámbitos contextuales defini-

dos. El término “recontextualización” indica que cada vez que una persona entra en

un campo espećıfico y nuevo de conocimiento y práctica, la persona se involucra en

un proceso complejo de reconstrucción contextual dentro de un juego de lenguaje

distinto, pero que guarda similitudes con aquellos ámbitos y juegos que ya conoce.

También hablamos de “competencias” para señalar el hecho de que todo conoci-

miento está presente sólo en relación con una acción. Para nosotros no es posible

hablar de destrezas o habilidades como capacidades independientes de la participa-

ción y acción en prácticas de generación de conocimiento y de aprendizaje. Nuestras

fuentes de inspiración teórica están en el trabajo del segundo Wittgenstein (1997) y

en fuentes recientes como Sfard (2008), entre otros.

En este art́ıculo analizamos un enfoque bien establecido para cerrar la brecha entre

el formalismo de las matemáticas y sus usos: el aśı llamado modelo de aprendizaje

basado en problemas (en adelante, modelo ABP). No lo investigaremos como un mo-

delo teórico de aprendizaje, entre otros, ni compararemos diferentes tipos de modelos

ABP. Más bien, nos enfocaremos en presentar varios estudios de caso provenientes

de experiencias de enseñanza de matemáticas con estudiantes del ciclo básico de

ingenieŕıa y ciencias de la Universidad de Aalborg, donde toda la educación está ba-

sada en el modelo ABP. Con fundamento en estos ejemplos trataremos de esbozar

algunas de las conclusiones que se pueden obtener con respecto a la brecha entre el
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formalismo de las matemáticas y su uso. No obstante, para comenzar, será conve-

niente considerar el marco educativo general en el que el modelo ABP se ha puesto

en acción; por tanto, presentaremos algunos de los elementos claves del modelo ABP

en la Facultad de Ciencias, Ingenieŕıa y Medicina de la Universidad de Aalborg. A

continuación mostraremos y discutiremos tres ejemplos de proyectos realizados por

tres grupos de estudiantes. Con base en los ejemplos discutiremos las caracteŕısticas

de su actividad matemática, en especial en lo referente al cierre de la brecha entre

formalismo y uso. Concluimos con unas reflexiones sobre las ventajas de este tipo

de ambientes de enseñanza universitaria.

1.2.2. Breve reseña del ABP en Aalborg

La Universidad de Aalborg se creó a principios de la década de los setenta y se

desarrolló en el esṕıritu de cambio que marcaba esa época de revolución estudiantil

en Europa. Un aspecto de estos cambios fue la atención que se prestaba al espacio

y a los procesos de aprendizaje que ocurŕıan en las universidades. Se dećıa que la

educación superior trataba sólo con teoŕıa abstracta en la “torre de marfil” de la

academia, en lugar de enfocarse en problemas del mundo real que ocurŕıan fuera

de los muros de la universidad (Illeris, 1974). En un proceso histórico complejo,

donde casi toda la retórica poĺıtica inicial ha desaparecido de manera gradual -o

por lo menos se ha transformado radicalmente-, el modelo ABP de Aalborg es en la

actualidad, y ante todo, un sistema educativo eficiente. Este sistema es, de hecho, una

diversidad de modelos educativos espećıficos en las facultades y departamentos de la

universidad, y por ello puede ser dif́ıcil señalar una caracteŕıstica central del modelo

ABP de Aalborg. No obstante, en lo que sigue intentaremos describir algunas de las

caracteŕısticas fundamentales sobre las cuales tratamos de construir especificidades

adaptadas a distintos programas de estudio. Para un recuento más elaborado y

profundo del modelo ABP de Aalborg, véanse Kolmos, Fink y Krogh (2004), y

Kolmos (2008).

El modelo ABP no sólo se fundamenta en la definición de problemas que gúıan el pro-

ceso de aprendizaje, sino que también se organiza en proyectos colectivos realizados

por un grupo de hasta siete estudiantes. Este número vaŕıa mucho y normalmente

decrece de modo gradual a medida que los estudiantes se especializan y tienen más

experiencia. Cada grupo tiene que involucrarse en el proceso de indagación para

abordar un problema, bien sea práctico o teórico, definido por ellos y que resulta en

la producción semestral de un reporte de proyecto, en la mayor parte de los casos

con una extensión de entre 70 y 80 páginas. En el ciclo básico de la Facultad de In-

genieŕıa, Ciencias y Medicina -un programa educativo de un año al que trataremos

de prestar un interés particular en lo que sigue-, cada grupo está asociado con dos
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facilitadores para la escritura del proyecto. Si tomamos un grupo de cient́ıficos de la

computación como ejemplo, uno de los facilitadores es un experto en ciencias de la

computación, normalmente un miembro del cuerpo profesoral del Departamento de

Ciencias de la Computación. Éste es el facilitador principal y es el responsable de

apoyar el avance del grupo en las competencias técnicas de algún área de las ciencias

de la computación. El otro facilitador es el encargado de la contextualización del

contenido técnico pertinente y cumple un papel importante en apoyar a los estu-

diantes en la escritura de un proyecto que cierra la brecha entre formalismo y uso,

ya que ésta es su principal tarea en relación con el trabajo del grupo. Esta persona

es normalmente miembro del personal académico de otra área af́ın. En el presente

caso, Ole Ravn Christensen ha sido el facilitador contextual de los proyectos que se

ejemplificarán.

Además de la escritura del reporte del proyecto, los estudiantes también asisten

a diversos cursos magistrales. Algunos cursos ayudan a construir las competencias

de trabajo colaborativo requeridas para funcionar en un entorno propio para el

modelo ABP, cuyo foco está en los procesos de aprendizaje en los grupos, tal como la

cooperación en equipos, compartir conocimiento, etc. Otros cursos apoyan los perfiles

disciplinares de los estudiantes. Todos los ingenieros reciben cursos matemáticos

extensos en los temas tradicionales t́ıpicos del primer ciclo universitario y, además,

cada rama de ingenieŕıa tiene cursos de apoyo en sus disciplinas particulares. El

balance entre las actividades de los cursos y el trabajo de grupo para el proyecto se

inclina, sin embargo, hacia este último. De los 30 puntos ECTS (European Credit

Transfer System) que definen un semestre completo de estudios, al menos la mitad se

adquieren por razón del trabajo en el proyecto, pero este número puede ser bastante

más alto en algunos programas de ingenieŕıa y ciencia.

Un ingrediente fundamental en el sistema educativo del modelo ABP es el entorno

f́ısico. Los grupos de trabajo requieren salones adecuados y, por tanto, la universidad

ha invertido una extensión considerable de su planta f́ısica en construir espacio

de oficina para asegurar que cada grupo de estudiantes tenga un salón propio a

su disposición. Esto proporciona a los estudiantes la oportunidad de encontrarse

cada d́ıa en su propia “oficina” con su propio refrigerador, tableros, computadores

portátiles y demás elementos, para crear un ambiente y un espacio de trabajo que

supla bien sus necesidades. Esta parte del sistema educativo no se implementa de

igual manera en todos los campos universitarios, pero en las facultades de ingenieŕıa,

ciencia y medicina este sistema está totalmente desarrollado, mientras que en la

facultad de humanidades el espacio f́ısico se administra en forma diferente.

Hasta ahora no hemos analizado lo que significa que los estudiantes aprendan de
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una manera basada en problemas. Abordaremos este asunto dando tres ejemplos.

En lo que sigue, describiremos las condiciones para los estudiantes de primer año

de matemáticas y ciencia de la computación en la Universidad de Aalborg. Con

esto tenemos la intención de señalar cómo es posible enseñar matemáticas nuevas a

través del empleo de un modelo ABP en todas las posibles ramas de la ingenieŕıa.

Mostrando cómo se puede cerrar la brecha entre formalismo y usos en la educa-

ción en matemáticas o en ciencia de la computación, esperamos también destacar

perspectivas claves de la utilización del modelo ABP para la educación matemáti-

ca en ingenieŕıa. Antes de centrarnos en los ejemplos, abordemos primero algunos

de los ámbitos más espećıficos que los estudiantes de matemáticas y ciencia de la

computación encuentran en el primer semestre de universidad.

1.2.3. El modelo ABP en acción

Los estudiantes cuyos proyectos describiremos a continuación deben trabajar en un

tema general que han de elegir de un abanico de temas formulados por el grupo

de facilitadores. Por ejemplo, en años recientes los estudiantes han podido elegir

de un conjunto de temas como “Técnicas de microarreglos de ADN para apoyar

el diagnóstico de enfermedades”, el “Sistema Pagerank de Google”, “Gripe aviar:

medición de los escenarios de propagación”, etc. Para cada uno -a menudo, aproxima-

damente diez temas para un semestre dado-, el grupo de facilitadores ha desarrollado

una descripción de una página de extensión, donde se plantean aspectos importantes

de posible problematización con respecto a esos asuntos. Este marco de referencia

sirve a los estudiantes para poderse imaginar un posible proyecto, pues cuando los

estudiantes eligen un tema dado, comienzan a negociar la definición de un problema

abierto de indagación en ese tema, sobre el cual han de escribir un reporte. En al-

gunos pocos casos, los estudiantes aportan ideas con respecto a temas nuevos sobre

los cuales escribir, y éstos son bien recibidos por los facilitadores si el área de interés

presenta problemas matemáticos o técnicos potencialmente fruct́ıferos.

Después de que un grupo de estudiantes elige un tema, sigue un proceso arduo

de exploración con el objetivo de definir un problema que guiará el proceso de

aprendizaje. En este contexto, no es un ejercicio ni una situación problemática en

el sentido de un problema t́ıpico matemático o de las ciencias. Un problema se

refiere a una situación abierta que genera un reto de conocimiento y que demanda

una solución teórica o práctica que permita abordarla. El problema puede tener

un anclaje en la realidad social o tecnológica, o en un ámbito teórico. Además,

el abordaje del problema requiere un proceso de investigación largo. No estamos

hablando de un asunto que se resuelve en unas pocas horas o en una semana. A

continuación, el grupo debe elegir una estrategia para su reporte del proyecto, de
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manera que en ella se combinen la teoŕıa matemática y su uso en un contexto dado.

Esto se lleva a cabo en cooperación estrecha con ambos facilitadores. Con frecuencia

el proceso de investigación y aprendizaje es no lineal, frustrante y gira en torno de

asuntos interdisciplinarios: ¿qué clase de matemáticas formarán parte central de este

reporte del proyecto? ¿Cuál es el problema general que se quiere abordar? ¿Cómo se

puede formular claramente este problema? ¿Debeŕıamos buscar información emṕırica

para trabajar sobre ella? ¿Necesitaremos crear un algoritmo o incluso implementar

un uso de la teoŕıa desarrollada por nosotros mismos para resolver nuestro problema?

¿Qué tan detallado debeŕıa ser un recuento de las diferentes partes de la teoŕıa usada?

Y la lista de preguntas continúa.

Antes de entrar a discutir sobre este sistema educativo, veamos tres ejemplos de

proyectos de grupos ABP reales que se ubican en el peŕıodo 2005-2007 en la Uni-

versidad de Aalborg (para más información sobre el sistema educativo del primer

año de estudios en ciencia, ingenieŕıa y matemáticas en la Universidad de Aalborg,

se puede visitar el sitio www.tnb.aau.dk). Cada ejemplo ilustra diferentes logros que

han tenido estudiantes de matemáticas y ciencia de la computación a través del

modelo ABP. Adicionalmente, los tres ejemplos muestran cómo los estudiantes, de-

pendiendo de la asignatura espećıfica, son guiados por los facilitadores e impulsados

por la dinámica de su propio grupo para comprometerse en el cierre de la brecha

entre el formalismo y el uso en un escenario dado que involucra matemáticas.

Ejemplo 1. Escenarios de propagación de la gripe aviar

Hace unos pocos años, la aterradora gripe aviar estaba en todas las noticias, y hubo

varios reportes alarmantes de la amenaza de propagación de la enfermedad en el te-

rritorio danés. En cuestión de unos pocos y angustiosos d́ıas se vendieron cantidades

grandes de ṕıldoras de tamiflú como resultado de un amplio cubrimiento, por parte

de la prensa, de la propagación de la gripe aviar en todo el mundo, y se tomaron

medidas poĺıticas tanto a escala nacional como global para contener el problema. Un

grupo de estudiantes eligió como proyecto examinar el uso de las matemáticas en el

cálculo de los escenarios de propagación de tal enfermedad. El grupo, conformado

por siete estudiantes de matemáticas, teńıa un facilitador para los aspectos contex-

tuales y un facilitador para las matemáticas, como se mencionó antes. El primero

dedicaba un tercio del total de sus horas de supervisión a este grupo en particular.

Los estudiantes decidieron enfocarse en un escenario danés de propagación para su

enunciado inicial del problema. Si la enfermedad alcanzaba a Dinamarca, ¿cuántas

personas se enfermaŕıan, y cuántas de ellas moriŕıan?

Modelar la propagación de la gripe aviar se podŕıa enfocar de muchas maneras y

saber cómo elegir el modelo correcto para configurar una situación dada es natu-
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ralmente parte de lo que significa tener competencias en recontextualizar las ma-

temáticas a través de la generación de un modelo. Pero ¿cómo hacer las matemáticas

sin el conocimiento de la situación real del fenómeno en cuestión? Para responder el

problema inicial, el grupo decidió buscar conocimiento biológico sobre la gripe aviar:

¿qué es y qué tan contagiosa es?, ¿cómo se transmite entre los seres humanos?, ¿cuál

es la tasa esperada de éxito del ant́ıdoto tamiflú contra una pandemia?, etc.

Estas investigaciones acerca del escenario de uso cambiaron el conocimiento del

grupo y, por tanto, su perspectiva sobre las matemáticas que se utilizaŕıan en el re-

porte del proyecto. Después de varias reformulaciones, finalmente el grupo enunció el

problema de un modo muy diferente; presentaron un problema altamente contex-

tualizado que deb́ıa examinarse en detalle mediante el uso de métodos matemáticos

para cálculos de propagación en un escenario dado. Ahora el punto focal estaba en

la posible reacción extrema del público con respecto a la amenaza de la gripe aviar.

Amenazas tales como la enfermedad de las vacas locas y el virus del Sars causa-

ron tanto revuelo en el mundo como la gripe aviar. Esas enfermedades ya estaban

olvidadas en el momento en que se llevó a cabo este proyecto.

Por medio de ecuaciones diferenciales de las matemáticas clásicas, los estudiantes

tabularon lo que denominaron escenarios “realistas” y el “peor de los casos”, sobre

la base del conocimiento que hab́ıan recogido. Mediante un análisis interdiscipli-

nario del problema contextual en relación con las ecuaciones que usaron, el grupo

aprendió más que la mera solución exacta (o numérica) a una ecuación diferencial.

Aprendieron sobre asuntos de confiabilidad con respecto al contenido matemático, y

sobre cómo las constantes en las ecuaciones matemáticas afectan considerablemente

los resultados de investigación en un ámbito complejo de uso. Por otra parte, es-

tos estudiantes de matemáticas abordaron un fenómeno, la propagación de la gripe

aviar, que no se puede interpretar en términos matemáticos sin las consideraciones

de otras perspectivas cient́ıficas; de ah́ı el enfoque interdisciplinario que le dieron al

asunto. La mayoŕıa de los problemas de la vida real se parecen al que ellos estu-

diaron en que su complejidad involucra una cantidad de dimensiones que requieren

conocer enfoques de resolución de problemas en varias ramas de la ciencia. Saber

algo de los tipos de conocimiento que otras ciencias son capaces de manejar también

hace posible que los estudiantes de matemáticas lleguen a ser conscientes de cómo

las competencias matemáticas espećıficas marcan particularmente el trabajo de los

cient́ıficos.

Ejemplo 2. Técnicas de microarreglos de ADN

En el primer semestre de 2006, un grupo de cuatro estudiantes de segundo semestre

se ocupó de la nueva técnica de microarreglos de ADN. El propósito primario de esta
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técnica es medir qué tanto cierto gen se expresa en un individuo dado. Empleando

la nueva técnica, esto se puede llevar a cabo para miles de expresiones genéticas a

la vez, lo que involucra el uso de matemáticas de análisis de cluster, diferentes tipos

de medidas, etc.

Inicialmente, el grupo formuló el problema aśı: “¿Se puede usar la técnica de mi-

croarreglo de ADN en la clasificación de ciertas enfermedades?”. Los estudiantes

hicieron investigaciones en bioloǵıa para aclarar qué es realmente un gen, y para

comprender la idea errónea de referirse a los genes como si estuvieran “prendidos”

o “apagados”. Ellos investigaron cómo los microarreglos de ADN funcionan en la

práctica y visitaron un hospital donde se está utilizando la técnica en su etapa ini-

cial. Aśı que establecieron una base para trabajar con el tratamiento matemático de

los datos en relación con la clasificación de enfermedades.

Al usar material de caso, que incluye información sobre la expresión genética de

ADN en un grupo grande de pacientes, de algunos de los cuales se sab́ıa que teńıan

cierta enfermedad, los estudiantes emplearon diferentes tipos de mediciones y análi-

sis de cluster para confirmar o rechazar que la nueva técnica se pod́ıa utilizar para

clasificar a los individuos como enfermos o saludables. En colaboración con sus faci-

litadores, y a través de su trabajo y de discusiones, los estudiantes encontraron que

usar diferentes mediciones de las relaciones entre diversos segmentos de la informa-

ción daba resultados diśımiles, y que diferentes tipos de análisis de cluster también

produćıan resultados divergentes sobre el mismo conjunto de datos. Concluyeron

que, a pesar de la propaganda que rodea a esta nueva tecnoloǵıa, ésta no funcionaba

todav́ıa adecuadamente.

El caso de este proyecto muestra el establecimiento de un análisis metateórico espe-

cial del método matemático de análisis de cluster, que no habŕıa sido alcanzable para

los estudiantes sin un enfoque basado en problemas. Además, los estudiantes experi-

mentaron de primera mano cuán desordenado es el mundo realmente: los resultados,

a partir del conjunto de datos, podŕıan ser fallidos en alguna medida; la técnica de

ADN era posiblemente algo imprecisa; los médicos que tienen que ver con la in-

vestigación en este campo con frecuencia dependen en alguna medida de cient́ıficos,

tales como matemáticos o ingenieros, que tienen conocimientos del aspecto biológico

del tema, y finalmente, el matemático en su propio terreno debe elegir entre varias

opciones metodológicas, dependiendo del problema que tiene entre manos.

Ejemplo 3. El sistema Pagerank de Google

En el primer semestre de 2007, un grupo de siete estudiantes de segundo semestre

eligió trabajar con el tema del sistema Pagerank de Google. Posteriormente, deci-
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dió trabajar sobre el asunto de las mediciones cualitativas empleadas para hacer

un escalafón de las páginas de internet cuando alguien utiliza motores de búsqueda

tales como Google.

Después de estudiar estos asuntos del contexto, el grupo exploró las matemáticas

involucradas en el uso del sistema Pagerank de Google. Esto incluyó teoŕıa básica

y avanzada de grafos, lo mismo que el conocimiento sobre el uso de álgebra lineal

básica, vectores y matrices (¡en especial la enorme matriz Google!). Además, en el

reporte del proyecto se trató tangencialmente el empleo de matrices estocásticas y

cadenas de Markov.

Como el grupo estaba conformado por futuros matemáticos y futuros cient́ıficos de

la computación, se dedicó mucho tiempo a ganar conocimiento sobre la estructura

de internet cuando se la considera un grafo. Finalmente, se analizó el aparato ma-

temático que sustenta el motor de búsqueda de Google con referencia a las medicio-

nes cualitativas desarrolladas al comienzo del reporte. Surgieron diversas preguntas

éticas sobre los criterios menos obvios utilizados por el sistema Pagerank y se ana-

lizó de qué manera la organización matemática del sistema teńıa algunos beneficios,

pero también algunas deficiencias, desde el punto de vista de los usuarios.

El grupo en cuestión mostró cómo un proyecto ABP podŕıa integrar algo tan con-

temporáneo como el motor de búsqueda de Google con un tema matemático, la

teoŕıa de grafos, que a menudo es dif́ıcil de ejemplificar a través de sus usos. En el

trabajo también se señala el hecho de que una inmensa e impresionante cantidad de

teoŕıa -proveniente en parte de art́ıculos y libros de investigación sobre el tema- se

puede poner en juego en el modelo ABP, pues los estudiantes tuvieron que recurrir

a estas fuentes de información para poder abordar su problema. Aśı, el modelo ABP

ofrece la oportunidad de diferenciar entre los resultados de aprendizaje de diferentes

grupos de estudiantes con respecto a sus ambiciones, destrezas especiales, etc.

1.2.4. El modelo ABP de Aalborg y las competencias ma-

temáticas

Después de presentar los tres ejemplos anteriores, vamos a hacer una consideración

más general del uso del modelo ABP de Aalborg en relación con el aprendizaje de

las matemáticas de estos grupos de estudiantes. Es evidente que el modelo contrasta

con la manera como se enseñan las matemáticas en muchos otros ámbitos educati-

vos, y difiere, por ejemplo, de un curso tradicional, en el que el profesor presenta

a los estudiantes la teoŕıa de alguna porción de las matemáticas y, luego, ellos tra-

bajan sobre ejercicios o demostraciones de teoremas importantes. Esta forma de

enseñanza de las matemáticas entrena a los estudiantes en la sintaxis matemática
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pero, como se dijo al principio de este art́ıculo, no garantiza una comprensión sig-

nificativa que sea la base para relacionar estas matemáticas con las caracteŕısticas

y procesos de un ámbito temático complejo en otro campo de conocimiento. Alu-

diendo a los tres ejemplos, muchos de estos estudiantes se convertirán más tarde en

profesores de matemáticas en diferentes niveles de educación, o trabajarán en áreas

donde se requiera cierto tipo de indagación matemática en interacción amplia con

otros profesionales de diferentes campos de estudio. En todas estas situaciones se

requiere poder navegar en distintos ámbitos de práctica matemática dentro de una

situación concreta y no sólo manejar matemáticas abstractas. Para los estudiantes

de ingenieŕıa, la posibilidad de manejar la brecha entre el formalismo y el uso se

podŕıa considerar incluso más urgente, y esto podŕıa sugerir la conveniencia de tra-

bajar siguiendo alguna clase de modelo ABP al enseñar matemáticas a un grupo

espećıfico de estudiantes de ingenieŕıa.

A partir de los tres ejemplos se pueden destacar varios puntos acerca del modelo

ABP. En el ejemplo 1, un grupo de estudiantes trabajó en un escenario de aplica-

ción bastante complicado de ecuaciones diferenciales. El problema que teńıan entre

manos no se podŕıa haber resuelto sin involucrarse profundamente en conocer la si-

tuación donde se iban a usar las ecuaciones diferenciales. Este enfoque significó que

los estudiantes aprendieran no sólo por qué una ecuación diferencial dada tiene esta

solución exacta, sino que también aprendieran cómo se debeŕıan interpretar las dife-

rentes constantes en un escenario dado de aplicación y qué las habŕıa hecho cambiar

de valor, etc. Esto les brindó de nuevo la oportunidad de reflexionar sobre la validez

del modelo matemático porque, por ejemplo, si algún conocimiento sobre el cual

el modelo estaba construido era impreciso, ello podŕıa significar una gran inexac-

titud para el modelo entero. Este tipo de inexactitud podŕıa tener consecuencias

catastróficas en cuanto a la expansión de una enfermedad como la gripe aviar.

Los siguientes dos ejemplos de trabajo en proyectos ABP muestran variaciones de las

mismas caracteŕısticas para este ámbito educativo. En el ejemplo 2 se presentó cómo

se hicieron consideraciones metateóricas muy pertinentes cuando se tuvo que elegir,

entre muchas posibilidades, un modelo matemático dado para el análisis de ADN.

Cada elección diferente del enfoque matemático realmente alteraŕıa lo que se podŕıa

concluir a partir de los datos emṕıricos. Además, los estudiantes aprendieron cómo

la situación de aplicación de un formalismo matemático estaba influida por mu-

chos factores. Los datos emṕıricos eran erróneos, los médicos que utilizaban esta

tecnoloǵıa sab́ıan poco sobre las matemáticas involucradas, etc., y por tanto, los

rasgos importantes de una persona competente en usar las matemáticas llegaron a

ser muy claros para los estudiantes durante la escritura del reporte. El trabajo en

el proyecto mostró claramente a los estudiantes que los números no son sólo entida-
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des abstractas, sino que tras esos números y tecnoloǵıas basadas en ellos hay una

gran posibilidad de variación, dependiendo de los análisis y el conocimiento tanto de

quienes construyen los modelos que hay detrás de las tecnoloǵıas, como de quienes

los usan e interpretan. El diálogo de los estudiantes con los médicos en el hospi-

tal les permitió ver una dimensión del trabajo matemático que normalmente queda

escondida en la enseñanza que privilegia sólo el formalismo.

Por medio del ejemplo 3 teńıamos la intención de mostrar cuán impresionantes pue-

den ser algunas de las metas logradas por los estudiantes en el entorno de aprendizaje

del modelo ABP. Incluso en grupos muy grandes, la capacidad de recoger informa-

ción sobre una aplicación técnica, como el motor de búsqueda de Google y el aparato

conceptual y matemático que soporta esta aplicación técnica, se puede desarrollar

y aprender exitosamente. No es extraño, entonces, que los grupos de estudiantes de

primer año lean art́ıculos de investigación en los que se aborda espećıficamente el

problema que ellos pretenden resolver. Con frecuencia, no tienen todas las herra-

mientas para comprender los detalles de tales art́ıculos, pero con la ayuda de sus

facilitadores y de libros básicos pueden organizar todos los elementos y crear un

proyecto de su propia autoŕıa, con explicaciones que se ajustan a su propio nivel

de conocimiento de las matemáticas o de la ciencia de computación, etc. El mito

de la incompetencia de los estudiantes primı́paros se puede revaluar fuertemente al

ver a estos alumnos producir análisis tan sofisticados como los de este grupo. En el

modelo ABP, los estudiantes trabajan con usos reales de las matemáticas y no sólo

con sus teoŕıas abstractas; ellos aprenden teoŕıa matemática en un escenario más

tradicional, basado en un curso, pero muy a menudo sólo utilizan estas herramientas

indirectamente en los reportes de proyecto. Los cursos les presentan técnicas y herra-

mientas que apoyan su aprendizaje en los proyectos. En este sentido, el formalismo

matemático no se posiciona como la finalidad misma del aprendizaje, sino como un

medio, lo cual no significa, sin embargo, que los estudiantes de hecho no manejen

los detalles del formalismo y que no sean diestros en ello, sino más bien que lo se-

gundo sucede porque lo primero genera las razones fuertes para poder enfrentar las

exigencias tradicionales del aprendizaje de las matemáticas universitarias. Además,

es importante tener en cuenta que los ámbitos de uso definidos por un problema que

contextualiza las herramientas matemáticas simplemente no podŕıa encajar dentro

de un curso de matemáticas que considere las necesidades de todos los grupos de

estudiantes. En el modelo mixto de cursos clásicos de matemáticas y aprendizaje

de las matemáticas a través de ABP, se atiende tanto el entrenamiento sintáctico

como la competencia de usar y recontextualizar las matemáticas. Sin embargo, si los

estudiantes de ingenieŕıa no necesitan una comprensión profunda de alguna teoŕıa

matemática como tal -que podŕıa argumentarse como muy importante en el caso de

estudiantes de matemáticas- se podŕıa argumentar que el modelo ABP es realmente
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suficiente para cumplir la mayoŕıa de las metas de aprendizaje matemático para in-

genieŕıa. Para muchos estudiantes de ingenieŕıa, el aprendizaje de las matemáticas

se puede comparar con los procesos que tienen lugar al aprender un nuevo idioma.

Al trabajar con escenarios de aplicación, los estudiantes aprenden el uso del lengua-

je de las matemáticas en la práctica cotidiana, es decir, donde se inician todas las

complicaciones; la teoŕıa gramatical de las matemáticas sólo los distanciará de la

competencia para aprender el lenguaje en uso.

Los tres ejemplos que hemos discutido son, por supuesto, apenas tres ejemplos elegi-

dos entre muchos otros de los proyectos que cada semestre producen los estudiantes

del primer ciclo de ciencias e ingenieŕıa en nuestra universidad. El análisis de otros

proyectos podŕıa abrirnos el espacio para descubrir muchas más caracteŕısticas del

uso del modelo ABP. En los ejemplos presentados nos hemos enfocado en los resul-

tados de aprendizaje relacionados con la brecha entre el formalismo y el empleo de

las herramientas matemáticas. A continuación nos gustaŕıa considerar brevemente

otra perspectiva de estos hallazgos sobre el modelo ABP de Aalborg que hemos to-

cado sólo de manera indirecta hasta ahora: el hecho de que este modelo promueve

el aprendizaje activo como un principio conductor.

1.2.5. El modelo ABP de Aalborg y el aprendizaje activo

¿Cómo podemos entender el enfoque de aprendizaje basado en problemas y organi-

zado por proyectos con respecto al aprendizaje activo en la educación universitaria?

Es claro que el marco del ABP para el trabajo de los estudiantes toma en serio la

forma como realmente se viven en la práctica la investigación, el desarrollo cient́ıfico

y la innovación (Christensen y Henriksen, en prensa). El significado de los datos,

la teoŕıa y el método en el modelo del aprendizaje basado en problemas entra en

una mezcla compleja de procesos iterativos de conceptualizaciones que implican re-

formulaciones de problemas de investigación y nuevas conexiones entre diferentes

campos de estudio, incluso conexiones transdisciplinarias. De este modo, el modelo

ABP ofrece un espacio de aprendizaje activo y participativo en el sentido de que

deben hacerse conexiones y recontextualizaciones entre un número de teoŕıas, posi-

blemente a partir de una variedad de disciplinas, y deben ajustarse al abordar un

problema concreto y un reporte de proyecto con una justificación propia, y con una

clara conclusión para su audiencia.

Este aspecto del aprendizaje activo inherente al modelo ABP se relaciona con el tra-

bajo de los estudiantes frente a un contenido espećıfico que se debe aprender. Con

todo, hay otro aspecto clave del aprendizaje activo inherente al modelo ABP que de-

be mencionarse. Queremos hacer hincapié en los procesos de aprendizaje que tienen
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lugar en los grupos que trabajan en proyectos. En una situación de ABP, los facilita-

dores -profesores e investigadores de la universidad que tienen a su cargo los cursos

magistrales que reciben estos estudiantes- se reúnen con el grupo de estudiantes para

conversar sobre qué hacer y cómo proceder. Su función es orientar y facilitar; su fun-

ción no es dirigir y decidir lo que los estudiantes deben hacer. Aśı que la mayor parte

de los procesos de aprendizaje real tiene lugar cuando los estudiantes están solos en

su grupo, sin el apoyo de los facilitadores. La mayoŕıa de los grupos trabajan duran-

te muchas horas en sus proyectos y algunos experimentan con distintas técnicas y

procesos para optimizar su aprendizaje, ayudados también por sus facilitadores en

este aspecto. En cada grupo deben considerarse muchos procesos de cooperación y

aprendizaje, propios de ambientes de trabajo reales. ¿Cómo debeŕıamos compartir la

información que encontramos? ¿Quién debeŕıa escribir qué y cuándo? ¿Cómo pode-

mos usar mejor un horario de trabajo? ¿Necesitamos alternar el liderazgo del grupo?

A los estudiantes no se les dice categóricamente qué hacer en este aspecto, a pesar

de que se les ofrece un curso donde se discuten diversas técnicas de colaboración, de

manejo de proyectos y de reflexión sobre los procesos de elaboración de los proyec-

tos. Todos los grupos tienen ámbitos y necesidades muy diferentes: algunos luchan

con el trabajo ético de algunos miembros, otros luchan con el contenido que ha de

incluirse en el reporte -los cient́ıficos de la computación, por ejemplo, quieren pro-

gramar algoritmos de los resultados matemáticos que desarrollan- y otros prefieren

invertir su enerǵıa en experimentar con varios sistemas para compartir conocimien-

to, diversos tipos de procesos de escritura, desarrollo de agendas para encuentros de

grupo; incluso algunos crean un wiki para su propio espacio de aprendizaje.

Todo esto significa que los estudiantes pasan por una experiencia de aprendizaje

activo y participativo, no sólo en relación con el contenido disciplinar e interdisci-

plinar que requieren aprender, sino también en relación con el proceso mismo de

trabajar en equipo en una tarea dada. El aprendizaje activo en este aspecto ofrece

a los estudiantes un entorno en el que se les invita a reflexionar y experimentar con

su cooperación y comunicación de grupo de una manera que les ayuda a desarrollar

competencias generales, valiosas en muchos otros contextos de su vida profesional y

personal.

1.2.6. Conclusiones

En lo que sigue destacamos, por una parte, algunas de las conclusiones que se pueden

sacar con respecto al modelo ABP de Aalborg en la forma en que se ha esbozado a

través de los estudios de caso, y por otra, consideramos los procesos de aprendizaje

activo. Algunas de las conclusiones son generales en su alcance, en tanto que otras

tratan directamente con el aprendizaje de las matemáticas en la educación univer-
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sitaria. Primero destaquemos algunas de las caracteŕısticas esenciales del modelo

ABP.

El aprendizaje activo se logra permitiendo que los estudiantes trabajen so-

bre problemas que no están estrictamente determinados de antemano por sus

profesores. Este tipo de autoŕıa es el combustible principal que alimenta las

reflexiones sobre cómo resolver un problema particular, lo cual incluye invo-

lucrarse en la formulación de una problematización de un área que se desea

abordar, identificar un problema delimitado que se quiere trabajar, lo mismo

que reflexionar sobre la metodoloǵıa cient́ıfica y el enfoque desarrollado para

presentar el reporte del proyecto. La experiencia muestra que estos aspectos

de la generación de un producto cient́ıfico son muy complejos, por lo que se

requiere la ayuda de facilitadores que tienen experiencia en la investigación

como parte de su trabajo cotidiano.

En un entorno de aprendizaje que siga el modelo ABP, se posibilita que los

estudiantes desarrollen muchas competencias de trabajo en equipo y de co-

municación. Asegurar un espacio de aprendizaje en el que surgen discusiones,

reflexiones, diferencias de opinión, etc., implica perfeccionar la capacidad de

los estudiantes para cooperar efectivamente, organizarse en equipos, reunirse

y adquirir conocimientos.

Estos aspectos del modelo ABP son generales en su alcance, pero constituyen un

ingrediente muy importante cuando se organiza el aprendizaje de las matemáticas.

El sistema general ABP apoya la cooperación estrecha entre estudiantes, la inter-

acción enfocada con facilitadores y moldea los procesos de aprendizaje que tendrán

lugar. Además de los rasgos generales, también hemos tocado algunos que tienen

una influencia directa con respecto a la brecha entre el formalismo y los usos y

recontextualizaciones de las matemáticas en otros campos del conocimiento.

El contenido matemático en el que los estudiantes llegan a ser competentes

es el que realmente tiene un valor de uso espećıfico directo para un programa

educativo.

Diversos grupos de estudiantes pueden finalmente aprender diferentes porcio-

nes de las matemáticas, dependiendo del proyecto que escriban, pero a su vez,

se les ofrece la oportunidad de poder cerrar la brecha entre el formalismo y

sus usos.

A los estudiantes se les da la oportunidad de aprender que el uso de las ma-

temáticas en otros campos del conocimiento no es un simple proceso de apli-

cación o de transferencia, sino que se trata de un proceso complejo de recon-

textualización dentro de un escenario espećıfico de práctica.
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El modelo ABP puede integrar matemáticas en un estudio interdisciplinario

de un problema del mundo real.

El modelo también abre la posibilidad de hacer metarreflexiones y metateo-

rizaciones que iluminan el papel de las matemáticas en la construcción de

soluciones tecnológicas. Aqúı la dimensión ética y social de las matemáticas

se hace evidente. Este tipo de reflexiones forman parte de las competencias de

un profesional en el mundo actual (Skovsmose, 2008).

Estas cuatro conclusiones definen lo que podŕıan considerarse algunos de los bene-

ficios producidos al utilizar el modelo ABP para el aprendizaje de las matemáticas

universitarias. Son variaciones de respuestas del modelo ABP al problema de cerrar

la brecha entre el formalismo y los usos de las matemáticas: la relevancia de las

matemáticas aprendidas, las matemáticas al servicio de resolver un problema deter-

minado, el modelaje matemático en un escenario de práctica dado y la posibilidad

de usar matemáticas en estudios interdisciplinarios.

Después de establecer estas conclusiones, es desde luego importante abordar el hecho

de que hay muchas discusiones educativas retadoras e interesantes que involucran el

uso del modelo ABP, como se ha esbozado. Durante los últimos años, el asunto de

la evaluación individual de los estudiantes universitarios ha sido la prioridad de la

agenda de las poĺıticas educativas danesas. Debido al temor de que se colaran en el

sistema de evaluación grupal algunos estudiantes que no se hab́ıan comprometido del

todo en el proyecto -y que por tanto no hab́ıan alcanzado el nivel de competencia

requerido en cada nivel-, el gobierno decidió prohibir la realización de exámenes

grupales, como ha sido la tradición en la Universidad de Aalborg. ¿Cómo se puede

decir cuáles estudiantes han contribuido realmente a la investigación y a escribir

el reporte del proyecto? La idea de evaluar a los estudiantes inscritos en el mismo

semestre en la misma universidad, pero sobre la base de reportes de proyectos muy

diferentes -ellos rara vez comparten el mismo contenido matemático, aun si son

estudiantes de matemáticas-, sugiere que se requieren muchas consideraciones para

garantizar una evaluación ajustada a los logros de cada estudiante.

Otro desaf́ıo interesante para el modelo ABP de Aalborg es la pregunta sobre el

nivel de libertad que los estudiantes debeŕıan tener para escoger el tema de trabajo.

Evidentemente, los temas están limitados por la educación en cuestión, pero algunos

programas de estudio tienen definiciones muy estrictas de lo que ha de aprenderse

a partir de la escritura de un reporte de proyecto dado en un cierto semestre de

educación. De esta manera, los planeadores educativos tienen mucho que pensar

con respecto al modelo ABP. En la práctica, puede funcionar simplemente como

un marco para escribir de un modo especial un contenido casi predeterminado o
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puede ser un marco para procesos extremadamente abiertos desde el principio, que

dejan espacio para que los estudiantes trabajen a través de un enfoque basado en

problemas.

Otros retos interesantes incluyen problemas que conciernen a la diversidad en cuanto

a los antecedentes culturales de los estudiantes, lo mismo que a las diferencias de

edad e identidad entre miembros de grupos, etc., lo que abre el debate sobre los

ĺımites para la implementación del modelo ABP en distintos modelos educativos y

para diferentes tipos de programas. La Universidad de Aalborg aborda de maneras

complejas todos estos asuntos y el modelo ABP se redefine constantemente, tanto a

través de la práctica educativa como de la influencia de la investigación educativa,

sobre los diversos aspectos de la utilización del modelo ABP. Aqúı hemos tratado de

mostrar cómo el modelo es un marco benéfico para el aprendizaje de matemáticas

relevantes en un escenario de uso espećıfico y cómo los procesos de aprendizaje que

ocurren a través del modelo ABP son activos en alto grado.
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1.3. Matemática para ingenieros. Una mirada desde la

didáctica de la matemática

Carlos Caamaño Espinoza5

1.3.1. Introducción

La preocupación por la enseñanza y el aprendizaje de la matemática ha estado

presente en la comunidad matemática mundial desde comienzos del siglo XX. Esta

situación se concreta en Roma (1908), durante la realización del Primer Congreso In-

ternacional de Matemática, cuando se crea la Comisión Internacional de Instrucción

Matemática (Icmi, por su sigla en inglés).

Su primer presidente fue Félix Klein y su primer secretario general, Henri Fehr.

Para comenzar su trabajo, esta comisión adoptó como el órgano oficial el diario

internacional L’Enseignement Mathématique, fundado en 1899 por el propio Henri

Fehr y Charles Laisant, que se mantiene en esa condición hasta hoy. La Icmi también

publica, con la dirección editorial de la secretaŕıa, un bolet́ın que aparece dos veces

al año y al que se puede acceder en internet, a partir del bolet́ın N◦ 39, de diciembre

de 1995 (www.unige.ch/math/EnsMath/).

Posteriormente, en el Congreso Internacional de Matemática, realizado en Estras-

burgo en 1920, se crea la Unión Matemática Internacional (IMU, por su sigla en

inglés), como una organización cient́ıfica internacional, no gubernamental, que hace

suya la Icmi como comisión oficial y cuyo propósito es promover la cooperación inter-

nacional en matemática. Esto define la posición normal de la comisión hasta hoy, de

modo tal que sus destinos son establecidos por la Asamblea General de la IMU, que

es también responsable de la elección del comité ejecutivo y de su financiamiento.

La IMU es miembro del Consejo Internacional de Unión Cient́ıfica (Icsu, por su sigla

en inglés), lo que implica que tanto la Icmi como la IMU deben respetar los estatutos

del Icsu, donde se establece, por ejemplo, el principio de la no discriminación. Este

principio afirma el derecho y la libertad de los cient́ıficos de asociarse en actividades

cient́ıficas internacionales, sin importar la ciudadańıa, la religión, la postura poĺıtica,

el origen étnico o el sexo.

Aśı, la Unión Matemática Internacional ha establecido como sus objetivos funda-

mentales promover la cooperación internacional en matemática, y animar y apo-

yar otras actividades matemáticas internacionales, para contribuir al desarrollo de

5ccaamano@ucm.cl. Maǵıster en educación matemática, Universidad de Santiago de Chile. Doc-

tor en didáctica de la matemática, Universidad de Barcelona.
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la ciencia matemática en cualquiera de sus aspectos: puro, aplicado o educativo

(http://www.mathunion.org).

Por otra parte, queremos destacar uno de los acontecimientos más importantes en la

vida de la comunidad matemática internacional, preocupada por la enseñanza de la

matemática. Este hecho, ocurrido a fines de los años sesenta, que permitió el inicio

del desarrollo de la investigación en educación matemática y que acercó posiciones

entre los matemáticos y los educadores matemáticos, fue la decisión de la IMU de

crear el Congreso Internacional de Educación Matemática (Icme, por su sigla en

inglés), sostenido con los auspicios de la Icmi y que se realiza cada cuatro años.

El programa cient́ıfico de cada Icme es planeado por el Comité de Programa In-

ternacional (IPC, por su sigla en inglés), que trabaja independientemente del Icmi.

Sin embargo, para asegurar continuidad y conformidad con principios generales del

Icmi, esta comisión tiene normalmente representantes en el IPC (el presidente y la

secretaria del Icmi son miembros de oficio del IPC) y uno de ellos actúa como oficial

del enlace con el comité de la organización local del congreso.

La organización práctica y financiera del Icme es de responsabilidad independiente (o

nacional) del comité de organización local, de acuerdo con los principios generales

del Icmi. Es decir, a pesar de que la Icmi no es la que organiza un Icme, ni en

los términos cient́ıficos ni en los aspectos prácticos del congreso, todos los Icme se

sostienen gracias a los auspicios del Icmi.

Los Icme realizados hasta ahora son los siguientes:

Icme-1, 1969, Lyon (Francia)

Icme-2, 1972, Exeter (Reino Unido)

Icme-3, 1976, Karlsruhe (Alemania)

Icme-4, 1980, Berkeley (Estados Unidos)

Icme-5, 1984, Adelaida (Australia)

Icme-6, 1988, Budapest (Hungŕıa)

Icme-7, 1992, Quebec (Canadá)

Icme-8, 1996, Sevilla (España)

Icme-9, 2000, Tokio/Makuhari (Japón)

Icme-10, 2004, Copenhague (Dinamarca, www.icme-10.dk/)

Icme-11, 2008, Monterrey (México, http://icme11.org/)

Algunos temas sobre enseñanza de la matemática para carreras no matemáticas, en

particular para ingenieŕıa, trabajados en los últimos eventos de la IMU, aparte de

los desarrollados por la propia comunidad de educadores matemáticos, son:
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1. “Matemáticas como tema de servicio” (Icmi, 1987).

2. “Matemáticas para no especialistas” (Icme-6, Hungŕıa, 1988).

3. “Matemáticas de pregrado para diferentes grupos de estudiantes”, con dos

subgrupos: “Matemáticas para no especialistas en las áreas de ciencias” y

“Cursos de servicio para no cient́ıficos” (Icme-7, Canadá, 1992).

4. “La transición de las matemáticas escolares a las universitarias”, “Análisis

de las responsabilidades de los departamentos de matemáticas” y “Sistemas

matemáticos tecnosimbólicos” (Icme-8, España, 1996).

5. “Matemáticas en el nivel universitario”, tratándose el problema concreto de

“La formación matemática en carreras técnicas” (Icmi, Singapur, 1999).

6. En Icme-9 (Japón, 2000), Icme-10 (Dinamarca, 2004) e Icme-11 (Monterrey,

2008), estos temas se han seguido presentando, con un aumento significativo

y creciente, tanto en la calidad como en la cantidad de investigaciones que se

están trabajando en esta ĺınea.

Una de las ĺıneas de investigación más trabajadas hasta ahora está relacionada con la

enseñanza y el aprendizaje de la matemática. Ésta se ha focalizado en la búsqueda de

las formas más adecuadas para enfrentar los desaf́ıos que se presentan en los distintos

niveles del sistema educativo. En particular, diversas investigaciones han demostrado

las notorias deficiencias de la “enseñanza tradicional” o “enseñanza centrada en la

acción del profesor en el aula”. Además, en la educación universitaria está presente

el hecho de que la enseñanza es generalmente axiomática, con pocas aplicaciones,

con un marcado predominio de los procedimientos algoŕıtmico-algebraicos por sobre

lo conceptual, con significado, aunque éste sea intuitivo.

También se confirma la fortaleza de las teoŕıas constructivistas, en todos los niveles

de la enseñanza, aunque con distintos matices. Y se propone que estas teoŕıas deben

traducirse, en la práctica, en técnicas concretas centradas en aprendizajes basados

en la resolución de problemas de situaciones reales y en pequeños grupos de trabajo.

Sin embargo, el problema clave de una formación matemática adecuada para los

ingenieros sigue aún sin respuesta completa. Varias de las experiencias innovadoras

conocidas, desarrolladas hasta ahora en este ámbito, se centran en estudios modeliza-

dores en el área de análisis y estad́ıstica, lo que aún es insuficiente. Falta profundizar

más en el sentido que debe otorgarse al álgebra y al álgebra lineal en unos nuevos

programas de formación en ingenieŕıa.
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Por nuestra parte, en una investigación reciente (Fondecyt N◦1030117, 2005), abor-

damos el estudio de una propuesta para la enseñanza de algunos contenidos espećıfi-

cos de álgebra lineal en ingenieŕıa. En este estudio se utilizan las “bases didácticas

para una formación integrada de álgebra lineal y geometŕıa en ingenieŕıa”, que ela-

boramos en nuestra tesis doctoral (2001).

Nuestra idea principal es que el álgebra lineal no se desarrolló para resolver nuevos

tipos de problemas relacionados con la tecnoloǵıa, sino para simplificar numerosas

soluciones en forma unificada.

Aśı, proponemos profundizar en el contacto y la relación entre el elemento algebraico

con el elemento geométrico necesario para que los estudiantes puedan comprender

la dimensión práctica y modelizadora del álgebra lineal, sin olvidar el tema de la

forma, asociado por lo general sólo al dibujo.

1.3.2. Algunas caracteŕısticas curriculares

En la investigación ya mencionada, a partir de una reflexión contextual de los pro-

gramas de estudio de las asignaturas de álgebra y álgebra lineal, para carreras de

ingenieŕıa de diferentes universidades chilenas y de los textos más usados en ellas, lo-

gramos identificar algunas caracteŕısticas curriculares que se han institucionalizado

en su formación matemática. En general, confirmamos que:

1. Las asignaturas tienen un enfoque tradicionalista, que privilegia el desarrollo

del pensamiento algoŕıtmico-estructural.

2. No se considera expĺıcitamente el uso de la representación gráfica de algunos

conceptos que la requieren, aśı como su necesaria interpretación geométrica.

3. No se aprecia una orientación clara de las aplicaciones de ciertos contenidos a

problemas del ámbito de la ingenieŕıa.

Un análisis más detallado nos permitió establecer una serie de deficiencias para el

logro de los objetivos de los aprendizajes matemáticos, entre las que destacamos las

siguientes:

1. Se tiende fundamentalmente a la abstracción, con ausencia casi absoluta de

una visión intuitiva y de consideraciones básicas de visualización.

2. Existe una desconexión temática, aunque aparentemente hay relación lógica

entre los contenidos.

3. Se mezclan algunos contenidos con los de análisis funcional y no se observan

elementos constructivos.
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4. No se aprecia una secuencia bien organizada, de tal manera que se produzca

alguna integración del álgebra con la geometŕıa.

5. Los problemas se reducen a aquellos de tipo puramente matemático, que in-

volucran sólo la realización de determinados cálculos y el uso de ciertos algo-

ritmos.

6. En los instrumentos de evaluación aplicados, se mide fundamentalmente la

utilización de procesos algebraicos.

Esto nos permitió establecer los elementos preliminares, que permiten justificar la

conveniencia de que los estudiantes relacionen contenidos algebraicos con contextos

reales del ámbito profesional y con contextos matemáticos e interdisciplinarios de

estas carreras. Por consiguiente, fue posible planificar las actividades, de tal modo

que los estudiantes pudieran vivir el contenido matemático a partir de diversas

situaciones del mundo real y de sus propios conocimientos previos.

Además, a partir de la objetivación de los contenidos, realizamos un análisis histórico

epistemológico de los respectivos contenidos matemáticos considerados en el estudio,

determinando aśı el valor que le otorgaŕıamos a cada uno de ellos. Para tal efecto,

tuvimos en cuenta:

1. Nuestra concepción de la geometŕıa.

2. La explicación de habilidades y procesos relevantes que se deb́ıan aprender.

3. Los tipos principales de problemas que se abordaŕıan y las estrategias generales

para el trabajo de campo.

De este modo, utilizamos la geometŕıa como método para visualizar conceptos y pro-

cesos matemáticos, ya que uno de los procesos que han caracterizado el conocimiento

geométrico es la visualización. Este proceso lo entendemos, en general, como aquel

que permite dar “forma” mental o f́ısica a determinados conceptos y procedimientos

matemáticos, no necesariamente “figurados”. Por tanto, consideramos que la geo-

metŕıa es un método que permite visualizar no sólo formas y figuras, sino también,

y lo que es aún más relevante en la enseñanza universitaria, como un método para

visualizar conceptos y procesos sistemáticos.

Tal como lo señalara Miguel de Guzmán (1994): “La visualización aparece como algo

profundamente natural, tanto en el nacimiento del pensamiento matemático como

en el descubrimiento de nuevas relaciones entre los objetos matemáticos, y también,

naturalmente, en la transmisión y comunicación propias del quehacer matemático”.
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En esta forma, los estudiantes lograron reconocer los aprendizajes de los contenidos

de la asignatura de álgebra lineal y apropiarse de ellos, considerados en las unidades

de aprendizaje de este estudio, a partir de una perspectiva geométrica, apoyados en

la visualización gráfica.

1.3.3. Construcción, reconstrucción y situación del conoci-

miento matemático

Aqúı, los objetos geométricos se interpretan como conocimiento situado, en la medi-

da en que permiten visualizar contenidos algebraicos y, al mismo tiempo, reconocer

el valor de la interpretación de ciertos fenómenos reales. Para tal efecto, conside-

ramos las conocidas categoŕıas de objetivos de visualización del objeto matemático

trabajado por Zimmerman (1991), esto es: a) básicos; b) funcionales; c) generales,

y d) relacionados espećıficamente con el cálculo.

En este proceso de construcción del conocimiento, se debe considerar su forma de

institucionalización, reconociendo los elementos que se han de superar. Nuestro tra-

bajo permitió optimizar las relaciones entre el contenido algebraico y geométrico,

partiendo del reconocimiento de elementos desconocidos u olvidados, necesarios para

la construcción, reconstrucción y situación del conocimiento matemático requerido.

Al mismo tiempo, verificamos que los contextos y la vida cotidiana desempeñan un

papel fundamental en cada una de las fases del aprendizaje y la enseñanza de la

matemática.

Existe consenso hoy d́ıa en que la enseñanza y el aprendizaje de la matemática de-

ben ser contextuales, es decir, han de partir de contextos que revistan interés y que

tengan pertinencia con el mundo real. En particular, planteamos que en la enseñan-

za superior la matemática para no matemáticos (por ejemplo, en ingenieŕıa) debe

basarse en la introducción del objeto matemático aplicado, pero sin “desperfilar” la

propia matemática.

1.3.4. Elementos curriculares

Para planificar el desarrollo del contenido, consideramos los siguientes principios:

1. Seguir la enseñanza investigativa de Dubinsky (1996). Esto es, promover pro-

ducciones que permitan reconocer cómo están pensando los estudiantes y el

esfuerzo realizado para dar sentido a una situación matemática, a través de:

a) La enseñanza ćıclica: trabajo en clases, relacionado con las actividades y

discusión de estos problemas y sus soluciones.
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Las actividades se diseñaron de tal manera que, como resultado de rea-

lizarlas, o aun de intentarlas, el estudiante lograra hacer abstracciones

reflexivas para llegar a las construcciones mentales de acciones, procesos

y objetos matemáticos apropiados.

b) El aprendizaje cooperativo: creación de un ambiente de interacción so-

cial en pequeños grupos de trabajo, que conduce al desarrollo conceptual,

considerando métodos alternativos de resolución de problemas plantea-

dos. Mantener la conciencia de las estructuras que están construyendo.

2. Usar las bases para la selección de contenidos y actividades de Presmeg (1999).

En la elaboración de las actividades, tuvimos en cuenta las posibilidades y

elementos facilitadores del pensamiento basado en imágenes en la resolución

de problemas y otros aspectos que permiten facilitar el pensamiento visual,

que detallamos a continuación:

a) Las posibilidades del pensamiento basado en imágenes:

Las imágenes intensas de cualquier tipo tienen ventajas nemotécni-

cas.

Las imágenes concretas son efectivas en alternancia con modos no

visuales, tales como el análisis lógico o uso fácil no visual de fórmulas.

La imaginación dinámica es potencialmente efectiva.

La imaginación que está al servicio de una función abstracta es po-

tencialmente efectiva.

b) Los aspectos que pueden facilitar el pensamiento visual:

Un ambiente de clase controlado, pero relajado y sin apresuramientos.

El uso de dibujos por parte del profesor donde no aparezcan diagra-

mas que no sean indispensables.

Uso de la imagineŕıa del profesor, es decir, que muestre mediante

gestos u otra forma de llamar la atención que está utilizando una

imagen.

Uso de la imagineŕıa de los alumnos: el profesor les pide a los alumnos

que se hagan una imagen o que piensen en figuras en movimiento.

Uso de un componente móvil: se emplea el brazo, dedo o el cuerpo en

movimiento de los alumnos; la utilización de modelos manipulativos

y concretos.

Uso del color (con el Maple).

Enseñanza sin barreras metodológicas: el profesor apela a la intuición

de los alumnos; usa métodos de búsqueda de patrones; retrasa el
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empleo del simbolismo; utiliza deliberadamente conflictos cognitivos,

y muestra y acepta métodos alternativos.

c) Los peligros potenciales que tratamos de evitar en el desarrollo del proceso

fueron los siguientes:

Lo concreto de una sola imagen puede ir asociada a detalles irrele-

vantes o puede introducir detalles falsos.

Una imagen estándar de una figura puede inducir un pensamiento

poco flexible, que impida reconocer un concepto en un diagrama no

estándar.

Una imagen incontrolable puede ser persistente y de esa manera im-

pedir la apertura de caminos más provechosos.

Especialmente si es vaga, la imagineŕıa que no está asociada a un

proceso de pensamiento anaĺıtico riguroso puede ser de poca ayuda.

1.3.5. Elementos semióticos-comunicativos

Para la elaboración de las actividades que permitieran reconocer el objeto matemáti-

co, partimos de las siguientes bases, aceptadas comúnmente en la actualidad:

1. La matemática es una actividad humana implicada en la solución de cierta

clase de situaciones problemáticas, de la cual emergen y evolucionan progresi-

vamente los objetos matemáticos.

De acuerdo con las teoŕıas constructivistas, los actos de las personas son la

fuente genética de las conceptualizaciones matemáticas.

2. Los problemas matemáticos y sus soluciones se comparten en instituciones o

grupos de trabajo implicados en su estudio.

Por tanto, los objetos matemáticos son entidades culturales socialmente com-

partidas.

3. Las matemáticas son un lenguaje simbólico, en el que las situaciones-problema

y sus soluciones se expresan. Los sistemas simbólicos matemáticos tienen tanto

una función comunicativa como instrumental.

4. Las matemáticas constituyen un sistema conceptual lógicamente organizado.

Una vez que un objeto matemático se ha aceptado como parte de dicho sistema,

se puede considerar una realidad textual y un componente de la estructura

global.
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Puede concebirse y tratarse como una totalidad para crear nuevos objetos

matemáticos e introducir nuevas restricciones en el lenguaje y el trabajo ma-

temático.

El siguiente componente adicional, y no menos importante, está focalizado en la

necesidad de utilizar multiplicidad de representaciones para la comprensión de un

concepto matemático. Las clases de representaciones que utilizamos fueron las si-

guientes:

1. Lingǘısticas

a) Verbales (nombres, definiciones y otras).

b) Simbólicas (algebraicas y computacionales).

2. Figurativas

a) Modelos a escala (objetos del mundo real e imágenes en perspectiva).

b) Gráficos (convencionales y computacionales).

De esta manera se estableció la relación entre los objetos matemáticos seleccionados

y sus significados para la investigación, de acuerdo con los siguientes aspectos:

1. Pedagógico-contextual, que explica las caracteŕısticas que sustentan el pro-

ceso de planificación de tareas para producir la construcción de significados

requerida.

2. Semiótico, que orienta el reconocimiento de los elementos que facilitan la pues-

ta en relación de los significados personales sobre los contenidos matemáticos.

3. Histórico-epistemológico, que se focaliza en los procesos de construcción del

objeto matemático.

1.3.6. Comentarios finales

Lo primero es que hemos conseguido reproducir algunos resultados importantes,

como los obtenidos por Alsina (1998), ya que este tipo de introducción del objeto

matemático nos ha permitido:

1. Facilitar una aproximación a la educación matemática realista.

2. Combinar el conocimiento matemático con el sentido común.

3. Desarrollar la intuición como instrumento.

4. Incrementar la ingenuidad matemática y la creatividad.
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5. Enriquecer los recursos para la resolución de problemas.

6. Promover el uso de algunas herramientas tecnológicas.

7. Visualizar el binomio matemática-realidad como una importante componente

epistemológica.

8. Desarrollar un análisis cŕıtico de la información.

9. Apreciar la potencia del modelaje como herramienta de enseñanza y aprendi-

zaje.

10. Desarrollar la curiosidad matemática en descubrimientos.

11. Propiciar una aproximación investigativa en la enseñanza y aprendizaje de la

matemática.

12. Promover el interés emocional en el aprendizaje de las matemáticas.

13. Mirar matemáticamente nuestro entorno y la sociedad.

Por último, demostramos una vez más la potencia del trabajo colaborativo, realizado

con pequeños grupos de estudiantes (tres o cuatro). Esto se fortaleció con la utiliza-

ción de gúıas de aprendizaje adecuadas, las que, junto con el contacto e integración

geométrico-algebraico, permitieron que:

... los estudiantes no sólo valoraran la preocupación y el compromiso docente de su

profesor, tanto en el aula como fuera de ella, sino que, más importante aún...

... reconocieran que pueden aprender matemática.
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1.4. Construcción de conocimiento matemático e inclusión.

Experiencia con ind́ıgenas y afrocolombianos en la

Universidad del Valle

César A. Delgado Garćıa6

Maŕıa Cristina Tenorio7

“Mi trabajo sobre la educación y clase social en los pri-

meros años, por ejemplo, me ha convencido de que el

sistema escolar es, en efecto, nuestra forma de mante-

ner un sistema clasista (...); por lo que a los niños de la

parte más baja de los niveles socioeconómicos se refiere,

es un sistema que mutila su capacidad de participar con

plenos derechos en la sociedad, mutilación que lleva a

cabo de manera efectiva y a una edad muy temprana”.

Jerome Bruner

Resumen

El aumento de cobertura en la educación superior hace visible el problema del alto

porcentaje de fracaso académico en la universidad colombiana, de manera especial

en la pública, a donde llegan los jóvenes de estratos populares; este problema se

está contabilizando y analizando como deserción estudiantil, pero aún no se ha

diagnosticado bien. Las matemáticas, y en particular el modelo pedagógico que

orienta su enseñanza, son parte de esta indeseable situación. En la búsqueda de una

solución, la Vicerrectoŕıa Académica de la Universidad del Valle aprobó un proyecto

de investigación (2006), el cual inclúıa el desarrollo de cursos piloto de cálculo para

una población multiétnica que generalmente abandona sus estudios universitarios

en las carreras de ingenieŕıa, en los dos primeros años. Se deseaba comprobar que,

en ciertas condiciones educativas, en un año era posible transformar la formación

matemática que, en general, resulta insuficiente para responder a las demandas del

6Departamento de Matemáticas, Universidad del Valle, Cali, Colombia, cedel@univalle.edu.co;

cedelg@gmail.com. Licenciado en matemática y f́ısica, Universidad del Valle, Colombia. Máster

en matemáticas, Universidad del Valle, Colombia. Máster en didáctica de las matemáticas y las

ciencias experimentales, Universidad Autónoma de Barcelona, España. Doctor en didáctica de las

matemáticas y las ciencias experimentales, Universidad Autónoma de Barcelona, España.
7Instituto de Psicoloǵıa. Proyecto Universidad y Culturas - Vicerrectoŕıa Académica, Univer-

sidad del Valle. uniculturas@univalle.edu.co, cristenorio@cable.net.co. Psicóloga, Universidad del

Valle, Colombia. Máster en psicoanálisis, Universidad de Paŕıs, Francia. Doctor en psicoloǵıa de la

comunicación, Universidad de Barcelona, España.
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curŕıculo de estas carreras. Para este objetivo, se propuso una estrategia didáctica

socioconstructivista, destinada a afectar las actividades de enseñanza y de estudio

del cálculo. Tal estrategia se implementó en el marco de un proceso de investigación-

intervención. Se buscaba explicitar algunas acciones que pueden servir para diseñar

estrategias educativas que brinden, una oportunidad real de asimilar conocimientos

cient́ıficos y tecnológicos, y responder a las exigencias académicas, que demanda la

formación profesional en ingenieŕıas. El resultado más destacado consistió en revertir

la deserción. Hoy, después de seis semestres, permanecen en los planes de ingenieŕıa

el 65 % de los estudiantes del curso y varios han obtenido est́ımulos académicos.

1.4.1. Introducción

El aumento de la cobertura educativa -acción necesaria de la sociedad contem-

poránea, para posibilitar bienestar y oportunidades reales de inclusión a poblaciones

cuya trayectoria de vida está limitada por su origen social- hace visible la lentitud

de respuesta de un sistema educativo que tradicionalmente ha trabajado en función

de los más preparados y más dotados, pero que, en la actualidad, no logra responder

al reto de atender a aquellos que, por su origen, tienen una experiencia diferente de

la que se desarrolla en los ambientes más afines con el modelo pedagógico tradicional.

Según los expertos,

La expectativa social de que la escuela revierta los procesos de desigual-

dad social es emṕıricamente falsa...; en ningún caso se observa una dis-

minución espectacular de la herencia social en las trayectorias sociales y

laborales de las nuevas generaciones respecto de las de sus padres (Pérez,

2001, p. 8).

Los documentos poĺıticos sobre ampliación de acceso a la educación superior gene-

ralmente nos plantean que ésta posibilita el ascenso social y económico. Con todo,

no explican cuáles son los mecanismos que lo hacen posible. Poco a poco empieza a

ser claro que si bien el diploma profesional mejora las condiciones de contratación,

realmente su mayor poder no es éste sino el hecho de comprender y aprender a

manejar las reglas del juego socioeconómico en las sociedades contemporáneas:

[...] aumenta las oportunidades de comprender el entorno cada d́ıa más

ensanchado por los avances tecnológicos; permite participar en la vida

social, poĺıtica y económica de manera más operativa (...) incorpora a

sectores sociales antes excluidos a procesos culturales y a significados

simbólicos propios de los modos de vida contemporáneos (Ibid.).

Por esta razón, hay que leer las altas tasas de deserción en la educación supe-

rior en todos los páıses de América que han ampliado masivamente la cobertura
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-incrementando el ingreso pero sin transformar el modelo pedagógico-, como el fra-

caso del sistema educativo en crear las condiciones académicas que haŕıan posible la

permanencia y graduación de los jóvenes. Un sistema educativo que no transforma

las experiencias de jóvenes procedentes de familias antes excluidas de la educación

media y superior, que no logra desarrollarles nuevas habilidades -necesarias en el

mundo académico-, ni les ayuda a dominar las prácticas que la universidad exige

para apropiarse del conocimiento formal, es un sistema que fracasa en su función so-

cial. En el nivel universitario colombiano la deserción es actualmente del 45 % (según

informes del Observatorio Nacional del Ministerio de Educación). Sin embargo, si la

midiéramos por estratos socioeconómicos, encontraŕıamos que el mayor porcentaje

de fracaso se presenta en los estratos populares, rurales y de poblaciones minorita-

rias. Es evidente que en Colombia los pobres no han tenido el tipo de experiencias

que permite desarrollar la mente que la universidad exige.

Pérez (2001) denuncia las consecuencias de no analizar cómo funciona el sistema

educativo y de suponer que todo es resultado de los talentos individuales:

Pareceŕıa que el papel de la escuela es estrictamente académico y admi-

nistrativo: fija objetivos cognitivos, planifica tareas, diseña estrategias

pedagógicas orientadas por la eficacia, el cumplimiento y el éxito, con

independencia de los usuarios de tales modelos educativos. ¿Será po-

sible hacer el bien educativo sin saber a quién? Evidentemente, no se

tienen suficientes datos de deserción, rezago e ineficiencia terminal en

todos los niveles educativos, como para poner en cuestión esta visión. Si

se mantiene como incuestionable esta perspectiva, el saldo negativo se

transfiere directamente al individuo y a su familia. Son ellos responsa-

bles del fracaso escolar por no contar con las condiciones necesarias para

cumplir con las expectativas institucionales, como si éstas dependieran

de ellos (Pérez, 2001, p. 3).

El estudio de la calidad de la educación que están recibiendo los niños y adolescentes

revela que los factores estructurales se ubican en dos planos: el de la población

estudiantil y el del sistema educativo.

Respecto al primer plano, se señalan factores socioeconómicos y socioculturales, y

en el segundo se hace referencia a los modelos pedagógicos y a las estrategias cu-

rriculares que éstos definen8. Si bien con el Spadies (Sistema para la Prevención y

Análisis de la Deserción en las Instituciones de Educación Superior), el Cede (Centro

8Compartimos la concepción de George Posner (1998), según la cual “El curŕıculo no es más que

la concreción espećıfica de una teoŕıa pedagógica para volverla efectiva y asegurar el aprendizaje

y el desarrollo de un grupo particular de alumnos para la cultura, la época y comunidad de la

que hacen parte” (Posner, 1998, p. XXVI). Sin embargo, como Posner mismo reconoce, no es una
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de Estudios sobre Desarrollo Económico de Uniandes) y el Ministerio de Educación

Nacional se ha medido la incidencia en la deserción de las condiciones socioeconómi-

cas, académicas e institucionales (MEN, 2008), los factores que ellos llaman ins-

titucionales no se estudian como factores determinantes de buena o mala calidad

educativa, sino como clases de instituciones: pública o privada, técnica, tecnológica

o universitaria. No se estudia ni analiza qué tipo de educación se está ofreciendo,

ni mucho menos se toma en cuenta cómo la masificación de todo el sistema educa-

tivo ha estado acompañada de un descenso notorio en los resultados de las pruebas

de Estado. Para nosotros este punto es vital por cuanto reconocemos, como lo hace

Jerome Bruner (2000), que el fracaso escolar “(...) es, posiblemente, menos una cues-

tión de habilidades por parte del estudiante que nuestro fracaso para comprender

cómo enseñar...”. En resumen, el problema de la permanencia comprende diferentes

aspectos que hay que analizar en el momento de buscar estrategias para su solución.

En este último sentido se relaciona el problema citado con el que ya hace más de 20

años denominamos “Problema del empalme entre las matemáticas de la secundaria

y las de la universidad” (Delgado et ál., ERM, 1990), el cual se manifiesta en altas

tasas de fracaso en los primeros cursos de matemáticas, de los alumnos que ingresan

a los planes de ingenieŕıa y ciencias. Incluso es frecuente que los cursos básicos

de cálculo I, cálculo II y álgebra lineal se repitan dos y tres veces. Uno de los

factores que en los últimos años hacen más visible la ruptura con las matemáticas

del bachillerato es el aumento de cobertura de la universidad; en parte porque los

grupos son cada vez más numerosos, y en parte porque no se toman en consideración

las diferentes rupturas y contradicciones que se presentan entre los tres elementos

del proceso: el modelo pedagógico, la formación matemática previa de los estudiantes

y las condiciones objetivas de la actividad de estudio del alumno. En particular,

resulta preocupante que esfuerzos por ampliar la inclusión de grupos étnicos como

los ind́ıgenas y afrocolombianos en la educación superior9 se pierdan porque al cabo

de dos años la deserción de éstos en los programas de ingenieŕıa sea casi del 63 %.

Esta preocupación condujo a que la Universidad del Valle incluyera en su Plan

Estratégico 2005-2015 una acción de acompañamiento a los estudiantes que ingre-

san por cuota de excepción étnica, a cargo del proyecto Universidad y Culturas.

La gravedad de las deficiencias en la formación escolar de estos jóvenes dificultó el

buen resultado de los acompañamientos con tutores, por lo cual en el 2006 se im-

propuesta hegemónica sino que es necesario reconocer la coexistencia de curŕıculos diferentes en una

misma institución. Para nosotros, el curŕıculo se expresa en distintos niveles: curŕıculo propuesto,

enseñado y logrado.
9La Universidad del Valle estableció una “cuota de excepción étnica” que reserva el 4% de todos

los cupos de pregrado para la población ind́ıgena desde 1993 y afrodescendientes a partir de 2004.
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plementó un Plan Nivelatorio Piloto en Español y en Matemáticas, con el apoyo

de profesores, asistentes de investigación, practicantes, tutores y monitores de cinco

facultades. La experiencia la financió la Vicerrectoŕıa Académica.

Dos cursos piloto de cálculo I y cálculo II, que contaron con el apoyo del Depar-

tamento de Matemáticas, formaron parte del plan nivelatorio. Se tomó la decisión

de matricular a los primı́paros de la población ind́ıgena y afrodescendientes de las

carreras de ingenieŕıa en un mismo grupo de cálculo I. El trabajo duró un año. Los

cursos se plantearon como un proceso de investigación-intervención, diseñado e im-

plementado con el objetivo de proporcionar una oportunidad real a los estudiantes

que ingresan por condición de excepción étnica a los programas de ingenieŕıa, de

acceder a los conocimientos cient́ıficos y tecnológicos, y de responder a las exigen-

cias académicas, de alto nivel, que demanda la formación profesional en ingenieŕıas.

Estas condiciones están relacionadas, principalmente, con:

La transformación de las prácticas de enseñanza tradicionales.

La transformación de las prácticas de estudio de los alumnos.

El respeto por los ritmos de aprendizaje del estudiante.

Nuestro principal interés era experimentar una posible estrategia para resolver la

ruptura entre el modelo pedagógico universitario y la formación matemática previa

de esta población.

Nuestra hipótesis de trabajo fue, tal como en el pasado, que el problema no se resuel-

ve pensando en la introducción de nuevos contenidos, sino que su solución depende

de qué tanto se logre transformar la cultura dominante que gúıa la actividad en el

aula de matemáticas: centrada, por un lado, en la explicación del profesor y en la

simplificación de las dificultades inherentes al aprendizaje de conceptos matemáti-

cos; y, por el otro, en la imitación de modelos y sus aplicaciones a problemas de

“diseño”10.

El principal resultado, cuantitativo, de este proyecto consistió en revertir la deser-

ción, que para la población de ind́ıgenas y afrocolombianos que ingresó en el 2005 a

10Este término se acuña (Rusbult, 2000) para significar los problemas que para su solución

sólo demandan conocimientos ya instalados en el repertorio del solucionador. Se contrasta con

problemas de solución “creativa”, en los que el solucionador no dispone de cierto conocimiento

necesario para la solución y debe, por tanto, imaginarlos. Se dice que un problema es creativo si

demanda la construcción de conocimientos inéditos para el estudiante, ya sea por recombinaciones

novedosas de sus actuales conocimientos o por abstracción de nuevos conocimientos a partir de

las coordinaciones generales de sus acciones cuando actúa sobre una situación que requiere un

conocimiento espećıfico.
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ingenieŕıas fue del 62,5%, al cabo de cuatro semestres, a una permanencia del 65%

de la población objeto de nuestra experiencia, al cabo de cinco semestres.

El resultado cualitativo más destacable fue la transformación sensiblemente positiva

de la formación matemática de la población objeto, pero la conclusión más importan-

te es que es posible incluir en el proceso educativo de nivel superior a poblaciones que

ingresan a la universidad con bajos y muy bajos niveles de formación matemática,

con la condición de disponer de una estrategia didáctica mediante la cual se aborde

con seriedad y responsabilidad social la educación matemática. Pero sobre todo, si tal

estrategia es un compromiso institucional y responsabilidad de un equipo de profe-

sores sensibilizados y preparados para enfrentar el reto de educar matemáticamente

a los futuros profesionales.

1.4.2. Estrategia didáctica socioconstructiva

En Colombia, en los últimos 50 años, se ha pasado de una escolaridad para mi-

noŕıas a una escolaridad masiva. De pocos bachilleres que se formaron con la ayuda

de “maestros” comprometidos con la enseñanza, que exiǵıan el compromiso de sus

alumnos y creaban hábitos de estudio, se ha pasado a graduar a jóvenes que, en

su mayoŕıa, no lograron ser motivados por el aprendizaje y menos por desarrollar

estrategias que optimizaran su actividad de estudio. Los cambios en el sistema de

evaluación de las escolaridades básica y media en 1994, y el afán de retener en el

sistema escolar al mayor número posible de alumnos, para mostrar altas tasas de

cobertura (Decreto 230 del 2002, bien llamado “de promoción automática”), nos

hicieron pasar de un bachillerato para los mejores (meritocrático) a un diploma de

bachiller para cualquiera que asista al colegio, aunque no aprenda sino a responder

al tipo de preguntas del nuevo examen de Estado (Icfes).

Respecto a las prácticas de enseñanza

A medida que se comenzó a incrementar el número de jóvenes que ingresa a las

universidades, se masificaron los estilos de enseñanza, con la consecuencia de volver,

por fuerza de las nuevas circunstancias canónicas, a las maneras de enseñar tradi-

cionales11. El maestro recibió el impacto del aumento de cobertura; varias razones

contribuyen a desmotivar a los profesores que intentan sostener el compromiso con

la docencia y promover en los jóvenes un interés por el conocimiento:

1. Las condiciones de asignación de cursos impiden la interacción: hasta mediados

11Enseñanza vertical, transmisionista, centrada en la explicación y la imitación de modelos. Esta

manera de enseñar permite el control sobre los contenidos a cubrir en el tiempo que se asigna

oficialmente, pero descuida el control sobre lo que el estudiante realmente aprende y la calidad de

su aprendizaje.
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de los años noventa los cursos de matemáticas teńıan un cupo de 30 alumnos,

el cual ahora se duplicó, cuando no se trata de magistrales para el doble o

triple de esta población. Buscar participación y actividad de los jóvenes con

estos grandes grupos se vuelve cada vez más dif́ıcil.

2. Los jóvenes que ahora ingresan están muy distantes del conocimiento requerido

por los cursos universitarios iniciales; aun con la mejor voluntad, el profesor

no tiene cómo afianzar los temas universitarios de los cursos sobre el vaćıo en

la mente de sus alumnos.

3. Con frecuencia los profesores comprometidos se sienten derrotados por jóvenes

que no atienden y que fracasan sistemáticamente en sus esfuerzos por entender;

como tampoco tienen hábitos de lectura y estudio, no consultan los textos que

los profesores les proponen.

4. Con los cambios administrativos de las universidades, los profesores tienen que

dictar cada vez más cursos, investigar más, publicar, organizar y participar en

eventos académicos. Aśı, en este modelo la enseñanza se ve afectada cuando

las otras actividades se ponderan en términos salariales.

La misión del profesor actual es transmitir lo más eficientemente posible los conte-

nidos de un programa fijo, con fechas calculadas para cada tema, lo cual lo obliga a

sostener un flujo expositivo de gran velocidad para alcanzar a cubrir todos los temas

del programa; es decir, que los expone ante una masa a la que no conoce y con la

que no interactúa, y al final de cada peŕıodo comprueba cuánto retuvieron.

Es necesario transformar las prácticas de enseñanza tradicionales. El profesor que

enseña matemáticas, en el marco del modelo pedagógico tradicional, es un portador

de información especializada, cuya función principal consiste en exponer y explicar

los conceptos y modelos matemáticos propios de los cursos de cálculo, proponer

buenos ejercicios y problemas de “diseño”12 y evaluar las apropiaciones de contenidos

de la información. Este profesor demanda de sus alumnos un esfuerzo por evocar y

coordinar los elementos y procesos de la teoŕıa que él previamente les ha presentado.

Fundamentos teóricos de nuestra estrategia de enseñanza

Siguiendo la teoŕıa de situaciones de Guy Brousseau (1986), nos propusimos trans-

formar este papel tradicional del profesor de matemáticas y reorientar su actividad

hacia el diseño de situaciones13 que son verdaderas recontextualizaciones del cono-

cimiento que se desea enseñar y cuya solución sólo es posible mediante un proceso

12Ídem, nota 10.
13“Una situación modela lo que está en juego y las posibilidades de decisión de un actuante en

un determinado medio. Se elige de tal manera que la estrategia de resolución no pueda aplicarse
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constructivo de tal conocimiento a cargo del alumno, apoyado por la “mediación

didáctica” del profesor. Tal mediación se constituye en torno a las “devoluciones de

problemas”14 a los alumnos que el profesor va construyendo en la “interactividad”15,

con el objetivo de provocar el compromiso del repertorio de conocimientos de los

alumnos en concordancia con la tarea.

De la interacción alumno-medio y de la mediación del profesor, se espera que surja el

conflicto cognitivo entre aquel conocimiento que el alumno cree necesario y suficiente

para resolver el problema y las resistencias que opone la situación, que obligan a

construir y discutir nuevos posibles, o un conflicto entre conocimientos ya estableci-

dos en la mente del alumno que resultan contradictorios entre śı. Para superar este

conflicto se requiere alcanzar lo que en el progreso de la interactividad se ve como

conocimiento necesario, y luego, una vez establecido, ponerlo a prueba y validarlo:

sea en acto (prueba en acto), o recurriendo a validaciones icónicas (pruebas visua-

les) o conceptuales (por manipulación o pruebas eucĺıdeas) o, si es el caso, producir

una prueba formal (Tall, 1995). El estudiante construye nuevo conocimiento para

él, pues ya existe como conocimiento institucional. Este conocimiento “nuevo” es

reconocido como válido y útil en el marco de la institución escolar que representa el

profesor, en un proceso denominado institucionalización.

Pero [la institucionalización] está, obviamente, fundamentalmente vin-

culada al proceso didáctico y resulta de una intervención espećıfica. Es

ella la que permite al profesor y al alumno reconocer y legitimar “el

objeto de la enseñanza”, si lo ven de maneras diferentes. Puede consistir

en el reconocimiento por el profesor del valor de una producción de los

alumnos.

sino gracias a un determinado conocimiento matemático; la aparición de esta decisión, sin el uso

por el actuante del conocimiento contemplado, es altamente improbable” (Brousseau, 2003, p. 2).
14Siguiendo a Brousseau (2003), es el proceso que realiza el profesor para provocar que “la acción

del alumno sea producida y justificada sólo por las necesidades del medio y por sus conocimientos,

y no por la interpretación de los procedimientos didácticos del profesor” (p. 5).
15Este término es importante en nuestro modelo didáctico y se refiere a: “(...) la articulación de

las actuaciones de los profesores y los alumnos” (o del adulto y del niño, en el caso de situaciones

educativas no escolares) en torno a una tarea o un contenido de aprendizaje determinado, supone

pues una llamada de atención sobre la importancia de analizar actuaciones de los alumnos en

estrecha vinculación con las actuaciones del profesor, y rećıprocamente (C. Coll y otros, 1995, p.

204).
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Afirma entonces: (1) que la propuesta del alumno es válida y reconocida

como tal fuera del contexto particular de la situación presente; (2) que

servirá en otras ocasiones, aún no conocidas; (3) que será entonces más

ventajoso reconocerla y utilizarla bajo su forma esquematizada que es-

tablecerla de nuevo; (4) que será aceptada directamente por todos o al

menos por los iniciados (Brousseau, 2003, p. 5).

En esta estrategia de enseñanza, la evaluación es ahora sistémica-formativa y perma-

nente: se evalúan los resultados de la interactividad en el marco del funcionamiento

de los subsistemas (alumno)-(situación adidáctica), (profesor)-(situación didáctica),

que son constitutivos del sistema didáctico que los engloba.

Respecto a las prácticas de estudio

Quienes llegan a los cursos de matemáticas en los primeros semestres de carrera

-matemática básica o fundamental, cálculos I y II, etc.- son jóvenes que ya vienen

modelados por su escolaridad previa, en lo relativo a su papel de estudiantes. En

el colegio aprendieron que ser estudiantes es asistir a clases, simular que atienden

y entienden las explicaciones, entregar los trabajos (aśı no los hayan hecho ellos) y

memorizar a última hora lo que el profesor pidió aprender; sin embargo, entre sus

obligaciones estudiantiles no figura aprender seriamente los conocimientos propues-

tos en el programa escolar. De alĺı que cada vez sea mayor el desnivel entre lo que los

cursos universitarios requieren como base necesaria de información en las áreas de

conocimiento del curŕıculo, y lo que los estudiantes traen como capital académico,

problema potenciado por el hecho de que los estudiantes son los últimos en reconocer

que no estaban listos para los cursos que matricularon. Pero, además, este entrena-

miento de años para “aprender sin esforzarse”, sin asumir como su tarea personal el

aprendizaje, les hace creer que en las aulas universitarias pueden asumir la misma

postura.

Respecto a las diversas actividades que componen el aprendizaje en la universidad y

a la manera como las nuevas generaciones las cumplen o no, se han hecho hallazgos

muy preocupantes.

Adrián de Garay, en su investigación del 2004 sobre las prácticas sociales, académicas

y de consumo cultural de los estudiantes de tres sedes de la Universidad Autónoma

Metropolitana de México [Estudio etnográfico y cuantitativo para una población

de 35.000 estudiantes], al analizar las prácticas académicas, agrupándolas en seis

dimensiones, encontró que el cumplimiento más alto se presenta en las actividades

meramente formales. Él unió la frecuencia de asistencia a clase y la puntualidad para
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asistir a clase en una dimensión llamada Responsabilidad formal, y encontró que en

las tres sedes de la UAM ésta es la dimensión que obtiene un cumplimiento más alto

[lo que corrobora nuestros hallazgos: para la mayoŕıa de los estudiantes, hoy en d́ıa su

responsabilidad fundamental consiste en asistir a clases]. Sólo que aquellos factores

que dan sentido a la asistencia a clases no puntúan alto en la investigación de Garay;

en la dimensión Presencia activa en clases incluyó la frecuencia con que pregunta

en clase, frecuencia con que prepara la clase y frecuencia con que discute los puntos

de vista del profesor; como era de esperarse, es mucho más frecuente preguntar

en clase que preparar la clase y menos aún discutir. La dimensión Inversión de

tiempo en el estudio incluye tiempo semanal de lectura y tiempo semanal de trabajos

para la universidad (que incluye tareas); sólo 10,3 % de los alumnos dedican tiempo

alto; inversión media, 22,5 %; inversión baja, 37 %; inversión muy baja, 30,3 %. Es

decir, que 67,3 % de los estudiantes dedican un mı́nimo de tiempo, pues lo gastan

por fuera de clases en transportarse de la casa a la universidad y viceversa (dos a

tres horas diarias), en cumplir con responsabilidades laborales, en labores caseras

y en actividades de consumo cultural; la mayoŕıa no tiene un tiempo fijo y amplio

dedicado a leer, a escribir sobre lo que leen, ni para elaborar trabajos. Para otra

dimensión, Producción sistemática (Elaboración de resúmenes y fichas), la mayor

frecuencia se ubica en media: 60 %. De alĺı que otros puntajes muy dicientes sean

los de la última dimensión: Producción anaĺıtica (elaboración de diagramas y de

esquemas), que puntuó aśı: alta, 13,9 %; media, 34,1 %; nula, 52 %. Estos hallazgos

dan cuenta del inmenso cambio en la cotidianidad del estudiante universitario.

Sobre tales hallazgos, concluye Garay:

El sistema educativo mexicano, desde la educación básica hasta el nivel

superior, no ha propiciado entre amplios sectores la incorporación de los

hábitos del arte de organizar su trabajo y su tiempo de estudio, de pro-

porcionarles los instrumentos y las técnicas de trabajo suficientes para

el desarrollo de las habilidades y capacidades intelectuales propias de la

vida académica, en particular de aquellas conducentes a la realización

de prácticas escolares con una mayor exigencia cognitiva (Garay, 2004,

pp. 117-118).

Por nuestra parte, hemos hecho tres investigaciones sobre la manera como asumen la

escolaridad los adolescentes en los colegios de educación secundaria (en dos institu-

ciones educativas de Cali y en dos resguardos ind́ıgenas del Cauca), y tres más en la

universidad, de las cuales dos se han realizado con estudiantes de ingenieŕıa, hacien-
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do entrevistas con profundidad a estudiantes y profesores, observaciones etnográficas

en clase, talleres, encuestas cualitativas amplias y seguimientos académicos, además

de todo el trabajo de acompañamiento a los estudiantes ind́ıgenas y afrodescen-

dientes entre 2005 y 2008, y el análisis de los logros y dificultades en los cursos del

plan nivelatorio. Éstas son las bases de nuestras afirmaciones, más nuestros pro-

pios aprendizajes al ejercer la docencia a lo largo de tres décadas y al analizar los

cambios en la población estudiantil y en las condiciones para ejercer la enseñanza

universitaria.

Los estudiantes consideran que su principal responsabilidad, una vez que ingre-

san a la universidad, consiste en asistir a las clases y talleres, llegar a tiempo,

escuchar lo que el profesor expone y copiar lo que escribe en el tablero o expone

en el retroproyector. Es decir, se sumergen en actividades en las que su papel

es pasivo, de receptores acŕıticos, sin que los profesores más comprometidos

con la enseñanza logren moverlos de esta pasividad. Aśı, cuando el profesor

deja ejercicios para resolver en casa, los resuelven a medias, sin consultar el

libro gúıa para tratar de comprender por su cuenta, pues para ellos todo el

aprendizaje se debe dar en el aula. De vuelta a clase, cuando el profesor busca

que participen con preguntas, sólo piden que él resuelva el ejercicio No X o el

No Y, sin siquiera nombrar el concepto que no saben aplicar, ni pensar. Los

estudiantes están seguros de que el trabajo que ellos debeŕıan realizar por fuera

del aula de matemáticas lo pueden sustituir por el trabajo que hace el profesor

cuando les explica los problemas que ellos no lograron hacer. Y el profesor no

se resiste a hacerlo, porque impĺıcitamente cree que un buen docente debe dar

las explicaciones pedidas.

Los estudiantes saben que si no entienden lo que el profesor está explicando

esto no detendrá la clase, aśı todo el grupo no logre entender; que es problema

de cada uno aprender lo enseñado, aunque no se haya comprendido, pues

todos aceptan que “cálculo es muy dif́ıcil”. Por supuesto, este “aprender”

cada uno lo entiende como le conviene (porque lo tranquiliza): el profesor

espera que sepan resolver los problemas que les propondrá en los exámenes;

no se pregunta qué tipo de aprendizaje están haciendo, ni para qué les sirve

esta mecanización; tampoco se pregunta si éste es un aprendizaje superficial

de corta duración (que se olvidará en pocos d́ıas), o si es un aprendizaje que

transforma lo que el estudiante pensaba, puesto que le exige cuestionar lo que

sab́ıa para avanzar a otro nivel de formalización del conocimiento matemático.

Suponen que las clases de matemáticas no son para discutir sobre los temas

explicados, ni les interesa hacerlo. No se preocupan por sostener discusiones
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teóricas y las rechazan, porque las consideran innecesarias; para ellos, lo con-

ceptual “es carreta” que hace perder el tiempo, pues lo que importa son las

aplicaciones, un saber hacer sin teoŕıa, o sin razones, como diŕıa Piaget. Con-

sideran que lo importante es poseer “verdades”, ya empaquetadas en fórmulas

y con manual de uso. Esta posición es consecuencia del modelo pedagógico

tradicional que hemos caracterizado.

Transformación de las prácticas de estudio

En nuestra estrategia proponemos otro papel para el alumno; éste no será un receptor

de soluciones ya elaboradas -para los problemas que en algún momento de la his-

toria se plantearon los matemáticos, y luego formalizaron en axiomas, definiciones,

teoremas y algoritmos-, que él debe memorizar y cuyo funcionamiento él imita del

modelo que proporcionan las presentaciones y explicaciones del profesor, sino que

pasa a ser un constructor de su propio conocimiento matemático, resolviendo proble-

mas creativos cuyas restricciones, en relación con los conocimientos que libremente

pone en juego el alumno, hacen que se requiera cierto conocimiento para alcanzar el

éxito.

Esta empresa, de ser constructor de su propio conocimiento, le demanda invertir

tiempo en lo que se llama peŕıodo de familiarización con los elementos relevantes

de la situación, que lleva a reconocer y plantear la existencia de un problema; luego

se requiere realizar un duro trabajo en el que el alumno utiliza su repertorio de

conocimientos y fracasa, por no disponer del conocimiento necesario para la situa-

ción. Según los expertos y los testimonios de los mismos matemáticos, se sigue un

peŕıodo de incubación en el cual trabaja el inconsciente y termina cuando, como

dice Poincaré (1913)16, este trabajo se manifiesta en un “momento repentino” de

“iluminación”, en el cual la solución aparece “como si surgiera de la nada”, y final-

mente un último peŕıodo de verificación, en el cual los resultados, que la iluminación

presenta sólo grosso modo, se enuncian con precisión: “(...) los cálculos efectivos, que

requieren disciplina, atención, voluntad y, por tanto, conciencia, dependen del se-

gundo peŕıodo de trabajo consciente que sigue a la inspiración (...) inseparable de

la primera, la verificación” (Hadamard, 1947, pp. 103-104)17.

En consecuencia con lo dicho, la estrategia que orienta las acciones del alumno

16Henri Poincaré (1854-1912). Importante matemático francés que escribió numerosas obras de

matemáticas y f́ısica. Fue premiado por sus trabajos sobre el problema de los tres cuerpos. Además,

fue profesor de matemáticas y f́ısica en la Universidad de la Sorbona y se preocupó por la enseñanza

de las matemáticas. Escribió la obra Mathematical creation (1913), que es muy citada.
17Jacques Hadamard (1865-1963). Notable matemático francés (1945) cuyo libro Psychology of

invention in the mathematical field (1945) es un referente cuando se estudian los procesos de

pensamiento matemático.
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y del profesor en torno de la construcción de conocimiento hace necesaria cierta

flexibilidad en el manejo de los tiempos oficiales asignados para cubrir las temáticas

de los programas, de tal manera que sea posible acompasar los contenidos a los ritmos

de aprendizaje de los estudiantes, a la vez que se operan ciertas transformaciones

en su formación matemática y sus concepciones sobre el aprendizaje y sobre las

matemáticas, concepciones que, en la mayoŕıa de los estudiantes, son negativas y muy

arraigadas por la cultura que se desarrolla en las aulas de matemáticas tradicionales.

Nuestro reto consistió en integrar al aula de matemáticas aspectos como la invención

y el asombro, la intuición y la validación, el razonamiento y la lógica, la predica-

ción y los conceptos, los juicios y los lenguajes matemáticos, en el supuesto de que

estos aspectos son constitutivos de la actividad de estudio que realiza tanto el ma-

temático cuando construye matemáticas nuevas como los estudiantes que aprenden

matemáticas. Tales aspectos son necesarios para la creación de nueva matemática,

y surgen de nuestra profunda convicción, que encontramos también en Hadamard

(1947), respecto a que para ellos la diferencia entre la actividad que permite crear

nueva matemática a los matemáticos, y la actividad de los alumnos que construyen

conocimiento matemático nuevo, no es más que de grado.

1.4.3. Conformación de los equipos de trabajo

El docente a cargo de los cursos piloto en cálculos I y II contó, en cálculo I, con

el apoyo de tres asistentes de docencia, estudiantes de la maestŕıa en matemáticas

de la Universidad del Valle, con quienes se conformó el equipo para desarrollar el

curso, dirigido a 61 estudiantes matriculados, de los cuales 23 eran repitentes (13

por primera vez y 10 por segunda vez); se formaron tres subgrupos para los talleres

con los tres asistentes. De los 61 estudiantes que empezaron, aprobaron 29 (47,5 %)

y reprobaron 32 (52,5 %).

El equipo docente que tuvo a su cargo el curso piloto de cálculo II, durante el

semestre febrero-junio de 2007, estuvo conformado por el profesor titular y una

asistente de docencia, estudiante de la maestŕıa en matemáticas. El curso de cálculo

II se extendió hasta incluir el peŕıodo de verano (cuatro semanas con seis horas

diarias: cuatro de teoŕıa y dos de taller). En la sección de verano el equipo docente

lo integraron el profesor titular del curso y una asistente, graduada en matemáticas,

encargada de la sección de talleres durante las cuatro semanas que duraba el curso.

Para el curso piloto de cálculo II, de los 29 que aprobaron cálculo I, se matricularon

26 en el grupo piloto de cálculo II; dos no matricularon cálculo II y uno matri-

culó cálculo II en un grupo genérico y lo aprobó con una nota de cuatro coma

cuatro (4,4); posteriormente matriculó cálculo III y también lo aprobó (4,1). Al gru-
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po de cálculo II piloto ingresó una estudiante que no tomó el curso piloto de cálculo

I y aprobó cálculo II piloto (3,5). Finalmente, el grupo se conformó con 27 alumnos.

El curso piloto de cálculo II lo aprobaron 20 estudiantes (74,1 %) y lo perdieron

siete (25,9 %). De estos alumnos, ocho matricularon el curso normal de cálculo III,

pasándolo el 100 % con una nota promedio de 4,0.

1.4.4. Desarrollo de los cursos y expectativas del equipo do-

cente

En el curso de cálculo I (cinco horas semanales, cuatro créditos) se cubrieron los

siguientes temas: lógica; conjuntos y operaciones con conjuntos; conjuntos numéri-

cos; estructura algebraica y orden de los números reales; resolución de ecuaciones

e inecuaciones; método de las coordenadas; introducción a funciones. El programa

oficial no contempla los tres primeros temas y los otros sólo corresponden a su ter-

cera parte. Faltaban por cubrir los temas de funciones polinómicas, trigonométricas,

ĺımite, continuidad, derivada y sus aplicaciones. Además, habŕıa de cumplirse con el

programa de cálculo II (cinco horas semanales, cuatro créditos): integración en una

variable, función exponencial y logaŕıtmica, sucesiones y series.

Gúıas de Apoyo Teórico y Gúıas de Trabajo

Los dos cursos se desarrollaron en torno a dos tipos de gúıas: de Apoyo Teórico y

de Trabajo, y del texto de Tom Apostol, Calculus, tomo I. Desde una perspecti-

va constructivista, se piensa en torno a situaciones prácticas y teóricas que hacen

necesario un saber matemático espećıfico (C), que no poseen los estudiantes, pero

que es posible alcanzar cuando el alumno trabaja sobre un conjunto fundamental

de situaciones matemáticas S(C) = {S1, S2, S3, ..., Sn} en las que se ha recontex-

tualizado C. El estudiante deberá aplicar sus conocimientos actuales (Ĉ), que en

primera instancia son insuficientes para resolver cada situación o algunas de éstas:

Si, para i = 1, 2, ..., n. Esta limitación de Ĉ plantea un problema (P ) al alumno

como consecuencia de la diferencia entre el saber C necesario y los conocimientos Ĉ

disponibles en el momento de iniciar la secuencia didáctica (P = C−Ĉ); el problema

se resuelve cuando Ĉ iguala a C.

La afirmación, a priori, que acabamos de hacer respecto a que a los estudiantes les es

“posible alcanzar” el conocimiento C es relativa al estado de los conocimientos, Ĉ,

que en el momento ellos tengan y a la mediación del profesor y de los orientadores

del taller. Se trata, en la terminoloǵıa de Lev Vigotsky (1996, pp. 181-186), de

construir una Zona de Desarrollo Próximo -distancia cognitiva entre lo que el sujeto

puede hacer a solas y lo que realiza con la ayuda de un experto-, en la que “(...)

los conceptos espontáneos, faltos de control consciente y volitivo, encuentran dicho
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control (...) con la cooperación entre el niño y los adultos” (́ıdem, p. 185); en nuestro

caso, el alumno y los profesores, en torno a S(C).

En el escenario que acabamos de describir, la Gúıa de Trabajo define la estructu-

ra de la secuencia didáctica para enseñar C en torno al conjunto S(C). El papel

de la gúıa consiste en ser un instrumento que puede mediar las acciones didácti-

cas del profesor en el proceso de enseñanza y las acciones de los estudiantes en su

aprendizaje, cuando en torno al saber que impĺıcitamente aparece como necesario

para el éxito de la tarea se articulan las acciones del profesor con las acciones de

los estudiantes alrededor de los objetos del conocimiento - interactividad (C. Coll,

1995), buscando influir en los procesos cognitivos del otro para construir dominios de

significados socialmente compartidos - aprendizaje. Complementariamente, dado el

carácter potencial de la mediación, la Gúıa de Apoyo Teórico cumple dos funciones.

La primera es poner a disposición del usuario saberes matemáticos de acuerdo con

las necesidades técnicas que demanda la construcción de C, y la segunda, ofrecer

una variedad de situaciones adidácticas18 que se ajusten más al estado de conoci-

mientos del alumno -ligeramente por encima de los conocimientos actuales-, cuando

las situaciones propuestas en la Gúıa de Trabajo superan el desarrollo potencial del

alumno. En resumen, el profesor ajusta sus acciones -elaborando Gúıas de Apoyo-

de acuerdo con los análisis de los resultados que producen los alumnos al responder

por la Gúıa de Trabajo, en contraste con los resultados esperados de acuerdo con

ciertos supuestos a priori que definieron el tipo de situaciones.

Mediante esta estrategia se busca hacer operativa la ley fundamental del aprendizaje

de Vigotsky, según la cual, todo lo que se enseñe por encima del desarrollo potencial

del alumno -determinado por lo que puede realizar con la ayuda del experto- no se

aprende, y todo lo que se enseña en su nivel actual de desarrollo -determinado por

lo que el aprendiz puede hacer por śı mismo- ya lo sabe. La Gúıa de Trabajo es el

instrumento que puede ser mediador de las acciones, pero para que realmente lo sea,

se complementa con las Gúıas de Apoyo Teórico, con el fin de ajustar las acciones

según el estado real de conocimientos de los estudiantes.

18Situación matemática espećıfica del conocimiento C “(...) tal que, por śı misma, sin apelar a

razones didácticas y en ausencia de toda indicación intencional, permita o provoque un cambio

de estrategia en el jugador. Este cambio debe ser (relativamente) estable en el tiempo y estable

respecto a las variables de la situación” (Y. Chevallard, M. Bosh y J. Gascón, 1997. p. 214).

El término se opone a situación didáctica, que se refiere a “las relaciones establecidas expĺıcita

e impĺıcitamente entre los alumnos, un cierto medio (que incluye instrumentos y objetos) y el

profesor, con el objetivo de que los alumnos aprendan el conocimiento matemático C” (́ıdem, p.

217). Sin embargo, las situaciones adidácticas artificiales que se plantean en el aula son parte

del medio en el que se desarrollan las situaciones didácticas que le dan sentido y significado a la

situación matemática espećıfica del conocimiento C.
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Nuestra estrategia socioconstructivista (Delgado, 1998) se diferencia del modelo tra-

dicional -que fundamenta la enseñanza en la lógica de la explicación- en dos aspectos

básicos:

1. La teoŕıa y las técnicas matemáticas no son un producto acabado u obra muer-

ta que se expone al estudiante para que las aprenda y en algún momento las

aplique a la solución de situaciones fuera del aula. Por el contrario, al igual

que el saber que elaboran los matemáticos, son el producto de la solución de

situaciones problema que, en este caso, enfrenta el estudiante con la ayuda

de la mediación del profesor. Por consiguiente, esta teoŕıa y aquellas técnicas

que se seleccionan para enseñarse a las nuevas generaciones son una obra vi-

va y siempre inacabada para responder a los problemas susceptibles de una

matematización.

2. Se obliga a un cambio de las actividades tradicionales del profesor y del estu-

diante: el primero no es más el poseedor del saber que centra su actividad de

enseñar en la administración de “buenas explicaciones”, sino que, en el marco

socioconstructivista, es más un diseñador y gestor de situaciones adidácticas

relacionadas con el conocimiento objeto de la enseñanza, que media los pro-

cesos de aprendizaje, y el segundo pasa de ser un receptor del conocimiento

acabado, transformado y modelado por la explicación del profesor, a ser un

sujeto que desarrolla una actividad de estudio en la que construye activamente

su propio conocimiento con el objetivo de aprender matemáticas.

El primer aspecto se relaciona fundamentalmente con la actividad del profesor y en

particular con el diseño de la Gúıa de Trabajo y la Gúıa de Apoyo Teórico. Como

ya se dijo, la primera expresa el conjunto fundamental de situaciones S(C) que se

construye considerando las variables didácticas -valores de la situación que obligan

a un cambio de estrategia en una situación adidáctica Si-, que obligan a modificar

un estado de conocimiento hacia otro mejor, adaptado a la situación.

Estas variables didácticas se determinan a partir de:

Un estudio de la naturaleza del conocimiento matemático (dimensión episte-

mológica).

El estado de conocimiento actual de los estudiantes (dimensión cognitiva).

La gestión de los medios y procesos de enseñanza y aprendizaje (dimensión

didáctica).

El segundo aspecto se refiere tanto a la actividad de gestión del profesor como a la

actividad constructiva del estudiante. Decimos que “se obliga a un cambio de las
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actividades tradicionales...” porque cuando el profesor evita proporcionar, directa-

mente, el conocimiento necesario para resolver la situación adidáctica, el alumno

tendrá que actuar usando su propio repertorio de conocimientos para alcanzar el

éxito en la tarea -situación adidáctica de acción (SA)-; y luego, cuando se ve obligado

a compartir con los otros y comunicar el producto de su acción, verbaliza y simboliza

sus acciones -situación adidáctica de formulación (SF )-, y dado que son inevitables

las demandas de explicaciones o cuestionamientos de sus pares, deberá tratar de con-

vencer sobre la validez de sus resultados -situación adidáctica de validación (SV )-.

En este conjunto de momentos o situaciones adidácticas de la enseñanza, el profe-

sor toma cierta distancia, pero está atento a hacer que las situaciones adidácticas

evolucionen de acuerdo con el aprendizaje del saber matemático C propuesto.

El funcionamiento adidáctico es posible si el profesor genera un marco didáctico que

tiene como función la regulación de la situación adidáctica. El profesor en situa-

ción didáctica observa las acciones de los estudiantes y en concordancia con ellas

actúa, produciendo retroalimentaciones (positivas o negativas) para llenar lagunas

-carencia de ciertos conocimientos auxiliares necesarios para alcanzar C (pero nun-

ca el conocimiento C, que es el objeto de aprendizaje)- o para generar conflictos

cognitivos con respecto a los conocimientos obstáculo19 que estén presentes en el

estudiante -situación didáctica de devolución de problema (SD)-. Aśı mismo, el

profesor actúa para reconocer que el conocimiento construido por el estudiante es

un saber matemático de pleno derecho -situación de institucionalización (SI)-. Estas

acciones del profesor siempre están articuladas con las acciones del aprendiz sobre

la situación adidáctica y son una respuesta a ellas para provocar el cubrimiento de

una laguna o la superación de un conocimiento obstáculo.

En resumen, se espera que como producto de la operacionalización de los dos aspec-

tos del modelo, el conocimiento C sea el resultado de satisfacer las variables de la

siguiente función de conocimiento:

C = SA + SF + SV + SD + SI

Y, en consecuencia, cada gúıa define la estructura de la secuencia didáctica y cumple

la función de instrumento mediador, tanto de las acciones didácticas del profesor en

el proceso de enseñanza como de las acciones de los estudiantes en su proceso de

aprendizaje.

19Conocimiento que funciona con éxito en ciertas situaciones, pero que en otras resulta inade-

cuado, genera errores o es ineficiente. Es dif́ıcil de modificar y no es idiosincrásico, pero śı necesario

para construir el conocimiento nuevo.
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Cómo se usaban las gúıas

En la primera semana del curso de cálculo I, tomamos conciencia de la magnitud de

la brecha entre las demandas que planteaba el programa del curso y el estado de la

formación matemática de los estudiantes; esto nos obligó a elaborar nuevas gúıas,

adicionales a las siete inicialmente elaboradas, teniendo presente que más que tra-

bajar sobre contenidos, buscábamos incidir en el desarrollo de ciertas competencias

para:

Utilizar lenguaje matemático.

Razonar matemáticamente.

Imaginar mundos posibles.

De esta manera, nuestro objetivo de fondo en la gestión de cada una de las gúıas

consistió en transformar -mediante el desarrollo de la actividad conjunta en torno

al objeto de aprendizaje- la tendencia a pensar la actividad de estudio de las ma-

temáticas como aprendizaje de fórmulas y algoritmos.

Función del texto de cálculo

En concordancia con nuestra estrategia socioconstructivista, el texto no constituye

el centro de gravedad de la enseñanza ni del aprendizaje, sino que más bien cumple la

función de ser una voz autorizada, invitada para acompañar la actividad de estudio

de la obra matemática que profesor-estudiante desarrollan en el aula.

En nuestro caso, elegimos el texto de Tom Apostol por la manera como alĺı se escribe

la matemática, el rigor con que se presentan y validan las proposiciones matemáti-

cas y la forma como se introducen y relacionan los temas en torno a los conceptos

fundamentales del cálculo. Pero, en especial, el texto nos apoyó en la búsqueda del

equilibrio entre la técnica, la teoŕıa y la justificación de ésta, tan necesario para

alcanzar no sólo una “comprensión práctica” (plano del conocimiento en la acción),

sino evolucionar hacia la “comprensión conceptual” (plano del conocimiento concep-

tual), hasta lograr la “comprensión reflexiva” (plano del conocimiento reflexivo).

Nuestra metodoloǵıa pretende que el alumno aprenda a leer y a escribir matemáticas

para reflexionar y aprender de lo que se lee y se escribe. En consecuencia, se incita

desde el comienzo, en las gúıas de trabajo y de apoyo teórico, a escribir, discutir

lo que se escribe -consigo mismo y con otros-, corregir y volver a escribir. En este

marco, el texto es un referente autorizado al cual se accede por la lectura, aparte de

que se constituye en un instrumento que ayuda al profesor a alimentar la reflexión

y a orientar a los estudiantes en la escritura de sus ideas.
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Metodoloǵıa y contrato didáctico

La metodoloǵıa obligaba a los estudiantes a trabajar antes de clase las situaciones

de la gúıa y a usar el encuentro con los asistentes de docencia en el taller (dos horas

semanales) para aclarar dudas y recibir retroalimentaciones con el fin de realizar su

obra matemática. En las clases (dos, espaciadas por un d́ıa, de 1,5 horas semanales

cada una), el profesor también trabajaba con los estudiantes a partir de sus preguntas

sobre el tema asignado en la gúıa, y trataba de desarrollar una interactividad para

afectar los procesos cognitivos que orientan las acciones de los alumnos. Buscaba

que se produjeran los aprendizajes, pero sin dar respuestas directas que resolvieran

la situación.

Con estas ayudas, el estudiante desarrollaba una producción escrita sobre situacio-

nes de la gúıa previamente asignadas y la entregaba cada semana a los asistentes

de docencia para su corrección. Sin embargo, es conviene subrayar que mediando el

aprendizaje con la lógica de la construcción y no con la lógica de la explicación, ne-

cesariamente se avanza en forma más lenta: la comprensión es un proceso demorado

en el que se siembra la semilla del entendimiento, y para que se convierta en fruto

hay que hacer un cuidadoso seguimiento e invertir tiempo.

El profesor diseñaba una prueba corta semanal sobre los puntos de la tarea, y se

aplicaba el mismo d́ıa en que los estudiantes entregaban la tarea. En el encuen-

tro siguiente a la entrega de las tareas, los asistentes de docencia devolv́ıan a los

estudiantes las tareas corregidas y comentadas, aśı como los resultados de la prue-

ba corta. En ese momento, los asistentes de docencia, tomando en consideración

los resultados, y las retroalimentaciones escritas por ellos en cada tarea o prueba,

discut́ıan con los alumnos los puntos en los que se hab́ıan detectado aprendizajes

deficientes. Luego, los asistentes de docencia informaban al profesor, en un formato

especial, cuáles hab́ıan sido los resultados en lo concerniente a lagunas y obstáculos

más frecuentes presentes en los estudiantes. Esta información era la base con la cual

el profesor planificaba el trabajo de la semana siguiente.

Es evidente que la metodoloǵıa que sirvió de base para todo el curso romṕıa el con-
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trato didáctico20 sobre el cual se hab́ıa fundado toda su escolaridad: la manera de

concebir las clases, centrada en la interactividad entre el profesor y los estudiantes

en torno a los objetos de aprendizaje; los talleres basados en lo que, según las tareas

y pruebas cortas, véıamos que aún no se hab́ıa comprendido; la retroalimentación es-

crita como comentarios referidos a sus procesos de razonamiento matemático, empleo

del lenguaje matemático en los procesos de construcción, formulación y validación

de los conocimientos matemáticos que se observaba en las tareas, y la exigencia de

toma de conciencia del error que este modo de proceder les plantea a los alumnos

como fuente y condición necesaria para el aprendizaje.

El equipo de asistentes y el profesor eran conscientes de las rupturas del contrato

didáctico, necesarias para avanzar en el objetivo central del curso piloto de dismi-

nuir la deserción de los programas de ingenieŕıa y, al mismo tiempo, plantear altos

niveles de comprensión de las matemáticas. De esta manera, parte del trabajo del

equipo docente era resolver las crisis con el diálogo razonado y superar las rupturas

actualizando las obligaciones impĺıcitas del contrato.

Contrato didáctico

El contrato que pusimos en práctica se fundamenta en cinco principios, propios de

un proceso de enseñanza-aprendizaje de un curso básico:

1. Sólo interesa aquello que es fundamental y básico.

2. La necesidad es generadora de conocimiento.

3. La reflexión sobre el error es importante.

4. Interesa la superación del error.

5. Se aprende haciendo.

20“Es el conjunto de las obligaciones rećıprocas y de las ‘sanciones’ que cada socio de la situación

didáctica:

impone o cree imponer, expĺıcita o impĺıcitamente, a los otros;

y de aquellas que se le imponen o que cree que se le imponen, con respecto al conocimiento

en cuestión. El contrato didáctico es el resultado de una ‘negociación’ a menudo impĺıcita de

las modalidades de establecimiento de las relaciones entre un alumno o un grupo de alumnos,

un determinado medio y un sistema educativo. Se puede considerar que las obligaciones del

profesor frente a la sociedad que le delega su legitimidad didáctica son también una parte

determinante del ‘contrato didáctico’ ” (Brousseau, 2003, pp. 5-6).
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El objeto del contrato, cuyas cláusulas en su mayor parte son impĺıcitas, es la en-

señanza y el aprendizaje del saber matemático; además este contrato, que obliga

al profesor a enseñar y al alumno a aprender, regula el funcionamiento del curso

- sistema didáctico: definido por las relaciones entre el profesor, los alumnos y el

saber objeto de la enseñanza. Las rupturas del contrato generan crisis que se toman

como verdaderas oportunidades de progresar y superar estados de funcionamiento

del sistema didáctico que impiden o limitan el acceso al nuevo conocimiento. En el

curso de cálculo II, alrededor de la sexta semana se viven estas rupturas: cuando

los estudiantes exigen “clases magistrales...”; “ir un poquito más rápido...” y re-

claman al profesor por su flexibilidad para volver a discutir aquello que no se ha

comprendido, o cuando exigen que “se les enseñen las matemáticas sin f́ısica...”.

Estas rupturas, cuyas manifestaciones se señalan entre comillas21, se encuentran

registradas en videos.

Expectativas del equipo docente

Existe una brecha entre las matemáticas formales, que se enseñan en la escuela, y

las matemáticas idiosincrásicas, que las personas aplican para resolver los problemas

de la vida cotidiana. Esta brecha se puede caracterizar en cuanto a las diferencias

entre tres planos de representación del conocimiento humano (Piaget, 1985, pp. 268-

271): conocimiento práctico, conceptual y reflexivo. En el primero, la comprensión

queda limitada al funcionamiento aislado de esquemas de acción con acomodación

momentánea a datos particulares muy limitados, como por ejemplo el cálculo de

antiderivadas por la aplicación de una regla. El segundo implica una comprensión

conceptual que resulta de acciones sobre representaciones semiotizadas e imágenes

mentales y, por tanto, entraña asimilaciones y acomodaciones -rećıprocas- entre es-

quemas; es decir, opera sobre los mismos esquemas de acción, más que sobre los

objetos externos. Por ejemplo, la regla que permite el cálculo de una antiderivada

ahora se explica en lo referente a la operación de paso al ĺımite, aplicada a una

función de pendientes de rectas secantes ancladas en un punto. Por último, la com-

prensión reflexiva, propia del tercer plano del conocimiento, se obtiene operando

sobre esquemas conceptuales constituidos anteriormente.

Su mecanismo formador, consistente en operaciones de segunda potencia

-esto es, en operaciones nuevas, pero efectuadas sobre las anteriores-

demuestra que se trata, una vez más, de abstracciones que parten del

plano precedente, pero compuestas y enriquecidas según combinaciones

hasta entonces no realizadas (Piaget, 1985, p. 270).

21Las expresiones entre comillas corresponden a estudiantes del curso piloto de cálculo II y se

pueden consultar en el video Cruce de miradas, minutos 10 a 13. Disponible en el Instituto de

Psicoloǵıa, proyecto “Universidad y culturas” (uniculturas univalle.edu).
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Por ejemplo, la comprensión de la definición (ǫ−δ) del concepto de ĺımite es reflexiva.

Implica operar sobre esquemas conceptuales como función, número real, vecindad

abierta, entre otros, y usar lógicas de segundo orden donde los cuantificadores operan

sobre proposiciones cuantificadas para abstraer la definición:

(∀ǫ > 0)(∃δ > 0)(∀x ∈ Df )(|x − p| < δ ⇒ |f(x) − f(p)| < ǫ)

Rupturas, reconstrucciones y pensamiento formal

En la comunidad de didactas de las matemáticas se comparte la idea de que el apren-

dizaje de las matemáticas no es un proceso continuo. Por el contrario, el aprendizaje

y la comprensión exigen que se tomen en cuenta rupturas y reconstrucción de cono-

cimientos ya adquiridos para asimilar nuevos objetos a una estructura conceptual

ya establecida, ampliar el dominio de un campo conceptual, coordinar campos con-

ceptuales que permanećıan aislados o para abstraer lo que existe en un plano de

comprensión (práctica, conceptual o reflexiva) y proyectarlo sobre otro más abs-

tracto. Este trabajo está a cargo del profesor, en tanto que el conocimiento de tales

rupturas se obtiene del conocimiento histórico de la evolución de las ideas matemáti-

cas y de los informes de los estados de conocimiento de los alumnos.

Respecto al último tipo de reconstrucciones necesarias para el aprendizaje, gene-

ralmente la escuela secundaria trabaja el conocimiento en los dos primeros planos

y quizás más en el primero. La ruptura entre la formación matemática que resulta

de estas prácticas de enseñanza y la demanda cognitiva que plantea el trabajo para

alcanzar una comprensión reflexiva es evidente.

Además, esta brecha genera actitudes y creencias negativas respecto de las ma-

temáticas escolares. Tales actitudes y creencias ofrecen una gran resistencia a los

procesos de formulación, generalización, esquematización, validación y elaboración

de conjeturas, los cuales permiten superar la mera comprensión práctica -limitada a

la asimilación de los objetos a esquemas de acción aislados, con acomodaciones mo-

mentáneas a un conjunto restringido de situaciones- y estimular el progreso hacia una

comprensión conceptual que enriquece los esquemas de acción con representaciones

semiotizadas, haciéndolos más flexibles al acceder a un mayor número de asimilacio-

nes rećıprocas, y ampĺıa sus poderes en extensión y comprensión hasta alcanzar la

comprensión reflexiva, que permite construir un conocimiento más estructural y, por

tanto, más equilibrado. Este conocimiento reflexivo posee la flexibilidad necesaria

para adaptarse a nuevas situaciones en ausencia de la influencia de la escuela.

Nuestras expectativas, respecto al cierre de esta brecha, se centraron en la modifi-

cación de las actividades de enseñanza y de estudio de las matemáticas, seguros de

que aquellos estudiantes que en el modelo de enseñanza tradicional están destina-
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dos al fracaso -65 % de la población de ingenieŕıas-, tienen, sin embargo, excelentes

desempeños cuando aplican sus conocimientos no formalizados (idiosincrásicos) pa-

ra resolver problemas complejos que surgen en situaciones de la vida cotidiana.

Esperábamos poder cerrar esta brecha ofreciendo un espacio real, en el aula de ma-

temáticas, al conocimiento idiosincrásico, al libre discernimiento y a la imaginación,

para construir conocimiento matemático, y luego, una vez esquematizado y formali-

zado, reconocer su generalidad y eficacia para resolver toda una clase de situaciones

(proceso de descontextualización y despersonalización).

Consideramos que para ofrecer una oportunidad efectiva a los estudiantes que ingre-

san por “régimen de excepción” y permitir su continuidad en el sistema educativo,

además de exigir la transformación de las prácticas de enseñanza tradicionales y de

las prácticas de estudio de los alumnos, era necesario respetar celosamente sus ritmos

de aprendizaje, lo cual generaŕıa un “atraso inicial” en el desarrollo de los contenidos

del curso, de acuerdo con el programa oficial. A este respecto, esperábamos que en un

momento dado, cuando los alumnos dispusieran de ciertos “instrumentos” de cono-

cimiento básicos para acceder a una comprensión reflexiva, los ritmos se aceleraŕıan

y se podŕıan cubrir los temas que faltaran. Con todo, la realidad nos mostró que

para la mayoŕıa de los alumnos el crecimiento de su curva de aprendizaje era lento y

no alcanzaron, durante el primer semestre, el punto de inflexión que cambiara esta

tendencia.

En el segundo semestre, esperábamos que esta estrategia socioconstructivista per-

mitiera cubrir los temas que quedaron pendientes de cálculo I y los programados

para cálculo II. No obstante, hab́ıa reservas relacionadas con el cumplimiento de la

meta propuesta, por tres razones: 1) las expectativas fueron demasiado optimistas

respecto al nivel de formación matemática de esta población que ingresa por régimen

de excepción, pese a que prevéıamos que el nivel era bajo; 2) el atraso significativo

en los temas de cálculo I; 3) la lentitud en que se modificaban los métodos de estudio

de los alumnos y la resistencia al cambio.

El equipo siempre fue consciente del atraso en los contenidos y los problemas cu-

rriculares que esto ocasionaba. Sin embargo, se estaba seguro de que la experiencia

estaba transformando -de modo lento pero seguro- la manera como los alumnos se

relacionan con las matemáticas y con otros saberes, lo que podŕıa subsanar en parte

los desfases curriculares a corto plazo, si se contaba con ayudas concretas del profe-

sor y los asistentes de docencia, para cubrir la parte algoŕıtmica de la matemática,

necesaria para las demandas más inmediatas de cursos como el de f́ısica.

Otro aspecto preocupante al momento de iniciar el curso de cálculo II fue la gran

cantidad de tema por cubrir en el semestre. No obstante, anotamos lo siguiente en
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el informe final de cálculo I:

Nuestra hipótesis es que a medida que los estudiantes maduren en estos

conocimientos y formas de hacer matemáticas podrán gradualmente al-

canzar ritmos más acelerados de aprendizaje y ser más independientes

de las explicaciones del profesor (Informe de cálculo I, 2006).

En el mismo informe afirmamos premonitoriamente:

Se espera que en el curso de cálculo II se pueda cubrir el programa y en

su defecto proponer la continuación del curso en el verano (intensivo)

para cubrir los temas pendientes de cálculos I y II (Informe de cálculo

I, 2006).

Y, en efecto, tuvimos que extender el curso en el verano para cumplir con nuestro

compromiso inicial de cubrir los contenidos de cálculos I y II en un año, pero si-

guiendo los ritmos de aprendizaje de los estudiantes y no los ritmos de la explicación

del profesor.

1.4.5. Resultados de los cursos piloto

Caracteŕısticas del “quehacer” matemático en cálculo I

Un propósito central del nivel I era lograr que los estudiantes tomaran conciencia

de sus errores y de sus dificultades, como condición necesaria para poderlos superar.

El curso estaba basado en las prácticas de aprendizaje o, en otros términos, en la

interactividad que se despliega en la clase entre el profesor, los asistentes de docencia

y los alumnos, en torno a un saber matemático contextualizado en situaciones pro-

puestas y en un medio en el que se construyen significados matemáticos socialmente

compartidos.

Dificultades iniciales (cálculo I) Logros (final de cálculo II)

Para los estudiantes no resultó fácil

cambiar sus hábitos en la forma de

aprender los conceptos. Estaban acos-

tumbrados a que el profesor les diera

la teoŕıa -por ejemplo, una definición-

y luego les pusiera ejercicios de aplica-

ción.

Entendieron que los errores deb́ıan ser

la base de un nuevo aprendizaje. Acep-

taron que el ritmo de avance depend́ıa

de su posibilidad de reconocer el error

en su conceptualización y razonamien-

tos, para aśı lograr superarlo.
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Ni el profesor ni los asistentes antici-

paron los niveles tan bajos de conoci-

miento matemático de sus alumnos. A

pesar de experiencias previas de forma-

ción, créıan que podŕıan dedicar unas

pocas semanas a fortalecer matemáti-

cas fundamentales y luego śı pasar a los

temas de cálculo I. Cuando el semestre

terminó, sólo hab́ıan visto uno de los

ocho temas de este curso.

Aceptaron que para aprender cálculo

deb́ıan comprender las matemáticas y

apropiarse de ellas como un lenguaje, y

aprender a utilizarlo rigurosamente pa-

ra poder razonar.

Créıan que estudiar cálculo era memo-

rizar los procedimientos y fórmulas, ha-

ciendo ejercicios que exigen aplicar eso

que ya se grabó en la memoria. Por tan-

to, para ellos ganar los exámenes signi-

ficaba que śı hab́ıan entendido y apren-

dido.

Aceptaron que el profesor les propo-

ne problemas y son ellos quienes de-

ben pensar para buscar, razonando ma-

temáticamente, la solución. Al final de

cálculo II, procuraban que el nuevo mo-

nitor no les ayudara a resolver los pro-

blemas.

Ped́ıan teoŕıa, pero que “la explicaran

fácil”. Esperaban que el profesor diera

la clase para ellos anotar lo que él escri-

bió y demostró, convirtiendo aśı lo en-

señado en una verdad que no requiere

ser pensada sino solamente aceptada.

Comprend́ıan que si razonaban ma-

temáticamente pod́ıan solucionar pro-

blemas en las ciencias; que f́ısica y álge-

bra se volv́ıan manejables gracias a su

nueva manera de razonar y a los con-

ceptos entendidos.

Crisis. A las pocas clases los alumnos

comenzaron a desmotivarse, ya que en

éstas no se avanzaba mucho y les resul-

taban monótonas, pues siempre se reto-

maban los mismos temas debido a que

aún no comprend́ıan los conceptos.

Queŕıan aprender y ser protagonistas

de su proceso: conocer previamente

los temas para prepararlos, dedicar el

tiempo que fuera necesario (sus vaca-

ciones de verano) para dominar los te-

mas que les faltaban.

Queŕıan avanzar en los temas, no en

las formas de razonar ni en reconocer

los errores en que se fundaban sus sa-

beres matemáticos previos. Ped́ıan que

el profesor fuera más rápido y se an-

gustiaban porque en los otros cursos de

cálculo ya hab́ıan visto muchos temas.

Se transformaron sus prácticas de estu-

dio. Tomaron conciencia respecto a los

medios intelectuales de los que se sirve

la acción exitosa.
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Para el equipo de asistentes en docencia

igualmente resultaba dif́ıcil aceptar el

ritmo lento de avance y las crisis del

grupo.

Comprendieron que se aprende hacien-

do. Es en situaciones de aplicación cla-

ras y bien definidas donde el saber co-

bra interés, y aparece como necesario

para dar significado y sentido a la si-

tuación.

Tanto el profesor22 como los estudian-

tes de cálculo II aceptaron sacrificar sus

vacaciones de verano y hacer clases dia-

rias de cuatro horas para completar los

temas de cálculo II, con lo cual, en un

semestre vieron cálculo I y cálculo II.

Al curso de cálculo I se matricularon 61 alumnos y lo aprobaron 29 (47,5 %). Al

cálculo II piloto ingresaron 28 estudiantes -no se incluye un estudiante, quien cursó y

aprobó el curso piloto de cálculo I y realizó cálculo II en la modalidad normal,

obteniendo una nota de 4,4-. De los matriculados en cálculo II piloto aprobaron 21

(75 %). De éstos, al siguiente semestre, ocho estudiantes matricularon cálculo III y

el 100 % lo aprobó con una nota final promedio de 4,0. Dos han ganado est́ımulos

académicos: uno de ellos ha obtenido en tres ocasiones est́ımulos en ingenieŕıa civil

y otro, en ingenieŕıa de alimentos. Todos los que aprobaron cálculo II, transcurridos

cinco semestres, terminaron con éxito la componente matemática de sus planes de

estudio.

Debe destacarse, además, que quienes tomaron los cursos piloto de cálculos I y II han

logrado una permanencia del 65 % en el ciclo básico de ingenieŕıas23. En el informe

se comparan estas cifras con los estudiantes de excepción étnica que matricularon

cálculo I regular en el peŕıodo febrero a junio de 2005, quienes tuvieron una deserción

del 62,5 %.

1.4.6. Conclusiones

a) Respecto al objetivo principal

22El curso de cálculo II estuvo igualmente a cargo de César Delgado como profesor y Liliana

Posada como asistente de docencia; en el verano, el asistente fue Carlos Ernesto Rengifo.
23La tasa de deserción para ingenieŕıas en el año 2000, en el ciclo básico, fue del 58,02%, con

tendencia al alza en la medida en que la universidad ha aumentado su cobertura, sin variar su

actual estrategia de recepción. En promedio, la deserción en el ciclo básico representa el 64,7% de

la deserción total.
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Proporcionar una oportunidad real a los estudiantes que ingresan por condición de

excepción étnica a los programas de ingenieŕıa, para acceder a los conocimientos

cient́ıficos y tecnológicos de que se ocupa la Universidad del Valle.

El objetivo se logró. Sin embargo, es posible obtener mejores resultados si la

estrategia didáctica de los cursos piloto se adopta como una práctica institucional

que no sólo comprometa a un grupo de manera aislada, sino que sea aplicable

a los cursos básicos de matemáticas y, en lo posible, extenderla a los cursos de

ciencias del ciclo básico.

Se demostró, con el caso de los estudiantes que aprobaron cálculo II y matricu-

laron al siguiente cálculo III -con una aprobación de 100 % y una nota promedio

de 4,0-, que si se enfrentan las dificultades en los dos primeros semestres se evita

que en los semestres avanzados se presenten pérdidas de materias y se mejoren

los rendimientos en los cursos avanzados, con la ganancia que ello significa para

el aprendizaje de los contenidos de la componente profesional de los diferentes

planes de estudios.

Es una estrategia equivocada tratar de eliminar cursos, o incluso agregar cursos,

sin estar seguro de que con ello se afecta positivamente la fundamentación básica

para el desarrollo de la componente profesional.

b) Respecto a la estrategia didáctica

Obliga a un cambio de las actividades tradicionales del profesor y del estudiante:

el primero no es más el poseedor del saber que centra su actividad de enseñar en

la administración de “buenas explicaciones”, sino que, en el marco socioconstruc-

tivista, es más un diseñador y gestor de situaciones adidácticas relacionadas con

el conocimiento objeto de la enseñanza, que media los procesos de aprendizaje,

y el segundo, pasa de ser un receptor del conocimiento acabado, transformado

y modelado por la explicación del profesor, a ser un sujeto que desarrolla una

actividad de estudio en la que construye activamente su propio conocimiento con

el objetivo de aprender matemáticas.

Si bien esta estrategia es costosa por el tiempo que demanda y por la resistencia

que presentan los alumnos a modificar los viejos hábitos de estudio, también es

cierto que las ganancias que se obtienen a mediano y largo plazos: a) retribu-

yen a la universidad, pues los alumnos llegan mejor dotados matemáticamente

a la componente profesional, se evitan costos por pérdidas en las materias de

los semestres superiores y seguramente se mejora la calidad de los egresados;

b) benefician a los alumnos, quienes aprovechan mejor los cursos y desarrollan
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modos cŕıticos para actuar en el medio, poniendo en práctica, además del saber

matemático, un conjunto de valores como el reconocimiento de los propios erro-

res, para aprender de ellos, pero sobre todo para aprender de los errores de otros,

superar los propios y ayudar a superar los ajenos. Esto es algo que se aprende

cuando el modelo didáctico obliga a valorar el error y aprender de él.

En resumen, esta estrategia didáctica socioconstructivista mostró que es posible

crear ambientes de aprendizaje colaborativos en los que se desarrolla pensamiento

matemático y al mismo tiempo se logra que el estudiante aprenda a aprender, al

igual que a valorar las ayudas del otro.

c) Respecto a la evaluación

Esta experiencia demostró la importancia que tiene desarrollar un sistema de

evaluación que sea al mismo tiempo formativo y sumativo, para poder hacer el

seguimiento semanal de la calidad de las realizaciones de los alumnos.

Dado que los estudiantes vienen de un sistema escolar que los acostumbró a que la

evaluación no tiene rigor ni aporta consecuencias, puesto que al final todos pasan

la materia y el año, resulta fundamental implementar una estrategia que los

vuelva responsables de su aprendizaje semanal, en la que la revisión y corrección

de la tarea les demuestre que śı importa lo que escriben o dejan de escribir en

sus trabajos semanales.

En resumen, la metodoloǵıa utilizada en los cursos piloto de cálculos I y II im-

plementa una innovadora herramienta para prevenir y hacerle seguimiento a la

deserción en la educación superior.

d) Respecto a la transferencia de la experiencia

El fracaso en cálculos I y II en todas las universidades es cada vez mayor. Los

bachilleres no logran seguir el nivel ni el ritmo expositivo de los docentes, y es-

to es particularmente cierto con jóvenes procedentes de colegios públicos y de

privados de sectores populares. No se trata de que les falten contenidos sino fun-

damentalmente de que no han rebasado el nivel práctico de las matemáticas como

representación enactiva; por eso exigen que todo se les enseñe magistralmente,

para ellos repetirlo, hacer ejercicios y tranquilizarse suponiendo que “ya dominan

el tema”. Esto implica que, dada la masificación de la educación superior, deben

cambiarse las estrategias de enseñanza y de aprendizaje para que los bachilleres

accedan a niveles de representación simbólica que les posibilitan un conocimiento
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matemático formalizado, en lugar de información que repiten sin poder pensar

desde ella.

Esta experiencia proporciona elementos importantes para reflexionar sobre el pro-

blema del empalme bachillerato-universidad y la posibilidad de adoptar poĺıticas

e instrumentos que complementen los ya existentes, con el fin de que en los depar-

tamentos de servicio, como lo es el de matemáticas en la Universidad del Valle,

se estimule la formación de grupos que reflexionen permanentemente sobre los

problemas que se presentan en la comunicación del saber y sus relaciones con las

demandas de las componentes profesionales.
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lona: Cŕıtica (resumen del ensayo original: Herramienta y śımbolo en el desarrollo
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1.5. Tres ideas fuertes del cálculo: variación, tasa y

acumulación

Carlos E. Vasco U.24

Los cursos de cálculo diferencial e integral escolar de grado once y primer año de la

universidad se suelen enseñar como ejercicios de manejo simbólico de expresiones,

lo que en la jerga docente colombiana llamamos “boleo de śımbolos”, sin necesidad

de entender ninguna idea fuerte de las matemáticas conceptuales. Lo mismo sucede

en el álgebra escolar de grados octavo y noveno: sólo se suele “bolear Baldor” y,

como consecuencia, para sacar una “E” en matemáticas de octavo a once, no hay

necesidad de entender ninguna idea fuerte del álgebra ni del cálculo.

Lejos de mı́ menospreciar la potencia del álgebra y el cálculo. Mi tesis doctoral fue

una de las primeras en el mundo en hacer álgebra abstracta con ayuda del enorme

computador de la Universidad de San Luis, que no teńıa 64 gigas ni 64 megas de

memoria RAM, sino 64 K de memoria. Lo que no puedo ocultar es que con las

sucesivas generaciones de chips cada vez más rápidos, mi tesis pronto quedó obso-

leta. ¿Será que esos “boleos de śımbolos”, que todav́ıa pasan por álgebra y cálculo,

también quedaron obsoletos?

Álgebra, según la etimoloǵıa árabe, es el arte de pasar śımbolos para acá y para

allá por el puente de la igualdad hasta resolver la cábala (“Al’gebr w’al mu-qabala”).

Cálculo, según la etimoloǵıa latina (“calculus-calculi”), era una piedrita para pasarla

de aqúı para allá en una mesa con rayas para obtener resultados aritméticos. La clave

es la propiedad operatoria de los śımbolos escritos o de las fichas para hacer cuentas.

Hasta finales del siglo XVI, la mayoŕıa de los libros con las palabras “álgebra” o

“cálculo” en el t́ıtulo son más bien de aritmética que de álgebra, y hasta finales del

siglo XVII no se distingue el cálculo diferencial e integral del cálculo aritmético y

algebraico, porque apenas se estaba inventando el primero.

Defino un álgebra o un cálculo como un registro semiótico operatorio que permite

encontrar śımbolos de resultados únicamente a través del tratamiento de las repre-

sentaciones semióticas de ese registro, sin necesidad de pensar en la interpretación

de las representaciones intermedias.

Aśı pues, tanto el álgebra como el cálculo se refieren al manejo de sistemas simbóli-

cos en representaciones semióticas correspondientes a distintos registros semióticos

operatorios. Para manejar un registro operatorio del álgebra escolar o del cálculo

24Filósofo, Pontificia Universidad Javeriana de Bogotá, Colombia. Máster en f́ısica, Saint Louis

University, Estados Unidos. Doctor en matemáticas, Saint Louis University, Estados Unidos.
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escolar se requiere mucha habilidad y largo entrenamiento, pero no hace falta pensar

en ninguna idea fuerte del álgebra ni del cálculo.

Pero ¿a qué sistemas matemáticos conceptuales se refieren esas representaciones se-

mióticas operatorias que llamé “álgebra escolar” y “cálculo escolar”? En una primera

aproximación, no se ve discontinuidad entre las escrituras simbólicas de un libro de

álgebra y las de un libro de cálculo. Fuera de la aparición repetida de unas “eses”

muy alargadas “
∫

” y del uso muy frecuente de la letra “d minúscula”, un lector

ingenuo no percibe gran diferencia entre los dos tipos de libros. Quizá, de vez en

cuando, note unas pequeñas flechas que señalan un “ocho dormido”: “x → ∞” y

dos palabras raras que no se encuentran en el diccionario: “gof” y “fog”.

Conozco centenares, tal vez miles de estudiantes (y no digo cuántos profesores),

que después de un año de boleo de cálculo en grado 11 y otro más en los dos

primeros semestres de universidad, todav́ıa no han entendido ni siquiera las ideas

fuertes suficientes para comprender que los tres śımbolos “x → ∞” son totalmente

superfluos, y que la “o pequeña” de “gof” y “fog” no es una “o” sino una abreviatura

de la preposición “de”, o de las expresiones “del” o “de la”, y que representa sólo una

de las dos posibles composiciones de operadores unarios en un sistema conceptual

anaĺıtico.

Esos detalles tipográficos, aparentemente triviales en las representaciones semióti-

cas, señalan una diferencia profunda en los sistemas conceptuales, representados

por los sistemas simbólicos del álgebra escolar y del cálculo escolar. La diferencia

histórica entre aritmética, álgebra y cálculo se ha ido acentuando porque el álgebra

escolar se distanció de la aritmética con números particulares y se perfeccionó du-

rante los siglos XVI al XVIII para operar con un registro semiótico muy potente

para manejar los sistemas conceptuales de la aritmética generalizada, que tienen

distintos tipos de números como componentes; a su vez, el cálculo escolar se per-

feccionó durante los siglos XVIII y XIX para operar con otro registro semiótico,

muy parecido superficialmente al anterior, pero mucho más potente para manejar

los sistemas conceptuales anaĺıticos, que teńıan al comienzo distintos tipos de “can-

tidades variables” como componentes. Desde el punto de vista actual, las cantidades

variables eran funciones del tiempo, aunque no siempre expĺıcitamente formuladas.

El cálculo se distanció del álgebra por su poder para modelar y tratar las cantidades

variables y sus covariaciones, aunque ya con la geometŕıa anaĺıtica de Descartes era

teóricamente posible reducir todas las demás cantidades a longitudes de segmentos.

Antes de la invención del cálculo, por medio del análisis de las cantidades variables,

Roberval, Fermat, Pascal, Cavalieri, Wallis y Barrow resolvieron, desde 1630 hasta

1680, muchos problemas que hoy se tratan en cálculo, como los máximos y mı́nimos,



64 CAPÍTULO 1. CONFERENCIAS MAGISTRALES

las normales a las curvas, las tangentes y las subtangentes, las áreas bajo muchas

curvas y los volúmenes encerrados por varios tipos de superficies. Hacia el final del

siglo XVII, entre 1665 y 1700, Newton y Leibniz inventaron independientemente dos

cálculos diferentes, con cantidades variables para modelar fenómenos de la f́ısica y

resolver problemas internos de las matemáticas: el cálculo con fluxiones, que llevó a

la derivada con respecto al tiempo y a la integral como antiderivada, y el cálculo

con diferenciales, que condujo al cálculo diferencial e integral clásico y al cálculo no

estándar.

Durante el siglo XVIII se desarrollaron rápidamente los cálculos diferencial e integral

de Newton y Leibniz, los cuales se confundieron en uno solo y se difundieron por

toda Europa con textos y cursos escolares, comenzando con el texto de L’Hôpital y

siguiendo con la Introductio de Euler y el Curso de Cauchy a principios del XIX.

Durante los últimos decenios del siglo XIX, con el refinamiento de la teoŕıa de

los números reales y de las funciones definidas sobre ellos, se fueron precisando

y abstrayendo los sistemas anaĺıticos sobre los números reales, que tienen ahora

distintos tipos de funciones reales de valor real como componentes. Para el manejo

de estos sistemas conceptuales anaĺıticos se estabilizó en el siglo XX lo que hoy se

enseña en colegios y universidades como cálculo diferencial e integral.

Esa enseñanza se masificó a casi todas las universidades del mundo después de la

segunda guerra mundial, y la industria de textos de cálculo cada vez más voluminosos

y costosos ha prosperado durante más de 60 años.

Tal masificación de la enseñanza del cálculo llevó a unificarlo como un profuso

inventario de ingeniosas maneras de calcular resultados de ciertos tratamientos de

expresiones simbólicas dentro de un registro semiótico operatorio muy parecido al

álgebra de bachillerato. Pero esa masificación llevó a la penosa situación actual de

que ni siquiera se piensa en qué sistemas conceptuales representa ese registro, de

tal modo que para enseñar bien las técnicas de cálculo escritas en esa álgebra rara

no hace falta ninguna idea, ni fuerte ni débil. Para aprender esa álgebra rara, basta

la destreza en el tratamiento simbólico de ciertas expresiones, y mientras menos se

piense en los sistemas conceptuales subyacentes, mejor. El lema del buen estudiante

de cálculo parece ser: “No me hagan pensar, porque me equivoco”.

Infortunadamente, para los profesores de cálculo del siglo XXI, desde fines del siglo

XX todos esos tratamientos simbólicos los puede hacer cada vez mejor cualquier buen

programa de álgebra computacional, como el Derive y el Maple, y mejor todav́ıa

el programa Mathematica. Los profesores de cálculo encontramos cada vez más

dif́ıcil mantener la ilusión de que estamos haciendo algo importante al entrenar a

nuestros estudiantes para llegar a ser apenas tan “brutos” como un computador con
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un buen programa de procesamiento simbólico. A pesar de la creciente evidencia en

contrario, a los jóvenes que se logran acercar a las “habilidades brutas” del programa

Mathematica los seguimos considerando los más “inteligentes”.

Poco a poco, los profesores de cálculo nos parecemos cada vez más a aquellos ilustres

catedráticos de algunas facultades de ingenieŕıa que, pese a la disponibilidad de

calculadoras de mano con teclas funcionales, siguieron insistiendo hasta su jubilación

en enseñar a sus estudiantes primı́paros a manejar las tablas de logaritmos, las tablas

de funciones trigonométricas y la regla de cálculo.

Por eso, cuando fui asesor del Ministerio de Educación Nacional (de 1978 a 1993),

propuse no incluir expĺıcitamente el cálculo en los programas para la educación

media de la renovación curricular que se preparó desde 1976 hasta 1984.

Me interesaba en ese entonces que todos los estudiantes de la educación básica secun-

daria desarrollaran habilidades de manejo de los sistemas conceptuales numéricos

por medio de sistemas simbólicos operatorios que tuvieran śımbolos para números

genéricos o todav́ıa no definidos, o sea, que dominaran la aritmética generalizada,

y que todos los estudiantes de la educación media entendieran al menos las ideas

fuertes para el manejo de los sistemas conceptuales anaĺıticos por medio de sistemas

simbólicos operatorios con śımbolos para funciones genéricas para la modelación de

procesos y fenómenos de la vida cotidiana y de las ciencias naturales y sociales.

Hab́ıa cinco columnas principales en los programas del área de matemáticas para la

secundaria y media: una columna de sistemas numéricos, otra de sistemas geométri-

cos, otra de sistemas métricos, otra de sistemas de datos y otra de sistemas anaĺıticos.

Se trataba, por supuesto, de los sistemas conceptuales respectivos, para los cuales

se trabajaba con distintos sistemas simbólicos como medios para el refinamiento,

control y comunicación del trabajo conceptual.

No inclúı expĺıcitamente el álgebra escolar en la educación básica, pues para mı́,

como se enseña ahora el álgebra, no es de por śı una disciplina matemática concep-

tual ni tiene ideas fuertes. Tampoco queŕıa incluir expĺıcitamente el cálculo escolar

en la educación media, pues pensaba que como se enseña ahora no es tampoco de

por śı una disciplina matemática conceptual ni tiene ideas fuertes. Propuse, pues,

eliminar el cálculo de grado once y dejar el manejo de los sistemas anaĺıticos por

medio del cálculo diferencial e integral para la universidad. Podŕıa quedar, a lo más,

como asignatura electiva de último año de la enseñanza media, pensando en el siste-

ma norteamericano de cursos de advanced placement o “emplazamiento avanzado”

ofrecidos por las universidades en los dos últimos grados de los colegios.

Teńıa para ello varias razones. Una era que, fuera de Colombia, en ningún páıs del
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mundo es obligatorio el cálculo en el último año de secundaria o media. Otra, que los

profesores de cálculo de la universidad dećıan que los bachilleres no sab́ıan nada de

cálculo y que lo poco que créıan saber era mejor que no lo hubieran aprendido, pues

aśı se ahorraŕıan el tiempo necesario para desaprenderlo. De todas maneras hab́ıa

que repetir toda el álgebra, la geometŕıa anaĺıtica, la trigonometŕıa y el cálculo en

el primer año de la universidad, luego era mejor emplear esos dos años de media en

algo más útil. Esa razón sigue siendo válida, y cada vez oigo más esa queja entre los

profesores de cálculo de los primeros años de universidad.

Efectivamente, los estudiantes de grado once terminan el cálculo sin entender ni

siquiera la idea fuerte más importante del cálculo diferencial: la de tasa o rata de

cambio. No entienden qué es una tasa variable o una rata de cambio variable, pues

-como tampoco saben ortograf́ıa- parecen creer que una “tasa” es para tomar tinto

y que una “rata” es un animal dañino.

La razón más fuerte que me llevaba en esos tiempos a no incluir el cálculo en grado

once era que los bachilleres no sólo no aprend́ıan ni siquiera esa idea fuerte del

cálculo, sino que aprend́ıan todav́ıa menos las otras dos ideas fuertes del cálculo:

ni la variación y la covariación funcional, ni la acumulación y las integrales. Un

bachiller con “E” en cálculo ni siquiera podŕıa negociar una tasa de interés o discutir

un aumento de salario por inflación. Los bachilleres y sus profesores estaban, pues,

perdiendo su tiempo en ese año de cálculo. Por eso era mejor quitarlo del programa

de grado once.

Lamentablemente para mı́ y para los estudiantes de grado once, fracasé en mi intento

de quitar el cálculo de ese grado. Afortunadamente para los profesores de cálculo de

secundaria y media, esos nuevos programas de secundaria colapsaron con la expedi-

ción de la Ley General de Educación en 1994, que estableció la autonomı́a curricular

con base en el PEI de cada institución, y los programas de media nunca salieron.

A pesar de que los programas de matemáticas para la secundaria y media expedidos

en 1974 dejaron de ser obligatorios hace quince años, todav́ıa siguen vigentes en

la mente de los maestros y en los libros de texto. Como dice Juan Carlos Negret,

“los programas de 1974 no existen, pero śı insisten”. Las tradiciones escolares tienen

mucha inercia; hay demasiados intereses gremialistas entre los docentes y hay to-

dav́ıa más intereses comerciales entre las editoriales. El cálculo de grado once sigue

ah́ı después de 35 años.

El cálculo diferencial e integral suele enseñarse en grado once y en primer año de

universidad como el manejo de un sistema simbólico que permite tratamientos múlti-

ples, ingeniosos y potentes de ciertas expresiones anaĺıticas. Lamentablemente, como
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tratamiento de ciertas representaciones semióticas sin referencia a un sistema con-

ceptual anaĺıtico, ese tipo de cálculo no es importante por śı mismo. Por fortuna, el

cálculo también puede enseñarse para desarrollar y ejercitar el pensamiento numéri-

co, espacial y métrico, aśı como el pensamiento variacional que los cruza a todos,

por medio de la utilización de sistemas conceptuales anaĺıticos, con sus distintos

registros simbólicos para la modelación de procesos y para resolver problemas. El

pensamiento variacional es el más importante en las matemáticas, en tanto que la

modelación y la resolución de problemas son los procesos más valiosos en las ma-

temáticas escolares en colegios y universidades.

Para mı́, la modelación es la formación de modelos teóricos de los procesos reales,

y considero que los modelos teóricos incluyen un modelo mental intuitivo analógico

y una teoŕıa digitalizada en un lenguaje articulado que permita la comunicación y

el tratamiento simbólico por medio de distintos registros semióticos. Si el cálculo

diferencial e integral va a dejar de ser ese ejercicio de destrezas simbólicas que

se hacen mejor por computador y va a convertirse en promotor del pensamiento

variacional, la modelación y la solución de problemas han de concentrarse en el

manejo de los sistemas conceptuales anaĺıticos, y enfatizar en las ideas fuertes del

cálculo.

A mi juicio, no hay otra manera de resolver problemas que la modelación, aunque se

necesita también, por supuesto, el tratamiento de los algoritmos para echar a andar

o a “correr” los modelos, de acuerdo con sus teoŕıas formuladas en distintos registros

semióticos, pero esa segunda parte es la que hacen mejor los computadores.

Propongo, pues, que entendamos el cálculo diferencial e integral no como un mero

ejercicio de destrezas de manejo simbólico, sino como el mejor ejercicio mental para

el desarrollo del pensamiento variacional, con la utilización de los sistemas concep-

tuales anaĺıticos para modelar y resolver problemas de la vida cotidiana y de las

ciencias naturales y sociales. Para ello hay que empezar más acá de las destrezas

simbólicas, comenzando con el cultivo de las ideas fuertes del cálculo, y pasar más

allá de las destrezas simbólicas, hasta construir los sistemas conceptuales anaĺıticos

y saber manejarlos con diversos tipos de registros semióticos orales, gestuales, escri-

tos en lenguas naturales, y en lenguas formales y con distintos registros gráficos y

computacionales.

En mi opinión, las tres ideas fuertes del cálculo diferencial e integral son, en primer

lugar, la variación y la covariación de las cantidades de distintas magnitudes (en la

que incluyo, por supuesto, la covariación funcional, la covariación lineal y el estu-

dio local de las maneras como las funciones no lineales transmiten la variación del

dominio al codominio); en segunda instancia, las razones, tasas o ratas de cambio



68 CAPÍTULO 1. CONFERENCIAS MAGISTRALES

que llevan a las derivadas, y en tercer término, la acumulación que conduce a las

integrales. Ya explicaré por qué no cuento entre esas tres ideas fuertes del cálculo

otras posibles candidatas, como el ĺımite y la continuidad. Śı podŕıa considerar una

cuarta idea fuerte: las diferencias orientadas que llevan a los diferenciales y a los

integrales leibnizianos. Pero de todos modos seŕıa menos fuerte que las tres ideas

que he seleccionado como las más fuertes del cálculo y, además, me obligaŕıa a decir

que las tres ideas fuertes del cálculo son cuatro.

Otra forma de decir lo mismo de manera más provocativa y provocadora seŕıa señalar

que las tres o cuatro ideas fuertes del cálculo son cinco: la covariación y “las cuatro

operaciones” de suma, resta, multiplicación y división. En efecto, las integrales son

sumas; los diferenciales son diferencias y actúan sobre diferencias, o sea, son restas;

las derivadas son tasas, ratas o razones, es decir, son divisiones, y la multiplicación es

la aplicación de las únicas funciones lineales que hay en una variable real, que a veces

llamamos “escalares”, o sea, que las funciones lineales son operadores multiplicadores

y la aplicación de éstos a sus argumentos o multiplicandos son precisamente las

multiplicaciones.

Para que se vea más clara la relación entre la multiplicación y la linealidad, obser-

vemos que la multiplicación de a por b, que escribimos “a× b”, se interpreta por los

que preferimos escribir los operadores unarios a la izquierda, como “a veces b”, con

a como multiplicador y b como multiplicando:

a × b = La(b) = ab.

Los que prefieren los operadores escritos a la derecha, como “a, b veces”, con a como

multiplicando y b como multiplicador, escriben más bien:

a × b = (a)Lb = ab.

De ambos modos resulta una familia de operadores lineales o escalares indexada por

el multiplicador. Esas dos maneras de entender la multiplicación como una familia de

operadores unarios producen precisamente los únicos operadores lineales que hay en

los sistemas anaĺıticos de funciones reales de una sola variable real. Esos operadores

lineales son los más importantes para la primera idea fuerte del cálculo.

1.5.1. Primera idea fuerte del cálculo: la variación y la co-

variación funcional

No me detengo a explicitar la naturaleza y a destacar la trascendencia del pensamien-

to variacional, que es ahora la meta principal de los lineamientos y los estándares
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de competencias del área de matemáticas para la secundaria y media en Colom-

bia. A algunos investigadores del Cinvestav de México, como Ricardo Cantoral y

sus colaboradores, les debemos los est́ımulos iniciales para enfatizar el pensamiento

variacional en unas matemáticas escolares que en general hab́ıan estado dominadas

por el pensamiento estático. A Celia Castiblanco y su equipo de trabajo para los

lineamientos del área de matemáticas, y a Gloria Garćıa y Gilberto Obando para los

estándares de competencias, les debemos su reformulación y expansión en el páıs.

Para ejercitar ese pensamiento variacional en lo numérico, lo espacial y lo numérico,

es necesario volver a trabajar con magnitudes f́ısicas y cantidades variables en el

tiempo y en el espacio-tiempo, y distinguir las cantidades de sus medidas numéricas.

La primera idea fuerte es, entonces, la variación de cantidades variables dependientes

del tiempo y la covariación de dos o más cantidades variables relacionadas entre śı, o

dependientes una de otra. Los dos principales tipos de covariación corresponden a la

suma y a la multiplicación, o para decirlo en forma más técnica, al campo conceptual

aditivo y al multiplicativo.

La covariación aditiva se refleja en la adición de vectores y funciones, no sólo de

números, y lleva a las diferencias orientadas, a los vectores de los espacios tangentes,

a los diferenciales y a las integrales. La covariación multiplicativa se refleja en los

operadores lineales y conduce a las razones, a las derivadas y a los operadores lineales

sobre espacios vectoriales y funcionales.

El estudio de la variación y la covariación por medio del cálculo tiene como meta la

modelación de procesos y fenómenos de la vida real con modelos mentales analógicos

y teoŕıas digitalizadas y formuladas en registros semióticos diferentes, para facilitar

la resolución de problemas de la vida real.

Funciones como tipos de covariación

Los modelos mentales más apropiados para el pensamiento variacional no son sis-

temas numéricos o geométricos compuestos de números y figuras, sino sistemas

anaĺıticos compuestos de las funciones reales como tipos de cambio, de variación

y covariación.

En las funciones no son las parejas ordenadas del grafo las que importan, sino la

situación de covariación. La función como relación entre esas cantidades covariantes

codifica las restricciones a la variación de una cantidad variable, considerada ma-

nipulable o independiente, y otra dependiente en su variación de la variación de la

independiente.

Una cosa es una cantidad que permanece constante (en un contexto espacio-temporal
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dado, o dentro de un juego lingǘıstico espećıfico, por ejemplo, dentro de la resolución

de este problema); otra cosa es una cantidad variable en el tiempo; otra cosa es una

cantidad que vaŕıa si vaŕıa otra (seŕıa mejor llamarlas “covariables”, o mejor todav́ıa,

“variables covariantes”); otra cosa es una medición de una cantidad variable (como

un proceso, como un resultado anumérico, como un resultado numérico); otra cosa

es el śımbolo de una cantidad potencialmente variable, y otra es el śımbolo del valor

de una medición de una cantidad. Las mediciones dan números reales (en caso de

magnitudes escalares) pero dependen del origen elegido, de la unidad que se utilice,

del método de medición, del aparato que se use, etc. Piense en el tiempo como

duración y como medida de la cuandicación o “ubicación temporal”, o en la de la

temperatura, o en la amplitud de un ángulo de giro (en grados, radianes, vueltas...)

Desde Vieta y Descartes hasta Euler, las cantidades eran variables o constantes,

infinitesimales o finitas. Sin pensar en la situación de covariación no se sale de ah́ı. Es

necesario pensar en cuál cantidad puedo hacer variar a voluntad y cuál está amarrada

o ligada a esa variación y cómo. Es, pues, importante en el cálculo de una variable

decir que hay al menos dos variables, una cantidad variable independiente y otra

dependiente, y que la segunda variable, la dependiente, es la que se dice que es una

función o es función de la otra. No es, entonces, propiamente “el cálculo en una

variable” sino el cálculo de funciones de una sola variable real (y de un solo valor

real). Pero desde este punto de vista, tales funciones no son sino codificaciones de

modelos de covariación de cantidades variables, ya consideremos que las funciones

son relaciones que restringen la variación de la dependiente según los cambios de la

independiente, o que son operaciones que transforman el valor de la independiente

en el de la dependiente.

Esas funciones pueden entenderse de dos maneras: como operaciones sobre canti-

dades variables y sus medidas numéricas, y como relaciones entre cantidades cova-

riantes y sus medidas numéricas. En la enseñanza del cálculo por ideas fuertes se

trata de estimular a los estudiantes hasta que lleguen a objetivar las funciones como

elementos, componentes u objetos de otros sistemas de orden superior, los sistemas

conceptuales anaĺıticos. Como lo propone la teoŕıa Apos o Apoe de Dubinsky, se

trata de pasar de acciones y procesos a objetos y esquemas.

1. Funciones como relaciones. Podemos llamarlas funciones relacionales o re-

laciones funcionales. Solemos entenderlas con un modelo de amarre o restric-

ción: el modelo relacional. Este modelo induce el pensamiento estático, a menos

que se consideren las relaciones funcionales como amarres condicionales que

regulan y restringen la variación de la imagen cuando se vaŕıa la preimagen.

2. Funciones como operaciones. Podemos denominarlas funciones operacio-
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nales u operaciones funcionales, y es posible entenderlas mejor por medio de

modelos de transformación o de máquina: los modelos transformacionales u

operacionales. Estos modelos son mucho más cercanos al pensamiento varia-

cional si se considera la variación de la imagen que la operación transforma en

preimagen. Muy relacionado con los modelos operacionales es la idea compu-

tacional de que una función es un procedimiento de cálculo que produce un

solo valor (output), siempre el mismo para el mismo insumo o sistema orde-

nado de insumos (inputs). Compárese con la idea de Lagrange: una función

de una o más variables es cualquier expresión del cálculo donde figuren esas

variables. Esa es la manera que más me gusta para comprender la sintaxis del

álgebra de bachillerato: interpretar los términos algebraicos como instrucciones

en taquigraf́ıa.

Ampliar una diapositiva es una transformación o función operacional con respecto

a la imagen. Después el observador puede relacionar la imagen proyectada con su

preimagen en la diapositiva, y aparece un modelo de función relacional.

Mover el apuntador láser contra un espejo es más cercana a una relación o función

relacional con respecto al punto imagen. Mover directamente el punto rojo del láser

en la pared también es relacional. Aśı sale la tangente si se mide con la distancia

del apuntador a la pared. Ponga la punta del apuntador a un metro de la pared y

mida la sombra en metros.

Una cosa es la variación que la operación le hace a la preimagen, como correrla hacia

adelante si la función corresponde a la ecuación f(x) = x + 1, o como agrandar un

intervalo (a, b) globalmente si se mira la función inducida f [(a, b)] con f(x) = 2x,

pues da lo mismo si se toma como una función duplicadora puntual de los valo-

res numéricos correspondientes a los puntos del intervalo (a, b) o como duplicadora

global de los intervalos. Otra cosa es la variación de la imagen que corresponda a

la variación de la preimagen, pues esa puede estudiarse también en el caso de que

la variación se dé cerca de una preimagen que es un punto fijo de la función. Tal

caso es muy útil para máximos y mı́nimos que coincidan con el punto fijo, como el

cero para las funciones lineales. Precisamente se trata de reducir todo el análisis al

estudio de las transformaciones lineales locales.

Funciones como modelos dinámicos de covariación

La gráfica cartesiana es estática. Como lo explica muy apropiadamente el Dr. Crisólo-

go Dolores Flores, las gráficas usuales de las funciones que modelan la covariación

no sólo no sirven para ejercitar el pensamiento variacional, sino que lo obstaculizan.

Pero hay maneras de superar ese obstáculo.
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Recordemos que una cosa es el grafo de una función, que como conjunto de parejas

es estático; otra cosa es la gráfica cartesiana, que como locus de puntos también

es estática; otra cosa es la curva como imagen estática de una trayectoria (huella,

memoria, estática); otra es la curva como trayectoria de un punto móvil que se va

describiendo a su paso, y otra es la manera de interpretar activamente la gráfica

cartesiana con la idea de los espacios tangentes, el láser y el espejo de 135◦ que

explicaré a continuación.

Si se quiere ejercitar el pensamiento variacional, se puede pensar que R como con-

junto de salida queda representado por el eje horizontal desplegado por el vector

unitario e1 y el conjunto de llegada queda representado por el eje vertical desplega-

do por e2. En la visión dinámica, el punto (x, f(x)) del grafo es apenas un punto de

quiebre de la “trayectoria de un rayo de luz” que empieza de x hacia arriba, se refleja

en un espejito a 135 grados situado en el punto (x, f(x)), sigue horizontalmente y

pega en el eje y, donde señala la imagen de x por f , f(x).

Pero también se puede considerar que el conjunto de llegada R está repetido inde-

finidamente, una vez “encima” de cada punto x del eje horizontal. Es mejor decir

“encima”, pues el cero de la fibra “tapa” el punto x. No es pues “lo mismo” el punto

x como punto del conjunto de salida R y el punto cero del conjunto de llegada, re-

petido o no. El punto (x, f(x)) es ahora el seleccionado por la sección del haz trivial

R×R sobre x, al cual vuelve a “caer” si se usa la proyección canónica π (nótese que

no cae sobre (x, 0)). Esto se parece más a la idea de Descartes de que el argumento

de la función es la longitud del segmento del eje de las abscisas, y el valor de la

función es la longitud del segmento de alĺı para arriba, no en el eje y. Volvemos a

las cantidades variables consideradas mentalmente antes de las medidas numéricas.

Un ejemplo de la f́ısica newtoniana

Para ver cómo trabajar con cantidades variables espećıficas, tomo un ejemplo de la

mecánica newtoniana. Vuelvo a la f́ısica del ı́mpetu o del impulso de los siglos XIV

a XVII y a la manera como la reformularon Galileo y Newton.

Primero preciso conceptualmente dos magnitudes f́ısicas con sus distintas cantidades

constantes o variables, que considero en mi modelo mental del movimiento de un

objeto masivo cuando lo impulso o lo freno: el ı́mpetu y el impulso.

El ı́mpetu o fuerza, viva o momento de un objeto en movimiento, es directamente

proporcional a la masa y a la velocidad del objeto.

El impulso o la acción de un agente sobre un objeto en reposo o movimiento es

directamente proporcional a la fuerza impresa aplicada al objeto y a la duración de
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la aplicación de esa fuerza sobre el objeto.

Defino, pues, el valor numérico del momento p como el impulso o fuerza viva que

no tenga en cuenta otros posibles componentes, sino únicamente el producto de

los valores numéricos de la masa y la velocidad, p = kmv, y utilizo las unidades

apropiadas para eliminar la constante k:

p = mv

Defino el valor numérico de la acción A como el ı́mpetu que le da el agente al objeto

sin tener en cuenta otros posibles componentes, sino únicamente el producto de los

valores numéricos de la fuerza impresa y de la duración del impulso, A = kft, y uso

las unidades apropiadas para eliminar la constante k:

A = ft

Para una duración pequeña ∆t, el incremento del impulso o la acción es

∆A = f∆t

Ley del impulso: la aplicación de un impulso o acción incremental a un objeto en

reposo o movimiento produce un incremento proporcional en el ı́mpetu o momento

del objeto:

∆A = k∆p

Si utilizo las unidades apropiadas para eliminar la constante k, los valores numéricos

satisfacen la igualdad:

∆A = ∆p f∆t = ∆p = ∆(mv)

Si la masa es constante,

f∆t = m∆v f = m

(
∆v

∆t

)
= ma.

Por tanto, el modelo newtoniano con una teoŕıa que incluya la ley “f = ma” sólo

sirve cuando la masa es constante, y por consiguiente no sirve para modelar la subida

de un cohete ni el vuelo de un avión de fumigación u otros procesos en los que vaya

cambiando la masa del objeto en movimiento.

Tampoco serviŕıa el modelo si el momento incluye otros factores, como por ejemplo la

velocidad de giro de una pelota de béisbol, o la resistencia del aire, o la temperatura

del objeto, o si el ı́mpetu o acción incluye el sudor, la sensación de esfuerzo, el dolor

o el ritmo card́ıaco del agente, o la temperatura del ambiente. Esto no es una broma,
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pues si se define paralelamente el trabajo W como el producto de la fuerza impresa

f por la longitud s del recorrido,

W = fs,

esto implica que el modelo del trabajo f́ısico posnewtoniano con una teoŕıa que

incluya la igualdad

∆W = f∆x,

sea cual sea el sudor, esfuerzo, dolor y aceleración card́ıaca del trabajador que lleva

a la espalda un bulto de cemento de 50 kilos del camión al depósito a una cuadra

de distancia por un camino plano, con una temperatura ambiente de 40 grados, el

hombre no hace ningún trabajo. Más aún, si al final tira el bulto al suelo del depósito,

hace trabajo negativo y, según este modelo del trabajo, le deb́ıan descontar algo del

sueldo. Las cantidades variables son, pues, much́ısimas: la masa del objeto, el ı́mpetu

que lleva el objeto, la fuerza que le hago, el tiempo que dura mi esfuerzo, el impulso

que le imprimo al objeto, el peso del objeto en este sitio, la temperatura ambiente

aqúı y ahora, el trabajo neto que hago, la enerǵıa que consumo, el sueldo que gano,

etc.

Por desgracia, las matemáticas no consideran esenciales las magnitudes y sus can-

tidades; sin embargo, por fuera de los problemas puramente matemáticos lo más

importante del cálculo seŕıa la posibilidad de modelar procesos y fenómenos de la

vida real, y manejar valores numéricos de esas cantidades variables por medio de

los sistemas conceptuales anaĺıticos y los registros semióticos respectivos. Propongo

entonces, en primer lugar, volver a las magnitudes y cantidades variables y a sus

modos de covariación, para modelarlas y tratarlas por medio de las funciones de

los sistemas conceptuales anaĺıticos, y ahora śı tratar las funciones con el cálculo

diferencial e integral como registro semiótico potente.

1.5.2. Segunda idea fuerte: las razones, tasas o ratas

En el Congreso Nacional de Matemáticas celebrado en Cali presenté un tratamiento

detallado de las diferencias y las razones en la historia de las matemáticas, hasta lle-

gar a la consideración de éstas como parejas de operadores aditivos y multiplicativos

mutuamente inversos.

Las diferencias como operadores aditivos orientados llevan a la consideración de los

vectores localizados en cada punto, y a la construcción del haz tangente a la recta real

R, al plano R2 o al espacio tridimensional R3. En cada punto p se sitúa un espacio

vectorial de la dimensión respectiva, que se llama “el espacio tangente al punto p”,

T (p). El haz tangente es la unión disyunta de todos esos espacios tangentes, con
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una función de proyección que los identifica por el punto de amarre donde se sitúa

la “cola” del vector respectivo. Este punto de amarre puede verse también como el

vector cero del espacio vectorial respectivo.

Ya señalé que las diferencias como operadores orientados llevan a los diferenciales de

Leibniz, y producen un cálculo diferencial de un sabor muy distinto del de Newton.

El cálculo diferencial de Newton no se debeŕıa llamar “diferencial” sino “fluxional”,

ya que se basaba en las fluxiones de las cantidades fluyentes. Hoy identificamos las

cantidades fluyentes con las variables numéricas escritas con una sola letra, y las

fluxiones con las derivadas de esas variables con respecto al tiempo, escritas con un

punto encima. Como no hace falta pensar en ideas fuertes para aprender cálculo,

pocos profesores y estudiantes caen en cuenta de que hay un cálculo que comienza

con el énfasis en las diferencias, lo que lleva al cálculo diferencial de Leibniz y al

cálculo no estándar de Robinson y Keisler, y otro cálculo que comienza con el énfasis

en las razones, lo que lleva a las fluxiones con respecto al tiempo en Newton, luego

a las derivadas más generales y a los operadores lineales25.

Son cálculos conceptualmente diferentes, basados en diversos énfasis en dos ideas

fuertes distintas, que llevan a un teorema que las liga precisamente para mostrar

que la extensión de las fluxiones con respecto al tiempo a derivadas más generales

de cualquier variable dependiente en relación con la independiente es equivalente a

la razón entre diferenciales. Como las ideas fuertes no se enfatizan, ese teorema no

aparece demostrado en ninguno de los enormes libros de cálculo estándar:

dy

dx
= y′.

A veces aparece como definición del śımbolo “ d
dx

” y en ocasiones aparece al revés,

como definición del śımbolo “ye prima”, sin que se vea rastro de la relación concep-

tual entre ellas ni de la necesidad de comenzar el cálculo con distintos énfasis en las

diferencias y en las razones. Volveremos pronto sobre este teorema.

Las razones, como parejas de operadores ampliadores y reductores mutuamente in-

versos, llevan a la consideración de las transformaciones lineales entre espacios tan-

gentes al dominio y al codominio o recorrido de las funciones reales, y a la conside-

ración de la derivada de una función como una colección de operadores lineales que

aproximan localmente la función en cada punto del dominio. Esa es la caracteriza-

ción de Carathéodory que estudió César Delgado y que es la única que se generaliza

a variedades de otras dimensiones y permite la extensión a las teoŕıas de haces.

Para pensar en la derivada como tasa generalizada variable, es bueno, por ejemplo,

25Ver la compilación de I. Grattan-Guinness (1980-1984) sobre el tema, Del cálculo a la teoŕıa

de conjuntos 1630-1910. Una introducción histórica. Madrid: Alianza Universidad.
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empezar por modelar la situación de un préstamo con una tasa de interés del 36 %

anual, al 9 % trimestral, al 3 % mensual, al 7 por mil semanal y al uno por mil diario.

Se toman las convenciones comerciales del año de 12 meses de 30 d́ıas. Si es interés

simple, la tasa es fija y el monto inicial también, de modo que la acumulación es

lineal con coeficiente fijo o constante: la tasa fija. Para estudiarla no hace falta el

cálculo. Pero si el interés es compuesto, se va cambiando el monto inicial y, visto de

otra manera, es como si subiera la tasa. Ese modelo permite ver cuándo vale la pena

usar la aproximación exponencial y cuándo no, pero para entender las funciones

exponenciales y sus distintas tasas de cambio absolutas y relativas śı es necesario el

cálculo.

Lo mismo pasa con la tasa anual de inflación frente a la tasa mensual y la diaria. Si la

tasa de inflación fuera del 2 % mensual, ¿cuál seŕıa la tasa anual? Los que crean que

es el 24 % perdieron su tiempo en los cursos de cálculo. Sólo manejan las cantidades

constantes y las tasas fijas, y se descuadraron casi en el 3 %. No aprendieron nada

de la segunda idea fuerte del cálculo.

Para la modelación y el estudio de las tasas fijas basta la aritmética generalizada,

pero para la modelación y el estudio de las tasas variables y las tasas instantáneas

se requiere el cálculo como registro semiótico para los sistemas anaĺıticos. Pero no

como “boleo de śımbolos”, sino como registro semiótico privilegiado para el estudio

de los sistemas conceptuales anaĺıticos y para la refinación y expresión de las ideas

fuertes de ese cálculo.

Se puede aprovechar una comparación entre las cantidades fijas o constantes y las

cantidades variables. En los modelos mentales de los procesos y fenómenos reales

es claro que si la función de t que mide la cantidad seleccionada es una función

constante, puede decirse que esa cantidad variable o esa función “no tiene tasa”,

o que “tiene tasa cero”. Si la función aumenta o disminuye linealmente, la tasa es

constante en cualquier forma en que se calcule y en cualquier instante t.

Cada tasa constante va con una función lineal. Pero si la tasa no es constante, como

la velocidad en la cáıda libre, no es fácil ver qué pasa. Los f́ısicos tuvieron que refinar

sus herramientas conceptuales y sus notaciones durante 20 siglos, desde Aristóteles

hasta Newton, para poder calcular lo que hoy se ve claro con las derivadas y las

integrales: si g es constante, la velocidad de cáıda es una cantidad variable que es

una acumulación integral. Esa función tiene gráfica lineal:

v = gt + vo,

Si la velocidad inicial era nula, se ve que v cambia linealmente con el tiempo. Ahora,

el total de la distancia recorrida es una acumulación integral, que se modela con una
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función de variación en el tiempo que es no lineal:

y =
1

2
gt2 + vot + yo.

Pero ¿qué pasa si la aceleración de la gravedad g no es constante? ¿Y qué sucede si

la masa del objeto cambia, como en el caso de un cohete? Ahora śı empieza a ser

potente el cálculo para resolver esos problemas de mecánica.

Pero las derivadas e integrales necesarias se pueden calcular muy bien y muy rápido

con cualquier programa de tratamiento simbólico. El asunto es plantearlo apropia-

damente, y eso no puede hacerse sin pensar en las ideas fuertes del cálculo.

1.5.3. Algunas observaciones sobre la notación del cálculo

En el cálculo de o en una variable, escriba

y = f(x) + c.

Yo veo cuatro variables, no una.

Sea x un número real.

y = kx.

¿k es una constante, o una constante que es variable? k′ = 0 y x′ = 1, o también

x′ = 0. Al menos debeŕıa serlo si es un número real. Sea f la función constante cero

c0.

Ya f es una constante, no una variable. Además, f es una función constante de la

variable x.

Estudie la fórmula:

y = c0(x).

¿Es y una variable?

No, es constante: siempre es cero. Sea f la función constante ck.

La k es ahora una variable para números reales (o complejos). ck es una variable

para las funciones constantes. ¿Por qué decir “la” función constante? Hay infinitas.

No se debeŕıa decir “la” sino “una”. En análisis real, las funciones constantes son

una familia indexada por elementos de R. Analice la fórmula:

2x + 1 = 5.

¿Cuál es la variable? Ninguna, pues x siempre es 2.



78 CAPÍTULO 1. CONFERENCIAS MAGISTRALES

Ya lo dećıa Grattan-Guinness: es una constante desconocida (“incógnita”, “unknown

constant”).

Ahora analice la fórmula:

x2 = 0.

La x tampoco es variable, pues siempre es cero.

Mire con cuidado la ecuación siguiente:

ax + b = 0.

Yo veo tres variables, no una. Otras personas podŕıan ver cuatro constantes, pues el

cero es constante, y si a y b son constantes, x también lo es: siempre es igual a− b
a
.

No aclara nada hablar de variables como letras. Es necesario volver a pensar en

variables como cantidades variables en el tiempo. Descartes permite pensar única-

mente en cantidades de longitud, pero no es cierto que haya pensado en hablar sólo

de números reales, entre otras cosas porque no sab́ıa cuáles eran números reales ni

cuáles eran complejos o imaginarios.

Es claro en el análisis, desde Descartes y Roberval en 1630 hasta Euler y al menos en

algunos pasajes de Cauchy, que se créıa que el ĺımite era de las cantidades variables,

no de las letras ni de las funciones. Euler y Lagrange pensaban que las funciones

eran expresiones algebraicas. Lagrange dice que “una función de una o más varia-

bles es cualquier expresión del cálculo en la que figuren esas variables de cualquier

manera”26. Ni Euler ni Lagrange distingúıan entre expresiones bien formadas o no,

ni entre expresiones y fórmulas, ni entre las expresiones que sirven para el cálculo

y las que no, ni entre las expresiones que sirven para el cálculo y producen siem-

pre el mismo resultado numérico para los mismos remplazos de números en vez de

variables. Para ello hay que esperar a Dirichlet y Weierstrass.

Lo que pasa es que las mediciones sucesivas en el tiempo de cualquier cantidad

definen una función de R (tomando a R como conjunto ordenado de ubicadores o

cuandicadores de un modelo del flujo continuo y homogéneo del tiempo, representado

por un segmento de recta marcado con una flecha a la derecha y una “t” en vez de

una “x”). Si el modelo del flujo es discreto, por pasos equidurantes, las mediciones

sucesivas forman una sucesión, y se pueden considerar una función de los números de

contar, tomándolos como ubicadores o cuandicadores. De aqúı fácilmente se desliza

la atención a las funciones crecientes y decrecientes, y no se cae en cuenta de que la

mayoŕıa de las funciones no lineales usuales no lo son.

26Ib́ıd., cap. 3, p. 133.
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La definición de ĺımite de la Enciclopedia de D’Alembert en 1765 es sólo una cantidad

constante como tope superior de una cantidad variable ascendente (monótona cre-

ciente), que no puede pasar más allá de esa cantidad constante. Eso nos muestra un

posible obstáculo para la comprensión del ĺımite por parte de nuestros estudiantes,

pero también nos puede sugerir una v́ıa para su enseñanza.

Es interesante saber que 60 años más tarde, todav́ıa Cauchy piensa que “tender a

cero” o “ser infinitesimal” es propio de las variables positivas que decrecen hacia

cero27.

Se ve que tanto D’Alembert como Cauchy queŕıan utilizar las diferencias y diferen-

ciales como diferencias infinitesimales a la manera de Leibniz, pero no se atrev́ıan a

decirlo expresamente, y después de muchas disquisiciones la explican como el ĺımi-

te de diferencias finitas. Pero ya se ve en esos textos de los siglos XVIII y XIX,

y comienzos del XIX, que la diferencial de f en cada punto x0 pod́ıa considerarse

la función af́ın cuya gráfica “sigue por la tangente” a la gráfica original de f en el

punto (x0, f(x0)) si se incrementa x más allá de x0.

Algo parecido pasa con el incremento de x, llamado “∆x”, que no es un infinitesimal.

Se trata de un incremento vectorial a partir de x0, modelado como una flecha con

la cola en x0, y por eso se puede escribir

∆x = x − x0.

Pero eso nos lleva a fijarnos en la “x” que no es: en realidad, debeŕıa escribirse

∆x[x0], pues si se usa la notación “h”, quedaŕıa más bien

x + h = x + ∆x = x + (x − x0) = 2x − x0,

que es absurdo.

Hay que tener cuidado con cuál “x” es el parámetro y cuál es el argumento variable.

Por no atender a las diferencias y las razones nos olvidamos de que las diferencias

tienen sentido: no es lo mismo x0 − x que x − x0, puesto que viven en espacios

tangentes diferentes. No gastamos tiempo en asegurarnos de que el estudiante vea

que |x − x0| es el radio de la vecindad básica alrededor de x0, en este caso un intervalo

el doble de largo de ese radio. Si acaso lo hacemos, no caemos en cuenta de que la

palabra “radio” está bien para bolas en R3 y discos en R2 (que, dicho de paso, no

son esferas), pero que “radio” suena raro para intervalos de la recta real R.

27Para la diferencial en la Enciclopedia, ver Grattan-Guinness, Del cálculo a la teoŕıa de conjuntos

1630-1910, cap. 2, p. 122. Ib́ıd., cap. 2, p. 121. Ver la p. 144 para ĺımite e infinitesimal en Cauchy,

en su Curso de 1821. La continuidad de una función “entre dos ĺımites”, o sea en un intervalo, la

presenta globalmente, no punto por punto, como puede verse en la p. 145.
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En general, se confunden los dos sentidos de la “x”: la “x” fija, que nosotros escribi-

mos “x0”, y la “x” móvil, que se mueve hacia atrás y hacia adelante a partir de x0,

lo que lleva a h = x−x0. Sólo se aclarará el absurdo de que “x+h = 2x−x0” cuando

se piense en espacios tangentes al dominio y al recorrido, y cuando no se enfaticen

los triangulitos que parecen vivir en los espacios tangentes a la gráfica cartesiana.

Fijar la atención en ello puede hacerse rigurosamente, pero eso nos llevaŕıa a tener

que sumar f(x0) a df(x0, x), perdiendo la linealidad.

Es mejor pensar de una vez en las secciones del haz de transformaciones lineales

que seleccionan para cada x0 del dominio dado la mejor aproximación lineal a f

entre los espacios tangentes a x0 y a f(x0). Ya “x” no puede remplazarse por el

mismo número que antes, pues ahora indica un vector de T (x0), que corresponde

al antiguo x − x0, que ahora más bien debe expresarse como a dx|x0
, para cierto a

como coeficiente que ampĺıa o reduce la base dx|x0
de T (x0), que en este caso es un

espacio unidimensional.

Una cosa es que la cantidad constante a y la cantidad constante b estén en la razón

r, donde r es un número real adimensional constante; otra cosa es que la cantidad

variable x y la cantidad variable y estén en la razón r(x, y), donde r es una función

de dos variables (mientras x y y sean “razonables”), y otra tercera es que la cantidad

variable x y la cantidad variable y estén siempre en la misma razón, sea que la llame

r o no. Esa śı es una relación entre x y y, que permite recobrar el valor de una de

ellas si se sabe la otra y se sabe cuál es la razón constante r. Si no se sabe, pero se

conocen dos valores de una y uno de la otra (y se sabe a cuál de los dos corresponde),

es posible averiguar la razón y el cuarto valor que corresponde a la otra. Ese es el

método del precio unitario generalizado a un coeficiente de variación unitaria.

La extensión siguiente en el cálculo es de las razones constantes a las razones va-

riables, y a las razones entre diferenciales. Las diferenciales de y (y = f(x)) y la

de x estén en la razón dy

dx
, (llamada y′ o df

dx
), donde esa razón es variable, igual a

f ′(x), que es una función de una variable, y otra cosa es que esas diferenciales estén

siempre en la misma razón, sea que se llame r o no. Eso significa que la derivada es

constante, de donde se deduce que f es lineal o af́ın.

Pero ya indicamos que nunca se dice si df

dx
= f ′(x) es una definición del śımbolo

“ d
dx

”, o si léıdo al revés define el śımbolo “f ′(x)”, o si es un teorema sobre razones

de diferenciales basada en una definición de derivada por otra v́ıa. Esa igualdad

tiene un problema, y es que la x de la izquierda en dx es distinta de la de la derecha

en f ′(x), pues falta evaluar df

dx
en un cierto x que no tiene nada que ver con dx y
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luego poner la raya vertical con el punto de evaluación. Debeŕıa ser

df

dx

∣∣∣∣
x0

= f ′(x0).

En las clases de economı́a se suele empezar con microeconomı́a antes del cálculo y

se utilizan derivadas parciales cuando los estudiantes ni siquiera saben cuáles son

las derivadas totales, utilizando razones heterogéneas como coeficientes por peso

invertido, o por peso aumentado en el precio, etc. Cerca de un punto de equilibrio

se supone que las derivadas parciales son constantes y se evalúa la variación de la

cantidad producida o de la cantidad comprada. Otra cosa es la variación de las

derivadas parciales: razones constantes y razones variables.

En el libro de Grattan-Guinness citado se ve que para Roberval los puntos trazaban

trayectorias y para resolver problemas de tangentes se analizaban las velocidades

que compońıan el movimiento con la regla del paralelogramo, que es la idea que

sigue Barrow y, al comienzo, segúıa Newton. Para éste, las diferenciales no son sino

medios para calcular el objeto que le interesaba, que era la velocidad (fluxión) como

tasa de cambio en el tiempo. Por eso tiene sentido el punto encima para notar

la fluxión de una cantidad fluyente. En cambio, en Leibniz las diferenciales son

objetos infinitesimales, aunque en el caso del triángulo rectángulo formado por la

subtangente como base y la ordenada como altura, es posible ver que Leibniz pod́ıa

considerarlas también cantidades finitas de longitud.

En Leibniz y en D’Alembert se ve otra definición de derivada: la razón de la ordenada

como segmento vertical desde x en R (o desde (x, 0)) hasta (x, f(x)) con respecto a

la subtangente como segmento horizontal desde x hasta el x-intercepto de la recta

tangente a la gráfica en (x, f(x)). Esa podŕıa llamarse “derivada trigonométrica” o

“de razón trigonométrica”, a diferencia de la derivada geométrico-trigonométrica (o

“de función trigonométrica”) que da el valor de la función tangente del ángulo que

forma la tangente con la horizontal.

Aqúı también aparece la ambigüedad entre la subtangente como segmento horizon-

tal y la subtangente como valor numérico de la longitud de ese segmento. Eso es

muy distinto de lo que pasa con la ambigüedad de la tangente como recta, como

función trigonométrica, como razón entre dos segmentos o como valor numérico

correspondiente a otro valor numérico dado en radianes, grados, etc.

Como lo sugiere el profesor César Delgado, es pues aconsejable introducir primero

la noción de derivada puntual de Carathéodory, como la mejor aproximación lineal

a la función primitiva alrededor de un punto fijo, y mejor todav́ıa, presentar la

derivada general como la sección del espacio cotangente que selecciona la colección

de operadores lineales que mejor aproximan a la función primitiva en cada punto.
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Por supuesto que no es fácil, y es necesario tener cuidado con este enfoque de la

derivada:

1. La mejor aproximación a una función lineal es ella misma. Luego lo que da

la derivada es la matriz de una aproximación local. Lo que pasa es que en

dimensiones 1×1 la matriz se ve como un solo número, y puede tratarse como

una nueva función de una sola variable que a su vez puede tener derivada,

pero esa es una excepción propia de la unidimensionalidad de los dominios y

codominios o recorridos. En cohomoloǵıa, el operador de cofrontera d en torres

de cocadenas siempre cumple d(df) = 0.

2. La recta tangente a la recta tampoco suele corresponder a una función lineal,

pues si no pasa por el origen, es una función af́ın pero no lineal. Creer que

toda función de gráfica lineal es lineal es un error t́ıpico.

3. La mejor aproximación global a una curva por una recta en general no es la

tangente, ya que puede haber una recta de mı́nimos cuadrados que se ajuste

mejor globalmente. Suele ser una secante. Debe ser, pues, la mejor “localmen-

te”.

4. Pero “local” no significa “en el punto”, sino “cerca del punto”, en el espa-

cio tangente pegado al punto preimagen, y también hacia el espacio tangente

pegado a la imagen (de lo contrario, habŕıa que restar f(xo)), pues una apro-

ximación lineal manda siempre el cero al cero.

5. Desde el punto de vista de las razones, tasas o ratas variables, la derivada es

entonces una familia de funciones

Df = {f ′|P : P dom(f)} ,

que es una familia de un solo parámetro P , que está indexada por P , que es

el punto del dominio D de f donde se pega el espacio tangente TP . Alĺı f ′|P
es la transformación lineal que mejor aproxima localmente a f al transformar

vectores del espacio tangente TP hacia el espacio tangente TQ que está pegado

en el punto Q = f(P ) del codominio de f que corresponde al valor de la

función f en P .

Aśı se puede reformular también rigurosamente la diferencial de f , df

df : D × T (D) → T (Y )

como una función de dos variables: una, que es el ı́ndice o parámetro, tomada del

dominio D de la función, y otra del haz tangente T (D). Entendemos el haz tangente



1.5. CARLOS E. VASCO U. TRES IDEAS FUERTES DEL CÁLCULO 83

como unión disyunta de los espacios tangentes TP para los puntos P de D. La función

de dos variables df proyecta sus imágenes en el haz tangente del conjunto de llegada

T (Y ), entendido como unión disyunta de los espacios tangentes TQ para los puntos

Q = f(P ) de f [D], la imagen del dominio D por la función inducida en las partes

de R.

La función df le hace corresponder a la pareja (P, vP ), con el vector vP = vdxP ,

expresado en la base usual de TP , es decir, a la pareja (P, vP ) = (P, vdxP ), un vector

wQ de TQ con Q = f(P ):

wQ = wf(P ) = df((P, vP ) = df(P, vdxP ) = wdyQ en TQ = Tf(P ).

Rigurosamente, df(P, vdxP ) = Df |P (vdxP ) = f ′|P (vdxP ).

Para un vector de la base de TP , dxP , como la derivada en una dimensión se reduce

a un coeficiente multiplicativo, y Df |P es sólo un número; esta expresión se puede

reescribir aśı:

df(P, vdxP ) = Df |P dxP = f ′|P dxP ,

de donde se deduce formalmente que la razón entre vectores, o sea la transformación

lineal que env́ıa el uno al otro es, en una dimensión,

df(P, dxP )

dxP

= Df |P = f ′|P .

Si se utiliza el punto x donde termina el vector dxP como variable:

df(P, x)

dxP

=

[
df(x)

dx

]∣∣∣∣
P

= Df |P = f ′|P .

Este es el teorema ya mencionado que liga los diferenciales con las derivadas, que

sólo vale en una dimensión, y que no es ni una definición de df , ni de df

dx
, ni de “efe

prima”, pues se definió Df = f ′ por otro lado como una colección de ĺımites de

funciones, una para cada P del dominio de f .

El resultado es un vector wQ = wf(P ) = wdyQ expresado en la base usual de TQ =

Tf(P ). En el caso usual de una sola dimensión, se suele dar sólo la magnitud o tamaño

v de vP en la base usual de TP , {dxP}, el coeficiente a de la matriz de f ′|P en las

bases respectivas y el tamaño w de wQ = wf(P ) en la base usual de TQ = Tf(P ),

{dyQ} : w = av en R. Aśı, df(P, ) actúa como un funcional lineal sobre TP y la

diferencial df es una sección del haz cotangente T ∗(D)28.

28R. López-Gay, J. Mart́ınez-Torregrosa, A. Gras-Mart́ı, G. Torregrosa. On how to

best introduce the concept of differential in physics. Disponible en internet en el URL

http://www.fisica.uniud.it/girepseminar2001/CS07/MARTI 02 FINAL.pdf. M. Artigue & L.
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1.5.4. Tercera idea fuerte: la suma, la acumulación y la in-

tegral

Leibniz introdujo la suma de diferenciales como un operador de acumulación, y

tomó la inicial de “summa”, la “S”, y la alargó como “
∫

” para indicar una suma

extendida, sin precisar lo que hoy llamaŕıamos las condiciones de existencia del

ĺımite. La idea fuerte es la acumulación de diferencias, no la del ĺımite.

La integral definida puede considerarse una suma de masas mk = f(xk)∆µk sobre

una descomposición del complejo simplicial C en simplejos pequeños σk respecto a

la medida µ, con cualquier xk ∈ σk :

∑
f(xk)∆µk : k recorre los k de C.

La medida µ puede ser de longitud, de área, de volumen o de hipervolumen, y

µk = |σk| es la medida respectiva del hipervolumen del simplejo σk en el que f se

puede considerar una densidad constante. Bastan, pues, las funciones escalonadas,

nos olvidamos de las discontinuidades y obtenemos funciones poligonales, que por

supuesto también son integrables.

Puede modelarse el espacio métrico de salida con una resolución suficientemente

fina como complejo simplicial, y calcular la suma. Esa es la idea de la integral de

Riemann (y de la de Daniell), pero porque la medida como contenido parece obvia

sobre intervalos o sobre cuadraditos, o sobre cubitos, etc. En general, la genialidad

de Lebesgue fue caer en cuenta de que se necesitaba una medida aditiva y sigma-

aditiva para poder definir el contenido como medible con respecto a la medida ∆µ,

y hacer expĺıcita la necesidad de multiplicar esa medida ∆µ, en el ĺımite dµ, por la

función f integrable tomada como densidad.

La integral definida de una función real es un producto exterior (o “apareamiento”,

llamado “evaluación”)[ , ] de valor real entre cadenas simpliciales µ-medibles de

dimensión n, con el operador de frontera ∂, y cocadenas de n-formas, con el operador

de diferenciación d, que es aditivo [Z-lineal] a izquierda y R-lineal a derecha, y que

es dual con respecto a los operadores de frontera ∂ y de cofrontera d (o que cumple

la adyunción):

[C, dF ] = [C, ∂F ].

Nótese que el lado izquierdo es una evaluación en el piso n + 1: se trata de evaluar

una (n+1)-forma sobre una (n+1)-cadena, y el operador d sube la función o n-forma

Viennot (1987). Some aspects of students’ conceptions and difficulties about differentials. Mis-

conceptions and Educational Strategies in Science & Mathematics. Ithaca, NY: Cornell University

Press. M. Artigue (1989). Le passage de la différentielle totale à la notion d’application linéaire

tangente. En Procedures différentielles... (Annexe I). Université Paris 7, Irem et LDPES.



1.5. CARLOS E. VASCO U. TRES IDEAS FUERTES DEL CÁLCULO 85

F a la (n + 1)-forma dF . El del lado derecho vive en el piso n, pues el operador ∂

baja la (n + 1)-cadena a la frontera de C, que es una n-cadena.

En una dimensión, esta idea se puede comparar con el modelo mental de la densidad

lineal de un alambre vs. la masa marcada en el alambre desde la punta del rollo.

La 0-forma es una función de la masa según la longitud del alambre (esto sirve al

menos para pensar en funciones crecientes monótonas, pues no habŕıa densidad cero

ni densidades negativas). La densidad no tiene que ser uniforme. La F generaliza

la densidad uniforme a densidades variables pero continuas; ni siquiera hace falta

que sean mı́nimamente suaves (basta que “suban” por el operador d a funciones

continuas o 0-formas). Para evaluar la integral, ni siquiera es necesario que sean

continuas, si los puntos de quiebre son aislados. Piense en una poligonal arriba en

la gráfica de la integral y en una densidad como función escalonada. Piénsese en

esta relación entre poligonales y funciones escalonadas como una generalización de

la derivada para funciones continuas pero no suaves, ni siquiera mı́nimamente suaves

(para no entender “suave” como C-infinito, ni siquiera C1).

Por eso dF es una 1-forma, una colección de transformaciones lineales con el mismo

parámetro que los espacios tangentes, y por eso parece una función de x. Pero x

apenas es un ı́ndice que identifica a dF en la sección o familia, pero los argumentos

que toma dF son vectores del espacio tangente T (x). En el caso de funciones y formas

de valor real (extendible a los complejos), el grupo GL(n,m) se reduce a GL(n, 1)

y por tanto dF es una sección del haz cotangente: en cada punto x selecciona un

funcional lineal de T ∗(x) que actúa sobre vectores de T (x) y produce números reales.

Si C se reduce a un intervalo cerrado [P,Q] de la recta real:

∂[P,Q] = {Q,¬P},

y si F es una función sobre puntos (una 0-forma) tal que f = dF , la evaluación de

F en {Q,¬P} es fácil:

[C, f ] = [C, dF ] = [∂C, F ] = F (Q) − F (P ).

En la adyunción [C, dF ] = [∂C, F ] se encuentra resumido:

El teorema fundamental del cálculo en los niveles 1 y 0 [para 1-regiones o

segmentos o intervalos o 1-complejos de intervalos o 1-simplejos, no para sus

longitudes];

El teorema de Green para 2-regiones en los niveles 2 y 1 [para 2-regiones o

2-intervalos o 2-complejos de 2-intervalos o 2-simplejos, no para sus áreas, que

son los 2-volúmenes];
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El teorema de Stokes para 3-regiones en los niveles 3 y 2 [para 3-regiones o 3-

intervalos o 3-complejos de 3-intervalos o 3-simplejos, no para sus volúmenes,

que son los 3-volúmenes]; y

El teorema generalizado de Stokes en los niveles n y n − 1 [para n-regiones

o n-intervalos o n-complejos de n-intervalos o n-simplejos, no para sus n-

volúmenes].

Pero no voy a introducir esas ideas en el primer año de universidad, aunque śı puedo

recomendar que se introduzcan al comienzo del cálculo diferencial las ideas fuertes de

que las diferencias orientadas dx son vectores del espacio tangente a un punto p del

dominio y las diferenciales orientadas df son vectores del espacio tangente al punto

f(p), y la razón df

dx

∣∣
p

es el coeficiente de la transformación lineal que mejor aproxima

la covariación modelada por f cerca de p. En el cálculo integral, la idea fuerte es

que se trata de evaluar la acumulación de áreas de rectángulos como suma de los

diferenciales sobre cadenas de intervalos [P,Q] del dominio como bases, multiplicados

por la altura f(x), y por tanto basta saber la antiderivada en los puntos superior

e inferior de cada intervalo y evaluar la integral sobre cada eslabón de la cadena

CP = [P,Q]:

[CP , f ] = [CP , dF ] = [∂CP , F ] = F (Q) − F (P ).

1.5.5. ¿Y el ĺımite?

Parece que la mayoŕıa de los profesores de cálculo que conozco piensan que el ĺımite es

la idea más importante del cálculo. Se sorprenden de que en mi lista de tres, cuatro o

cinco ideas fuertes del cálculo no figuren el ĺımite ni la continuidad. Es que para mı́ el

ĺımite no es la idea fuerte central, sino que es una manera de analizar la covariación

al nivel micro, o sea, de pensarla como la transmisión de la variación del dominio

al codominio o rango por las funciones como relaciones o condiciones relacionales

de restricción de la covariación, o como operadores o máquinas transmisoras de la

variación.

Los estudiantes tienen razón en no tratar de pensar en ninguna idea fuerte en el

trabajo con ĺımites en el cálculo. Veamos algunos usos de la palabra ĺımite que ellos

śı conocen:

El ĺımite de la finca por el norte es el ŕıo Bogotá (lindero).

No están claros los ĺımites entre Colombia y Venezuela (linderos, fronteras,

bordes o borders).

El ĺımite de un ćırculo es la circunferencia (frontera).
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El ĺımite de velocidad en la autopista Norte es 80 km/h (tope, pero se lo

saltan).

La codicia no tiene ĺımites.

Hay por lo menos dos casos de ĺımite utilizados en primaria. Ya los niños de cuarto

y quinto grado trabajaron los ĺımites de muchas series infinitas con los decimales

periódicos. 1/3 = 0,333...

También trabajaron el área del ćırculo como ĺımite de la suma de las áreas de

los triangulitos, con base muy cerca de la circunferencia y altura muy cercana al

radio. Supongamos que sabemos qué es π como razón ampliadora del diámetro a la

circunferencia, un poco más de tres veces, como 3+(1/7); como el radio es la mitad

del diámetro, la razón ampliadora del radio a la circunferencia es 2π, un poco más de

seis veces, como 6+1/4. El área del disco es la suma de las áreas de los triangulitos

isósceles A(T ) = bh
2
, donde h se acerca al radio r y la base se acerca a un arquito de

la circunferencia C:

A(D) =
∑

A(T ) =
∑ bh

2
=

r

2

∑
b =

r

2
C =

r

2
(2πr) = πr2.

Con la notación de Leibniz, esto es simplemente:

A(D) =

∫
dA(T ) =

∫
bh

2
=

r

2

∫
dC =

r

2
C =

r

2
(2π)r = πr2.

Si usted quiere ponerle sub́ındices, hágalo: escriba T1, T2, T3, ... Tn. Pero f́ıjese que

aśı como subir el dos en r2 es una manera de decir “eleve r al cuadrado”, de pronto

alguien cree que T2 es otra manera de decir “sáquele a T la ráız cuadrada”.

Recuerde que por el primer sub́ındice que escriba, pierde la comunicación con la

mitad de los estudiantes de su salón; con el segundo sub́ındice, pierde la comunica-

ción con la mitad de los restantes, y aśı sucesivamente. Sin necesidad de tomar el

ĺımite, muy pronto no le va a quedar ni medio estudiante que comprenda las ideas

fuertes del cálculo. El trabajo conceptual con ese tipo de ĺımite intuitivo es suficien-

te para el cálculo escolar, pues los refinamientos usuales no sólo son inútiles, sino

contraproducentes. Veámoslo por casos:

Las funciones constantes aniquilan la variación que ocurre alrededor de un punto

cualquiera del dominio y, por tanto, en este caso el ĺımite no sirve para nada. Por

supuesto, se puede probar formalmente que el ĺımite existe y es la constante k de

ck. Para encontrar la derivada tampoco hace falta el ĺımite, pues la derivada como

mejor aproximación lineal a la variación local constante -o falta de ella- siempre es la

función lineal cero. Aqúı no hay problema de máximos y mı́nimos, ni de tangentes,

ni de subtangentes, ni de normales. Tampoco hay problema en integrar el área bajo
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la curva (que en este caso es recta); es obvio, sin necesidad de ĺımites, que el área del

rectángulo a partir del cero es base por altura, que la base es x y que la altura es ck.

Esa integral como acumulación lineal del área es pues A(ck) = ckx, y si se mira el

área de la última banda vertical de altura ck al moverse en el eje de las abscisas de x

hacia adelante o hacia atrás, el diferencial de área en el punto x es claramente ckdx,

donde dx es un vector del espacio tangente en x, T (x). Con software interactivo,

esta variación es inmediata.

Las funciones lineales transmiten fielmente la variación que ocurre alrededor de un

punto del dominio de la misma manera en todas partes, a lo más con un coeficiente

fijo de ampliación o reducción, que suele confundirse precisamente con la derivada.

Por eso la derivada de una función lineal parece constante. Por lo tanto, en este caso

de los modelos que sólo requieren una función lineal, el ĺımite tampoco sirve para

nada. Por supuesto que se puede probar formalmente que el ĺımite existe en cada

punto y que es el mismo valor de la función lineal en ese punto: el ĺımite L = lP en

p de la función lineal La que cumple La(x) = ax es

L = lP = limLa|P = ap.

Pero ah́ı no figuran la x, ni la flecha, ni el ocho dormido. Seŕıa mejor escribir limLa =

La, donde La(x) = ax.

En este caso de las funciones lineales, para encontrar la derivada tampoco hace falta

el ĺımite, pues la derivada de una función lineal como mejor aproximación lineal a la

variación local siempre es la misma función lineal, y por eso parece que la derivada

fuera siempre el mismo coeficiente a. Parece, pues, que fuera una función constante,

pero el que es constante es el coeficiente, no la función lineal.

En el caso de la función idéntica, f(x) = x, la gráfica es la diagonal principal del

plano cartesiano, y es claro que la derivada es 1 y que el área bajo la curva a partir

del cero en cualquier punto x es la mitad del área del cuadrado de lado x. No

hacen falta particiones, ni sumas de Riemann, ni ĺımites. La extensión a las demás

funciones lineales es obvia.

Aqúı es bueno aprovechar los resultados de integración que ya se saben, para re-

describirlos como resultados de acumulación de áreas de barritas o rectangulitos de

altura f(x) y que tienen como base un vectorcito del espacio tangente T (x): en el

caso del rectángulo para las funciones constantes no hacen falta ĺımites; en el caso

del cuadrado se ve el triángulo rectángulo isósceles claro y se sabe cuánto tiene que

dar el área como suma acumulada.

Las demás funciones, que ni son constantes ni son lineales, transmiten bastante

enrevesadamente la variación que ocurre alrededor de un punto del dominio. Como
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sabemos algo sobre funciones constantes y funciones lineales, pero muy poco sobre las

no lineales, por eso el objeto del cálculo diferencial e integral es linealizar localmente

los modelos no lineales. Para sistematizar y formalizar rigurosamente ese trabajo de

linealización śı hace falta el ĺımite, pero no para enseñar las ideas fuertes del cálculo.

Por ejemplo, cerca de los máximos, mı́nimos y puntos de inflexión, parece que to-

das las funciones no lineales usuales fueran funciones localmente constantes. Si la

gráfica es “mı́nimamente suave”, tiene tangente en cada punto y no hay problema

en entender la derivada. Cuando se puede encontrar una tangente horizontal, hay

un máximo, un mı́nimo o un punto de inflexión. No hacen falta ĺımites ni derivadas

ni diferenciales. Si la gráfica de esa función no lineal es continua, no hay problema

en entender la integral sin necesidad de ĺımites, al menos más allá de los ĺımites de

primaria: entender 1/3 = 0,333... y entender cómo se calcula el área del ćırculo por

triangulitos, o la del triángulo por barritas.

Arqúımedes hizo ese trabajo mucho antes de Cristo, y Galileo y Cavalieri hicieron eso

en 1650, mucho antes de Newton y Leibniz. Eso basta para la modelación de muchos

procesos fenómenos. Si usted cree que se necesita más rigor, use los infinitesimales

de Abraham Robinson, como lo hizo Sergio Fajardo cuando enseñó cálculo con el

texto de Keisler.

Otra alternativa es usar los ĺımites al estilo de Weierstrass, pero después de asegu-

rarse de que los estudiantes están pensando en vecindades básicas y en sus radios;

en que se imaginen que pueden aproximarse todo lo que quieran (épsilon mayor que

cero: ǫ > 0) al valor del codominio y en subir todo lo necesario (n > M) en el

dominio o bajar todo lo necesario en el dominio (radio menor que delta, r < δ) para

que la covariación se transmita sin problemas.

Podŕıamos decir que la transmisión de la variación lleva fácilmente a dos tipos de

ĺımites sobre espacios ordenados: el ĺımite hacia adelante o hacia arriba, cuando la

variación tiende a infinito, o aumenta sin ĺımite, y el ĺımite hacia atrás o hacia abajo,

cuando la variación tiende a cero. Eso sirve para las sucesiones, las aśıntotas y otros

casos interesantes, y luego se puede pasar a los topes inferior y superior de munditos

pequeños o vecindades básicas. Por ejemplo, el mundo del intervalo (1,∞) ordenado

hacia adelante se pasa por la transformación rećıproco al mundito (0, 1) ordenado al

revés. Alĺı se puede trabajar el ĺımite cero con Cauchy, con infinitesimales o sin éstos.

Pero todav́ıa no se está trabajando con la covariación de dos cantidades arbitrarias

modelables por las longitudes. Sólo por la covariación de una sola cantidad variable

en el tiempo, que seŕıa una covariación entre duraciones y cantidades, que también

se pueden medir como las longitudes, pero entendiendo el flujo del tiempo hacia la

derecha en el eje de las abscisas.
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Descartes estudió el problema de las normales a las curvas como ajustes de arcos

de circunferencia a las curvas, y pudo haber obtenido el radio de la mejor circunfe-

rencia osculante como medida de la curvatura local y como rećıproco de la segunda

derivada. Pero no le interesaba sino la normal a la curva en un punto, y la tangen-

te se defińıa como la normal a la normal en ese punto, lo cual le permit́ıa definir

tangente a la curva sin necesitar ninguna noción de ĺımite (se ocultaba en los movi-

mientos de los arcos de circunferencia). Le pasaba la noción intuitiva de ĺımite a la

determinación de la normal por variación y ajuste de arcos de circunferencia.

El problema de las tangentes era más bien el de las subtangentes, que eran longi-

tudes de segmentos en el eje de las abscisas, no rectas osculantes, y que ahora ni

se mencionan. Lástima que no se mencionen, puesto que es muy ilustrativo ver la

semejanza del triángulo rectángulo grande de base, la subtangente y altura la orde-

nada, con el triángulo de variación preferido por Leibniz en el punto (x, f(x)). Como

esa semejanza se mantiene para cualquier ampliación o reducción del triangulito de

variación, se ve por qué los diferenciales no tienen que ser “infinitesimales” y por

qué la derivada parece ser simplemente la razón de la altura f(x) a la subtangente, o

sea la tangente trigonométrica del ángulo que forma la tangente, en este caso puede

identificarse con la hipotenusa del triángulo grande, con el eje de las abscisas.

El problema de las tangentes como rectas se resolv́ıa si se sab́ıa solucionar el de

las normales a las curvas, con la definición de tangente como la recta normal a la

normal a la curva. Ah́ı no aparece el ĺımite en la definición de la tangente, como

śı aparece si se define tangente como ĺımite de las secantes. Por eso en las tangentes

a un ćırculo no aparece el ĺımite.

Podemos suponer que el ćırculo es una curva rectificable como poĺıgono de suficientes

lados, como para no distinguir ningún ladito recto a simple vista. Aśı, el radio es

perpendicular al punto central del lado pequeño y la tangente es su prolongación.

Podemos suponer las curvas útiles para la modelación de procesos y fenómenos como

rectificables, asumir que localmente la rectificación es un ladito recto, y aśı podemos

describir las normales como perpendiculares al punto medio de la rectificación y

las tangentes como prolongaciones de la rectificación. Ah́ı hay una noción intuitiva

de ĺımite que es suficiente. Eso hicieron Roberval, Fermat, Pascal, Wallis y Barrow

antes de Newton y Leibniz, y después L’Hôpital, Euler y hasta Cauchy. Sólo Dirichlet

y Weierstrass avanzaron más en la formalización y la vigorización lógica de los

argumentos. Pero ¿para qué exigir rigor en la argumentación si no se entiende qué es

lo que se está argumentando?

La definición actual de ĺımite es estática. No se permite a los estudiantes que hablen

de “tender a”, de leer el ocho dormido ∞ como “infinito”, etc. Pero si se supone
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un modelo ordenado linealmente, se puede hablar del ĺımite hacia adelante o del

ĺımite hacia atrás, y distinguir con claridad los casos en que el ĺımite está dentro del

sistema sobre el que se toma el ĺımite o no.

El ĺımite de los números de contar como ubicadores ordenados (primero, segundo,

etc.) hacia atrás es el 1, que es el primero y está adentro. Hacia adelante es el ocho

dormido, ∞, que está afuera, en la compleción de un solo punto del sistema anterior.

El ĺımite de los números naturales tomados como cardinales finitos hacia atrás es

el cero, que es el cardinal de los conjuntos vaćıos, y está adentro. Hacia adelante

los cardinales finitos también tienen ĺımite: alef cero, ℵ0, el primer cardinal ĺımite

infinito, que está fuera de los cardinales finitos, pero dentro de los cardinales. Si se

toman los números naturales como ordinales finitos, el cero es un ordinal, porque

todos sus subsistemas no vaćıos tienen primer elemento (no hay ninguno, luego...).

Por tanto, el ĺımite hacia atrás es el ordinal 0, y hacia adelante es el ordinal omega,

ω, el primer ordinal ĺımite infinito, que está fuera de los ordinales finitos, pero dentro

de los ordinales.

En los reales, con el modelo de la compleción de dos puntos, el ĺımite hacia atrás

es el ocho dormido negativo, −∞, y hacia adelante es el ocho dormido positivo,

+∞. Ambos están fuera del sistema de los reales. Si consideramos los reales como

insertados en el eje de los reales en el plano complejo C, podemos ver que con el

modelo de la esfera de Riemann C ∪ ∞ (que es holomorfa al plano complejo por

proyección estereográfica), el ĺımite hacia adelante y hacia atrás (y hacia adelante

en cualquier semirrecta r · exp(iθ)) es el ocho infinito ∞ como Polo Sur de la esfera

de Riemann.

La función rećıproca en la esfera de Riemann es una rotación ŕıgida de media vuelta

sobre los puntos +1 y −1, con lo que se ve inmediatamente que es homotópica con

la identidad. Sin esa visión dinámica es dif́ıcil hacer un análisis complejo. Sin el ocho

dormido interpretado como Polo Sur, es dif́ıcil hacer el trabajo de polos, residuos y

divisores. No habŕıa análisis complejo sin ese trabajo de Riemann con el modelo de

la esfera con el Polo Sur sellado.

La dualidad de la definición generalizada de integral indefinida como una forma que

produzca otra forma exacta y por tanto cerrada cambia el sentido de la dirección

vertical en que uno suele modelar la derivación, que se suele pensar “hacia abajo”

y la integración como “hacia arriba”.

El ĺımite es importante en la sistematización y en la fundamentación rigurosa del

análisis, pero en el cálculo no. Descartes, Roberval, Fermat, Wallis, Newton, Leibniz,

D’Alembert, Euler, Lagrange, Fourier y con frecuencia el mismo Cauchy no teńıan
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claro qué era el ĺımite y lo utilizaban a su manera en forma oportuna en cada caso.

D’Alembert expĺıcitamente habla de cantidades ascendentes y de no poder pasarse

más allá del ĺımite. Ya vimos que el mismo Cauchy no sab́ıa bien qué era tener ĺımite

cero y créıa que era sólo algo dinámico para funciones positivas descendentes. Su

definición de ĺımite cero no se aplicaŕıa a la función constante cero, ni su definición

general a las funciones constantes. Además, para mayor confusión, en su definición

de continuidad usa la palabra “ĺımite”, pero para las fronteras de un intervalo del

eje de las abscisas.

El ĺımite empieza a sistematizarse con la convergencia de las sucesiones y las series,

no con las funciones reales. Las sucesiones y las series empezaron a considerarse en

el siglo XX no como funciones sobre los números naturales, sino como una extensión

obvia de las parejas, las triplas, las cuaternas ordenadas. Son apenas ejemplos de

sistemas bien ordenados. Se consideraban también variables que cambiaban no con-

tinuamente sino por saltos en el tiempo, y para acelerarlo se pod́ıa ir disminuyendo

la duración de cada lapso, como en el caso de la paradoja de Zenón.

Ésta dice si uno recorre la mitad del camino en una unidad de tiempo, la cuarta

parte siguiente en otra unidad de tiempo, etc., uno nunca llega al otro extremo del

camino. Pero si uno recorre la mitad del camino en una unidad de tiempo, la cuarta

parte siguiente en media unidad de tiempo, etc., en dos unidades de tiempo llega al

otro extremo del camino. Para lograr ese concepto no se necesitan épsilons ni deltas,

sino manejar el modelo mental de las cantidades variables de longitud y duración,

formularlo con cuidado en los casos de ascender desde el primer paso hacia el infinito

y descender hacia el cero.

Pasemos ahora al ĺımite más general, ya no aplicado a una cantidad variable sino

a la covariación de dos cantidades variables: la independiente, con valores indicados

por x, y la dependiente, con valores indicados por y, regulada por una función f ,

cuyos valores f(x) son precisamente los valores y : y = f(x).

Es mejor pensar primero en mover la x cuando es menor que un cierto punto fijo p

hacia la derecha (o hacia arriba) para acercarse al punto fijo p desde la izquierda (o

por debajo y hacia arriba). Se puede comenzar con funciones monótonas crecientes o

decrecientes y luego se estudian otras más complicadas, pero que tienen oscilaciones

con porciones crecientes y decrecientes.

Aśı se va viendo cómo transmite la función f la variación del movimiento de x

cerca del punto p al movimiento de f(x), sin necesidad de pensar en p ni en f(p).

El movimiento de x hacia p puede subir el valor de f(x), bajarlo, dejarlo quieto u

oscilar, y uno se fija si f(x) tiende a algo: ¿se acerca todo lo que uno quiera a un
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valor L?

“El ĺımite de f cuando x tiende a p desde la izquierda es L”.

Luego se piensa en mover la x cuando es mayor que p hacia la izquierda (o hacia

abajo) para acercarse a p desde la derecha (o por encima y hacia abajo), y uno se

fija si f(x) tiende a algo: ¿se acerca todo lo que uno quiera a un valor M?

“El ĺımite de f cuando x tiende a p desde la derecha es M”.

Luego se mueve la x en ambos lados de la p y se ve si f(x) tiende a lo mismo por

los dos lados. Si ese es el caso, L = M y podemos escribir

“El ĺımite de f cuando x tiende a p es L”.

Veamos algunas preguntas capciosas para mostrar que el ĺımite, como se enseña en

cálculo, no es una idea fuerte de los sistemas conceptuales anaĺıticos:

No es claro cuántas variables tiene la expresión “El ĺımite de f(x) cuando x

tiende a p es L”.

¿Puede escribirse “El ĺımite de f(x) cuando y tiende a z es L?”.

¿Para qué es cada una de esas variables y por qué puede remplazarse en dónde?

¿Tiene que aparecer dos veces la x?

Si aparece dos veces, ¿figura o no figura la x en la expresión? (si x es una

variable ligada “no figura en una expresión”). Si no figura, ¿para qué escribir

“f(x)”? Basta escribir “f”.

A veces se ve un ocho dormido en vez de la p o en vez de la L. ¿Puede estar

en vez de la f o de la x?

Sea x un número real. ¿Qué significa lim de x cuando x → p es p?

Nada. Si x es un número real, no es una función y no podŕıa aparecer en el lugar de

las funciones. En la expresión “lim de x cuando x → p es p” parece que falta una

variable para la función o para el valor que se mueve (lo que pasa es que aqúı la x

es una notación muy engañosa: es una variable para la función idéntica y para el

argumento de la función idéntica).

La L depende de f y de p. ¿Depende de x? Si no depende de x, debeŕıa escribirse

“L(f, p)”, “Lf(p)”.

Esa es la clave: el ĺımite de una función f , si existe, es otra función Lf :

limf = Lf . (limf)|p = Lf(p).
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1.5.6. ¿Y la continuidad?

La continuidad tampoco es una idea fuerte del cálculo, pues para el cálculo diferencial

todas las funciones tienen que ser diferenciables, y toda función diferenciable es

continua. Lo que interesa no es la continuidad sino una mı́nima “suavidad” (pero

sin entender “suave” como C infinito, ni siquiera como C1). Se trata de que las

curvas correspondientes a funciones no lineales sean continuas y rectificables para

tener normales y tangentes.

Además, todas las funciones que aparecen para modelar procesos reales son continuas

y diferenciables: las constantes, las lineales, las polinómicas, las multilineales, las

trigonométricas, las exponenciales, las logaŕıtmicas y las loǵısticas. ¿Cuáles más sabe

usted que sean útiles para la modelación? Yo pensaŕıa en las funciones escalonadas y

en las poligonales, pero esas son constantes por piezas o afines por piezas, y en cada

una de tales piezas la derivada es obvia y la integral se puede calcular fácilmente.

Si se piensa en la idea fuerte de integral como acumulación o suma, se ve que las

sumas de Riemann no son sino integrales de funciones escalonadas, que el punto

intermedio puede escogerse en cualquier parte del intervalo y que la integral es una

función poligonal continua y PL o lineal por piezas.

Por otra parte, en la definición de continuidad en topoloǵıa no se utiliza el ĺımite.

Basta mirar la función inversa inducida en las partes, y ver si esa función transporta

abiertos en abiertos. Equivalentemente, se puede usar el test de la banda horizontal,

parecido al test de la banda vertical para la funcionalidad. Si la proyección de toda

intersección de la gráfica cartesiana con una banda horizontal es un abierto en el

eje x, la función es continua. Otro problema es que sólo sea continua en su dominio,

como f(x) = 1
x
. Si le molesta una discontinuidad, repárela, y si no la puede reparar,

qúıtela del dominio. Luego la continuidad no es ninguna idea fuerte del cálculo.

Más aún, con el trabajo virtual en pantalla, la continuidad se reduce a la contigüidad

de los pixeles. Si se considera vecindad básica de un pixel un cuadrito de nueve

pixeles, la vecindad básica de cada punto no puede tener sino tres posiciones para

el punto anterior y tres para el siguiente, y todo el trabajo de la representación

semiótica cartesiana en pantalla se reduce a trabajar con parejas de enteros. Ni

siquiera haŕıan falta los números racionales, mucho menos los reales.

1.5.7. Conclusiones

La primera conclusión la formulé al explicar la primera idea fuerte del cálculo, la

de la variación y covariación de las cantidades. Propongo, pues, que la enseñanza

del cálculo por ideas fuertes nos exige volver a las magnitudes y a las cantidades
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variables y a sus modos de covariación, para modelarlas mentalmente, comunicar

esos modelos y sus teoŕıas verbal, gestual y gráficamente, y tratar las cantidades

variables y sus covariaciones por medio de las funciones de los sistemas conceptuales

anaĺıticos. Cuando se llegue a cierta agilidad mental de modelación de la covariación,

se podrán tratar las funciones con el cálculo diferencial e integral como registro

semiótico potente.

Como segunda conclusión podemos decir que al comenzar la enseñanza del cálculo

por ideas fuertes debemos atender cuidadosamente a las diferencias y, sobre todo, a

las razones de diferencias y a las razones de diferenciales. Las diferencias orientadas

nos permiten introducir de una vez los espacios tangentes a cada punto y el haz

tangente a la recta real, tanto sobre el dominio como sobre el codominio. Alĺı en-

contraremos, sin necesidad del ĺımite, los diferenciales de la variable independiente

y de la dependiente como vectores del espacio tangente respectivo, y las razones

como operadores activos nos permitirán introducir la derivada como la colección

de las mejores aproximaciones lineales en cada punto del dominio. Esas aproxima-

ciones lineales son transformaciones de un espacio vectorial anclado en un punto

x del dominio a otro espacio vectorial anclado en el punto f(x) del codominio o

recorrido. El profesor puede pensar productivamente que se trata de una sección del

haz cotangente correspondiente al haz tangente, que es precisamente la 1-forma que

selecciona la transformación lineal que mejor aproxima localmente la función primi-

tiva, pero la terminoloǵıa todav́ıa no es apropiada para los estudiantes de primer

año de universidad.

Otra conclusión de este enfoque es que las derivadas de las funciones constantes no

sirven para nada, y que las derivadas de las funciones lineales son ellas mismas. Por

consiguiente, el cálculo por ideas fuertes empieza sólo cuando queremos linealizar

las funciones no lineales que codifican covariaciones de cantidades variables o sus

medidas numéricas para utilizar sus aproximaciones lineales como herramientas de

cálculo.

La idea fuerte de las razones entre diferencias nos lleva a otra conclusión: a considerar

que la derivada es una familia de funciones, una para cada punto del dominio, y que

la manera como la consideramos -como otra función derivada de la función primitiva-

se debe a una afortunada casualidad: en una dimensión, las funciones lineales tienen

matrices que se pueden confundir con un único coeficiente de ampliación o reducción,

y si nos olvidamos de la transformación lineal y pensamos sólo en el coeficiente, la

derivada nos parece una función de una sola variable. Por tanto, si no es lineal, se le

puede volver a aplicar el tratamiento de linealización y obtener la segunda derivada.
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Recordemos también la conclusión que vimos al final del tratamiento del ĺımite:

Como la L del ĺımite no depende de x, sino de f y de p, debeŕıa escribirse

“L(f, p)”, “Lf(p)”.

Esa es la clave: el ĺımite de una función f , si existe, es otra función Lf :

limf = Lf . (limf)|p = Lf(p).

La conclusión es, pues, que el ĺımite es un operador de orden superior sobre el sistema

conceptual anaĺıtico de las funciones, en el que no figuran ni la x, ni la flechita, ni el

ocho dormido. Las funciones continuas son simplemente el subconjunto estable bajo

el operador lim, pues f es continua si y sólo si limf = f . El ĺımite y la continuidad

no son, entonces, ideas fuertes del cálculo, sino consideraciones finas y potentes para

analizar los modos de covariación de las cantidades variables covariantes, de gran

importancia en la sistematización y formalización rigurosa del análisis, pero no en

la modelación de procesos y fenómenos de la realidad por medio del cálculo.

Esa misma conclusión podŕıa reaparecer al final de las tres, cuatro o cinco ideas

fuertes del cálculo, teniendo cuidado de que para las derivadas y antiderivadas es

necesaria una reducción para lograr que las imágenes de los operadores no se vayan

muy lejos sino que vuelvan a casa:

La derivada de una función f , si existe, es otra función f ′ (con el operador ( )′ por

la derecha) o Df (con el operador D( ) por la izquierda), pero es una función de

dos variables: un parámetro p para un punto del dominio de f y un argumento x

en una bola, esfera o intervalo alrededor de p. El operador de derivación produce,

pues, una familia de funciones lineales. Esta familia puede considerarse la imagen

de un operador de orden superior der o D sobre el sistema conceptual anaĺıtico de

las funciones reales:

der f = f ′ = Df. (der f)|p(x) = f ′(p)(x) = Df(p)(x).

En esta conceptualización, el conjunto estable del operador der o D son las funciones

lineales, pues f es lineal si y sólo si der f = Df = f .

Pero si se olvida que f ′(p) = Df(p) es una transformación lineal con una matriz en

la base usual, que en una dimensión se puede pensar sólo como un número, se puede

decir que la derivada de una función f , si existe, es otra función de una variable p

para un punto del dominio de f . Por tanto, se le puede volver a aplicar el operador

de derivación, pero ahora sobre otra interpretación de la variable p, que antes era el

parámetro, no el argumento: der f = f ′ = Df . Sólo para una dimensión:

der der f = f ′′ = DDf = D2f. (der f)|p = f ′(p) = DDf(p) = D2f(p).
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En esta conceptualización, no generalizable a dimensiones superiores, el conjunto

estable del operador der o D es muy distinto: contiene sólo la familia de las tras-

laciones de la función exponencial usual por funciones constantes: Si der f = f ,

existe una constante k ∈ R tal que f = expe + ck, que se acostumbra escribir si

der f(x) = f(x), existe una constante k ∈ R tal que f(x) = expe(x)+ck(x) = ex+k.

Paralelamente, la diferencial de f , si existe, es otra función df , pero es una función

de dos variables: un parámetro p para un punto del dominio de f y un argumento

dxp para un vector de T (p):

dif f = df. (dif f)|p(dxp) = df(p)(dxp).

La integral indefinida o antiderivada de f , si existe, puede considerarse otra función,

pero es una función de dos variables: un argumento x, x ∈ dom f , para una primitiva

F fija tal que F ′ = f , que puede ser cualquiera de ellas o escogerse para que F (x) = 0,

y una constante k, k ∈ R:

int f = D−1f = If . (int f)(x, k) = F (x) + k.

Otra forma de entender la integral indefinida o antiderivada de f , si existe, es pues

como una familia de funciones de un solo argumento x, pero indexada por una

constante k:

intf = {G|∃F, F ′ = f ∧ ∃k ∈ R,∀x dom f,G(x) = F (x) + k} .

Tenemos entonces otro operador de orden superior sobre el sistema anaĺıtico de las

funciones reales que produce familias de funciones reales.

La integral definida de f , intdef f , si existe, puede considerarse también otro tipo

de función sobre un intervalo [a, x], o una función de dos variables: un argumento

a, que indica el punto a la izquierda del intervalo de integración, y otro argumento

x, que indica el punto a la derecha del intervalo de integración, que van a ser los

argumentos para evaluar el resultado con cualquier primitiva F tal que F ′ = f :

[intdef f ]([a, x]) = F (x) − F (a).

Otra manera de entender la integral definida de f sobre un intervalo [a, x], si existe,

es como un operador de evaluación que evalúa el valor de f sobre ese intervalo

[a, x], apareamiento que cumple la dualidad o adyunción ya mencionada, y que es

calculable por cualquier primitiva F tal que f = dF :

intdef ([a, x], f) = [[a, x], f ] = [[a, x], dF ] = [∂[a, x], F ] = F (x) − F (a).
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Nótese finalmente que la derivada y el diferencial son familias de funciones, y la

integral como antiderivada también lo es. El diferencial generaliza la noción de di-

ferencia orientada variable. La derivada generaliza la noción de tasa o rata variable,

y la integral definida generaliza la noción de acumulación.

Todo ello sólo tiene sentido en el estudio de la modelación de la covariación de

cantidades variables por medio del sistema conceptual anaĺıtico formado por las

funciones reales. Esas son las ideas fuertes del cálculo.



CAṔITULO 2

Talleres y cursillos

2.1. Graficación covariacional

Dr. Crisólogo Dolores Flores1

Resumen

Tanto en los textos como en la práctica escolar de la enseñanza de la matemática

se conocen varios métodos de graficación de funciones. Sin embargo, en estos méto-

dos se omiten los procesos de variación y covariación subyacentes en ellas. En este

art́ıculo se plantea un método novedoso de graficación que posibilita la construcción

de la gráfica misma sobre la base de tres elementos esenciales: se representan los

cambios de las variables, la covariación como la relación causal entre los cambios y

el comportamiento de la variación en razón de magnitud y dirección, y las razones

entre los cambios. En este contexto, el objetivo del curso taller consiste en lograr

que los asistentes interioricen este método y puedan aśı incorporarlo a su práctica

docente.
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2.1.1. Marco conceptual

A continuación describiremos el marco conceptual de la covariación, realizaremos una

caracterización de la graficación covariacional -en la que expondremos su significado-

y concluiremos con un ejemplo de dicha graficación. Esta forma de graficación, ob-

jeto principal de nuestra atención en este texto, está apoyada sobre dos elementos

básicos: las ideas derivadas del pensamiento y lenguaje variacional, y las derivadas

del razonamiento covariacional. Carlson et ál. (2002) desarrollan la noción de razo-

namiento covariacional y lo definen como las actividades cognitivas involucradas en

la coordinación de dos cantidades variables, atendiendo las formas en que cambian

una con respecto a la otra. En la tabla 1 se proporciona una descripción de las cinco

acciones mentales del razonamiento covariacional y de los comportamientos asocia-

dos. Las acciones mentales del marco conceptual de la covariación proporcionan un

medio para clasificar los comportamientos que se pueden ver cuando los estudian-

tes se involucran en tareas de covariación; con todo, la habilidad de razonamiento

covariacional de un individuo, relativa a una tarea particular, sólo se puede deter-

minar examinando el conjunto de comportamientos y acciones mentales exhibido en

la ejecución de esa tarea.

Tabla 1. Acciones mentales del marco conceptual para la covariación

Acción mental Descripción de la acción

mental

Comportamientos

Acción mental 1 Coordinando el valor de una

variable con los cambios en la

otra.

Etiquetando los ejes, coordi-

nando las dos variables (e.g., y

cambia con cambios en x ).

Acción mental 2 Coordinando la dirección de

los cambios de una variable con

los cambios en la otra variable.

Construyendo rectas crecien-

tes. Verbalización consciente

de la dirección de cambio de la

salida, a la vez que se conside-

ran los cambios de entrada.

Acción mental 3 Coordinando la cantidad de

cambio de una variable con los

cambios en la otra variable.

Trazando puntos/ Construyen-

do ĺıneas secantes. Verbaliza-

ción consciente de la cantidad

de cambio en la salida, consi-

derando los cambios en la en-

trada.
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Acción mental 4 Coordinando la razón de cam-

bio promedio de la función con

incrementos uniformes de cam-

bio en la variable de entrada.

Construyendo ĺıneas secantes

contiguas para el dominio.

Verbalización consciente de la

razón de cambio de salida (con

respecto a la entrada) conside-

rando incrementos uniformes

en la entrada.

Acción mental 5 Coordinando la razón de cam-

bio instantáneo de la función

con cambios continuos en la

variable independiente para el

dominio entero de la función.

Construyendo una curva conti-

nua con indicaciones claras de

cambios de concavidad. Verba-

lización consciente de los cam-

bios instantáneos en la razón

de cambio para el dominio en-

tero de la función (la dirección

de concavidad y los puntos de

inflexión son correctos).

2.1.2. Niveles de razonamiento covariacional

En el marco teórico covariacional se describen cinco niveles de desarrollo de las

imágenes de covariación. Estas imágenes se presentan en relación con las acciones

mentales soportadas por cada imagen.

Nivel 1 (L1). Coordinación. En este nivel, las imágenes de la covariación pueden

soportar la acción mental de coordinación del cambio de una variable con los cambios

en la otra variable (MA1).

Nivel 2 (L2). Dirección. En el nivel de dirección, las imágenes de la covariación

pueden soportar las acciones mentales de coordinación de la dirección del cambio de

una variable con los cambios en la otra variable. Las acciones mentales identificadas

como MA1 y MA2 están soportadas por las imágenes de L2.

Nivel 3 (L3). Coordinación cuantitativa. En el presente nivel las imágenes de la

covariación pueden soportar las acciones mentales de coordinación de la cantidad de

cambio en una variable con los cambios en la otra variable. Las acciones mentales

identificadas como MA1, MA2 y MA3 están soportadas por las imágenes de L3.

Nivel 4 (L4). Razón promedio. En el nivel de la razón promedio, las imágenes de

la covariación pueden soportar las acciones mentales de coordinación de la razón de

cambio promedio de la función, con cambios uniformes en la variable de entrada. La
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razón de cambio promedio puede utilizarse para coordinar la cantidad de cambio de

la variable de salida con los cambios en la variable de entrada. Las acciones mentales

identificadas como MA1 hasta MA4 son soportadas por las imágenes de L4.

Nivel 5 (L5). Razón instantánea. Nivel en el cual las imágenes de la covariación

pueden soportar las acciones mentales de coordinación de razón instantánea de cam-

bio de la función, con cambios continuos en la variable de entrada. Este nivel incluye

una conciencia de que la razón instantánea de cambio resultó de refinamientos más

y más pequeños de la razón de cambio promedio, aśı como también la conciencia de

que el punto de inflexión esta donde la razón de cambio pasa de creciente a decre-

ciente y viceversa. Las acciones mentales identificadas como MA1 hasta MA5 están

soportadas por las imágenes de L5.

2.1.3. El pensamiento y lenguaje variacional

Cantoral (2000) caracteriza el pensamiento y lenguaje variacional como el campo

en el que se estudian los fenómenos de enseñanza, aprendizaje y comunicación de

saberes matemáticos propios de la variación y el cambio, en el sistema educativo

y en el medio social que le da cabida. Le presta particular atención sl estudio de

los procesos cognitivos y culturales con que las personas asignan y comparten sen-

tidos y significados, utilizando diferentes estructuras y lenguajes variacionales. En

cuanto vertiente investigativa posee una triple orientación: en primera instancia, se

ocupa de estructuras variacionales espećıficas desde un punto de vista matemático

y fenomenológico; en segundo término, estudia las funciones cognitivas que los seres

humanos desarrollan mediante el uso de conceptos y propiedades de la matemáti-

ca del cambio; en tercer lugar, tiene en cuenta los problemas y situaciones que se

abordan y resuelven en el terreno de lo social, mediante las estructuras variacionales

consideradas en la escuela y el laboratorio

Uno de los trabajos en los que se discuten aspectos esenciales del pensamiento y

lenguaje variacional es el libro Una introducción a la derivada a través de la varia-

ción, de Dolores (1999), en el cual se señala que las variables son un elemento básico

de la matemática que se utilizan para estudiar los procesos de variación, procesos

en los que se involucran al menos dos variables que necesariamente se relacionan

entre śı. Si esas relaciones se expresan mediante fórmulas matemáticas, entonces el

estudio de los procesos de variación se facilita bastante; por medio de las fórmu-

las las variables se pueden manipular convenientemente, pues con ellas se pueden

realizar operaciones matemáticas comunes; las fórmulas tienen la gran ventaja de

indicar con precisión cómo se relacionan las variables y las relaciones entre variables

se pueden expresar mediante fórmulas algebraicas, para cuya obtención primero hay
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que identificar lo que cambia y lo que no cambia, asignar una letra a lo que cambia,

buscar la relación entre las variables y expresarla mediante una fórmula. Ésta es

muy importante, pues nos permite saber cuánto vale una variable cuando la otra

tiene un cierto valor. Lo anterior a su turno es posible gracias a que una variable

depende de otra, y a su vez la fórmula es la expresión algebraica de una relación

funcional, es decir, es la fórmula de la función. Las imágenes de las funciones pueden

cambiar de maneras muy distintas: unas pueden ser crecientes, otras decrecientes;

unas no crecen ni decrecen, otras crecen uniformemente, otras más lo hacen en for-

ma variada, etc. Para comprender el comportamiento de una función, o sea, para

entender cómo cambia, es necesario determinar cuánto cambia; esto es de enorme

utilidad si se pretende saber cuánto crece una función creciente o cuánto decrece si

es decreciente. En realidad, el término variación está estrechamente ligado al proceso

de medición del cambio. El cambio se produce cuando se pasa de un estado inicial a

un estado final; por tanto, para medir el cambio de una variable basta restar de su

valor adquirido en el estado final, su valor adquirido en el estado inicial; entonces el

cambio se mide por la diferencia: xf − xi = ∆x.

En términos generales, si y es una función de x, es decir: y = f(x), para medir lo

que cambia f(x), se requiere primero considerar un estado inicial xi; a este valor de

x le corresponde f(xi). Después de un cambio que experimente xi, de xi a xi + ∆x

(un estado final), f(x) experimentará también un cambio a un estado final, y éste

quedará como f(xi + ∆x).

A un cambio de la variable independiente corresponde un cambio de la variable

dependiente. Estos cambios se obtienen por medio de diferencias, como se resume a

continuación:

Lo anterior se puede representar en el plano, para observar mejor cómo cambian las

variables relacionadas por medio de la fórmula f(x) (figura 1).
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Cabe señalar que la diferencia es el modelo fundamental para medir la variación y el

cambio. Con las diferencias se puede predecir una enorme variedad de las cualidades

del comportamiento variacional de las funciones. Por ejemplo:

Si f(x + ∆x)− f(x) > 0 (para todo x perteneciente al intervalo (x, x + ∆x) y

∆x > 0 preferentemente pequeño), entonces f(x) es creciente.

Si f(x+∆x)− f(x) < 0 (en las mismas condiciones anteriores), entonces f(x)

es decreciente en el intervalo (x, x + ∆x).

Si f(x + ∆x) − f(x) = 0 (con las condiciones anteriores), entonces f(x) no

crece ni decrece en el intervalo (x, x+∆x), es decir, se mantiene constante, no

cambia.

Estas desigualdades, que en el fondo representan las comparaciones entre las orde-

nadas, nos permiten determinar cómo cambia f(x). La respuesta es más evidente si

se utilizan representaciones geométricas:

Tal vez se ha notado que cuando se habla de cambios, necesariamente se les relaciona

con otros cambios, pero en realidad no puede hablarse de cambios sin relacionarlos

con otros; por ejemplo, cuando se estudian los cambios de las distancias en la cáıda

libre de los cuerpos, siempre se hace referencia al cambio de la distancia recorrida en

un intervalo de tiempo. Cuando se estudian procesos de variación no sólo interesan

los cambios por śı mismos sino también su dirección y sentido; cuando se trata de
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magnitudes vectoriales, interesan su rapidez o la velocidad con que se comportan.

La rapidez es el módulo de la razón del cambio de distancia entre el cambio del

tiempo.

Aśı las cosas, se puede concluir que los cambios relativos se miden por medio de

razones o cocientes entre cambios. Esta es una de las ideas más importantes del

cálculo diferencial, pues siempre que se estudia un fenómeno de variación lo im-

portante no es sólo determinar los cambios, sino determinar qué tan rápido cambia

eso que cambia y la mejor forma de averiguarlo es por medio de las razones entre

los cambios. Este tipo de razones son llamadas razones de cambio promedio y me-

diante ellas se comparan cambios grandes. No miden con precisión la rapidez o la

velocidad, únicamente dan una especie de promedio. Proporcionan una información

gruesa acerca de los procesos de variación.

La obtención de la velocidad precisa del cambio en un instante o en un punto sólo fue

posible introduciendo en la matemática los cambios infinitamente pequeños. Y esto

no fue fortuito, puesto que los cambios en los movimientos continuos que ocurren en

la naturaleza tienen esta propiedad. Estos cambios se modelan con los diferenciales.

Las razones entre los diferenciales permiten medir con precisión la velocidad o la ra-

pidez del cambio en un punto o en un instante en un proceso de variación continua.

Existen muchas razones de cambio que toman nombres espećıficos, como la acelera-

ción, que es la razón de cambio de la velocidad respecto del tiempo; la intensidad

de la corriente eléctrica, que es la razón de cambio entre la cantidad de electricidad

que pasa por una sección transversal de un conductor respecto del tiempo; el gasto,

que es la razón entre el volumen de un ĺıquido que fluye en un conducto en relación

con el tiempo, etc. En todos estos casos, subyace una idea general: las razones o

cocientes entre cambios. Aqúı aparece un nuevo concepto matemático: razones de

cambio, creado de la abstracción de otros más simples: las diferenciales. Una abs-

tracción más compleja creada de otras abstracciones simples. A esta abstracción se

la conoce con el nombre de velocidad instantánea, caso particular de la derivada.

Este es, por tanto, un concepto matemático creado para medir la variación relati-

va; en concreto, mide lo que cambia una variable respecto de otra en un instante.

Dada la trayectoria de un cuerpo o si se quiere la relación funcional que lo rige, la

determinación de su velocidad en cualquier punto es posible por medio de las ra-

zones de cambio instantáneas; por el contrario, el otro problema, dada la velocidad

del cuerpo, obtener su trayectoria o la fórmula de su relación funcional, originó la

integral. La derivación y la integración, por tanto, son procesos inversos y ambos

describen aspectos esenciales de la variación. Finalmente, la velocidad instantánea

se obtiene del ĺımite del cociente ∆s
∆t

cuando ∆t tiende a cero (∆s es la cantidad de

cambio en la distancia y ∆t es la cantidad de cambio en el tiempo). De este modo,
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la velocidad instantánea se obtiene dividiendo cambios infinitamente pequeños. Los

aspectos del pensamiento y lenguaje variacional descritos serán fundamentales para

comprender la caracterización que mostraré de la graficación covariacional, dado que

forman parte de ella.

2.1.4. Caracterización de la graficación covariacional

En Salgado (2007) se define la graficación covariacional como las actividades de

representación gráfica en las que se involucra la coordinación de dos cantidades va-

riables, atendiendo las formas en que cambia una con respecto a la otra. El elemento

central de esta graficación es el cambio y no sólo la ubicación de los puntos como en

las formas tradicionales. El cambio se calcula mediante diferencias y éstas son re-

presentadas gráficamente mediante segmentos de recta. Aśı, las curvas o gráficas en

principio son poligonales, cuyos segmentos son “grandes”; a medida que los cambios

van disminuyendo de tamaño, se alcanza mayor fineza. En términos programáticos,

para la graficación covariacional es necesario realizar las acciones siguientes:

1. ¿Qué cambia? Identificar, establecer o definir qué variables se representarán y

su relación entre ellas.

2. ¿Cuánto cambia? Calcular y coordinar la cantidad de cambio de una varia-

ble con los cambios en la otra variable y representarlos en el plano mediante

segmentos de recta.

3. ¿Cómo cambia? Coordinar gráficamente la dirección de los cambios de una

variable con los cambios en la otra variable.

4. ¿Qué tan rápido cambia? Calcular las razones de cambio promedio con incre-

mentos uniformes de cambio en la variable de entrada y representarlas gráfi-

camente.

5. ¿Cómo se comporta puntual y globalmente la gráfica? Calcular razones de

cambio instantáneas y representarlas gráficamente.

Para ilustrar la graficación covariacional, graficaremos la expresión: s(t) = t2.

1. ¿Qué cambia? En este caso, s cambia si cambia t, ya que t es la variable

independiente y s es la variable dependiente.

2. ¿Cuánto y cómo cambia? Calcularemos y coordinaremos la cantidad de cambio

de una variable con los cambios en la otra variable y los representaremos en el

plano mediante segmentos; también coordinaremos la dirección de los cambios

de una variable con los cambios en la otra.
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Mostraremos gráficamente cuánto cambia s con respecto a t.

Cuando x cambia 1 unidad de −3

a −2, y cambia 5 unidades de 9 a

4.

Cuando x cambia 1 unidad de −2

a −1, y cambia 3 unidades de 4 a

1.

Cuando x cambia 1 unidad de −1

a 0, y cambia 1 unidad de 1 a 0.

Cuando x cambia 1 unidad de 0 a

1, y cambia 1 unidad de 0 a 1.

Cuando x cambia 1 unidad de 1 a

2, y cambia 3 unidades de 1 a 4.

Cuando x cambia 1 unidad de 1 a

2, y cambia 3 unidades de 1 a 4.

Gráficamente, ¿cómo cambia s con respecto a t?

Cuando t cambia de −3 a −2, s(t) decrece 5 unidades (de 9 a 4).

Cuando t cambia de −2 a −1, s(t) decrece 3 unidades (de 4 a 1).

Cuando t cambia de −1 a 0, s(t) decrece 1 unidad (de 1 a 0).

Cuando t cambia de 0 a 1, s(t) crece 1 (de 0 a 1).

Cuando t cambia de 1 a 2, s(t) crece 3 (de 1 a 4).

Cuando t cambia de 2 a 3, s(t) crece 5 unidades (de 4 a 9).
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3. ¿Qué tan rápido cambia? Calcularemos la razón de cambio promedio con in-

crementos uniformes de cambio en la variable de entrada y los representaremos

gráficamente:
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4. ¿Cómo se comporta puntual y globalmente la gráfica? Calcularemos razones

de cambio instantáneas y las representaremos gráficamente. Para saber cómo

se comporta puntual y globalmente la gráfica se requiere reducir “suficiente-

mente” los intervalos de variación. Comenzaremos con incrementos ∆t = 1.

A renglón seguido mostraremos gráficamente los cálculos de la tabla anterior:

Para lograr mayor fineza, ahora haremos los cambios más chicos ∆t = 0,5:
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A continuación mostraremos gráficamente los cálculos de la tabla anterior:
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Ahora lo haremos con incrementos de ∆t = 0,25:

A continuación mostraremos gráficamente los cálculos de la tabla anterior:
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Como puede verse, luego de refinamientos en la variable de entrada, la gráfica es cada

vez más fina. A renglón seguido mostraremos una serie de ejemplos para calcular

razones de cambio instantáneas en puntos espećıficos, mediante refinamientos en la

variable de entrada.

2.1.5. Conclusión

Las formas de graficación tradicionales consideran secundario lo variacional y privi-

legian el trazado del dibujo de la gráfica de la función a partir de ubicar un conjunto

discreto de puntos. Otras centran su atención en el cálculo de los máximos, mı́nimos

o puntos de inflexión para bosquejar la gráfica de la función; otras más determinan el

comportamiento de la gráfica de la función a partir de los parámetros de la fórmula;

algunas, a través de las operaciones básicas como la suma, resta, multiplicación y

división, obtienen el bosquejo de la función producto, etc., mientras que la grafica-

ción covariacional es una forma de graficación integradora, ya que permite construir

a la par la gráfica de la función y establecer el comportamiento variacional de ésta.

La graficación por tabulación es la que más se utiliza en el nivel básico (secundaria)

y en el nivel medio superior, cuando se trabaja la graficación de funciones. En

este art́ıculo se propone una nueva técnica para graficar funciones continuas en el

plano, propuesta dirigida al estudio de la graficación en el nivel medio superior. Por

tanto, una pregunta importante por responder es la siguiente: ¿cuál es la diferencia

que existe entre la graficación por tabulación y la graficación covariacional? Para

responder este interrogante, enlistaremos las diferencias esenciales entre cada una

de las técnicas de graficación.

TABLA 6. Graficación por tabulación vs. graficación covariacional

Graficación por tabulación Graficación covariacional

En este tipo de graficación se relega a

un segundo plano la correlación causal

entre las variables.

En todo el proceso de graficación pre-

domina la conciencia de la correlación

causal entre eso que cambia.

Se considera que los estudiantes tienen

ya formada una idea de curva no nece-

sariamente como poligonal.

Se considera que una curva está forma-

da por “segmentos” de recta. Cuanto

más pequeño sean esos segmentos, ma-

yor fineza ganará la gráfica.

No se enfatiza sobre la naturaleza de lo

que cambia o de lo que se quiere repre-

sentar, simplemente se representan las

x y las y o las funciones.

Se parte de identificar qué cambia y la

correlación entre eso que cambia.
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Se representan las x y las y como en-

tes abstractos y los valores que adquie-

ren dependen del arbitrio del profesor.

Aqúı se dice “asignemos los valores: −2,

−1, 0 , 1, 2, a x”, “si x vale tanto y vale

tanto”.

Se hace expĺıcito el proceso de cambio

que le confiere razón de ser a eso que

cambia, utilizando variables concretas.

“Si el tiempo t cambia de 1 a 1,5, ave-

rigüemos qué sucede con la distancia

s”.

Se usa fundamentalmente la fórmula de

f(x) para calcular las coordenadas de

los puntos.

Para gráficas se usan esencialmente ∆x,

∆y para calcular los cambios, estable-

ciendo la relación causal entre los cam-

bios de x y los cambos de y; la fórmula

de f(x) se utiliza para calcular ∆y.

Los cambios no interesan, por lo que

no se representan gráficamente; sólo se

unen puntos consecutivos, sin cuestio-

narse sobre su significado variacional.

Se representan gráficamente los cam-

bios y no sólo los puntos. Importa esen-

cialmente lo que sucede “entre” los

puntos y no sólo el valor de las coor-

denadas de los puntos.

Se pasa de un punto a otro, sin cues-

tionarse lo que sucede en el interme-

dio; tampoco se cuestiona sobre cuánto

cambian las variables.

Para graficar interesa cuánto y cómo

cambia la variable independiente, al

igual que este cambio qué efectos tiene

sobre los cambios de la variable depen-

diente. “Si el tiempo t cambia de 1 a 2,

la distancia s aumenta 4 unidades”.

No son motivo de análisis la rapidez de

la variación ni su representación gráfi-

ca. La pendiente se asocia con la de-

rivada hasta cuando ésta es motivo de

estudio y no cuando se grafica una fun-

ción.

Se enfatiza sobre la razón de cambio

promedio. Ésta se asocia con la incli-

nación de los segmentos de recta que

forman la “curva”.

No es motivo de discusión la fineza o

precisión de la curva.

La poligonal, o sea la gráfica buscada,

será más precisa si se reducen suficien-

temente los cambios de la variable in-

dependiente.

2.1.6. Actividades que se plantean

1. De acuerdo con los datos de la Red Automática de Monitoreo Atmosférico, en el

Distrito Federal el d́ıa 13 de agosto de 1997 se registraron los siguientes ı́ndices
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de radiación ultravioleta (UV) emitida por el Sol (se recomienda exponerse al

Sol con cautela cuando el ı́ndice de radicación UV es mayor que 7) (gráfico 2).

a) ¿Cuánto cambió el ı́ndice UV en cada hora?

b) ¿En qué horas el ı́ndice UV ascendió más rápidamente?

c) ¿En qué intervalos el ı́ndice UV descendió más velozmente?

d) ¿En qué intervalo el ı́ndice UV no cambió?

2. A continuación se dan algunas fórmulas que describen la posición s = f(t), de

ciertas part́ıculas que se mueven a lo largo del eje de coordenadas. Obtenga

para cada una la fórmula que permite calcular los cambios ∆s, y haga las

gráficas correspondientes.

a) s = t + 2

b) s = 1,86t2

c) s = t3 − 2t2 + 1

d) s = 10

e) s = 1
t+1

3. Obtenga la expresión que permite cuantificar los cambios a partir de la infor-

mación dada.

a) Para la función: f(r) = πr2, cuando r cambia de r = 1 a r = 2

b) Para A(l) = l2, cuando l cambia de l a l + ∆l

c) Para y = f(x), cuando x cambia de xi a xi + h

4. Las fórmulas que describen la cáıda libre de los cuerpos sobre la superficie de

algunos planetas son:
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a) s(t) = 1,86t2, Marte

b) s(t) = 4,9t2, Tierra

c) s(t) = 11,44t2, Júpiter

Supóngase que s es la distancia recorrida en metros y t el tiempo en segundos.

¿En qué planeta los cuerpos caen más rápidamente? ¿En cuál lo hacen con

mayor lentitud? Justifique sus respuestas y grafique mediante la graficación

covariacional.

5. Supongamos que una part́ıcula se mueve en ĺınea recta en el plano cartesiano,

parte del punto A(1, 2) y después se ubica en el punto B(3, 5). ¿Cuánto cam-

bió su posición respecto a x y respecto a y?

6. Una recta que pasa por el origen se genera de modo que ∆x = ∆y = 1. Trace

la gráfica de la recta y obtenga su ecuación.

7. ¿Cómo se comportan ∆x y ∆y en la recta que tiene por ecuación y = −1
2
x+1?

Represente los ∆x y ∆y y dibuje la gráfica de la recta.

8. Cae agua dentro de un tanque cúbico de 2,5 m de arista, a razón de 1 litro

por segundo:

a) Obtenga una fórmula para el volumen V en función de la altura h.

b) Deduzca la fórmula para la altura h en función del tiempo t.

c) Encuentre la fórmula que mida los cambios de volumen (∆V ) si ∆h = 1

cm.

9. Si ∆y = 0 [y = f(x)], ¿cuál o cuáles de las siguientes opciones se satisface?

Justifique sus respuestas.

a) f(xi + ∆x) > f(xi)

b) f(xi + ∆x) = f(xi)

c) ∆x = 0 para todo x

d) La variable dependiente no cambia, pero la variable independiente es

posible que śı.

10. Si ∆y > 0 [y = f(x)], ¿cuál o cuáles de las siguientes alternativas es cierta?

a) f(x + ∆x) > f(x)

b) f(x + ∆x) < f(x)

c) ∆x = 0 para todo x
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d) f(x + ∆x) = f(x)
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2.2. Estudio epistemológico del desarrollo del álgebra

lineal

Alberto Campos2

2.2.1. Génesis

Aportadores en el siglo XVII

Gottfried Wilhelm Leibniz

(1646 - 1716). Alemán

Sistema lineal.

Determinante.

James Stirling

(1692 - 1770). Escocés

n curva algebraica por 1
2n(n + 3) puntos.

Cúbicas de Newton. Cónicas.

Colin Maclauring

(1698 - 1746). Escocés

Sistemas 2 × 2, 3 × 3, 4 × 4 (1729) (1748).

Intersección de curvas.

Aportadores en el siglo XVIII

Gabriel Cramer

(1704 - 1752). Suizo

Sistemas lineales n × n, sin pruebas (1750).

n curva algebraica por 1
2n(n + 3) puntos.

Paradoja de Cramer.

Leonhard Euler

(1707 - 1783). Suizo

Condiciones para unicidad de sistemas lineales.

Interacción de álgebra y geometŕıa en dimensión

3.

Ejes de cuádrica real.

Jean Le Rond D’Alembert

(1717 - 1783). Francés

n soluciones lineales para una ecuación diferen-

cial lineal homogénea de orden n.

Alexandre Théophile

Vandermonde

(1735 - 1796). Francés

Determinantes como teoŕıa.

2Doctor de la Universidad de Paŕıs. Profesor honorario de la Universidad Nacional de Colombia.

Bogotá.
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Joseph Louis Lagrange

(1736 - 1813). Francés

Para resolver sistemas de ecuaciones diferencia-

les se vale de procedimientos que actualmente

pertenecen a teoŕıa espectral.

Caspar Wessel

(1745 - 1818). Noruego

C ∼= R × R (iniciación).

Pierre Simon, marqués de

Laplace

(1749 - 1827). Francés

Desarrollo de un determinante.

Jean Robert Argand

(1768 - 1822). Suizo

C ∼= R × R (iniciación).

Módulo de un número complejo.

Carl Friedrich Gauss

(1777 - 1855). Alemán

1811. Eliminación en sistema lineal m × n.

Vocablo determinante en 1801.

1801. Disquisitiones arithmeticae.

Augustin Louis Cauchy

(1789 - 1857). Francés

Teoŕıa de determinantes. 1815.

Teoŕıa de matrices.

Aportadores en el siglo XIX

Carl Gustav Jacob Jacobi

(1804 - 1851). Alemán

Teoŕıa de determinantes.

William Rowan Hamilton

(1805 - 1865). Irlandés

n = 4. Teorema de Hamilton-Cayley

C ∼= R × R (1834).

Cuaterniones (1843).

Álgebra dentro de cuaterniones.

Dimensiones superiores.

Hermann Günther

Grassmann

(1809 - 1877). Alemán

Dimensiones superiores (1844).

Lecciones de extensión lineal (1844): espacio vec-

torial, subespacio, conjunto generador, indepen-

dencia, base, dimensión, transformación lineal,

dimV + dimW = dim(V + W ) + dim(V ∩ W ).
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Benjamin Peirce

(1809 - 1880). Estadounidense

Álgebra asociativa lineal (1870).

James Joseph, con seudónimo

Sylvester

(1814 - 1895). Británico

Adoptó el vocablo matriz.

Teoŕıa de invariantes.

Karl Theodor Wilhelm

Weierstrass

(1815 - 1897). Alemán.

Teoŕıa axiomática para determinantes.

(1903). On determinant theory.

Teoŕıa axiomática de matrices.

Forma canónica llamada de Jordan.

Formas bilineales y cuadráticas.

Teoŕıa espectral.

Arthur Cayley

(1821 - 1895). Británico

1843. Geometŕıa anaĺıtica n-dimensional.

1850. 1858. Matrices m × n. Teoŕıa.

1858. Teorema de Cayley-Hamilton.

Problema de Cayley-Hamilton.

Las matrices forman un álgebra.

Matrices y cuaterniones.

1844. Octoniones.

Dimensiones superiores.

Charles Hermite

(1822 - 1901). Francés

n formas lineales de cualquier grado.

Una letra para una aplicación lineal.

Operación sobre aplicaciones lineales.

Problema de Cayley-Hermite.

Ferdinand Gotthold Max

Eisenstein

(1823 - 1852). Alemán

Teoŕıa aritmética de formas n lineales.

Un signo para una aplicación lineal.

Operaciones sobre aplicaciones lineales.

Teoŕıa de invariantes.

Leopold Kronecker

(1823 - 1891). Alemán

Tratamiento axiomático de determinantes.

(1903). Lectures on determinant theory.

Formas bilineales y cuadráticas.

Teoŕıa espectral.

Henry John Stephen Smith

(1826 - 1883). Irlandés

Solución de sistemas de ecuaciones lineales.
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Julius Wilhelm Richard

Dedekind

(1831 - 1916). Alemán

1870. Sumas y productos de enteros algebraicos.

Suplemento X, 1871, en edición de obra de Di-

richlet.

Investigación con H. Weber sobre extensiones.

Marie Ennemond Camille

Jordan

(1838 - 1922). Francés

Teoŕıa de matrices.

Teoŕıa espectral.

Forma canónica de Jordan.

Josiah Willard Gibbs

(1839 - 1900). Estadounidense

Parte real y parte vectorial de producto de cua-

terniones.

Charles Sanders Peirce

(1839 - 1914). Estadounidense

Números reales, números complejos, cuaternio-

nes son las únicas n-uplas que son álgebra de

división.

Heinrich Weber

(1842 - 1913). Alemán

Definición axiomática de grupo y de campo.

Ferdinand Georg Frobenius

(1849 - 1917). Alemán

1878. On linear substitutions and bilinear forms.

Teoŕıa espectral: Cauchy, Jacobi, Weierstrass,

Kronecker.

Oliver Heaviside

(1850 - 1925). Británico

Parte real y parte vectorial en producto de cua-

terniones.

1880. Producto escalar. Producto vectorial.

Giuseppe Peano

(1858 - 1932). 1888. Italiano

Cálculo geométrico.

Espacio vectorial sobre los reales (sistema li-

neal).

Dimensión de un espacio vectorial.

Base de un espacio vectorial.

Espacio vectorial de polinomios de una variable.

Erhard Schmidt

(1876 - 1959). Alemán

(de origen estonio)

1908. Sistemas lineales en infinitas ecuaciones

con infinitas incógnitas.

Hans Hahn

(1877 - 1934). Austŕıaco

1922. Über Folgen linearer Operationen.
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Otto Töplitz

(1881 - 1940). Alemán

1909. Sistemas lineales en infinitas ecuaciones

con infinitas incógnitas.

Amalie Emmy Noether

(1882 - 1935). Alemana

1921. Ideal theory in rings. Módulo.

Hermann Weyl

(1885 - 1955). Alemán

1918. Axiomas para espacio vectorial real.

Stefan Banach

(1892 - 1945). Polonés

1932. Théorie des opérations linéaires.

Norbert Wiener

(1894 - 1964). Estadounidense

1922. The group of the linear continuum.

Emil Artin

(1898 - 1962). Austŕıaco

Años veinte. Linealización de la teoŕıa de Galois.

2.2.2. Estructuración

Bartel Leenert van der Waerden

(1903 - 1996). Holandés

1930 - 1931. Moderne algebra.

Temas en el caṕıtulo XV (edición 1937). Álgebra lineal.

El álgebra lineal trata de formas lineales, módulos de tales formas lineales, homo-

morfismos o transformaciones lineales entre ellos.

106. Módulos. Formas lineales. Vectores. Matrices.

107. Módulos respecto a un campo. Ecuaciones lineales.

108. Módulos respecto a anillos euclidianos. Divisores elementales.

109. El teorema fundamental de grupos abelianos.

110. Representaciones y módulos de representación.

111. Forma normal de una matriz en un campo conmutativo.

112. Divisores elementales y función caracteŕıstica.

113. Formas cuadráticas. Formas hermı́ticas.
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Son ocho temas expuestos en una perspectiva completamente axiomatizada. La ex-

posición avanza sin que, por ejemplo, los teoremas estén enumerados, todo está argu-

mentado. El lenguaje es conciso y no hay motivaciones para los diversos desarrollos.

Se proponen unos cuantos ejercicios al final de cada sección, no tan complejos ni tan

numerosos como en Bourbaki. Todo el desarrollo cubre 36 páginas. No es un texto

para introducir el álgebra lineal en el primer nivel universitario.

Enunciados que llevan el t́ıtulo de teorema:

Teorema de solubilidad.

Teorema de divisores elementales.

Teorema fundamental de grupos abelianos.

Teorema de unicidad en una descomposición de módulo.

Teorema de los vectores propios de una transformación.

Tampoco el caṕıtulo II de Algèbre, de Bourbaki (1970), dedicado al álgebra lineal, es

un texto elemental. Abarca 210 páginas. El lenguaje es igualmente abstracto. Cada

parágrafo tiene un buen número de ejercicios, nada triviales, muchos de los cuales

están precedidos del signo de dificultad. En los ejercicios del caṕıtulo II aparecen el

teorema de Desargues, un teorema de Erdös-Kaplansky, otro teorema de Kaplansky,

el teorema de Papo, el teorema del cuadrilátero completo y el llamado teorema

fundamental de la geometŕıa proyectiva.

1970. Bourbaki. Algèbre.

Temas del caṕıtulo II de Álgebra lineal (210 pp.):

§ 1. Módulos.

§ 2. Módulos de aplicaciones lineales. Dualidad.

§ 3. Productos tensoriales.

§ 4. Relaciones entre productos tensoriales y módulos de homomorfismos.

§ 5. Extensión del anillo de los escalares.

§ 6. Ĺımites proyectivos y ĺımites inductivos de módulos.

§ 7. Espacios vectoriales.

§ 8. Restricción del campo de los escalares en los espacios vectoriales.

§ 9. Espacios afines y espacios proyectivos.

§ 10. Matrices.

§ 11. Módulos y anillos graduados.
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Bourbaki llama grupo de operadores a la situación en la que se tiene un conjunto

C y un grupo G junto con una acción de C hacia G, a la cual se dota, mediante

axiomas, con algunas propiedades.

Un módulo es un tipo particular de grupo de operadores en el que el conjunto

está dotado con la estructura de grupo aditivo y los operadores son los elementos

de un anillo.

Espacio vectorial es un caso especial de módulo en el que el anillo es remplazado

por un campo.

Método

¿Cómo pudo llegarse a la estructuración que aparece en Van der Waerden o en

Bourbaki?

Al tomar en cuenta los diversos aportes, pueden advertirse como cauces en una

cuenca hidrográfica. Al intentar seguir sus cursos, es factible decantar grandes temas

que han de conducir a la estructura aludida.

Moore trata de mostrar diversas fuentes que confluyen en la axiomatización del álge-

bra lineal: geometŕıa euclidiana, sistemas lineales, ecuaciones diferenciales lineales,

Grassmann, Dedekind, Peano, Weyl.

Todav́ıa no se tiene, según Moore, el impulso que en verdad suministra el análisis

funcional con nombres como los de Banach, Hahn, Wiener, secundados por las in-

vestigaciones de John von Neumann al axiomatizar los espacios de Hilbert (1927).

Se logra un amplio espectro teórico, utilizable igualmente para las necesidades de

expresión de la f́ısica.

En la matemática china de los “Nueve caṕıtulos” se expone “un método sistemático

para resolver conjuntos de ecuaciones lineales con cualquier número de incógnitas”

según el comentario acompañante de Van der Waerden.

En el problema citado por Van der Waerden se trata de comparar rendimientos en

la cultura comparada de tres granos diferentes, para lo cual se aducen tres conjuntos

de datos.

Se exhibe la situación en el sistema lineal siguiente:

3x + 2y + z = 39

2x + 3y + z = 34

x + 2y + 3z = 26.

Se trata de saber el valor de x, y, z.



124 CAPÍTULO 2. TALLERES Y CURSILLOS

Según la fuente aludida, los matemáticos chinos disponen los coeficientes del sistema

aśı:
1 2 3

2 3 2

3 1 1

26 34 39

En la columna de la derecha están los coeficientes de la primera ecuación.

En la columna del medio están los coeficientes de la segunda ecuación.

En la columna de la izquierda están los coeficientes de la tercera ecuación.

El texto del problema asigna un papel especial al número 3, que es el número de

gavillas del grano superior en la columna derecha.

Resolver el sistema va a consistir en transformar el arreglo ya obtenido de los coefi-

cientes del sistema en otro arreglo con coeficientes nulos.

De tres veces la columna del centro se resta dos veces la columna derecha:

3




2

3

1

34




− 2




3

2

1

39




=




6

9

3

102




−




6

4

2

78




=




0

5

1

24




De tres veces la columna izquierda se resta la columna derecha:

3




1

2

3

26




−




3

2

1

39




=




3

6

9

78




−




3

2

1

39




=




0

4

8

39




Ahora el arreglo es aśı:
0 0 3

4 5 2

8 1 1

39 24 39

Ya hay dos elementos nulos, se busca uno más a partir del último arreglo.

De cinco veces la columna izquierda se resta cuatro veces la columna central.

5




0

4

8

39




− 4




0

5

1

24




=




0

20

40

195




−




0

20

4

96




=




0

0

36

99



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Ahora el arreglo de los coeficientes es el siguiente:

0 0 3

0 5 2

36 1 1

99 24 39

El sistema lineal inicial se ha transformado en el siguiente:

3x + 2y + z = 39

5y + z = 24

36z = 99.

De donde la solución:

z =
99

36
=

11

4
, y =

17

4
, x =

37

4
.

En Mesopotamia se resolv́ıan problemas de la misma laya, tal vez más sistemáti-

camente. Por ejemplo, para un problema con tres incógnitas supońıan una relación

cuadrática en las tres variables, sin añadirle dificultades. Para dos de las variables

planteaban relaciones que se transcriben linealmente en ecuaciones cartesianas de

primer grado, lo cual indica por lo menos buenos tanteos de tipo lineal.

Bourbaki menciona dos reglas primitivamente bien conocidas: la de tres y la de

falsa posición. En diversos problemas, Diofanto echa mano de la solución por falsa

posición, a veces doble, lo que hace más intrincada todav́ıa el álgebra retórica, la

utilizada generalmente por Diofanto.

Pensar linealmente puede esquematizarse en la capacidad de resolver ecuaciones

reducibles a la forma ax = b, sea con el lenguaje del álgebra retórica, sea con el del

álgebra sincopada introducida por Diofanto, sea mediante el simbolismo cartesiano.

Hay un problema reproducido en libros de divulgación de historia de la matemática,

particularmente indicado. Aparece una versión en [p. 1020. Cient́ıficos griegos. Tomo

II. Recopilación, estudio preliminar, preámbulos y notas por Francisco Vera. 1970.

Aguilar. 1190 pp.]. Otra versión, más entendible, aparece en [p. 156. Jean-Paul

Collette. Historia de las matemáticas. I. (1973). 2003. Siglo XXI Editores. x + 347

pp.], tomada de historiadores franceses. Dice aśı:

“Transeúnte, esta es la tumba de Diofanto: es él quien con esta sorprendente dis-

tribución te dice el número de años que vivió. Su juventud ocupó la sexta parte;

después, durante la doceava parte su mejilla se cubrió con el primer bozo. Pasó aún

una séptima parte de su vida antes de tomar esposa y, cinco años después, tuvo un
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precioso niño que, una vez alcanzada la mitad de la edad de su padre, pereció de

una muerte desgraciada. Su padre tuvo que sobrevivirle, llorándole, durante cuatro

años. De todo esto, deduce su edad”.

Con notación cartesiana, se transcribe:

x

6
+

x

12
+

x

7
+ 5 +

x

2
+ 4 = x

de donde x = 84 años. Aśı que fue niño hasta los 14 años, adolescente hasta los 21,

se casó a los 33, tuvo un hijo a los 38, el cual murió cuando su padre teńıa 80 años.

Algunos de los 189 problemas que constituyen parte de la herencia de Diofanto dan

ya procedimientos lineales que, desde luego, hay que leer entre ĺıneas en la redacción

retórica de los problemas que resuelve.

Según Bourbaki, Apolonio de Perga inspira a Fermat algunas de las ideas claves para

el desarrollo del álgebra lineal. Por ejemplo, clasificar las curvas planas según el grado

de la ecuación que la describe. Una ecuación de primer grado es una recta y una de

segundo grado es una cónica. Ideas que, obviamente, aparecieron en Géométrie, de

Descartes (1637).

Otra observación igualmente clave es la del carácter lineal de las fórmulas de trans-

formación de coordenadas presente en Fermat y que de algún modo han de estar en

el fondo de la clasificación de las cónicas.

Euler llamó afinidad a la relación entre curvas que permite pasar de la una a la otra

por la transformación x′ = ax, y′ = by.

Según Cajori [A History of Mathematical Notations. Two Volumes Bound As One.

xvi + 451. xii + 367. Dover. (1928). 1993. § 459], la más temprana notación para

determinante proviene de Leibniz, quien origina los determinantes en Europa. En

carta [28 IV 1693] al marqués de L’Hôpital, escribe tres ecuaciones aśı:

10 + 11x + 12y = 0

20 + 21x + 22y = 0

30 + 31x + 32y = 0.

Explica Cajori que la notación es topográfica, es decir, Leibniz denota 10, 11, 12 lo

que actualmente se denota a10, a11, a12.

Leibniz escribió, pues, por primera vez, un sistema lineal mediante una notación con

doble ı́ndice, bastante cómoda para el caso. La carta va más adelante con el procedi-

miento de solución. Es aśı como surge el papel capital de ese número intŕınsecamente
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asociado a todo sistema lineal, cuyo conocimiento es indispensable para resolver el

sistema. Leibniz se ocupó varias veces del concepto que surǵıa.

Una secuencia interesante es la relativa a la solución de sistemas lineales.

Hab́ıa la experiencia en la antigua matemática china, luego en la de Mesopotamia,

posteriormente la de Alejandŕıa con Diofanto; también se puede anotar la de Bagdad,

cuando Joarizmi, por ejemplo, se ocupaba de problemas lineales.

Después, prácticamente hay que llegar hasta Maclaurin, quien en 1729 (Hauchecorne

y Suratteau) publicó fórmulas resolutivas para 2, 3, 4 ecuaciones con igual número

de incógnitas. Cuando el par de números no coincid́ıa, generalmente se atribúıa a que

el problema estaba mal puesto. Las fórmulas, según la misma fuente, se publicaron

en 1748, póstumamente.

Stirling hab́ıa probado que una curva de grado n es determinada por
n(n + 3)

2
puntos.

Cramer formuló la paradoja que lleva su nombre y a la que se llega con los resultados

de Maclaurin y de Stirling. Según el primero, dos curvas de grados m, n se intersecan

en m · n puntos.

Según Stirling
n(n + 3)

2
puntos determinan una curva de grado n. Pero (ah́ı está la

paradoja), dos cúbicas se intersecan en 9 puntos (Maclaurin), aśı que
n(n + 3)

2
puntos (Stirling), para n = 3, no determinan una única cúbica.

Cramer planteó el problema mediante ecuaciones lineales, lo cual lo obligó a ocuparse

a fondo de las fórmulas resolutivas.

Cramer indujo fórmulas generales sin deducirlas. La paradoja, se dice a veces de

Cramer - Euler, la explicó Plücker posteriormente.

Bézout (1779, Théorie générale des équations algébriques) se ocupó también a fondo

en la solución de sistemas lineales.

Es de recalcar el papel de Joseph Fourier, en su tratado Théorie analytique de la cha-

leur (1822). A Fourier le resultó planteado un sistema lineal en infinitas ecuaciones

con infinitas incógnitas,
∞∑

j=0

aijxj = bi, i ∈ N
∗.

Fourier resolvió (Bourbaki pone el verbo entre comillas) una parte finita del sistema

resultante, suprimiendo previamente los términos donde los sub́ındices i, j superaran

un número n fijado y empleando luego fórmulas como las de Cramer; obtenida aśı una

solución parcial, pasó al ĺımite haciendo tender n a infinito.

Los atrevidos enunciados de Fourier eran los de un técnico, no los de un matemático;

dado que el sistema proced́ıa de problemas reales, hab́ıa que buscarle solución. Fue
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una excelente circunstancia para los matemáticos el tener que tomar frase por frase

para darle a cada una un sentido matemático porque la indagación resultó altamente

enriquecida. Los matemáticos se familiarizaron con el estudio de sistemas infinitos

de ecuaciones lineales; por este camino llegarán al concepto de módulo.

Según Bourbaki, el problema de la solución en números enteros de sistemas de ecua-

ciones lineales con coeficientes enteros es resuelto en parte por Hermite y con toda

generalidad por H. J. Smith, quien introdujo en 1861 (Hauchecorne y Suratteau) el

estudio de la matriz aumentada en la solución de un sistema lineal. Dorier cita On

systems of linear indeterminates equations, and congruences (Smith, 1861).

También según Bourbaki, es Kronecker quien da forma definitiva a los teoremas

acerca de sistemas lineales con coeficientes reales o complejos.

Para completar la información sobre quiénes más aportaron a la solución de sistemas

lineales infinitos, conviene anotar lo referente a sistemas que brotaron en el análisis

funcional.

Erika Luciano, en At the origins of functional analysis: G. Peano and M. Gramegna

on ordinary differential equations (Revue d’histoire des mathématiques, 12 (2006),

pp. 35-79. Société Mathématique de France) hace una reseña completa de la indaga-

ción guiada por Peano en Tuŕın, particularmente la de la tesis de Maŕıa Gramegna.

Sin embargo, ningún t́ıtulo de art́ıculo de Peano menciona expresamente la infinitud

de los sistemas lineales considerados.

Por otra parte, ninguno de los autores que sustentan el presente trabajo acerca del

álgebra lineal destaca a Peano.

Se alude, pues, a cuatro art́ıculos destacados en la bibliograf́ıa, aunque no en el texto

por Bourbaki, aśı como por Dorier y por H. Moore.

Los cuatro art́ıculos se referencian según el orden de publicación.

1908. E. Schmidt. Ueber die Auflösung linearer Gleichungen mit unendlich vie-

len UnbeKannten (Acerca de la solución de ecuaciones lineales con infinitas

incógnitas). Rend. Palermo. XXV (1908), pp. 53-77.

1909. O. Toeplitz. Ueber die Auflösung unendlichvieler Linearer Gleichungen mit

unendlich vielen UnbeKannten (Acerca de la solución de una infinidad de

ecuaciones lineales con una infinidad de incógnitas). Rend. Palermo. XXVIII

(1909), pp. 88-96.

1913. F. Riesz. Les systèmes d’équations linéaires à une infinité d’inconnues. Paŕıs.

Gauthier-Villars.
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1921. E. Helly. Ueber Systeme linearer Gleichungen mit unendlich vielen UnbeKann-

ten (Acerca de sistemas de ecuaciones lineales con una infinidad de incógni-

tas) Monatsh. fur Math und Phys XXXI (1921), pp. 60-91.

Hay una especie de ascenso y de descenso para el concepto de determinante.

Es Leibniz quien se da cuenta de la importancia del número que se presenta al

intentar resolver cualquier sistema lineal, aśı sea el más sencillo, ax = b, dado que

ha de ser a 6= 0.

Maclaurin y Cramer avanzan en la disposición de la solución asiendo firmemente el

determinante del sistema.

Euler esboza la discusión acerca de la unicidad de la solución con base en el deter-

minante.

La notación ideada por Cramer era tan clara que se impuso enseguida.

Laplace (1772) introdujo la fórmula conocida para el desarrollo de un determinante

por cofactores.

Vandermonde (1772) pensó en una teoŕıa para los determinantes por śı mismos, es

decir, con independencia de su empleo en los cálculos.

Bézout (1779) continuó el estudio de la solución de sistemas lineales y, para ello, el

de los determinantes.

El nombre del concepto aparece por primera vez, según Cajori, en Gauss:

“Las funciones de dos indeterminadas ax2 + 2bxy + y2, donde a, b, c son enteros

dados, es una forma de segundo grado. El número b2 − ac, de cuya ı́ndole dependen

las propiedades de la función, es el determinante de la forma de segundo grado”[p.

121, p. 123, en Disquisitiones Arithmeticae (1801). 1995. Academia Colombiana de

Ciencias Exactas F́ısicas y Naturales. Bogotá. xii + 492 pp].

Gauss introdujo la siguiente relación:

Dos formas cuadráticas binarias f(x, y) = ax2 + bxy + cy2, y,

F (X,Y ) = AX2 + BXY + CY 2, donde a, b, c, A, B, C son números enteros,

son equivalentes si existe una aplicación lineal (x, y) → (X,Y ), con determinante

igual a uno, que transforme f(x, y) en F (X,Y ).

Aśı mismo y alĺı mismo, para el estudio de formas binarias y ternarias, Gauss in-

troduce la que luego será la fórmula para el producto de dos aplicaciones lineales

(sustituciones), en lo cual anticipa el cálculo de matrices, todav́ıa no formulado.

En libros de historia de la matemática se dice que fue Cauchy quien impuso el vocablo

determinante. Es cierto que en 1815 publicó un art́ıculo en cuyo t́ıtulo parece querer

resumir lo que significa:
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“Memoria acerca de las funciones que no pueden obtener sino dos valores iguales y

de signos contrarios consecuentemente a transposiciones operadas entre las variables

que aquéllos contienen”.

Kronecker y Weierstrass, en sendos ensayos de axiomatización, ambos publicados

póstumamente, describieron al determinante como función multilineal alternada de

n vectores en un espacio de n dimensiones.

Puede afirmarse que la importancia alcanzada por la noción de determinante en las

investigaciones a lo largo del siglo XIX es la que todav́ıa conserva en los textos de

álgebra lineal para los primeros cursos universitarios.

Un dato revelador es la información bibliográfica de Dorier, según la cual Thomas

Muir publicó cuatro volúmenes titulados The theory of determinants in the historical

order of development (1890-1923; Dover, 1960).

Cabe subrayar que los determinantes aparecieron mucho antes de las matrices, a

pesar de lo que sugieren los textos corrientes que tratan los dos temas a la par,

como puede convenir en múltiples aplicaciones.

Históricamente las matrices irrumpen a mediados del siglo XIX. Según Hawkins

(Moore, p. 269), diversos matemáticos sugirieron el álgebra de matrices casi al mismo

tiempo, independientemente: Cayley, Laguerre, Eisenstein y Sylvester.

Para Laguerre, según la misma fuente, una matriz es una representación para ima-

ginarios de Galois, para números complejos, para cuaterniones.

Todav́ıa hay textos en los que se introducen las matrices como arreglos de números en

ĺıneas y columnas cuando, en teoŕıa, una matriz es sencillamente una representación

de una aplicación lineal.

Fue Cayley, en los años cincuenta del siglo XIX, quien desarrolló gran parte de la

teoŕıa de matrices, a la cual Sylvester hab́ıa dado el nombre. Una de las grandes me-

morias acerca de la teoŕıa de matrices es de Cayley (1858), que compendia resultados

de dos décadas de activas investigaciones.

Por supuesto, muchos otros matemáticos continuaban desarrollando la teoŕıa. Bro-

taban, desde luego, cantidad de cuestiones por la relación alcanzada entre determi-

nantes y matrices.

Por lo visto anteriormente, interesa anotar los dos siguientes:

Henri Poincaré (1886). Sur les déterminants d’ordre infini. Bulletin de la Société mathéma-

tique de France, XIV, pp. 77-90.

Helge von Koch (1891). Sur une application des déterminants infinis à la théorie des

équations différentielles. Acta Mathematica, XV, pp. 53-63.
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Uno de los grandes cultivadores de las nuevas creaciones fue Frobenius. En un amplio

programa de investigación inspirado por Kronecker y en el que también participaba

Weierstrass, la obra de Frobenius consistió en decantar los resultados anteriores.

Introdujo, por ejemplo, el concepto axiomatizado de formas lineales linealmente

dependientes o independientes; igualmente, introdujo la noción de rango, que va a

convertirse en la idea clave para expresar, por ejemplo, la solubilidad de un sistema

lineal.

Ah́ı comienza el descenso para el lenguaje teórico de los determinantes, que sigue

siendo omnipresente en las aplicaciones.

Conviene recordar otros vertederos de ideas para el álgebra lineal. Un sistema de

ecuaciones diferenciales homogéneas admite como solución una combinación lineal

de formas lineales.

Un teorema de D’Alembert es el siguiente:

La solución general de una ecuación no homogénea es la suma de una solución

particular y de la solución general de la ecuación homogénea correspondiente.

Euler y Lagrange destacaron de manera similar el papel de las ecuaciones diferen-

ciales lineales.

Grassmann creó un camino directo hacia la concepción del álgebra lineal en su

tratado de vanguardia Teoŕıa de la extensión.

Él construyó un vasto edificio algebraico geométrico, que se apoyó sobre una concep-

ción intŕınseca casi axiomatizada de espacio vectorial con n dimensiones (Bourbaki),

anticipando aśı los grandes conceptos del álgebra lineal.

La obra, de una gran complejidad, hab́ıa que estudiarla a fondo para que comenzara

a fructificar, lo que hizo primordialmente Peano, quien alĺı pudo forjar la axiomati-

zación para los espacios vectoriales, como se los conoce en la actualidad. Los axiomas

para la aritmética de Peano provienen de Dedekind, en el esṕıritu de Grassmann.

Aśı pues, refinando los procedimientos para resolver sistemas lineales, no sólo los

sistemas finitos, sino también los originados por cuestiones en el análisis funcional,

en infinitas ecuaciones con infinitas incógnitas; haciendo luego un alto en ecuaciones

diferenciales lineales homogéneas, y reflexionando finalmente en las lucubraciones

de Grassmann, aśı se recorre el largo camino que culmina a mediados del siglo XX

en el álgebra lineal.

Con todo, resulta indispensable pensar en el ambiente donde se han depurado todos

esos pensamientos, es decir, en la geometŕıa euclidiana. Prácticamente visible por

todas partes en los planes de estudio hasta los años cincuenta del siglo XX, retrocede

y deja el lugar a la recién llegada álgebra lineal.
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Bourbaki alude particularmente a la teoŕıa de magnitudes expuesta por Euclides en

el libro V de Elementos y a la versión geométrica de los números expuesta en el

libro VII.

La algebraización cartesiana de la geometŕıa obligará poco a poco a olvidar el con-

tenido para dedicarse exclusivamente al estudio de la forma. Gran parte de los con-

ceptos del álgebra son refinamientos de los de la geometŕıa. Ahora, la mejor manera

de estudiar geometŕıa es pasando por el álgebra lineal.

2.2.3. Función

Si atisbos de procedimientos en álgebra lineal aparecen incluso cuando la matemáti-

ca cultivada provéıa únicamente a las necesidades del comercio, es porque resolv́ıa

problemas urgentes de manera bastante comprensible.

Conviene comparar el desenvolvimiento del álgebra lineal, por ejemplo, con el del

cálculo diferencial e integral. Éste requeŕıa un algoritmo para calcular áreas y volúme-

nes y no fue fácil dar con él; sin embargo, se perfila antes del álgebra lineal. Ésta

comienza a manifestarse antes, pero prácticamente sólo llega al público matemáti-

co a mediados del siglo XX, a pesar de que no se queda atrás respecto del cálculo

diferencial e integral, en cuanto a las aplicaciones.

Es curioso que el álgebra, incluso la más abstracta, conserve algo del carácter que le

atribúıa Viète cuando distingúıa la loǵıstica numerosa, o aritmética, de la loǵıstica

speciosa, o álgebra. El álgebra toda parece estar más del lado de la aritmética que

de la geometŕıa.

Es muy dif́ıcil caracterizar conceptos altamente subordinantes como el de álgebra.

No obstante, desde el punto de vista genético, álgebra ha sido el estudio de ope-

raciones algebraicas, término por precisar; para concebirlo con más nitidez, ha de

tenerse en cuenta que tales operaciones son independientes de la naturaleza de los

elementos sobre los cuales se efectúan las operaciones.

Una operación algebraica es una función que hace corresponder a dos elementos

dados un tercer elemento bien determinado.

Hay fundamentalmente dos clases de operaciones algebraicas.

Una en que el conjunto de definición de la función es el producto cartesiano de dos

conjuntos idénticos al conjunto donde la función toma valores. Bourbaki la llama

ley de composición. Operación interna puede también denominarse, aunque se siga

estando alejado de lo que quiere indicarse.
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Un segundo tipo de operación es aquel en el que se considera un conjunto no vaćıo

cualquiera y un segundo conjunto cuyos elementos son llamados operadores. Enton-

ces la operación hace corresponder a una pareja de elementos, uno de cada uno de

los conjuntos, un elemento bien determinado del primer conjunto. Se dice entonces

que se opera sobre este primer conjunto con elementos del segundo conjunto. A esta

operación se la puede llamar externa, o acción de uno de los conjuntos sobre el otro.

Ahora, Bourbaki recuerda que según el caṕıtulo IV de su teoŕıa de conjuntos, dado

un conjunto no vaćıo y una o varias operaciones internas o externas, con algunos

axiomas, se obtiene una estructura. A estas estructuras Bourbaki las llama algebrai-

cas. Entonces, álgebra es el estudio de las estructuras algebraicas.

Aśı, según el mismo caṕıtulo IV de Bourbaki, hay diversas especies de estructuras

determinadas por los axiomas.

En el caṕıtulo primero de su tratado de álgebra, Bourbaki desarrolla la teoŕıa de las

estructuras algebraicas.

En el caṕıtulo segundo se desarrolla la teoŕıa relativa al álgebra lineal.

En el caṕıtulo tercero se desarrolla el álgebra multilineal.

Esta es la presentación de Bourbaki en la nueva edición de 1970.

Van der Waerden, en la edición de 1937, conceb́ıa tres términos:

• Formas lineales con coeficientes en un anillo.

• Módulos de formas lineales.

• Homomorfismos o transformaciones lineales entre los módulos.

La teoŕıa se desarrolla según las hipótesis que se hagan acerca del anillo.

2.2.4. Problemas

Desde el punto de vista de la enseñanza para cualquier asignatura, surge la cuestión

de cuál ha de ser el contenido de un curso en caso de introducirla en un plan de

estudios. No hay materia, por elemental que sea, para la que no haya que formular

preguntas paralizantes acerca de la intensidad, de la finalidad, del acervo teórico,

del acervo práctico, de la evaluación finalmente. Dado el auge de la computación,

este es, desde luego, un punto más de examen.

El álgebra lineal no escapa a tales urgencias. ¿Cómo se puede presentar el cuestio-

namiento?

Los temas obligados de un curso de álgebra lineal en el primer nivel universitario

son los siguientes: Sistemas lineales. Matrices. Determinantes. Regla de Cramer.
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Vectores. Espacios vectoriales. Combinación lineal. Dependencia e independencia

lineal. Base. Dimensión. Rango. Cambio de base. Base ortonormal. Transformación

lineal. Proyección. Isomorfismo. Valores propios. Vectores propios. Formas canónicas.

Formas cuadráticas. Secciones cónicas. Ecuación diferencial matricial. Teorema de

Cayley-Hamilton.

Indudablemente, la noción de determinante tiene un papel clave en cuanto diversos

conceptos de álgebra lineal suponen el de determinante; puede aseverarse que es

capital en las aplicaciones.

Ahora bien, en Van der Waerden, edición de 1937, los determinantes son aludidos

en diversos contextos pero no son introducidos axiomáticamente, es decir, no son

tratados como seŕıa de suponerse.

Desde luego que para una completa satisfacción teórica, la noción de determinante

hay que ubicarla con el álgebra multilineal. Es lo que hace Bourbaki al desarrollar

en el parágrafo 8 del caṕıtulo III, “Álgebra multilineal”, los siguientes temas: Deter-

minante de un endomorfismo. Caracterización de los automorfismos de un módulo

libre de dimensión finita. Determinante de una matriz cuadrada. Cálculo de un de-

terminante. Menores de una matriz. Desarrollo de un determinante. Aplicación a las

ecuaciones lineales. Caso de un campo conmutativo. El grupo unimodular. Módulo

asociado a un endomorfismo de A-módulo. Polinomio caracteŕıstico de un endomor-

fismo.

Alĺı aparecen, entonces, los temas que haćıan falta para el curso elemental de álgebra

lineal.

Sin embargo, es inocultable el desfase que hace adaptar al álgebra lineal lo que en

realidad queda explicado satisfactoriamente sólo en el álgebra multilineal. Y, claro,

no hay manera de presentar este álgebra de modo elemental.

Que no es únicamente cuestión de reparos lo atestigua el pasaje siguiente de [p.

14. Gian-Carlo Rota (1997). Indiscrete thoughts. Birkhäuser xxii + 280 pp.] donde

figuran tres eminencias en la matemática del siglo XX: Emil Artin en teoŕıa de

números algebraicos; Claude Chevalley en teoŕıa de grupos; André Weil en geometŕıa

algebraica.

“Incluso la enseñanza del álgebra lineal en el primer nivel universitario lleva la im-

pronta muy visible de la mano de Emil Artin: hab́ıa que estar lejos de cualquier

mención de bases y determinantes (entredicho extraño, si se considera cómo le gus-

taba calcular). La alianza de Emil Artin, Claude Chevalley y André Weil hab́ıa sido

formada para suprimir toda traza de determinantes y de resultantes en álgebra. Dos

de ellos (André Weil no hab́ıa fallecido) probablemente estén ahora revolcándose en

su tumba”.
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Algún historiador puede anotar que se trata simplemente de un episodio más, como

el de la pugna en el siglo XIX de geómetras anaĺıticos y sintéticos.

Puede considerarse planteado en estos términos el problema de la orientación para

los cursos de álgebra lineal: aplicaciones como las requieren los técnicos o enfoque

teórico a la altura de Artin, Chevalley o Weil.

La elección no es fácil; tampoco lo es una mixtura. La decisión, finalmente, no

la tomará en general quien imparte el curso sino la institución donde el curso se

desarrolla.
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2.3. Las densidades de rotación y expansión de un campo

vectorial

Ernesto Acosta Gempeler3

Bernarda Aldana Gómez4

2.3.1. Introducción

Este trabajo se escribió como material para el cursillo “Otro enfoque de la enseñanza

del curso de cálculo vectorial”, para el Seminario de Matemática Educativa realizado

en la Escuela Colombiana de Ingenieŕıa del 22 al 24 de octubre de 2009. Es el

resultado de muchas reflexiones acerca del curso impartido por los profesores en la

Escuela durante varios semestres.

Presentamos a continuación las curvas, las superficies y los sólidos como imágenes

de funciones vectoriales, siendo estas últimas un instrumento fundamental para el

estudio de la geometŕıa de estos objetos geométricos, que en últimas servirán para

modelar objetos f́ısicos, por ejemplo. Definimos la integral de funciones definidas en

estos objetos geométricos presentando los elementos de longitud de arco, área de

superficie y volumen de sólido en términos de sus parametrizaciones. Introducimos

los conceptos de densidad de circulación y densidad de flujo en una curva, mediante

las cuales definimos las densidades de expansión y rotación de un campo. Estos

últimos conceptos permiten una formulación y demostración más amable de los

teoremas de la divergencia y la rotación (Stokes).

2.3.2. Curvas y superficies

Consideraremos primero funciones vectoriales definidas en algún intervalo I de núme-

ros reales y que toman valores en el espacio de vectores bidimensionales o tridimen-

sionales. Más precisamente, funciones de la forma:

r : I −→ R
3, r(t) = 〈x(t), y(t), z(t)〉

Por ser esta última una función que toma valores en R
3, tiene tres componentes

escalares: x(t), y(t), z(t). Cada una de estas componentes escalares está determinada

por una función definida en I y que toma valores en R. El intervalo I es el dominio de

3Matemático de la Universidad Nacional, maǵıster en matemáticas de la Universidad del Valle

y doctor en matemáticas de la Universidad de Cornell. Profesor de la Escuela Colombiana de

Ingenieŕıa Julio Garavito.
4Licenciada en matemáticas de la Universidad Pedagógica Nacional y maǵıster en matemáticas

de la Universidad Nacional. Profesora de la Escuela Colombiana de Ingenieŕıa Julio Garavito.
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la función vectorial puede ser de cualquiera de las siguientes formas: [a, b], [a, +∞),

(−∞, b], (−∞, +∞) (o sin que los extremos reales sean parte del dominio). Siendo

x, y, z : I −→ R funciones definidas en un intervalo real y que toman valores en

R, se puede extender lo aprendido en los cursos de cálculo diferencial e integral a

funciones vectoriales. Por ejemplo, si los lmites ĺımt→a x(t), ĺımt→a y(t) y ĺımt→a z(t)

existen, se tiene que

ĺım
t→a

r (t) =
〈
ĺım
t→a

x(t), ĺım
t→a

y(t), ĺım
t→a

z(t)
〉

,

la función vectorial r=r (t) ser diferenciable en I si cada una de sus componentes

escalares lo es. Además, la derivada de la función vectorial r=r (t) en t = a viene

dada por
dr

dt
(a) =

〈
dx

dt
(a),

dy

dt
(a),

dz

dt
(a)

〉

siempre y cuando las derivadas
dx

dt
(a),

dy

dt
(a) y

dz

dt
(a) existan.

Por otro lado, si cada una de las componentes escalares, x(t), y(t), z(t), de la función

vectorial r=r (t) se puede integrar sobre [a, b], entonces la integral de r entre a y b

viene dada por

∫ b

a

r(t)dt =

〈∫ b

a

x(t)dt,

∫ b

a

y(t)dt,

∫ b

a

z(t)dt

〉

En fin, podemos hacer cálculo diferencial y cálculo integral de funciones vectoriales

recurriendo al cálculo de sus componentes escalares.

Curvas

El vector 〈x(t), y(t), z(t)〉 se puede interpretar como el vector posición de un punto

P de coordenadas (x(t), y(t), z(t)). Aśı, cuando t recorre el intervalo I, el punto P

describe una curva en el espacio, cuyas ecuaciones paramétricas vienen dadas por

x = x(t), y = y(t), z = z(t).

En otras palabras, el conjunto de puntos

{(x, y, z); x = x(t), y = y(t), z = z(t), t ∈ I} ,

que no es otra cosa que el recorrido de la función vectorial, es una curva en el

espacio5. Por definición, una curva será el recorrido de una función vectorial. Un

subconjunto C de R
n es una curva si existe una función vectorial cuyo recorrido es

5En este contexto supondremos que las funciones vectoriales que parametrizan las curvas tienen

derivadas continuas.
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precisamente C. Una parametrización de C es una función vectorial cuyo recorrido

es C.

Por ejemplo, consideremos una recta en el espacio que pasa por el punto P (a, b, c) y

que es paralela al vector v =〈v1, v2, v3〉. La condición para que un punto Q(x, y, z)

esté en la recta es que los vectores PQ y v sean paralelos o, en otras palabras, que

para algún número real t, se tenga PQ = tv. Esta última condición se puede escribir

en términos de las componentes escalares de los vectores, dando como resultado

x − a = tv1, y − b = tv2(t), z − c = tv3(t),

que es la parametrización de la recta

r(t) = 〈a + tv1, b + tv2, c + tv3〉 ,

r parametriza a la recta que pasa por P (a, b, c) y que tiene vector director v 〈v1, v2, v3〉.
En otras palabras, esta recta es una curva. Considere la curva en el espacio, cuyas

ecuaciones paramétricas vienen dadas por

x = x(t), y = y(t), z = z(t), t ∈ I.

Es decir, la curva parametrizada por la función vectorial

r : I −→ R
3, r(t) = 〈x(t), y(t), z(t)〉

Como r es derivable en t y
dr

dt
(t) = r′(t) 6=o , para todo t ∈ I. Entonces, el vector

r′(t) =

〈
dx

dt
(t),

dy

dt
(t),

dz

dt
(t)

〉
= 〈x′(t), y′(t), z′(t)〉

es un vector tangente a la curva en el punto P (x(t), y(t), z(t)). Una curva es regular

si tiene una parametrización r, para la cual ‖r′‖ 6= 0. Para curvas regulares podemos

definir el vector unitario

T(t) =
r′(t)

‖r′(t)‖ ,

que es el vector tangente unitario a la curva en el punto P (x(t), y(t), z(t)). La geo-

metŕıa de las curvas se hace estudiando el comportamiento del vector tangente uni-

tario.

Superficies

Tenemos también funciones vectoriales de dos variables. Son funciones definidas en

alguna celda [a, b] × [c, d] y que toman valores en el espacio de vectores bidimensio-

nales o tridimensionales. Más precisamente, una función vectorial (tridimensional)

de dos variables es una función de la forma:

r : [a, b] × [c, d] −→ R
3, r(t, s) = 〈x(t, s), y(t, s), z(t, s)〉
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Por ser una función que toma valores en R
3, ésta tiene tres componentes escalares:

x(t, s), y(t, s), z(t, s). Cada una de estas componentes escalares está determinada

por una función definida en [a, b]×[c, d] y que toma valores en R. La celda [a, b]×[c, d]

es el dominio de la función vectorial. Obsérvese que para cada valor fijo s0 en [c, d],

r (·, s0) : [a, b] −→ R
3 es una función vectorial de una variable y que para cada

valor fijo t0 en [a, b], r (t0, ·) : [c, d] −→ R
3 es una función vectorial de una sola

variable. Si estas últimas son derivables, escribiremos sus derivadas como r t y r s,

respectivamente.

El recorrido de una función vectorial de dos variables es una superficie cuyas ecua-

ciones paramétricas vienen dadas por

x = x(t, s), y = y(t, s), z = z(t, s).

En otras palabras, el conjunto de puntos

{(x, y, z); x = x(t, s), y = y(t, s), z = z(t, s), (t, s) ∈ [a, b] × [c, d]} ,

que no es otra cosa que el recorrido de la función vectorial, es una superficie en el

espacio6. Un subconjunto S de R
n es una superficie si existe una función vectorial

de dos variables cuyo recorrido es precisamente S. Una parametrización de S es una

función vectorial cuyo recorrido es S.

Obsérvese que las curvas r(·, so) y r(to, ·) están contenidas en la superficie y, por

consiguiente, los vectores tangentes r t y r s a cada una de estas curvas, en ese orden,

son, por ende, tangentes a la superficie. Diremos que una superficie es regular si

r t × r s es no nulo en cada uno de sus puntos. La variación de los vectores tangentes

unitarios sobre la superficie da información sobre la geometŕıa de las superficies.

El conjunto S de puntos (x, y, z) tales que ax + by + cz = 0 es una superficie. En

efecto, S es un plano y los vectores u = 〈0,−c, b〉 y v = 〈−c, 0, a〉 son paralelos a S.

Por consiguiente, el punto de coordenadas (x, y, z) está en el plano si, y solamente si,

el vector 〈x, y, z〉 es combinación lineal de u y v: 〈x, y, z〉 = t〈0,−c, b〉 + s〈−c, 0, a〉.
Esta última no es otra cosa que una parametrización del plano.

También tenemos superficies en R
2. Por ejemplo, el disco

D =
{
(x, y) : x2 + y2 ≤ 4

}

es una superficie. En efecto, r : [0, 2] × [0, 2π] −→ R
2 definida por r(u, v) =

〈u cos v, u sen v〉 es una parametrización de D. Es claro que

D = {(u cos v, u sen v) : (u, v) ∈ [0, 2] × [0, 2π]} .

6Aśı como lo hemos supuesto en el caso de curvas, supondremos aqúı que r t y r s son continuas.
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2.3.3. Integrales múltiples

En cursos de cálculo anteriores se estudió el concepto de integral de una función f de

una sola variable, definida en un intervalo cerrado [a, b]. Los conceptos relacionados

son los de partición de un intervalo, suma de Riemann y ĺımite de una suma de

Riemann, los que vamos a extender a funciones de varias variables. Dos resultados

importantes que se usan frecuentemente son que el ĺımite de una suma de Riemann

de una función continua, cuando la norma de la partición tiende a cero, siempre existe

(es decir, toda función continua definida en un intervalo cerrado es integrable) y el

teorema fundamental del cálculo que dice que el valor de la integral de una función

continua sobre un intervalo cerrado es la diferencia de los valores de una primitiva

en los extremos del intervalo (¡dándole vuelta al problema de calcular sumas de

Riemann de la función!).

Sea f : [a, b] −→ R una función continua. Una partición del intervalo [a, b] se obtiene

escogiendo un número finito de puntos x0 = a < x1 < x2 < . . . < xn = b. Podemos

suponer que estos puntos son equidistantes, es decir, que xk+1−xk = (b−a)/n = ∆x.

Una suma de Riemann está definida por una partición (o sea, por la escogencia de

un número natural n) y por la escogencia de un punto de muestra x∗
k en cada uno

de los subintervalos [xk, xk+1] de [a, b] definidos por la partición, aśı:

R(f, n, ∗) = f(x∗
1)(x1 − x0) + f(x∗

2)(x2 − x1) + · · · + f(x∗
n)(xn − xn−1)

= f(x∗
1)∆x + f(x∗

2)∆x + f(x∗
3)∆x · · · + f(x∗

n)∆x

=
∑n

k=1 f(x∗
k)∆x

La integral de f sobre [a, b] es el ĺımite de estas sumas de Riemann cuando n tiende

a infinito (que existe para funciones continuas e independientemente de los puntos

de muestra escogidos):

∫ b

a

f(x)dx = ĺım
n→∞

R(f, n, ∗) = ĺım
n→∞

n∑

k=1

f(x∗
k)∆x

Nuevamente en este caso, para extender el concepto de integral debemos tener en

cuenta funciones con dominios más complejos que en el caso de una sola variable.

Lo que haremos es extender el concepto a funciones f cuyos dominios son 2-celdas

(rectángulos con lados paralelos a los ejes coordenados):

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}

= [a, b] × [c, d],
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La extensión a funciones f cuyos dominios son 3-celdas (paraleleṕıpedos rectangu-

lares con caras paralelas a los planos coordenados):

P = {(x, y, z) : a ≤ x ≤ b, c ≤ y ≤ d, e ≤ z ≤ h}

= [a, b] × [c, d] × [e, h].

es natural y no involucra ideas muy diferentes de las consideradas en dos variables.

En el caso de dos variables, una partición de R se obtiene escogiendo particiones

de los intervalos [a, b] y [c, d]: x0 = a < x1 < x2 < . . . < xn = b y y0 = c <

y1 < y2 < . . . < ym = d, respectivamente. Aśı, la 2-celda R queda dividida en

m × n subceldas de la forma [xk, xk+1] × [yj, yj+1]. La escogencia puede hacerse de

tal modo que xk+1 − xk = (b − a)/n = ∆x y que yj+1 − yj = (c − d)/m = ∆y, en

cuyo caso todas las subceldas tendrán la misma área ∆A = (xk+1 −xk)(yj+1 − yj) =

((b− a)/n)((c− d)/m) = ∆x∆y. Escogemos un punto de muestra (x∗
kj, y

∗
kj) en cada

subcelda [xk, xk+1]× [yj, yj+1] y definimos la suma de Riemann de f correspondiente

a esta partición y esta escogencia de punto de muestra aśı:

R(f, n, ,m, ∗) =

= f(x∗
11, y

∗
11)∆A + f(x∗

21, y
∗
21)∆A + · · · + f(x∗

n1, y
∗
n1)∆A

+ f(x∗
12, y

∗
12)∆A + f(x∗

22, y
∗
22)∆A + · · · + f(x∗

n2, y
∗
n2)∆A

...

+ f(x∗
1m, y∗

1m)∆A + f(x∗
2m, y∗

2m)∆A + · · · + f(x∗
nm, y∗

nm)∆A

=
∑n

k=1

∑m

j=1 f(x∗
kj, y

∗
kj)∆A

La integral de f sobre R es el ĺımite de estas sumas de Riemann cuando n y m

tienden a infinito (que existe para funciones continuas e independientemente de los

puntos de muestra escogidos):

∫∫
R

f(x, y)dA = ĺımn,m→∞R(f, n,m, ∗)

= ĺımn,m→∞

∑n

k=1

∑m

j=1 f(x∗
kj, y

∗
kj)∆A

Evidentemente, el cálculo de una integral doble o triple es una tarea muy dispendio-

sa a través de las sumas de Riemann. Sin embargo, tales sumas son un instrumento

de aproximación muy útil de estas integrales. Veremos ahora un método para calcu-

larlas sin necesidad de recurrir a las sumas de Riemann. Éste consiste en escribir la

integral (múltiple) como una integral iterada, es decir, una secuencia de integrales

unidimensionales parciales que se calcularán recurriendo al teorema fundamental del
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cálculo. Definamos primero lo que es una integral iterada. Lo haremos en el caso de

funciones de dos variables; el caso de tres variables es similar.

Sea f : R −→ R, R = [a, b] × [c, d], una función continua. Para cada x ∈ [a, b]

definimos A(x) =
∫ d

c
f(x, y)dy. Resulta que la función A : [a, b] −→ R es continua,

y por consiguiente se puede calcular su integral:

∫ b

a

A(x)dx =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx,

que se conoce como integral iterada. El teorema de Fubini, que es una generalización

del principio de Cavalieri para calcular volúmenes de sólidos, establece que la integral

doble de f sobre R es igual a esta integral iterada. Expĺıcitamente, si f es continua

en R se tiene que

∫∫
R

f(x, y)dA =
∫ b

a

(∫ d

c
f(x, y)dy

)
dx

=
∫ d

c

(∫ b

a
f(x, y)dx

)
dy

Para dar cuenta de las integrales de funciones definidas en regiones más genera-

les que las 2-celdas y las 3-celdas, como por ejemplo curvas, superficies y sólidos,

recurriremos a la parametrización que portan estos objetos geométricos.

Sea f : D −→ R una función continua, definida en una superficie regular D del

plano y r una parametrización de D

r : [a, b] × [c, d] −→ R
2, r(u, v) = 〈x(u, v), y(u, v)〉 ,

(e inyectiva)7.

Una partición de la superficie D en subregiones Dij se obtiene a partir de una

partición de [a, b] × [c, d] en subceldas Rij = [ui−1, ui] × [vj−1, vj]:

Dij = {(x(u, v), y(u, v)) : (u, v) ∈ [ui−1, ui] × [vj−1, vj]} .

Escogemos en cada subregión Dij el punto Pij(x(ui−1, vj−1), y(ui−1, vj−1)). Una suma

de Riemann de f sobre D con respecto a la parametrización r y a una partición de

D en m × n subregiones, está definida por

R(f,m, n, r) =
∑m

i=1

∑n

j=1 f(Pij) ‖∆u ru × ∆v rv‖ ,

=
∑m

i=1

∑n

j=1 f(Pij) ‖ru × rv‖∆u∆v,

7Hemos puesto inyectiva entre paréntesis porque en realidad la inyectividad se exige a la res-

tricción de r en el interior (a, b) × (c, d) de la 2-celda.
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donde ru y rv son las derivadas de r con respecto a u y a v, respectivamente, en Pij.

La integral de f sobre D con respecto a r 8 es el ĺımite de R(f,m, n, r) cuando m y

n tienden a infinito:
∫∫

D
fdA = ĺımm,n→∞

∑m

i=1

∑n

j=1 f(Pi,j) ‖ru × rv‖∆u∆v

=
∫∫

[a,b]×[c,d]
f(x(u, v), y(u, v)) ‖ru × rv‖ dudv

La aparición de ‖∆u ru × ∆v rv‖ en la suma de Riemann se debe a que ésta es el

área del paralelogramo formado por ∆u ru y ∆v rv, que es una aproximación del

área de la subregión Dij.

Obsérvese que si f : [a, b] × [c, d] −→ R es continua y r : [a, b] × [c, d] −→ R
2

está definida por r(u, v) = 〈u, v〉, entonces ‖ru × rv‖ = 1, y por consiguiente
∫∫

[a,b]×[c,d]

fdA =

∫∫

[a,b]×[c,d]

f(u, v)dudv.

Es decir, las integrales sobre 2-celdas es un caso particular de integrales sobre su-

perficies (¡por supuesto!, las 2-celdas son superficies).

Como ejemplo calculemos la integral de f(x, y) = x2 + y2 sobre el disco D =

{(x, y) : x2 + y2 ≤ 4} con respecto a la parametrización de D que dimos anterior-

mente. Tenemos que

‖ru × rv‖ = ‖〈cos v, sen v〉 × 〈−u sen v, u cos v〉‖ = u,

y por tanto,
∫∫

D

fdA =

∫∫

[0,2]×[0,2π]

u2ududv =

∫ 2

0

(∫ 2π

0

u3dv

)
du = 8π

Sea f : C −→ R una función continua, definida en una curva regular D del plano y

r una parametrización de C

r : [a, b] −→ R
3, r(u) = 〈x(u), y(u), z(u)〉 ,

(e inyectiva)9.

Una partición de la curva C en subarcos Ci se obtiene a partir de una partición de

[a, b] en subintervalos Ri = [ui−1, ui]:

Ci = {(x(u), y(u), z(u)) : u ∈ [ui−1, ui]} .

8El teorema de cambio de variable garantiza que el valor de la integral es independiente de la

parametrización.
9Hemos puesto inyectiva entre paréntesis porque en realidad la inyectividad se exige a la res-

tricción de r en el interior (a, b) de la 1-celda.
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Escogemos en cada subarco Ci el punto Pi(x(ui−1), y(ui−1), z(ui−1)). Una suma de

Riemann de f sobre C con respecto a la parametrización r y a una partición de C

en m subarcos, está definida por

R(f,m, r) =
∑m

i=1 f(Pi) ‖∆u r′(Pi)‖ ,

=
∑m

i=1 f(Pi) ‖r′(Pi)‖∆u.

La integral de f sobre C con respecto a r 10 es el ĺımite de R(f,m, r) cuando m

tiende a infinito:
∫

C
fdL = ĺımm→∞

∑m

i=1 f(Pi) ‖r′(Pi)‖∆u

=
∫
[a,b]

f(x(u), y(u), z(u)) ‖r′(u)‖ du

La aparición de ‖∆u r′‖ en la suma de Riemann se debe a que ésta es la longitud

del vector ∆u r′, que es una aproximación de la longitud del subarco Ci.

Como ejemplo calculemos la integral de f(x, y) = x2 + y2 sobre la curva C =

{(x, y) : x2 + y2 = 4} con respecto a la parametrización de C que dimos anterior-

mente. Tenemos que

‖r′‖ = ‖〈−2 sen u, 2 cos u〉‖ = 2,

y por tanto, ∫

C

fdL =

∫

[0,2π]

8du =

∫ 2π

0

8du = 16π

En resumen, para definir el concepto de integral múltiple de funciones definidas

sobre curvas, superficies y sólidos, recurrimos a sus parametrizaciones mediante fun-

ciones vectoriales r de una, dos y tres variables, respectivamente. Para diferenciar

la dimensión de la integral introducimos los siguientes elementos de integración:

1. Elemento de longitud de arco:

dL = ‖r′(t)‖ dt

2. Elemento de rea de superficie:

dA = ‖ru × rv‖ dudv

3. Elemento de volumen de sólido:

dV = |(ru × rv) · rw| dudvdw

10El teorema de cambio de variable garantiza que el valor de la integral es independiente de la

parametrización.
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Con esta terminoloǵıa podemos escribir:

1.
∫

curva
fdL =

∫ b

a
f(r(t)) ‖r′(t)‖ dt.

2.
∫∫

superficie
fdA =

∫ b

a

∫ d

c
f(r(u, v)) ‖ru × rv‖ dudv.

3.
∫∫∫

sólido
fdV =

∫ b

a

∫ d

c

∫ h

e
f(r(u, v, w))|(ru × ru) · rw|dudvdw.

2.3.4. Rotación y expansión de campos vectoriales

Los campos vectoriales son un tipo de función que se usa para modelar fenómenos

de asignación vectorial, como por ejemplo el campo de velocidades de un fluido, el

campo eléctrico, el campo magnético y el campo gravitacional. Desde el punto de

vista matemático, un campo vectorial es una función definida en algún conjunto y

que toma valores en un espacio vectorial. Nos ocuparemos aqúı del estudio de campos

vectoriales bidimensionales y tridimensionales. Un campo vectorial bidimensional es

una función F : D −→ R
2 definida en un subconjunto D de R

2:

F(x, y) = 〈P (x, y), Q(x, y)〉 ; (x, y) ∈ D.

Un campo vectorial tridimensional es una función F : D −→ R
3 definida en un

subconjunto D de R
3:

F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉 ; (x, y, z) ∈ D.

La mejor forma de representar un campo vectorial es dibujando a partir de unos

cuantos puntos (x, y) ∈ D los vectores F(x, y) correspondientes.

Circulación y flujo

Los dos conceptos más importantes relacionados con campos vectoriales son el flujo

y la circulación, que se hacen evidentes al estudiar la interacción de los campos con

curvas y superficies. Analizaremos primero estos dos conceptos en campos vectoria-

les bidimensionales, para los cuales nos interesa estudiar su interacción con curvas

contenidas en sus dominios.

Consideremos un campo vectorial bidimensional F : D −→ R
2 definida en un sub-

conjunto D de R
2 y una curva C en D parametrizada por una función vectorial

r : [a, b] −→ R
2. Definimos la densidad de circulación del campo F en el punto

(x(t), y(t)) de la curva por

δc(x(t), y(t)) = F(x(t), y(t)) · T(t),
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donde T(t) es el vector tangente unitario a la curva en el punto (x(t), y(t)). En otras

palabras, la densidad de circulación de F en el punto (x(t), y(t)), δc(x(t), y(t)), es la

componente tangencial del campo en ese punto.

Definimos la densidad de flujo del campo F en el punto (x(t), y(t)) de la curva por

δf (x(t), y(t)) = F(x(t), y(t)) · N(t),

donde N(t) es el vector normal unitario a la curva en el punto (x(t), y(t)), que se

obtiene al girar T(t) 90 grados hacia la derecha (o hacia la izquierda, dependiendo

de la orientación que quiera darse a la curva). En otras palabras, la densidad de flujo

de F en el punto (x(t), y(t)), δf (x(t), y(t)) es la componente normal del campo en

ese punto. Obsérvese que las densidades de circulación δc y flujo δf de un campo son

funciones escalares con dominio C, la curva parametrizada por la función vectorial

r. Por ser N el vector que se obtiene al rotar T 90 grados hacia la derecha, se tiene

que como

T =

〈
x′(t)√

x′(t)2 + y′(t)2
,

y′(t)√
x′(t)2 + y′(t)2

〉

entonces

N =

〈
− y′(t)√

x′(t)2 + y′(t)2
,

x′(t)√
x′(t)2 + y′(t)2

〉
.

Aśı como al integrar la densidad de masa se obtiene la masa, en este caso al integrar

la densidad de circulación del campo sobre la curva se obtiene la circulación del

campo a lo largo de la curva:

Circulación de F a lo largo de la curva =

=
∫

C
δcdL

=
∫ b

a
F(r(t)) · T(t) ‖r′(t)‖ dt

=
∫ b

a
F(r(t)) · r′(t)

‖r′(t)‖ ‖r′(t)‖ dt

=
∫ b

a
F(r(t)) · r′(t)dt

=
∫ b

a
P (r(t))x′(t) + Q(r(t))y′(t)dt

=
∫

C
Pdx + Qdy

:=
∫

C
F · dL
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Aśı mismo, al integrar la densidad de flujo del campo sobre la curva se obtiene el

flujo del campo a través de la curva:

Flujo de F a través de la curva =

=
∫

C
δfdL

=
∫ b

a
F(r(t)) · N(t) ‖r′(t)‖ dt

=
∫ b

a
F(r(t)) ·

〈
− y′(t)√

x′(t)2 + y′(t)2
,

x′(t)√
x′(t)2 + y′(t)2

〉
‖r′(t)‖ dt

=
∫ b

a
〈P (r(t)), Q(r(t))〉 · 〈−y′(t), x′(t)〉 dt

=
∫ b

a
Q(r(t))x′(t) − P (r(t))y′(t)dt

=
∫

C
Qdx − Pdy

=
∫

C
F̃ · dL,

donde F̃ = 〈Q,−P 〉 es el campo dual del campo F. Lo que se muestra en la cadena de

igualdades es que el flujo de un campo a través de una curva es igual a la circulación

del campo dual a lo largo de la misma curva.

Densidad de rotación y densidad de expansión

Los conceptos de densidad de rotación y de densidad de expansión son claves para

entender los conceptos de rotacional y divergencia de un campo vectorial y los teo-

remas fundamentales: el teorema de Stokes y el teorema de la divergencia. La idea

es calcular la circulación y el flujo por unidad de área en cada uno de los puntos

del dominio del campo vectorial. Haremos esto en el punto (0, 0) que supondremos

en el dominio de un campo vectorial bidimensionales F = 〈P,Q〉. Supondremos

además que las componentes escalares del campo, P y Q, tienen derivadas parciales

continuas en (0, 0).

Aproximemos la circulación del campo F a lo largo del borde del cuadrado de vértices

(∆x, ∆y), (−∆x, ∆y), (−∆x,−∆y) y (∆x,−∆y), orientado con el movimiento de

las manecillas del reloj, en la siguiente forma:
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Circulación de F a lo largo de C =

= Suma de circulaciones de F a lo largo de cada lado de C

≈ 2∆yF(∆x, 0) · j + 2∆xF(0, ∆y) · (−i)

+2∆yF(−∆x, 0) · (−j) + 2∆xF(0,−∆y) · i

= 2∆y(Q(∆x, 0)) − Q(−∆x, 0)) − 2∆x(P (0, ∆y) − P (0,−∆y))

= 4∆x∆yQx(α, 0)) − 4∆x∆yPy(0, β)

= 4∆x∆y(Qx(α, 0)) − Py(0, β)),

donde α ∈ (−∆x, ∆x) y donde β ∈ (−∆y, ∆y). En el último paso se hizo uso del

teorema del valor medio para derivadas. Si utilizamos la continuidad de las derivadas

parciales de P y Q, obtenemos:

Densidad de rotación de F en (0, 0)

:= Circulación por unidad de área de F en (0, 0)

= ĺım(∆x,∆y)→(0,0)
Circulación de F a lo largo de C

área de C

= ĺım(∆x,∆y)→(0,0)
4∆x∆y(Qx(α, 0)) − Py(0, β))

4∆x∆y

= Qx(0, 0) − Py(0, 0)

Aproximemos el flujo del campo Fa través del borde del cuadrado de vértices

(∆x, ∆y), (−∆x, ∆y), (−∆x,−∆y) y (∆x,−∆y) en la siguiente forma:

Flujo de F a través de C =

= Suma de flujos de F a través de cada cara

≈ 2∆yF(∆x, 0) · i + 2∆xF(0, ∆y) · j

+2∆yF(−∆x, 0) · (−i) + 2∆xF(0,−∆y) · (−j)

= 2∆y(P (∆x, 0)) − P (−∆x, 0)) + 2∆x(Q(0, ∆y) − Q(0,−∆y))

= 4∆x∆yPx(α, 0)) + 4∆x∆yQy(0, β)

= 4∆x∆y(Px(α, 0)) + Qy(0, β)),
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donde α ∈ (−∆x, ∆x) y donde β ∈ (−∆y, ∆y). En el último paso se hizo uso del

teorema del valor medio para derivadas. Si utilizamos la continuidad de las derivadas

parciales de P y Q, obtenemos:

Densidad de expansión de F en (0, 0)

:= Flujo por unidad de área de F en (0, 0)

= ĺım(∆x,∆y)→(0,0)
Flujo de F a través de C

área de C

= ĺım(∆x,∆y)→(0,0)
4∆x∆y(Px(α, 0)) + Qy(0, β))

4∆x∆y

= Px(0, 0) + Qy(0, 0)

Las densidades de rotación y de expansión se pueden calcular en todos los puntos

del dominio del campo F, de la misma manera en que se calculó en el punto (0, 0).

En resumen, tenemos:

Densidad de rotación de F en (x, y) = Qx(x, y) − Py(x, y)

Densidad de expansión de F en (x, y) = Px(x, y) + Qy(x, y).

Circulación de campos gradiente

Un ejemplo de campo vectorial es el que proviene del gradiente de una función (de

dos o de tres variables). El argumento que presentamos a continuación, válido para

funciones de dos o de tres variables, es para mostrar que la circulación de un campo

gradiente no depende de la curva que se considere sino del punto de partida y del

punto de llegada. Considere una función f de varias variables con dominio D y C

una curva en D parametrizada por una función vectorial r : [a, b] −→ D continua.

Calculemos la circulación del campo vectorial ∇f a lo largo de C:

Circulación de ∇f a lo largo de C =

=
∫ b

a
∇f(r(t)) · r′(t)dt

=
∫ b

a

d(f ◦ r)

dt
(t)dt

= f(r(b)) − f(r(a))

Rećıprocamente, si la circulación de un campo F a lo largo de cualquier curva dentro

del dominio sólo depende de los extremos de la curva, entonces el campo vectorial

es un campo gradiente. En efecto, debido a la suposición hecha, está bien definida
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la función f(x, y, z) =
∫
[(a,b,c),(x,y,z)]

δcdL, donde la integral se calcula sobre cualquier

curva que parta del punto (a, b, c) y termine en el punto (x, y, z). Se puede demostrar

que F(x, y, z) = ∇f(x, y, z) (ejercicio).

2.3.5. Divergencia y rotacional

La idea ahora es extender los conceptos de densidad de rotación y de densidad de

expansión a campos vectoriales tridimensionales. Para esto, tenemos que extender

el concepto de flujo de un campo a través de una curva al de flujo de un campo

a través de una superficie. Supongamos que S es una superficie contenida en el

dominio D de un campo vectorial F, y que ésta es orientable, es decir, que podemos

parametrizarla de manera inyectiva mediante una función vectorial r : R −→ D, y

tal que ‖ru × rv‖ no se anule. Sea N(u, v) = (ru × rv)/ ‖ru × rv‖. La densidad de

flujo del campo en cada punto de la superficie se define como la componente del

campo en la dirección del vector normal: δf (x, y, z) = F(x, yz) · N(u, v). El flujo de

F a través de la superficie es la integral de δf sobre la superficie:

∫
S

δfdr =
∫∫

S
F · Ndr

=
∫∫

R
F(x(u, v), y(u, v), z(u, v)) · ru × rv

‖ru × rv‖
‖ru × rv‖ dudv

=
∫∫

R
F(x(u, v), y(u, v), z(u, v)) · (ru × rv)dudv

Con este concepto de flujo de un campo a través de una superficie podemos generali-

zar el concepto de densidad de expansión de un campo tridimensional en los puntos

de su dominio. En efecto, consideremos una 3-celda centrada en (0, 0, 0); calculamos

el flujo de F = 〈P,Q,R〉 a través de la 3-celda, dividimos por el volumen de la

3-celda y hacemos tender sus lados a cero. Obtenemos aśı la densidad de expansión

del campo F en el punto (0, 0, 0). Al hacer expĺıcitamente los cálculos, tal como

en campos bidimensionales, se obtiene que la densidad de expansión en un punto

(x, y, z) es Px(x, y, z) + Qy(x, y, z) + Rz(x, y, z). Es frecuente en la literatura sobre

el tema llamar divergencia a la densidad de expansión y escribirlo aśı:

divF =
∂P

∂x
+

∂Q

∂x
+

∂R

∂x
.

Como la circulación de un campo tiene sentido únicamente a lo largo de una cur-

va, definiremos la densidad de rotación de un campo tridimensional en un punto

de su dominio referida a un plano que pasa por él. Como en los casos anterio-

res, calcularemos esta densidad en el punto (0, 0, 0) en el plano parametrizado por

r(x, y) = 〈x, y, ax + by〉. Calculemos la circulación de F = 〈P,Q,R〉 a lo largo del
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paralelogramo C de vértices

(∆x, ∆y, a∆x + b∆y), (−∆x, ∆y,−a∆x + b∆y),

(−∆x,−∆y,−a∆x − b∆y) y (∆x,−∆y, a∆x − b∆y)

orientado en contra del movimiento de las manecillas del reloj:

Circulación de F a lo largo de C =

= Suma de circulaciones de F a lo largo de cada lado de C

≈ 2∆y
√

1 + b2F(∆x, 0, a∆x) · 1√
1 + b2

〈0, 1, b〉

+2∆x
√

1 + a2F(0, ∆y, b∆y) · 1√
1 + a2

〈−1, 0,−a〉

+2∆y
√

1 + b2F(−∆x, 0,−a − ∆x) · 1√
1 + b2

〈0,−1,−b〉

+2∆x
√

1 + a2F(0,−∆y,−b∆) · 1√
1 + a2

〈1, 0, a〉

= 2∆y(Q(∆x, 0, a∆x)) − Q(−∆x, 0,−a∆x) + bR(∆x, 0, a∆x)) − bR(−∆x, 0,−a∆x))

−2∆x(P (0, ∆y, b∆y) − P (0,−∆y,−b∆y) + aR(0, ∆y, b∆y) − aR(0,−∆y, b∆y))

= 4∆x∆y(Qx(α2, 0, a∆x) + aQz(−∆x, 0, β2) + bRx(α3, 0, a∆x) + abRz(−∆x, 0, β3))

−4∆x∆y(Py(0, α1, b∆y) + bPz(0,−∆y, β1) + aRy(0, α4, b∆y) + abRz(0,−∆y, β4)),

donde α2, β2, α3, β3 ∈ (−∆x,∆x) y donde α1, β1, α4, β4 ∈ (−∆y, ∆y) (ver circulación). En

el último paso se utilizó el teorema del valor medio para derivadas. Dividiendo por el área

del paralelogramo, 4∆x∆y
√

1 + a2 + b2, obtenemos:

Circulación de F a lo largo de C

área de C

=
Qx(α2, 0, a∆x) + aQz(−∆x, 0, β2) + bRx(α3, 0, a∆x) + abRz(−∆x, 0, β3)√

1 + a2 + b2

−Py(0, α1, b∆y) + bPz(0,−∆y, β1) + aRy(0, α4, b∆y) + abPz(0,−∆y, β4)√
1 + a2 + b2

y si usamos la continuidad de las derivadas parciales de P , Q y R, obtenemos:

Densidad de rotación de F en (0, 0, 0) referida al plano z = ax + by =
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= ĺım(∆x,∆y)→(0,0)
Circulación de F a lo largo de C

área de C

= ĺım(∆x,∆y)→(0,0)

(
Qx(α2, 0, a∆x) + aQz(−∆x, 0, β2) + bRx(α3, 0, a∆x) + abRz(−∆x, 0, β3)√

1 + a2 + b2

− Py(0, α1, b∆y) + bPz(0,−∆y, β1) + aRy(0, α4, b∆y) + abPz(0,−∆y, β4)√
1 + a2 + b2

)

=
1√

1 + a2 + b2
(a(Qz − Ry) + b(Rx − Pz) + (Qx − Py))

=
1√

1 + a2 + b2
〈−a,−b, 1〉 · 〈Ry − Qz,−(Rx − Pz), Qx − Py〉 ,

derivadas parciales evaluadas en (0, 0, 0).

Obsérvese que el vector
1√

1 + a2 + b2
〈−a,−b, 1〉 es un vector perpendicular al plano z =

ax + by y de norma 1. El otro factor es un vector que recibe el nombre de rotacional del

campo F y que en los libros de texto se suele escribir rotF. Dos conclusiones importantes

de lo obtenido son:

1. La densidad de rotación en un punto (x, y, z) de un campo vectorial F referida a un

plano con vector normal unitario N es

rotF(x, y, z) · N,

donde
rotF = 〈Ry − Qz,−(Rx − Pz), Qx − Py〉

=

∣∣∣∣∣∣∣

i j k

∂x ∂y ∂z

P Q R

∣∣∣∣∣∣∣

2. La densidad de rotación de F referida a planos paralelos a los planos XY , XZ y Y Z

son rotF(x, y, z) ·k = Qx−Py, rotF(x, y, z) ·j = Pz−Rx y rotF(x, y, z) · i = Ry−Qz,

respectivamente.

En la terminoloǵıa de las densidades, tenemos:

1. Densidad de rotación de F en un punto (x, y, z) es

δrot = rotF · N

donde N es el vector normal al plano sobre el que queremos calcularla.
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2. Densidad de expansión de F en un punto (x, y, z) es

δexp = divF.

Podemos ahora calcular la densidad de rotación de un campo F en una superficie, cal-

culándola en cada punto de la superficie referida al plano tangente, es decir, calculando

la componente normal a la superficie del rotacional de F. En el caso de que la superficie

esté parametrizada por una función vectorial diferenciable r : R −→ R
3, tenemos a la

mano un vector normal unitario en cada punto: N =
ru × rv

‖ru × rv‖
, ya que los vectores ru

y rv son vectores linealmente independientes, tangentes a la supeficie. Podemos calcular

aśı la densidad de rotación en cada uno de los puntos de una superficie mediante la fórmula

rotF(r(u, v)) · ru × rv

‖ru × rv‖
; en otras palabras, la densidad de rotación en una superficie viene

dada por:

δrot = rotF(r(u, v)) · ru × rv

‖ru × rv‖
Usando esta notación, podemos escribir la rotación total de un campo F sobre una super-

ficie S, parametrizada mediante una función vectorial diferenciable r : R −→ R
3:

∫∫
S

δrotdA =
∫∫

S
rotF · NdA

=
∫∫

R
rotF(r(u, v)) · ru × rv

‖ru × rv‖
‖ru × rv‖ dudv

=
∫∫

R
rotF(r(u, v)) · ru × rvdudv

=
∫∫

S
rotF · dA

La expansión total de un campo F en un sólido D, parametrizado mediante una función

vectorial diferenciable r : P −→ R
3, se escribe aśı:

∫∫∫
D

δexpdV =
∫∫∫

D
divFdV

=
∫∫∫

P
divF(r(u, v, w)) |(ru × rv) · rw| dudvdw

y la circulación de un campo F a lo largo de una curva C, parametrizada mediante una

función vectorial diferenciable r : I −→ R
3, se escribe aśı:

∫
C

δcdL =
∫
C

F · TdL

=
∫
I
F(r(t)) · r′(t)

‖r′(t)‖ ‖r′(t)‖ dt

=
∫
I
F(r(t)) · r′(t)dt

=
∫
C

F · dL
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Estamos ahora en capacidad de enunciar los teoremas fundamentales: el de la divergencia

y el de Stokes.

Teorema de la divergencia. Suponga que F= 〈P, Q, R〉 es un campo vectorial definido

en un subconjunto cerrado y acotado D de R
3 que se puede parametrizar mediante una

función vectorial diferenciable r : P −→ R
3. Si las componentes escalares de F tienen

derivadas parciales continuas, entonces la expansión total del campo en D es igual al flujo

de F a través de la frontera ∂D de D. Más precisamente, se tiene que:
∫∫∫

D

divF dV =

∫∫

∂D

F · dA

Teorema del rotacional(Stokes). Suponga que F= 〈P, Q, R〉 es un campo vectorial

definido en un subconjunto cerrado y acotado D de R
3, y que S es una superficie con borde

que se puede parametrizar mediante una función vectorial diferenciable r : P −→ R
3. Si

las componentes escalares de F tienen derivadas parciales continuas, entonces la rotación

total del campo sobre S es igual a la circulación de F a lo largo del borde ∂S de S. Más

precisamente, se tiene que:
∫∫

S

rotF · dA =

∫

∂D

F · dL

2.3.6. Demostración de los teoremas

Dedicaremos esta última sección a la demostración de los teoremas fundamentales.

Teorema del rotacional (teorema de Stokes)

Supongamos que F= 〈P, Q, R〉 es un campo vectorial definido en un subconjunto cerrado

y acotado D de R
3, y que S es una superficie con borde contenida en D y que se puede

parametrizar mediante una función vectorial diferenciable r : R −→ R
3.

Consideremos una partición de S en subregiones Sij obtenida a partir de una partición de

R = [a, b] × [c, d] en subceldas Rij = [ui−1, ui] × [vj−1, vj ]:

Sij = {(x(u, v), y(u, v), z(u, v)) : (u, v) ∈ [ui−1, ui] × [vj−1, vj ]} .

y escogemos en cada subregión Sij un punto Pij . La suma de Riemann

R(δrot, m, n, r) =
∑m

i=1

∑n
j=1 rotF(Pij) · (ru × rv)∆u∆v

=
∑m

i=1

∑n
j=1 δrot(Pij) ‖ru × rv‖∆u∆v,

donde ru y rv son las derivadas parciales de r con respecto a u y a v en Pij , respectivamente,

es una aproximación de la rotación total de F sobre S, que no es otra cosa que la integral:
∫∫

S
δrot dA =

∫∫
[a,b]×[c,d] δrot(x(u, v), y(u, v), z(u, v)) ‖ru × rv‖ dudv

=
∫∫

[a,b]×[c,d] rotF(x(u, v), y(u, v), z(u, v)) · (ru × rv)dudv
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Tenemos que δrot(Pij) ≈ Cij

‖ru × rv‖∆u∆v
, que es la circulación de F a lo largo de ∂Sij

por unidad de área. Entonces,

R(δrot, m, n, r) =
∑m

i=1

∑n
j=1 δrot(Pij) ‖ru × rv‖∆u∆v

≈ ∑m
i=1

∑n
j=1

Cij

‖ru × rv‖∆u∆v
‖ru × rv‖∆u∆v

=
∑m

i=1

∑n
j=1 Cij .

La circulación de F a lo largo de ∂Sij es igual a la suma de las circulaciones C1
ij , C2

ij ,

C3
ij y C4

ij de F a lo largo de cada una de las curvas correspondientes a los lados de

Rij = [ui−1, ui] × [vj−1, vj ]. Pero como C1
ij = −C3

(i+1)j y C2
ij = −C4

i(j+1), se tiene que

R(δrot, m, n, r) ≈ ∑m
i=1

∑n
j=1 Cij .

=
∑m

i=1

∑n
j=1(C

1
ij + C2

ij + C3
ij + C4

ij)

=
∑m

i=1(C
2
im + C4

i0) +
∑n

j=1(C
1
nj + C3

0j)

=
∑m

i=1 C2
im +

∑m
i=1 C4

i0 +
∑n

j=1 C1
nj +

∑n
j=1 C3

0j

donde
∑m

i=1 C1
im,

∑m
i=1 C2

i0,
∑n

j=1 C3
nj y

∑n
j=1 C4

0j son las sumas de Riemann de las circu-

laciones de F a lo largo de cada una de las curvas correspondientes a los lados de la celda

R = [a, b] × [c, d] y que conforman el borde ∂S de la superficie S. Por consiguiente:

∫∫
S

rotF · dA = ĺımm,n→0 R(δrot,m, n, r)

= ĺımm,n→0

(∑m

i=1 C2
im +

∑m

i=1 C4
i0 +

∑n

j=1 C1
nj +

∑n

j=1 C3
0j

)

=
∫

∂S
F · dL

2.3.7. Teorema de la divergencia

Sea F un campo vectorial tridimensional definido en una región D del espacio pa-

rametrizada por una función vectorial

r : P −→ R
3, r(u, v, w) = 〈x(u, v, w), y(u, v, w), z(u, v, w)〉

donde P = [a, b] × [c, d] × [e, h] y r con derivadas parciales continuas en (a, b) ×
(c, d) × (e, h).

Consideremos una partición de la región D en subregiones Dijk definida por una

partición de P en subceldas Pijk = [ui−1, ui] × [vj−1, vj] × [wk−1, wk]. Es decir,



156 CAPÍTULO 2. TALLERES Y CURSILLOS

Dijk = {(x(u, v, w), y(u, v, w), z(u, v, w)) : (u, v, w) ∈ [ui−1, ui] × [vj−1, vj] × [wk−1, wk]} .

Escogemos en cada subregión Dijk un punto Pijk. La suma de Riemann

R(divF,m, n, l, r) =
∑m

i=1

∑n

j=1

∑l

k=1 divF(Pijk) |(ru × rv) · rw|∆u∆v∆w,

es una aproximación de la integral de divF sobre D con respecto a r, ya que:

∫∫∫
D

divFdV

= ĺımm,n,l→∞

∑m

i=1

∑n

j=1

∑l

k=1 divF(Pijk) |(ru × rv) · rw|∆u∆v∆w

=
∫∫∫

[a,b]×[c,d]×[e,h]
divF(x(u, v, w), y(u, v, w), z(u, v, w)) |(ru × rv) · rw| dudvdw

Tenemos que δexp(Pijk)= divF(Pijk) ≈ Φijk

|(ru × rv) · rw|∆u∆v∆w
, que es flujo de F

a través de ∂Dijk por unidad de volumen. Entonces,

R(δexp,m, n, l, r) =

=
∑m

i=1

∑n

j=1

∑l

k=1 δexp(Pijk) |(ru × rv) · rw|∆u∆v∆w

≈ ∑m

i=1

∑n

j=1

∑l

k=1

Φijk

|(ru × rv) · rw|∆u∆v∆w
|(ru × rv) · rw|∆u∆v∆w

=
∑m

i=1

∑n

j=1

∑l

k=1 Φijk.

El flujo F a través de ∂Dijk es igual a la suma de los flujos Φs
ijk, s = 1, 2, . . . 6,

de F a través de cada una de las superficies correspondientes a las caras de Pijk =

[ui−1, ui] × [vj−1, vj] × [wk−1, wk]. Pero como Φ1
ijk = −Φ6

(i+1)jk, Φ2
ijk = −Φ5

i(j+1)k y

Φ3
ijk = −Φ4

ij(k+1) se tiene que
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R(δexp,m, n, l, r) ≈

=
∑m

i=1

∑n

j=1

∑l

k=1 Φijk

=
∑m

i=1

∑n

j=1

∑l

k=1

(∑6
s=1 Φs

ijk

)

=
∑m

i=1

∑n

j=1(Φ
3
ijl + Φ4

ij0) +
∑m

i=1

∑l

k=1(Φ
2
ink + Φ5

i0k) +
∑n

j=1

∑l

k=1(Φ
1
mjk + Φ6

0jk)

=
∑m

i=1

∑n

j=1 Φ3
ijl +

∑m

i=1

∑n

j=1 Φ4
ij0 +

∑m

i=1

∑l

k=1 Φ2
ink

+
∑m

i=1

∑l

k=1 Φ5
i0k +

∑n

j=1

∑l

k=1 Φ1
mjk +

∑n

j=1

∑l

k=1 Φ6
0jk

donde cada uno de los seis términos en la última suma son las sumas de Riemann

de los flujos de F a través de cada una de las superficies correspondientes a las caras

de la celda P y que conforman la superficie ∂D de la región D. Por consiguiente:

∫∫∫
S

divFdV = ĺımm,n,l→0 R(δexp,m, n, l, r)

= ĺımm,n,l→0

(∑m

i=1

∑n

j=1 Φ3
ijl +

∑m

i=1

∑n

j=1 Φ4
ij0 +

∑m

i=1

∑l

k=1 Φ2
ink

+
∑m

i=1

∑l

k=1 Φ5
i0k +

∑n

j=1

∑l

k=1 Φ1
mjk +

∑n

j=1

∑l

k=1 Φ6
0jk

)

=
∫∫

∂D
F · dA

Para terminar, consideremos el teorema de Stokes en el caso particular en el que la

superficie S está contenida en el plano XY . Obsérvese que en este caso el vector

normal unitario, en cada uno de los puntos de la superficie, no es otro que el vector

k. Por consiguiente, la densidad de rotación del campo F = 〈P,Q,R〉 es rotF · k =

Qx − Py. Por tanto, en este caso:
∫∫

S

rotF · kdA =

∫∫

S

(Qx − Py) dA

y ∫

∂S

F · dL =

∫

∂S

Pdx + Qdy.

Es decir, el teorema toma la siguiente forma, que se conoce como el teorema de

Green:
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Teorema de Green. Suponga que F= 〈P,Q〉 es un campo vectorial definido en

un subconjunto cerrado y acotado S de R
2 que se puede parametrizar mediante

una función vectorial diferenciable r : R −→ R
2. Si las componentes escalares de F

tienen derivadas parciales continuas, entonces la rotación total del campo sobre S

es igual a la circulación de F a lo largo del borde ∂S de S. Más precisamente, se

tiene que:

∫∫

S

(Qx − Py) dA =

∫

∂S

Pdx + Qdy.
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2.4. La computación a través de los juegos discretos

Raúl Chaparro Aguilar11

Juan Albornoz Bueno12

2.4.1. Los juegos discretos

La palabra discreto proviene del lat́ın discretus, que significa “separado”. En ma-

temáticas y f́ısica, se habla de lo discreto como opuesto de lo continuo. Cuando se

tiene un sistema o conjunto cuyos elementos se pueden contar, decimos que éste

es discreto. Por ejemplo, podemos contar el número de personas que hay en una

familia, o en un salón. Para ello se utilizan los números naturales: 0, 1, 2, 3, ...

Pero si tuviéramos la necesidad de conocer de manera exacta su estatura o su peso,

debeŕıamos utilizar algún instrumento de medición y la interpretación que hagamos

del resultado siempre seŕıa una aproximación. Entraŕıamos entonces en el mundo de

las medidas o continuo.

Los sistemas discretos son particularmente importantes para la informática, pues

el computador es una máquina de naturaleza discreta. Esto lo veremos claro más

adelante cuando estudiemos la máquina de Turing. Por el momento piense que la

memoria del computador, por grande que sea, tiene un número finito de posibles

configuraciones, y que la ejecución de un programa no es sino una sucesión, paso a

paso, de configuraciones de esa memoria.

En esta sección trataremos de precisar las nociones de discreto y continuo, mediante

el análisis de dos juegos de distinta naturaleza.

El juego de las ranas y los sapos

A lo ancho del lecho de un caudaloso ŕıo se encuentran siete piedras alineadas que

permiten pasar de un lado al otro. En el lado izquierdo del ŕıo hay tres ranas y en

el lado derecho, tres sapos. Cada grupo necesita cruzar al otro lado. Las ranas se

ubican en las tres piedras del lado izquierdo y los sapos en las tres del lado derecho,

quedando una piedra libre en la mitad. Las ranas siempre van a saltar de izquierda

a derecha y los sapos de derecha a izquierda, y nunca se pueden devolver. Todos

pueden saltar de una piedra a la piedra vecina, o en caso de que ésta esté ocupada, a

la que le sigue si está libre. Nunca pueden saltar a más de dos piedras de distancia,

ni a una piedra ocupada. Por supuesto, no pueden caer al ŕıo, pues se los lleva la

corriente. El objetivo es entonces llevar a las ranas a las piedras del lado derecho y

a los sapos a las del lado izquierdo, dejando la piedra central libre.

11Profesor de la Escuela Colombiana de Ingenieŕıa.
12Profesor de la Escuela Colombiana de Ingenieŕıa.
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La situación inicial se verá aśı:

A partir de dicha situación, en un siguiente movimiento tendŕıamos estas cuatro

alternativas:

1. La primera rana salta a la piedra vaćıa. La situación resultante seŕıa:

2. La segunda rana salta a la piedra vaćıa. La situación resultante seŕıa:

3. El primer sapo salta a la piedra vaćıa. La situación resultante seŕıa:

4. El segundo sapo salta a la piedra vaćıa. La situación resultante seŕıa:

El objetivo del juego es llegar a la siguiente situación:

Intente solucionar este problema empleando el menor número de movimientos. Si

quiere, puede utilizar monedas, piedras o cualquier elemento f́ısico que considere

adecuado para simularlo. Una vez solucionado, registre de alguna manera su solución.
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Juegos de destreza manual

Considere ahora el juego nacional del tejo. Se trata de lanzar desde la distancia un

objeto de hierro (el tejo) y atinarle a la bocina, e idealmente hacer explotar una

mecha. Suponga que su reto es enbocinar al menos tres veces y explotar al menos

una mecha en el lapso de cinco minutos.

Comparación de los dos juegos

Note que estuvo trabajando en dos juegos unipersonales, es decir, sin contrincante,

y dados unos ĺımites de tiempo, al final podŕıamos determinar si fue posible ganar o

no. Sin embargo, los dos juegos tienen diferencias significativas. Intente responderse

las siguientes preguntas tanto para el juego de ranas y sapos, como para el tejo:

¿El éxito del juego depende de los elementos f́ısicos que utilizó para realizarlo?

Por ejemplo, si se hubiese escogido otro material, ¿habŕıa sido más dif́ıcil o

más fácil solucionarlo?

Si pudo ganar el juego, ¿podŕıa darle a otra persona las instrucciones por

teléfono, de modo que al seguirlas llegue exactamente a la misma solución?

¿La solución del juego consta de una sucesión de pasos, que si se siguen fiel-

mente, con seguridad nos harán ganar?

¿Podŕıan darse configuraciones durante el juego en las que haya ambigüedad

con respecto al resultado? Por ejemplo, una configuración donde puedan existir

diferencias de interpretación, de modo que dos personas, que conozcan bien

las reglas, pudieran emitir juicios diferentes sobre el resultado.

Analicemos estas preguntas. Para jugar ranas y sapos, aunque escoger un material

f́ısico para simularlo puede influir (por ejemplo, ¿qué pasaŕıa si escogemos fichas que

pesen 100 kilos?), la solución no depende esencialmente de ello. Incluso, una persona
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con alta capacidad retentiva y de visualización, podŕıa resolverlo mentalmente, sin

necesidad de utilizar ningún elemento f́ısico. Una vez solucionado el juego, existe

un conjunto preciso de pasos que, si se siguen correctamente, con seguridad llevan

de la configuración inicial al objetivo. Estos pasos se pueden codificar, por ejemplo

numerando las posiciones y diciendo de dónde a dónde se hace un movimiento.

Además, para un conocedor de las reglas, no habŕıa duda de si una solución es

correcta o no.

Éste no es el caso del juego del tejo. Sin duda, habrá algunos materiales con los que

es más sencillo ganar y otros con los que puede resultar prácticamente imposible. Si

tenemos la “suerte” de ganar, no hay ninguna garant́ıa de que volveremos a hacerlo

más adelante. No existe forma de registrar la solución de modo tal que otra persona

la pueda consultar y jugar de manera idéntica. Podemos, además, caer en situaciones

en las que es dif́ıcil determinar si el tejo quedó adentro de la bocina, y resultará muy

dif́ıcil determinar el puntaje correspondiente. Este juego depende, en esencia, del

mundo en que nos movemos y de nuestras habilidades f́ısicas, con sus posibilidades

y condiciones.

En los ejemplos mencionados, vemos que una de las caracteŕısticas de los juegos

de naturaleza discreta es que admiten una representación simbólica y, por tanto,

contamos con la posibilidad de modelarlos y escribir su solución como secuencias de

pasos, con lo que las podemos guardar y recuperar.

Éste es un trabajo que hace muy bien el computador. El computador es una máqui-

na de naturaleza discreta. Cuando soluciona un problema, lo hace mediante una

sucesión de pasos predecibles, que se podŕıan volver a reproducir con resultados

idénticos cuantas veces queramos. A veces se utiliza el computador para interactuar

en tiempo real con sistemas continuos, como por ejemplo en aplicaciones de robóti-

ca y programas empotrados en diversos dispositivos y veh́ıculos; pero aun en estos

casos, el computador mantiene un modelo discreto del entorno f́ısico, que se apro-

xima en la medida de lo posible al mundo real. Todas las acciones del computador

se pueden modelar con sistemas discretos. Por tal razón en este libro nos propo-

nemos estudiar muchos de los principios y estrategias de solución de problemas de

informática sobre juegos discretos. En ellos encontraremos un sinf́ın de posibilida-

des para experimentar y hacer expĺıcitos los conceptos y estrategias fundamentales

utilizados en informática.

¿Qué son los juegos discretos?

Los juegos discretos tienen una naturaleza finita y formal. Finita, porque su solu-

ción se realiza mediante una sucesión finita de movimientos. Formal, porque son

independientes del medio en el cual se encuentran materializados.

Es decir, el mismo juego puede materializarse en cualquier número de medios dife-
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rentes, sin ninguna diferencia esencial significativa. Tómese por ejemplo el ajedrez.

Una partida podŕıa realizarse en tableros de distintos tamaños, con fichas de di-

ferentes materiales, o incluso mediante una representación puramente simbólica, y

seguiŕıa siendo la misma partida. Un juego discreto se compone de:

1. Un conjunto finito de elementos (fichas, tablero, etc.).

2. Una disposición inicial de dichos elementos, a la que también podemos llamar

estado inicial del juego.

3. Un conjunto de reglas que definen los movimientos permitidos en cada estado

del juego. Al hacer un movimiento, el juego cambia de estado.

4. Un criterio para decidir si se ha llegado al estado final, también llamado estado

ganador. El objetivo del juego es llevar los elementos a este estado.

Ejercicios

1. Solucione el juego de las ranas y sapos, y escriba de la manera más concisa su

solución.

2. Dé ejemplos de tres juegos continuos y tres juegos discretos.

3. Encuentre juegos discretos populares con las siguientes caracteŕısticas:

a) Juego de contrincantes.

b) Juego solitario (unipersonal).

c) Juego de azar.

d) El jugador puede llegar a “callejones sin salida”, es decir, a estados que

no son ganadores, desde los que no se puede continuar.

e) Juegos en los que es posible caer en ciclos de movimientos eternos, sin

nunca ganar.

f ) Juegos donde sea imposible caer en ciclos de movimientos eternos.

4. Encuentre un algoritmo o “receta” para solucionar el juego de las ranas y

sapos, que funcione para cualquier cantidad de ranas y de sapos, separados

por una piedra.

5. Encuentre una fórmula para determinar el número de pasos necesarios para

solucionar el juego de ranas y sapos, dado que se cuenta con n ranas y m

sapos.
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2.4.2. Sistemas formales

En ciencias e ingenieŕıa es esencial el desarrollo de modelos. Un modelo es una

representación (matemática, f́ısica, gráfica, etc.), de un sistema o fenómeno, con el fin

de analizarlo, explicarlo o simularlo. En informática es común el desarrollo de diverso

tipo de modelos (simbólicos, gráficos o computacionales), que nos ayudan a entender

los problemas, a domesticarlos, y comunicar las soluciones que encontramos. Uno de

los instrumentos de modelado más frecuente son los sistemas formales.

Hemos dicho que los juegos discretos son de naturaleza formal; esto es, son inde-

pendientes del medio externo donde se llevan a cabo. En consecuencia, se pueden

representar y jugar mediante cadenas de śımbolos, de manera completamente libre

de ambigüedades. En esta sección estudiaremos un tipo particular de juego discreto,

llamado sistema formal combinatorio.

Un sistema formal combinatorio consta de un alfabeto, que es simplemente el con-

junto de śımbolos que se va a usar; un conjunto de palabras iniciales, escritas en ese

alfabeto, y un conjunto de reglas que nos dicen cómo generar nuevas palabras. La

idea es empezar con alguna palabra inicial e ir generando nuevas palabras siguiendo

las reglas dadas. Ilustraremos esto con un juego, que llamaremos “Sistema OM”:

Alfabeto: {O, M}

Esto quiere decir que las únicas letras que podemos usar son la O y la M. Con

estas letras podemos formar palabras que no son sino sucesiones de letras. Por

ejemplo: MO, MMO, MOMO, M, O. No se contemplará en nuestro sistema

ninguna palabra que tenga una letra que no esté en el alfabeto, como por

ejemplo: MI o MA. Podemos convenir también en que hay una palabra que

no tiene ninguna letra a la que llamaremos palabra vaćıa, que también forma

parte de las palabras posibles.

Palabra inicial: {M}

La única palabra con que contaremos en un comienzo es M.

Reglas:

• R1: A partir de una palabra que termina en M, se puede generar una

nueva palabra agregando una O al final. Por ejemplo, a partir de MM

podemos generar MMO.

• R2: Se puede duplicar cualquier palabra y generar una nueva palabra.

Duplicar una palabra quiere decir que se escribe dos veces de manera

pegada; por ejemplo, al duplicar MOM generamos MOMMOM.
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• R3: Si se tiene OM dentro de una palabra, podemos generar una nue-

va palabra, cambiando OM por MO. Por ejemplo, a partir de MOMO

podemos generar MMOM.

Objetivo del juego: generar la palabra OM.

Empezamos entonces con la palabra M. En cada paso tomamos la última palabra

generada y le aplicamos cualquier regla que se pueda aplicar. A una sucesión de

palabras obtenidas con este método se le llama una derivación. Por ejemplo:

M → MO → MOMO → MOMOMOMO es una derivación donde se aplicó pri-

mero la regla R1, y luego dos veces la regla R2.

M→ MM → MMMM → MMMMO es una derivación donde se aplicó dos veces

la regla R2 y una vez la regla R1.

Un sistema formal combinatorio consta de:

Un alfabeto, que es un conjunto finito de śımbolos.

Un conjunto de palabras iniciales, también llamado axiomas.

Un conjunto de reglas. Cada regla permite generar nuevas palabras a partir

de alguna palabra previamente generada.

Una derivación es una secuencia de palabras, que empieza en un axioma, y cada

palabra en lo sucesivo es obtenida por la aplicación de alguna regla a su palabra

precedente. A la palabra final obtenida se le llama teorema.

Ejercicios

En el sistema OM, encontrar derivaciones que terminen en las siguientes palabras.

Si no se puede, argumente por qué.

1. MMOMMO

2. MOMOMOMOMOMOMOMO

3. MMMMMMMM

4. MMOMMOMMO

5. MMOO

6. OM (finalmente, ¡éste es el objetivo de nuestro juego!)
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Encontrando invariantes

¿Qué sabemos si es imposible generar algunas palabras? Tomemos el caso de la

palabra OM. Observando un poco, notamos el siguiente hecho: todas las palabras

generadas empiezan por M. ¿Será este un invariante de nuestro sistema? Un inva-

riante es una propiedad que se cumple para todas las palabras en una derivación.

Es claro que si demostramos que todas las palabras del sistema empiezan por M,

entonces es imposible generar OM, por más que lo intentemos; pero ¿cómo podemos

demostrar este hecho? La única manera de obtener palabras es por medio de una

palabra inicial, o de la aplicación de alguna regla a una palabra ya obtenida. Tenemos

que enfocarnos en analizar las propiedades de la palabra inicial y de las reglas.

Veamos entonces por qué se cumple el invariante “todas las palabras del sistema

empiezan por M”:

La única palabra inicial principia por M, por lo que cumple esta propiedad.

La regla R1 agrega una O al final, pero no modifica la letra inicial. Por tanto, si

partimos de una palabra que comienza por M, la palabra generada seguirá em-

pezando por M.

La regla R2 duplica la palabra. Al duplicar, la letra inicial de la palabra origen

seguirá apareciendo en el mismo lugar en la palabra generada. Es decir, que si la

palabra original empezaba por M, la palabra generada continuará comenzando

por M.

La regla R3 permite remplazar OM por MO. Si tenemos una palabra que

empieza por M, a la que se le pueda aplicar esta regla, la palabra generada

seguirá comenzando por M, pues a la primera letra no la afecta la regla.

Como no hay otras maneras de generar palabras, podemos concluir que todas las

palabras generables empezarán por M. Y como OM no comienza por M, tenemos

entonces que es imposible generarla.

Ejercicios

Utilizando el sistema OM:

1. Demuestre los siguientes invariantes:

a) Si una palabra tiene al menos una O, entonces termina en O.

b) El número de letras M en una palabra es una potencia de dos; es decir,

se puede escribir como 2n para algún n >= 0.
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c) El número de letras O en una palabra es una potencia de dos; es decir,

se puede escribir como 2n para algún n >= 0.

d) En una derivación nunca se puede utilizar la regla R1 más de una vez.

Encuentre tres palabras que se puedan generar utilizando todas las reglas

del sistema.

2. Caracterice completamente a todas las palabras del sistema OM. Es decir,

encuentre una propiedad que sea satisfecha por todas, y sólo por todas las

palabras generables en el sistema OM.

Especificando palabras y reglas con plantillas

Los lenguajes naturales con los que nos comunicamos las personas, como el español,

el inglés, etc., son propensos a múltiples ambigüedades. Por ejemplo, qué pasaŕıa

si permitiéramos reglas en nuestros sistemas formales como “una palabra se puede

agrandar” o “una palabra se puede invertir”. Podŕıamos tener diferentes interpre-

taciones de agrandar, como por ejemplo añadirle letras, o dibujarla con letras más

grandes. Igualmente habŕıa ambigüedad al invertir una palabra: ¿se trata de leerla

de derecha a izquierda, o de que una M se convierta en W?

Nos interesa eliminar este tipo de ambigüedades de nuestros sistemas formales. Para

ello vamos a usar plantillas que representan conjuntos de palabras. Una plantilla

es un formulario que puede tener letras del alfabeto y variables. Cada variable es

una “casilla en blanco” que se puede rellenar con cualquier cantidad de letras del

alfabeto. Una vez que se han llenado las variables de una plantilla, se obtiene una

palabra. A manera de ejemplo presentamos las siguientes plantillas, donde el alfabeto

es O, M y las variables son x, y, z.

M x: O

Con esta plantilla se pueden obtener palabras como:

• MMO, donde la x se ha llenado con la palabra M.

• MOO, donde la x se ha llenado con la palabra O.

• MOMO, donde la x se ha llenado con la palabra OM.

• MO, donde la x se dejó en blanco. En este caso se puede hablar también

de x como la palabra vaćıa.

Es claro, además, que hay palabras que no se pueden formar con la plantilla,

pues no seŕıa posible llenar las variables de modo que al final obtengamos la

palabra. Por ejemplo, es imposible encontrar una manera de llenar la variable
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x, de modo que obtuviéramos las palabras MOM, OMO, OMM. Podemos ver

que con esta plantilla estamos representando todas las palabras que empiezan

por M y terminan en O.

x: MM y:

Con esta plantilla se pueden obtener palabras como:

• MM, donde x y y se han dejado en blanco, es decir, son palabras vaćıas.

• OMM, donde x se ha llenado con la letra O e y se ha dejado en blanco.

• MMO, donde la x se ha dejado en blanco y la y se ha llenado con la letra

O.

• MMMO, donde hay varias maneras posibles de llenar las variables. Por

ejemplo, podemos presumir que la x se ha dejado en blanco y la y se ha

llenado con la palabra MO, o también que la x se ha llenado con la letra

M y la y se ha llenado con la letra O. En este caso, la plantilla representa

las palabras que tienen dos M seguidas en alguna parte.

O x: M y:

Con esta plantilla se pueden obtener palabras como:

• OOM, OMM, OMMO, OM. Intente llenar las variables para obtener estas

palabras. Detecte en qué casos hay más de una manera de llenar las

variables. Encuentre también tres palabras que no se puedan generar con

la plantuilla. Notará que esta plantilla corresponde a las palabras que

empiezan por O y después tienen al menos una M.

x: O x:

Nótese que las dos casillas de la variable x se deben llenar con las mismas

letras, pues se trata de la misma variable. Con esta plantilla se pueden obtener

palabras como:

• MOM: en este caso x se ha llenado con la letra M.

• OMOOM: en este caso x se ha llenado con la palabra OM.

• O: en este caso x se ha dejado sin llenar.

Es imposible encontrar una correspondencia para palabras como MOO, dado

que no se puede aceptar que la primera x se llene con una palabra diferente

de la segunda x. Esta plantilla representa las palabras que tienen una O en

la mitad y tanto a la izquierda como a la derecha de esta O se encuentra la

misma subpalabra.
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x:

Representa cualquier posible palabra que se pueda hacer con este alfabeto, in-

cluyendo la palabra vaćıa.

En adelante, para simplificar la escritura de las plantillas, anotaremos tan sólo la

secuencia de letras y variables, omitiendo pintar las casillas. Entonces, cuando apa-

rezca una variable, podemos imaginar que alĺı lo que hay es una casilla en blanco

por llenar.

Utilizando plantillas podemos expresar de una manera más precisa y concisa las

reglas de un sistema formal mediante “Reglas de reescritura”. Estas reglas tienen

dos plantillas, separadas por una flecha hacia la derecha. Para poder aplicar una

regla, tenemos que partir de una palabra que se pueda obtener con el lado izquierdo

de la regla, y entonces generamos la nueva palabra usando la plantilla del lado

derecho. Por ejemplo, las reglas de nuestro sistema OM se pueden expresar de un

modo muy conciso aśı:

R1: xM → xMO

R2: x → xx

R3: xOMy → xMOy

Suponga que ya hemos generado la palabra MOMO y queremos ver qué se puede

generar a partir de ésta. Entonces tendŕıamos que la primera regla no se podŕıa

utilizar, pues no hay manera de llenar la x del lado izquierdo de la regla, para

obtener MOMO. La segunda regla śı se podŕıa aplicar: si la x se llena con MOMO,

entonces el lado izquierdo de la regla coincide con nuestra palabra y podemos generar

lo que resulte en el lado derecho de la regla, en este caso MOMOMOMO. A partir

de MOMO también podŕıamos haber utilizado la tercera regla: llenando la x con M

y la y con O, obtenemos nuestra palabra de origen, MOMO, y con el lado derecho

de la regla generaŕıamos la palabra MMOO.

Ejercicios

Utilizando como alfabeto: {M, A, O}

1. Encuentre para cada plantilla tres palabras distintas que se puedan obtener y

tres que no. Describa luego en forma precisa qué conjunto de palabras repre-

senta la plantilla.

a) xMyAx
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b) xMAyz

c) AxMyO

d) xx

e) xyx

f ) xAxMxOx

g) xy

h) AMO

2. Encuentre plantillas para los siguientes conjuntos de palabras:

a) Las palabras que empiezan por A y terminan en O.

b) Las palabras que se pueden partir en tres subpalabras idénticas, colocadas

una a continuación de la otra. Por ejemplo: MAMAMA, MAOMAOMAO

c) Las palabras que tienen al menos una A.

d) Las palabras donde hay al menos una M, después de la cual en algún

lugar aparezca una O.

3. Proponga normas de reescritura para especificar las siguientes reglas:

a) A una palabra se le pueden agregar dos letras M en el extremo derecho.

b) A una palabra se le pueden agregar dos letras M en el extremo izquierdo.

c) Si una palabra empieza por M, entonces esta M se puede quitar y agre-

garla en el extremo derecho.

d) Si en una palabra aparece la subpalabra MM, ésta se puede retirar.

e) Si en una palabra aparece la subpalabra MA, se puede remplazar por

MAMA.

f ) Una palabra se puede triplicar. Por ejemplo, si se tiene MA se puede

generar MAMAMA.

4. Interprete en español cada una de las siguientes reglas de reescritura:

a) Mx → Mxx

b) xMyAz→xAyMz

c) xy → yx

d) xMy → xy



2.4. RAÚL CHAPARRO A. & JUAN ALBORNOZ B. LA COMPUTACIÓN A TRAVÉS DE JUEGOS 171

Modelando con sistemas formales

Uno de los usos de los sistemas formales es modelar problemas del mundo real. Por

ejemplo, podemos producir un sistema formal para el juego de ranas y sapos, para

lo cual debemos representar simbólicamente los elementos del juego. Por ejemplo,

podemos representar las ranas con la letra R, los sapos con la letra S y las piedras

vaćıas con el śımbolo . Es decir, nuestro alfabeto será el conjunto {S, R, }. Como

variables usaremos letras: x, y, ...

El juego, entonces, se puede modelar aśı:

Palabra inicial: RRR SSS

R1: xRS y → x SRy

R2: xRR y → x RRy encontrar

R3: x RSy → xSR y

R4: x SSy → xSS y

Palabra ganadora: SSS RRR

Con esta representación y estas reglas se puede describir la solución al problema de

las ranas y sapos, mediante una derivación de la palabra ganadora aśı:

RRR SSS→ RR RSSS→ RRSR SS→ RRSRS S → RRS SRS→
R SRSRS → RSRSRS → SR RSRS → SRSR RS → SRSRSR →
SRSRS R → SRS SRR →S SRSRR→SS RSRR →SSSR RR →SSS RRR

Actividades de juegos y sistemas formales

Problema del robot

A una ĺınea de montaje llegan cuatro componentes en el orden ABCD:

A B C D

En la etapa siguiente los componentes pueden ser necesarios en cualquier orden.

Para disponerlos en el orden requerido se ha programado un robot, capaz de realizar

dos operaciones básicas:

1. Intercambio de los dos primeros componentes. Por ejemplo, partiendo del orden

inicial llegaŕıamos a la siguiente configuración: B A C D

2. Rotación ćıclica, llevando el último componente a la primera posición y des-

plazando los demás un espacio hacia atrás. En este caso, partiendo del orden

inicial llegaŕıamos a la siguiente configuración: D A B C
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Preguntas

1. ¿De qué modo se deben combinar las dos operaciones básicas del robot para

producir el orden DACB?

2. ¿Será que si el orden inicial es DBCA podemos llegar a ABCD?

Problema de negras y blancas

Se tiene un tablero lineal con dos fichas negras, dos fichas blancas y una casilla vaćıa,

aśı: N N B B

Las reglas para los movimientos válidos son:

1. Una ficha puede moverse a la posición adyacente vaćıa.

2. Una ficha puede saltar por encima de otra (sólo una) para colocarse en la

posición vaćıa. Si la ficha que salta es de distinto color que la saltada, esta

última cambia de color.

Preguntas

1. Modelar el anterior juego como sistema formal, definiendo claramente el alfa-

beto, los axiomas y las reglas.

2. Plantear el objetivo del juego como teorema y demostrarlo, exhibiendo la de-

rivación.

3. Enunciar un invariante, no trivial, y demostrarlo (una propiedad que se cumple

siempre; por ejemplo: el número de B no es mayor que 5).

Ejercicios

1. Con el alfabeto {M, O}, construya sistemas formales para cada una de las

siguientes exigencias:

a) Las palabras deben tener un número impar de letras M.

b) Las palabras no deben tener dos letras iguales consecutivas.

c) Las palabras deben tener una cantidad par de letras M y de letras O.

d) Las palabras deben tener el doble de letras M que de letras O.

e) Las palabras deben tener un múltiplo de tres de letras O.
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2. La bandera de Colombia está compuesta por tres franjas horizontales de colo-

res amarillo, azul y rojo, en este orden, donde el amarillo ocupa exactamente

la mitad, y tanto el azul como el rojo una cuarta parte. Podemos representar

las banderas con palabras del alfabeto {A, Z, R}, donde la A representa el

color amarillo, la Z el azul y la R el rojo. Por ejemplo, las siguientes seŕıan

banderas válidas: AAZR, AAAAZZRR, AAAAAAZZZRRR, ... No seŕıan ban-

deras válidas si no se respetara el orden de los colores, al leer de izquierda a

derecha, o si no se mantuviera la proporción. Tampoco es una bandera válida

la palabra vaćıa. Queremos tener un sistema formal que genere banderas de

Colombia.

a) Diseñe un sistema formal cuyas palabras representen banderas válidas.

b) Demuestre por qué su sistema sólo permite generar banderas válidas.

3. Se quiere desarrollar un sistema formal para ordenar palabras hechas con el

alfabeto {A, B, C}. Es decir, si partimos de una palabra cualquiera escrita

en este alfabeto, y aplicamos exhaustivamente las reglas, hasta que no haya

ninguna más que se pueda aplicar, queremos que la palabra final tenga la

misma cantidad de cada una de las letras, con respecto a la palabra inicial,

pero en orden alfabético. Esto es, primero estén las letras A, luego las B y

finalmente las C.
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CAṔITULO 3

Ponencias

3.1. Inclusión de los ambientes digitales en el aprendizaje

del cálculo diferencial “razón de cambio”

Mg. Dorys Jeannette Morales Jaime1

Resumen

En este art́ıculo se presenta una investigación desde el desarrollo tecnológico e inclu-

sión social, abordando los temas referentes a la pertinencia y la complementariedad

de las TIC en la educación superior, por medio de la aplicación de ambientes digitales

en el desarrollo de estrategias de aprendizaje en el cálculo diferencial.

La investigación se centra en la caracterización de estrategias cognitivas y metacog-

nitivas utilizadas en la resolución de problemas de razón de cambio en estudiantes

que emplean conocimiento lingǘıstico, semántico y esquemático en un ambiente e-

learning. Para la validación de la investigación se diseñó e implementó un ambiente

digital (software) sobre plataforma Moodle, que permite evidenciar las estrategias

metacognitivas como cognitivas y el tipo de conocimiento (lingǘıstico, semántico,

esquemático) que el estudiante emplea en la resolución de problemas de razón de

cambio. El software permite la tipificación de las estrategias frente al tipo de cono-

cimiento y la eficacia en el aprendizaje significativo del cálculo diferencial.

Como estrategia metodológica se utilizó el análisis de protocolos por medio de infor-

mes concurrentes (protocolos automatizados y escritos), aplicada en estudiantes de

1Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia. Escuela de Matemáticas

y Estad́ıstica. dojemoja@yahoo.com, dojemoja@hotmail.com.
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primer semestre de ingenieŕıa en la Universidad Pedagógica y Tecnológica de Colom-

bia. La investigación permitió contribuir a la teoŕıa de Mayer “basada en procesos y

conocimientos espećıficos” (1982, 1983, 1985, 1987) y, a su vez, dar inicio al diseño

de un ambiente adaptativo con redes neuronales (I.A.) que permita retroalimentar

al estudiante, de acuerdo con el tipo de conocimiento que trae en la resolución de

problemas y al fortalecimiento de estrategias.

Palabras claves: cognición, metacognición, estrategias, TIC, lingǘıstico, semántico,

esquemático, resolución de problemas.

3.1.1. Descripción

La investigación empieza con un estado del arte donde se realiza un barrido docu-

mental de los antecedentes documentales de la última década de investigaciones en

áreas de pedagoǵıa y matemáticas, aproximadamente, centradas en resolución de

problemas y estrategias de resolución de problemas.

Por otro lado, está el marco teórico centrado en la teoŕıa de Mayer basada en procesos

y conocimientos espećıficos y estrategias de resolución de problemas matemáticos.

Para el desarrollo de esta investigación se trabajó con una muestra de quince estu-

diantes, que interactuaron con un ambiente digital donde se encontraban problemas

resueltos aplicados en razón de cambio en volúmenes y áreas. El ambiente consta

de tres ventanas (A, B, C), donde la solución de los problemas se centra en estra-

tegias de resolución de problemas con caracteŕısticas pertenecientes a conocimiento

lingǘıstico, semántico y esquemático, respectivamente. Las ventanas presentan la

misma estructura general de estrategias de resolución de problemas, pero se dife-

rencian en el lenguaje, acorde con las caracteŕısticas de cada tipo de conocimiento.

La navegación es libre, en un ambiente amigable que permite la interacción del

estudiante en forma espontánea.

La interacción con el software y las estrategias empleadas en la resolución de pro-

blemas permitieron identificar y tipificar el tipo de conocimiento que el estudiante

presenta cuando aborda problemas de razón de cambio mediante protocolos auto-

matizados en la plataforma Moodle.

Para el procesamiento de los resultados arrojados se utilizó la metodoloǵıa de pro-

tocolos concurrentes utilizada para procesos cognitivos registrados por medio de

protocolos escritos y automatizados (Luis Facundo Maldonado Granados, 2001).
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3.1.2. Contenidos

Problema

¿Qué estrategias se tipifican en estudiantes que utilizan tres tipos diferentes de re-

presentación de conocimiento (lingǘıstico, semántico y esquemático) en la resolución

de problemas de razón de cambio?

Antecedentes

Entre los antecedentes de mayor incidencia se cuenta con las investigaciones realiza-

das con estrategias de resolución de problemas, cognición y metacognición, citadas

en las referencias de esta investigación.

Marco teórico

Para el desarrollo de la investigación se tomó la teoŕıa de Mayer basada en procesos

y conocimientos espećıficos, estrategias de resolución de problemas, haciendo un

recorrido por las estrategias metacognitivas y cognitivas, como la representación de

los tipos de conocimiento lingǘıstico, semántico, esquemático, diferentes modelos

teóricos de la memoria y sus implicaciones en la memoria a corto y largo plazos,

para concluir con el aprendizaje significativo y la tipificación de estrategias frente al

tipo de conocimiento.

3.1.3. Metodoloǵıa

La metodoloǵıa que se usó para esta investigación pertenece a protocolos retrospec-

tivos concurrentes, abordados en cinco momentos de la investigación, que es de corte

descriptivo. Se trabajó con una muestra de quince estudiantes de primer semestre

de ingenieŕıas industrial, mecánica y electrónica, que cursan la asignatura de cálculo

diferencial en la Universidad Antonio Nariño, resuelven problemas de razón de cam-

bio e interactúan con un ambiente digital diseñado con estrategias de resolución de

tres tipos de conocimiento diferentes: lingǘıstico, semántico y esquemático en pla-

taforma Moodle. La plataforma permite realizar un seguimiento automatizado para

identificar las estrategias de resolución de problemas (metacognitivas y cognitivas),

acorde con su tipo de conocimiento.

El desarrollo de esta investigación está compuesto de cinco momentos:

Momento uno. Los estudiantes leen el problema y fijan sus estrategias para abordar

la resolución. Este momento se llama estrategia uno E1.

Momento dos. Los estudiantes aplican estrategias de resolución de problemas desde

su conocimiento. Este momento se denomina estrategia de resolución uno ER1.

Momento tres. Una vez abordados E1 y ER1, se identifica el tipo de conocimiento
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TC utilizado por el estudiante en la resolución del problema. Los tipos de conoci-

miento son lingǘısticos, semánticos o esquemáticos (glosario), que en forma impĺıcita

trae el estudiante al abordar el problema. En este momento el estudiante navega y

explora el software en plataforma.

Momento cuatro. En esta etapa, el estudiante elige un problema propuesto en las

actividades del curso y describe las nuevas estrategias para abordarlo, apoyado en

el wiki individual en ĺınea.

Momento cinco. En esta última etapa, el estudiante aplica las estrategias para la

resolución del problema elegido; este momento se llama estrategia de resolución dos.

Estos momentos de la investigación se evidencian en la metodoloǵıa de protocolo

retrospectivo y concurrente, diseñada para la solución de un problema mediante el

comportamiento motor, cuyo modelo teórico para el estudio de procesos cognitivos

lo desarrollaron Newell y Simon (1972).

Para la selección del modelo pedagógico se toma el de procesamientos de información,

ya que su propósito es estudiar el pensamiento humano articulado con el estudio de

valores, el dominio de la información y el aprendizaje de asignaturas básicas, como

las matemáticas. Combinan la disciplina con la flexibilidad (crear entornos exigentes

pero no asfixiantes) y la retroalimentación.

El análisis y comparación del tipo de conocimiento empleado frente a la estrategia

utilizada en la resolución del problema se fundamenta en la experiencia en la solución

de problemas (Polya y Pogioli), y en procesos y conocimientos espećıficos como

esquemas de razonamiento (Mayer, 1992).

3.1.4. Conclusiones y proyecciones

En el momento uno de la investigación, donde se describen las estrategias

que se van a emplear en la resolución de problemas de razón de cambio, se

observan estrategias de orden general que no permiten la identificación del

tipo de conocimiento espećıfico, quizás por falta de entrenamiento en el diseño

de estrategias. En este momento se identifica una generalidad, orientada a la

lectura y comprensión del problema únicamente.

En el momento dos de la investigación, donde se registran las estrategias de

resolución del problema abordado, se pueden identificar los primeros indicios

de las caracteŕısticas empleadas por los estudiantes, evidenciadas en la re-

presentación de la información en forma gráfica, en representación de datos

en un lenguaje simbólico matemático y la representación de la información,
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inicialmente en un lenguaje familiar al problema y transcrito después a una

representación simbólica matemática.

En contraste con las estrategias empleadas en los momentos uno y dos, se

observa que en el primer momento lo planeado no se ejecuta en su totalidad

en el segundo momento; sin embargo, las estrategias de resolución usadas en

el momento dos presentan una estructura más formal que las empleadas en el

momento uno.

En el momento tres, donde el estudiante interactúa con el ambiente compu-

tacional, se evidencia en su navegación una tendencia a trabajar con estrategias

de un solo tipo de conocimiento, permitiendo aśı la identificación de sus ca-

racteŕısticas frente al tipo de conocimiento espećıfico. El estudiante en este

momento realiza toma de decisiones de estrategias frente al tipo de conoci-

miento.

En el momento cuatro, donde el estudiante ha interactuado con el ambiente

computacional y hace la elección del problema que se va a resolver, registra

en el wiki estrategias más expĺıcitas que en los momentos uno y dos, donde se

evidencian caracteŕısticas propias del tipo de conocimiento espećıfico. En este

momento se presenta una mejor planeación, quizás por la interacción hecha en

el momento tres con las estrategias acordes con su tipo de conocimiento.

Las estrategias empleadas en el momento cuatro, contrastadas con las del

momento dos, permiten observar que las estrategias utilizadas en el momento

cuatro son mejor planeadas, puesto que evidencian caracteŕısticas comunes a

los tipos de conocimiento espećıfico, como también una estructura clara de

los procesos de resolución, lo que permite inferir que la realimentación del

ambiente contribuye al entrenamiento y fortalecimiento de las estrategias.

Las estrategias usadas en el momento cinco, donde el estudiante resuelve el

problema elegido, muestran una concordancia con las estrategias registradas

en el momento cuatro, gracias a lo cual se puede mostrar que hay una secuencia

entre la planeación y la ejecución de estrategias acordes con el tipo de conoci-

miento espećıfico, quizás por realimentación del ambiente computacional.

Efectuadas la codificación y la segmentación de los protocolos, se hace un

análisis de las estrategias empleadas en los cinco momentos de la investigación

frente a las semejanzas encontradas en los quince estudiantes, generando una

identificación en las estrategias y el tipo de conocimiento espećıfico que permite

hallar cinco estudiantes pertenecientes al conocimiento lingǘıstico, cinco al

conocimiento semántico y cinco al conocimiento esquemático.
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A partir de la agrupación se hace una caracterización de las estrategias re-

gistradas y empleadas en cada momento de la investigación, que arroja la

siguiente estructura:

CARACTERÍSTICAS

T. P. LINGÜÍSTICO

CARACTERÍSTICAS

T. C. SEMÁNTICO

CARACTERÍSTICAS T.

C. ESQUEMÁTICO

Representa el plan-

teamiento del proble-

ma en un lenguaje

simbólico.

Representa los datos

iniciales en un lengua-

je natural al proble-

ma.

Realiza una representa-

ción gráfica del proble-

ma.

Identifica el modelo

matemático que se va

a trabajar.

Transcribe los datos

de un lenguaje natu-

ral a una representa-

ción simbólica.

Codifica los datos ini-

ciales a representaciones

simbólicas.

Aplica técnicas de de-

rivación apropiadas al

modelo matemático

Identifica el modelo

matemático que se va

a trabajar.

Identifica el modelo ma-

temático que se va a tra-

bajar.

Muestra un manejo

claro del vocabulario

del problema en un

lenguaje matemático

apropiado.

Aplica técnicas de de-

rivación apropiadas al

modelo matemático.

Aplica técnicas de deriva-

ción apropiadas al mode-

lo matemático.

Fuente: Resultados del estudio.

La caracterización de las estrategias frente al tipo de conocimiento espećıfico se

diferencia en el primer proceso de resolución, es decir, en la representación del

análisis de la información, siendo notoria la interpretación en forma individual

enmarcada en la representación del tipo de conocimiento lingǘıstico, semántico

y esquemático expuesto por Mayer (1992).

Realizada la caracterización de la codificación y segmentación de las estrate-

gias, se generan estructuras según el tipo de conocimiento espećıfico (figura

1).

A través del desarrollo en los cinco momentos de la investigación se observa

que al resolver problemas matemáticos en los estudiantes se activan estrategias

de resolución con diferentes estructuras, ajustables al tipo de conocimiento

lingǘıstico, semántico o esquemático, corroborando aśı la hipótesis.
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La articulación de las nuevas tecnoloǵıas y espećıficamente el desarrollo de

ambientes digitales sobre plataforma Moodle permiten emplear herramientas

como el wiki individual, donde el estudiante actúa de manera libre, y a su vez

evidencian procesos metacognitivos que en el aula de clase no son fáciles de

comprobar.

El diseño y la aplicación de ambientes digitales permiten generar nuevos es-

cenarios pedagógicos, donde el estudiante articula el conocimiento de manera

más espontánea en pro del aprendizaje significativo.

Proyección

Esta tipificación permite identificar las variables de acuerdo con el tipo de cono-

cimiento empleado frente a la estrategia utilizada en la resolución de problemas

de razón de cambio para dar inicio al diseño de un ambiente adaptativo con redes

neuronales (I.A.), que permita identificar las caracteŕısticas del estudiante cuando

ingresa a un ambiente digital, generando un acompañamiento pertinente a su cono-

cimiento en pro del fortalecimiento de sus estrategias en la resolución de problemas

y, a su vez, contribuyendo al aprendizaje significativo del cálculo diferencial.

Figura 1.



182 CAPÍTULO 3. PONENCIAS

Referencias

Ausubel, David P. (2002). Adquisición y retención del conocimiento. Barcelona: Edi-

ciones Paidós Ibérica S.A.
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Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina.

En: http://www.campus-oei.org/revista/deloslectores/203Vilanova.PDF.
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3.2. El software dinámico: una herramienta que propicia

el desarrollo de la visualización matemática

Éder Antonio Barrios Hernández

Guillermo Luis Muñoz Rodŕıguez

Irving Guillermo Zetién Castillo2

Resumen

En el siguiente art́ıculo se describen y analizan los procesos cognitivos que inter-

vienen en el desarrollo de la visualización en estudiantes de nivel superior, cuando

resuelven una actividad geométrica mediante el uso de papel y lápiz y comparan la

solución con software dinámico. Esta investigación se ajusta a los principales refe-

rentes teóricos de la psicoloǵıa cognitiva y al modelo teórico propuesto por Raymond

Duval (1998).

En el trabajo se tomó en cuenta un enfoque de investigación cualitativa a dos estu-

diantes de primer semestre de ingenieŕıa en el ciclo de ciencias básicas de la Univer-

sidad Tecnológica de Boĺıvar (Cartagena, Colombia), cuyas edades oscilan entre los

16 y 18 años; se describen, además, las estrategias utilizadas para la resolución de

problemas geométricos.

Palabras claves: visualización, Cabri, resolución de problemas, geometŕıa.

3.2.1. Introducción

En Colombia, la educación matemática ha puesto de manifiesto la necesidad de

insistir en la búsqueda de mecanismos que permitan su mejoramiento. ¿Por qué son

importantes las matemáticas y espećıficamente la geometŕıa? Pues porque, como

es de conocimiento general, constituyen un veh́ıculo mediante el cual tiene lugar el

aprendizaje humano complejo. Las matemáticas se enfocan hoy hacia el desarrollo

de las competencias necesarias para crear, resolver problemas, razonar, argumentar,

establecer conexiones y comunicar resultados (López, 2002).

La idea de observar los procesos de construcción de conocimiento y desarrollar ha-

bilidades de pensamiento, en la enseñanza aprendizaje de las matemáticas, en los

estudiantes que ingresan a los primeros semestres de la Universidad Tecnológica de

Boĺıvar es de mucha relevancia, pues es posible constatar las grandes dificultades

que éstos presentan, muchas de las cuales tienen su origen en los pocos desarrollos

2Docentes de tiempo completo, Facultad de Ciencias Básicas, Universidad Tecnológica de

Boĺıvar. ebarrios@unitecnologica.edu.co, guillelee@hotmail.com y izetien@Hotmail.com.
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de procesos cognitivos en la formación básica, razón por la cual, se generan proble-

mas que dificultan los procesos de aprendizaje durante los primeros semestres de la

carrera y que, además, se convierten en obstáculos muy serios para la asimilación

de conceptos cient́ıficos.

En la actualidad, diversos investigadores en el campo de la educación matemática se

dirigen a concientizar la necesidad imperante de introducir una nueva dirección en

la planeación, administración y evaluación del acto educativo; esto se fundamenta

en que los sistemas instruccionales no cumplen satisfactoriamente su cometido, los

alumnos cada d́ıa almacenan más información y la reproducen en forma mecánica,

sin llegar a la adquisición de habilidades o estrategias que les permitan transferir

sus conocimientos en la resolución de problemas y de situaciones en su vida diaria.

A lo largo de esta investigación se describe teórica y anaĺıticamente “El proceso

cognitivo de la visualización por estudiantes de nivel superior mediante el uso de

software dinámico Cabri en la resolución de problemas geométricos”. Se elaboró con

la intención de aportar a las investigaciones que, en general, han abordado el estudio

de la visualización en lo relacionado con la racionalidad instrumental cognitivista en

el escenario de utilización del software dinámico Cabri.

3.2.2. Objetivos

Objetivo general

Establecer el desarrollo del proceso cognitivo de la visualización que presentan los

estudiantes de nivel superior al resolver un problema geométrico mediante el uso de

tecnoloǵıa tradicional y potenciar el concepto solución con software dinámico Cabri.

Objetivos espećıficos

1. Describir los procesos cognitivos de la visualización que emplean los estudiantes

de nivel superior en torno a la construcción y justificación de conjeturas en la

resolución de problemas geométricos, en un escenario de tecnoloǵıa tradicional

y en otro con software dinámico Cabri.

2. Aplicar los niveles de visualización de Duval en estudiantes de nivel superior

al resolver problemas de tipo geométrico con la tecnoloǵıa tradicional y con

software dinámico.

3.2.3. Desarrollo

Se escogió a dos estudiantes de primer semestre de un curso de ingenieŕıa de la

Universidad Tecnológica de Boĺıvar y se le aplicó un estudio de casos a cada uno. Se



186 CAPÍTULO 3. PONENCIAS

utilizaron las técnicas de pensar en voz alta y el cuestionario, se les proporcionaron

los instrumentos para construir un rectángulo y se les dio una gúıa de trabajo,

valorada por unos jueces expertos.

3.2.4. Momentos del proceso investigativo

En un primer momento se manifiesta a cada alumno la intención y el propósi-

to del estudio y su importancia dentro del proceso de aprendizaje de las ma-

temáticas, aśı como su papel relevante en el estudio en mención.

En un segundo momento, se dicta una capacitación sobre el uso del software

dinámico Cabri.

En el tercer momento, los jueces expertos dan su visto bueno al instrumento y

adicionan algunas recomendaciones que tuvimos en cuenta en la construcción

final de este último.

En el momento cuatro se aplica el instrumento.

En un quinto momento, el estudiante se enfrenta a la solución del mismo

problema, pero esta vez utilizando el software dinámico Cabri.

En un sexto momento, el estudiante se somete a una entrevista estructurada.

3.2.5. Resultados

NIVEL DE VISUA-

LIZACIÓN
PAPEL Y LÁPIZ

SOFTWARE

DINÁMICO

Global de percep-

ción visual

El trazado va asociado

a una imagen mental

y a objetos f́ısicos del

entorno.

El trazado va asociado

a una imagen mental

y a objetos f́ısicos del

entorno.

Asocia la figura con

objetos de la vida real.

Relaciona la figura con

objetos f́ısicos de la vi-

da real.

Deficiencia en el len-

guaje geométrico.

Percepción de ele-

mentos constituti-

vos

No se ha apropiado del

concepto.

Habla con propiedad

de los elementos que

constituyen la figura.
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No establece relacio-

nes entre sus elemen-

tos.

La herramienta le per-

mite verificar sus con-

jeturas.

Desconoce las carac-

teŕısticas que permi-

ten identificar la figu-

ra.

Construye la figura te-

niendo en cuenta las

propiedades.

Operativo de per-

cepción visual

La estaticidad de la

figura no le permite

visualizar ciertas rela-

ciones entre los ele-

mentos.

El instrumento le ayu-

da a visualizar relacio-

nes de proporcionali-

dad y variación entre

los elementos.

El instrumento no le

permite hacer mayores

transformaciones.

Puede visualizar las

partes que vaŕıan y las

invariables.

3.2.6. Conclusiones

La tecnoloǵıa capacita a los estudiantes para visualizar la geometŕıa de manera

activa, tal como ellos generan sus propias imágenes mentales.

La naturaleza dinámica del Cabri permite desarrollar la capacidad de visua-

lización con la figura en cualquier posición, en tanto que el v́ınculo dinámico

entre las partes de la figura facilita la formulación y comprobación de concep-

tos.

El uso del Cabri permite la articulación de las representaciones del concepto.

Por medio de esta investigación se ha podido identificar el efecto de la visualización

en el aprendizaje de la geometŕıa, en particular de dos estudiantes de primer semestre

de ingenieŕıa de la Universidad Tecnológica de Boĺıvar, y conocer de qué manera el

uso de la herramienta tecnológica (software dinámico Cabri) influye en el desarrollo

de ese proceso cognitivo. El análisis del estudio se hizo teniendo en cuenta los obje-

tivos espećıficos de la investigación, dentro del marco de los niveles de visualización

establecidos por Raymond Duval.

El proceso de análisis de las grabaciones, videos, bitácoras y técnicas usados en los

casos de este estudio arroja una información muy valiosa que puede ser útil en el

proceso de enseñanza - aprendizaje que se imparte a los estudiantes en la geometŕıa
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y constituye un aporte a la educación de las matemáticas, conociendo las creencias,

temores, tabúes y mitos que sienten los estudiantes y que constituyen una causa

fundamental en el bajo rendimiento académico y en la fobia por esta área.
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3.3. El uso de los Tablet PC HP en la enseñanza de la

función lineal y cuadrática: descripción de una

experiencia de aula

Frey Rodŕıguez Pérez3

Adriana Maritza Matallana4

Resumen

En el año 2007, la Corporación Universitaria Minuto de Dios (Uniminuto) recibió de

parte de la empresa Hewlett-Packard un conjunto de portátiles Tablet PC-HP, como

herramienta básica para el desarrollo del proyecto investigativo Teach-Me (Techno-

logy, Engineering and Calculus Hewlett-Packard (HP) Mobile Environment), el cual

se soportó en una propuesta didáctica que buscó innovar los procesos de enseñanza

y aprendizaje de las matemáticas de primer semestre del programa de Ingenieŕıa

Civil a través del uso de las TIC como apoyo a la presencialidad, espećıficamente

en el tema de funciones de variable real. En este art́ıculo se describe la experiencia,

desde las ópticas didáctica, tecnológica y loǵıstica, con el fin de que, para experien-

cias posteriores, se tenga un referente práctico de los diversos aspectos que se deben

tomar en cuenta.

Palabras claves: Tablet PC, teoŕıa de las situaciones didácticas, aprendizaje cola-

borativo, representaciones.

3.3.1. Introducción

La Corporación Universitaria Minuto de Dios desarrolló el proyecto Teach-Me Precálcu-

lo, durante los años 2007-2008, ante la necesidad de modernizar los procesos de

enseñanza y de aprendizaje en asignaturas que causan gran dificultad para los es-

tudiantes, como es el caso del primer curso de matemáticas de los programas de

ingenieŕıa, precálculo. Para su planteamiento se usaron teoŕıas tales como la teoŕıa

de las situaciones (Brousseau, 1986) y la teoŕıa del aprendizaje colaborativo (Kos-

chman, 1996), con el fin de integrar el uso de los computadores en el aula a través

de procesos didácticos y pedagógicos que permitieran el desarrollo de competencias,

estructurando una propuesta que buscaba el acercamiento al estudio de la función,

a partir del uso de las representaciones del objeto matemático.

3Uniminuto, Departamento de Ciencias Básicas. Especialista en educación matemática.

frodriguez@uniminuto.edu.
4Uniminuto, Departamento de Ciencias Básicas. Magistra en docencia de las matemáticas.

amatallana@uniminuto.edu.
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3.3.2. Estructura de la propuesta

Durante tres semestres, dos docentes del Departamento de Ciencias Básicas desa-

rrollaron e implementaron una propuesta basada en el diseño de tres tipos de situa-

ciones, cuyo fin era utilizar los computadores Tablet PC 4400 HP como herramienta

para la enseñanza de las matemáticas. A medida que se haćıan prácticas, se empezó a

evidenciar que en situaciones mediadas por el uso de herramientas computacionales

se requeŕıan no sólo los equipos, sino toda una organización para su empleo. En

muchas ocasiones, en la literatura se encuentran experiencias exitosas, pero en muy

pocas se narran todas las situaciones que deben contemplarse para este fin. Por

lo anterior, en esta ocasión se busca mostrar, más que el componente matemático,

los aspectos generales que hay que tener en cuenta en el momento de implementar

propuestas didácticas que utilizan tales herramientas.

Aspectos tecnológicos

Como parte de los aportes que la empresa Hewlett-Packard hizo a Uniminuto, el

proyecto contó con 21 HP Tablet PC 4400, con sus respectivos drives externos.

Para el desarrollo de las clases se requirieron el uso de un videobeam, aśı como la

adaptación de un router para configurar una red inalámbrica de internet (ya que los

computadores se utilizaron en diferentes salones) y de dos aulas con mesas especiales

(a cambio de los pupitres tradicionales), que permitieron usar los equipos en forma

cómoda y segura para los estudiantes.

Adicionalmente se contó con varios monitores (estudiantes de último semestre de

tecnoloǵıa en sistemas de Uniminuto), quienes colaboraron permanentemente en la

solución de inconvenientes que se presentan al usar computadores (red y equipos

desconfigurados, por ejemplo). Ellos también estaban encargados del traslado de los

equipos y la organización de las aulas de clase, con anticipación a su inicio. Fue

fundamental que personas casi expertas y diferentes de los docentes estuvieran ayu-

dando, ya que hay situaciones que se presentan sin previo aviso y el docente no

puede interrumpir el desarrollo de la clase para dedicarse a solucionar tales situa-

ciones. A estos monitores se añade otro grupo de estudiantes, encargados del diseño

y elaboración de imágenes, gifs, diseño de páginas, distribución del curso en Moodle

y, en general, del diseño gráfico y la programación requeridos. Espećıficamente, dos

monitores hicieron sus prácticas profesionales en el proyecto.

En relación con los Tablet PC HP 4400, son computadores portátiles que se diferen-

cian de otros equipos por un accesorio denominado lápiz óptico y por la posibilidad

de girar la pantalla, lo que permite no sólo utilizarlo como una agenda sino también,

gracias a su capacidad de memoria y su resistencia a golpes, en espacios exteriores
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al aula (figuras 1 y 2).

Figura 1. Tablet PC He-

wlett Packard 4400. Fuente:

http://www.hp.com/.

Figura 2. Uso de la pluma di-

gital de los Tablet PC HP 4400,

en contextos exteriores al aula de

clase. Fuente: los autores.

Uno de los programas más utilizados fue Windows Journal R©, que junto con el lápiz

óptico permit́ıa a los estudiantes desarrollar diversas actividades para mostrárselas

posteriormente a sus compañeros, en forma cómoda, agradable y útil, generando un

entorno en el que la argumentación fue indispensable para comunicarse. Adicional

al hardware y software utilizados, se tuvieron a disposición la red local y la platafor-

ma Moodle para retroalimentar talleres, lecturas y presentaciones de las diferentes

temáticas. Esta plataforma generó acceso directo a foros y chats, que apoyaron los

diversos procesos comunicativos y colaborativos, tanto en el aula como en espacios

fuera de clase.

3.3.3. Aspectos loǵısticos

Para llevar a cabo las clases, se organizaban las mesas en forma de U con el fin de que

todos los estudiantes compartieran sus experiencias, observaran las imágenes pro-

yectada en el videobeam y trabajaran en grupo (figura 3). En las clases, los equipos

se conectaban por medio del software NetMeeting R©, con el cual se pod́ıa proyectar

el material preparado para la clase y controlar las exposiciones de los estudiantes

desde cualquiera de los equipos que estaban conectados. A estos elementos se suma

un factor muy importante en el desarrollo de propuestas didácticas: el tiempo. En

diferentes ocasiones, las actividades exigieron más tiempo del planeado, dadas las

participaciones y los avances del grupo. Frente a este factor, es dif́ıcil determinar

con anticipación su manejo; sin embargo, fue tarea del docente incentivar al grupo

a avanzar y a resolver dudas, teniendo en cuenta el tiempo con el que se contaba.

Surge sin embargo la necesidad de revisar los programas, con el propósito de pro-

poner situaciones que permitan avanzar y, a la vez, cumplir con todos los temas

programados.



192 CAPÍTULO 3. PONENCIAS

Figura 3. Uso del videobeam y organización

del aula de clase. Fuente: los autores.

3.3.4. Aspectos didácticos

Básicamente, la propuesta teńıa como fundamento emplear situaciones problema

contextualizadas en temas propios de la formación de estudiantes del programa de

Ingenieŕıa Civil. Entre los aspectos que se tomaron en cuenta para el desarrollo del

proyecto estaban la importancia de las TIC en la educación superior, los modelos

educativos en la formación mixta blended learning, la relación entre la virtualidad

como apoyo a la presencialidad y los cambios en el papel de los profesores y los estu-

diantes, aśı como los beneficios del uso de la tecnoloǵıa inalámbrica en la educación.

La propuesta estaba conformada por tres tipos de actividades, las cuales pretend́ıan

ajustarse a las temáticas del curso de precálculo, por medio de situaciones problema.

Experiencias tipo A. Teńıan por objetivo permitir que el estudiante desarrollara

diferentes actividades de aplicación, de modo que profundizara en algunos aspectos

de manera contextualizada. En esta ocasión, el docente pod́ıa intervenir durante la

clave y después, aclarando dudas y haciendo sugerencias que permitieran al grupo

llegar a una respuesta válida. Estas situaciones se diseñaron para trabajarlas con el

uso del software Windows Journal R©, ya que éste permit́ıa una interacción directa

con el Tablet PC. Entre los contextos utilizados estuvieron un parque y la zona verde

cercanos a la corporación y el Museo de Arte Contemporáneo del barrio Minuto de

Dios (figuras 4 y 5).

Figura 4. Uso del Tablet PC en

una situación tipo A. Fuente: los

autores.

Figura 5. Uso del Tablet PC en

una situación tipo A. Fuente: los

autores.
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Experiencias tipo B. Según Brousseau (1986), son las llamadas situaciones adidácti-

cas, en las cuales los estudiantes, a partir de sus conocimientos, dan respuesta a

situaciones problema planteadas. El docente no interveńıa sino en el momento de

mediar la socialización, tratando de institucionalizar los procesos validados por to-

dos, e incentivando la discusión como herramienta para la emergencia de invariantes

propios de cada objeto matemático (figura 6).

Figura 6. Uso del Tablet PC en una situación tipo A. Fuente: los autores.

Experiencias tipo C. Con estas experiencias se pretende presentar al estudiante

explicaciones generales del tema, donde prima la exposición magistral. Sin embargo,

la diferencia radica en que se utilizan diferentes materiales educativos digitales to-

mados de la red o creados por el docente, tales como presentaciones en Power Point

R©, applets para explicaciones, etc. Además, el empleo del Tablet PC permit́ıa al

docente escribir sobre estos materiales, es decir, las clases no se limitaban a ellos,

sino que el docente los pod́ıa utilizar de acuerdo con el ritmo de la clase. Este tipo de

actividades surgió como una necesidad ante la premura del tiempo en el desarrollo

de las temáticas de los programas. Se complementaban con actividades creadas por

el docente para que las resolviera todo el grupo con su ayuda o explicación. Por lo

general, uno o dos estudiantes tomaban el control del equipo y propońıan soluciones

que eran discutidas por el grupo. El docente se pod́ıa apoyar en el ambiente virtual

de aprendizaje o en el curso en Moodle designado para el proyecto, con el objeto de

que los estudiantes pudieran acceder a los materiales utilizados en clase. Además, el

docente pod́ıa subir al curso virtual otros materiales que sirvieran como apoyo a los

procesos presenciales. En la figura 7 se muestra al docente exponiendo el tema.

Figura 7. Uso del Tablet PC en una situación tipo C. Fuente: los autores.

Durante el planteamiento de las situaciones, se pretend́ıa que el docente fuera
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autónomo, puesto que es necesario adaptar toda propuesta didáctica a las condi-

ciones no sólo tecnológicas, sino también a las condiciones propias de los grupos de

estudiantes. En todas las situaciones, el uso de las representaciones de los objetos

matemáticos fue fundamental. En cuanto al estudio del objeto función de variable

real, se dio mayor importancia a la elaboración de situaciones tipo C, ya que se

considera que este objeto matemático es fundamental en la formación de ingenieros.

3.3.5. Papel del docente

Además de planear la clase (con todas las exigencias de una clase mediada por

computador), el docente deb́ıa organizar y clasificar las elaboraciones de los estu-

diantes para potenciar no sólo el aprendizaje colaborativo sino también la construc-

ción del conocimiento matemático. Esto exigió tiempo y compromiso no sólo por

parte del docente sino también del Departamento de Ciencias Básicas, ya que se

requiere un tiempo mayor para su preparación que en un curso normal. Además, fue

indispensable la colaboración de los monitores, quienes apoyaron al docente desde

el uso de la tecnoloǵıa. El docente indagaba continuamente sobre MED (materiales

educativos digitales) que pudieran apoyar el proceso en el aula.

3.3.6. Papel del estudiante

El estudiante deb́ıa, aparte de cumplir con las funciones tradicionales, tales como

asistencia, entrega de trabajos a tiempo, participación en clase, entre otras, era

necesario que se concientizara de que su proceso de aprendizaje estaba mediado

por herramientas computacionales, lo cual le exiǵıa estar dispuesto a aprender a

manejar buscadores en internet, a utilizar el correo electrónico, los chats y los foros,

entre otros. Esto lo llevaba a desarrollar habilidades que, en últimas, se esperaba

favorecieran el desarrollo de habilidades de autoaprendizaje.

3.3.7. Conclusiones

Las experiencias de aula, diseñadas y soportadas en la teoŕıa de las situaciones

de Brousseau y el aprendizaje colaborativo, generaron un ambiente propicio para

el acercamiento a la función lineal y cuadrática, ya que a partir de problemas en

contexto real, la función y sus representaciones surgieron como una herramienta

importante en la propuesta de soluciones.

El uso de tecnoloǵıa inalámbrica permitió ampliar las posibilidades de las experien-

cias. Por ejemplo, la visita que se realizó a un acueducto veredal en un municipio

cercano permitió que los estudiantes pudieran vivenciar la elaboración de mapas, la
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toma de medidas, el planteamiento de hipótesis, el reconocimiento de las partes de

un acueducto y la utilización de funciones para la solución de situaciones.

Los resultados de la puesta en marcha de la propuesta permitieron evidenciar la

posibilidad de reproducir en otras asignaturas el trabajo con los Tablet PC-HP,

dadas sus caracteŕısticas, innovación e impacto tanto en los estudiantes como en los

docentes. Se requiere el compromiso de diferentes instancias para la consecución de

estos logros.

Es fundamental generar en los estudiantes, desde primer semestre, la confianza y el

autoaprendizaje, puesto que en la actualidad hay muchas fuentes de información que

el estudiante no conoce o no sabe manejar. Son ellos los que más interés presentan

por herramientas novedosas y creativas.

El uso de computadores en el aula de clase exige el compromiso no sólo de los docen-

tes de matemáticas, sino de diseñadores gráficos, ingenieros de sistemas, directores

de investigación, entre otros, que, desde sus conocimientos, aporten diferentes ele-

mentos que son necesarios para el desarrollo de propuestas en este tipo de ambientes.

La investigación es larga y, por tanto, se requiere compromiso tanto de tiempo como

económico por parte de la institución.
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3.4. Análisis de las concepciones operacional y estructural

de función real

Miryán Trujillo Cedeño

Nivia Marina Castro5

En este art́ıculo se presentan los resultados de la investigación titulada “Media-

ción de situaciones didácticas apoyadas en el uso de la calculadora graficadora en

la superación de obstáculos cognitivos en el aprendizaje del concepto de función”.

Se siguió una metodoloǵıa basada en la ingenieŕıa didáctica, con un tipo de diseño

antes-después sin grupo control, que contaba con los obstáculos cognitivos que hab́ıa

que superar, como variable dependiente y como variable experimental la estrategia

(gúıa pautada), y una prueba final aplicada después de un tiempo de desarrolla-

da la estrategia y que permitió la medición del efecto causado sobre la variable

experimental.

Tales resultados están relacionados espećıficamente con el análisis realizado sobre

las concepciones operacional y estructural de función real en estudiantes de cálcu-

lo diferencial de primer semestre de la Universidad de La Salle, que resultó de la

intencionalidad de identificar y superar obstáculos cognitivos asociados al concepto

de función. Los resultados obtenidos dieron respuesta a una de las preguntas de

investigación formulada como sigue: ¿se puede atribuir a la presencia de obstáculos

cognitivos, asociados al concepto de función, la ausencia de una concepción estruc-

tural de este concepto?

3.4.1. Elementos teóricos

Para analizar las concepciones operacional y estructural de función real, se tomó co-

mo base el indicador del nivel básico de comprensión de función (ICBF), que de

acuerdo con Álvarez y Delgado (2001), está dado por un vector de seis componen-

tes, aśı:

ICBF= ( DP*, COGH, NEF, NEI, NECB, DSA)

Donde:

NEF= nivel de éxito al identificar funciones en los distintos contextos. Se obtuvo al

dividir el número de aciertos entre el número de contextos (parejas, gráfico, alge-

braico y a trozos) y su máximo valor fue 1.

NEI = nivel de éxito de cada estudiante al seleccionar funciones que poseen inversa.

Se obtuvo al dividir el número de aciertos entre el número de contextos (parejas,

5Docentes de la Universidad de La Salle. mtrujillo@unisalle.edu.co. y mcastro@unisalle.edu.co.
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gráfico y algebraico), siendo la nota máxima 1. Se consideró aprobatorio cuando la

nota era mayor o igual que 0,6. El NEI se obtuvo al dividir el número de aciertos

entre el número de contextos y su máximo valor fue 1.

DSA = disponibilidad del sistema simbólico abstracto. Apunta a revelar en qué me-

dida el estudiante ha construido en forma general el significado de los signos: f(a),

f(x) = b y h(g(a)), analizando el nivel de éxito que obtiene al realizar tales cálculos

en contextos espećıficos.

Se supuso que un estudiante dispońıa del significado abstracto de cada śımbolo

cuando realizaba con éxito dicho cálculo en por lo menos dos contextos diferentes

entre parejas, gráfico o algebraico. En este caso se asignó el valor 1; en caso contrario,

cero. El valor del DSA fue el promedio aritmético tomado sobre los tres cálculos

que se presentaron con los śımbolos mencionados. Para analizar el nivel mı́nimo de

comprensión, se supuso que el DSA deb́ıa ser mayor o igual que 0,66.

NECB = nivel de éxito que tiene el estudiante para realizar los cálculos básicos en

los contextos de parejas, gráfico y algebraico. Cuando son indicados en el simbo-

lismo abstracto de funciones (f(x), d = f(x), f(g(x)) se halla del promedio de los

indicadores NEC de h(g(a)), NEC de f(a) y NEC de f(x) = b. Para calcular cada

NEC (nivel de éxito en el cálculo), se calificó sobre 5 cada variable, en los tres con-

textos, aśı: a cada respuesta acertada en un contexto, se le asignó la nota 1,7 (5/3).

Si teńıa dos aciertos, se le asignaba 3,4; si teńıa los tres aciertos, se le asignaba 5; si

no teńıa aciertos, se le asignaba cero. El NECB se consideró aprobatorio cuando su

calificación era mayor o igual que 3,00.

DP= definición personal. Es la que el estudiante escribe o verbaliza, en relación con

el conocimiento matemático.

ICE= imagen conceptual evocada. Es una subestructura de la IC (imagen concep-

tual). Se activa por la demanda cognitiva de la situación matemática planteada. Se

infieren plausiblemente de los observables de las acciones del estudiante.

La DP y la ICE se identificaron con base en los prototipos de imágenes conceptuales

evocadas y definiciones personales asociadas con la identificación de funciones, de

acuerdo con las acciones de los estudiantes. Los códigos de los prototipos de función

se tomaron de Álvarez y otros (2001).

DPE= definición personal estable. Se consideró que el estudiante teńıa una DPE si

al comparar los prototipos de DP con el de la pregunta ¿para usted qué es función

matemática?, se observaba que el estudiante poséıa un cierto número de prototipos

iguales.



198 CAPÍTULO 3. PONENCIAS

Los criterios fueron los siguientes: se consideró que el estudiante poséıa una DPE si

aparećıa un prototipo en la pregunta anterior y exist́ıa al menos otro igual en las tres

preguntas que calificaron la DP, o dos o más prototipos iguales en las mismas tres

preguntas, aunque no hubieran respondido la pregunta ¿para usted qué es función

matemática? En este caso se le asignó un valor de 1 y en el caso contrario se le

asignó el valor cero.

COH= coherencia local. Es la coherencia que presentan las definiciones personales

de función respecto de la acción del estudiante, referido a un contexto particular.

Se le asignó el valor 1 si la imagen conceptual evocada (ICE) coincid́ıa con la defi-

nición personal (DP), utilizada al justificar la acción realizada, al resolver la tarea

correspondiente al contexto que se trabajaba y cero en caso contrario.

COHG = coherencia global. Se refiere al grado de integración entre la acción or-

ganizada por las ICE y la conciencia de cómo y por qué se hace, determinada por

la DPE. La medida es un coeficiente entre cero y uno que se obtuvo al dividir el

número de prototipos de ICE que se hab́ıan identificado y que coincid́ıan o eran

equivalentes con el prototipo de la DPE, entre el número de respuestas.

DP* = definición personal estable, bien adaptada matemáticamente. Estuvo deter-

minada por la existencia de un prototipo estable al calificar la pregunta ¿para usted

qué es función matemática?, que coincid́ıa con la definición cuasiconjuntista (C). Si

éste era el caso, se escrib́ıa 1; si no, cero.

Se caracterizó un nivel mı́nimo de comprensión de función, teniendo en cuenta los

siguientes criterios:

DP* = 1, COHG ≥ 0, 66, NEF ≥ 0, 6, NEI ≥ 0, 6, NECB ≥ 3, DSA ≥ 0, 66

Para determinar el segundo nivel de comprensión, se adoptaron los siguientes cri-

terios: NEF y NEI mayor o igual que 0,75, NECB mayor o igual que 3,75, COHG

mayor o igual que 0,825, manteniendo invariables DP* y DSA.

Otro aspecto importante que permitió estudiar la prueba diagnóstica fue el saber si

un estudiante pod́ıa tener una comprensión estructural mejor establecida de función,

que una comprensión operacional6.

Se consideró que un estudiante poséıa una concepción estructural de función cuando

su nivel de éxito al identificar funciones que teńıan función inversa (NEI) era mayor

6Según Sfard (1991), ver una entidad matemática como un objeto (estructural) significa ser

capaz de referirse a él como si fuera una cosa real. También significa ser capaz de reconocer la idea

con una mirada, manipularla como una totalidad sin entrar en detalles. Interpretar una noción

como un proceso implica considerarla una entidad potencial más que como entidad actual, que

viene a nuestra existencia interior en petición de una secuencia de acciones.
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o igual que 0,66, su nivel de éxito al calcular composición de funciones (NEC de

h(g(a))) era mayor o igual que 3,00 y el nivel de éxito en el reconocimiento de

función como objeto era igual a 1. Tendŕıa una concepción operacional de función

si su nivel de éxito al calcular imágenes (NEC de f(a)) era mayor o igual que 3,00 y

su nivel de éxito al calcular preimágenes (NEC de f(x) = b) era mayor o igual que

3,00.

Tall y Vinner introducen en varios art́ıculos la noción de concepto imagen y señalan

diferencias entre definición formal y definición personal de un concepto matemático,

manifestada la problemática en torno a estos dos conceptos:

Definición personal (DP). Concepto matemático tal como es apropiado por

las personas.

Imagen conceptual (IC). Determina la forma en que entendemos el con-

cepto.

Imagen conceptual evocada (ICE). Subestructura de la IC activada por

la demanda cognitiva de la situación. Las ICE se infieren de los observables de

las acciones del estudiante.

Definición formal o institucional (DI). Concepto matemático tal como se

expresa y concreta socialmente en la academia.

Con el fin de hacerlo operativo y entender cómo evoluciona y se transforma el con-

cept image, Álvarez y Delgado (2001) hacen una redefinición del término imagen

conceptual, introducido por Tall y Vinner, y precisan los siguientes conceptos aśı:

Una definición personal relativa a un concepto matemático es estable cuando la

persona verbaliza una definición sobre el concepto en forma consistente y equivalente

en diferentes situaciones. Una definición personal estable se llama bien adaptada

matemáticamente si es equivalente a la definición institucionalizada del concepto.

La coherencia de la definición se refiere al grado de articulación que tiene dicha

definición personal con la acción, es decir, con el concepto imagen evocado, cuando

argumenta y opera con el concepto. Se dice global cuando está referida a distintos

contextos. Será local cuando está referida a un solo contexto o situación. El concepto

de coherencia supone el de estabilidad.

Estabilidad no implica necesariamente buena adaptación matemática. No es extraño

encontrar que una persona tenga una definición estable de un concepto, mal adapta-

da matemáticamente. Tampoco se cumple que una definición personal estable, bien

o mal adaptada, sea necesariamente coherente. Puede ocurrir que una definición

personal estable mal adaptada, sea coherente.
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Prototipos de imágenes conceptuales evocadas y definiciones personales

asociadas con la identificación de funciones. De las categoŕıas o prototipos

de las imágenes conceptuales y las definiciones personales asociadas al concepto de

función estudiada por Álvarez et ál. (2001), se tuvieron en cuenta las referidas a

continuación. Éstas pueden diferir de un contexto a otro en un mismo sujeto, por

lo que es necesario establecer los prototipos que se activan en ciertos contextos para

analizar sus variaciones y su estabilidad.

C ( Cuasiconjuntista) (Dirichlet): sean X y Y conjuntos no vaćıos arbitrarios.

Una función de X en Y es una asociación o correspondencia entre elementos de

X y elementos de Y tal, que a cada elemento de X le corresponde un elemento

y sólo uno en Y .

CI (Cuasiconjuntista Inyectiva): f es una “función” del conjunto X en el

conjunto Y si todo elemento de X tiene una sola imagen en Y . Además, a

elementos distintos de X les corresponden imágenes distintas en Y .

CS (Cuasiconjuntista Simétrica): f es una “función” en el sentido cuasicon-

juntista, pero no discrimina dominio y codominio.

R (Relación): f es una “función” del conjunto X en el conjunto Y si todo

elemento de X tiene por lo menos una imagen en el conjunto Y .

RS (Relación Sobreyectiva): f es una “función” del conjunto X en el conjunto

Y si todo elemento de Y es imagen de algún elemento de X.

RR (Relación Restringida): f es una “función” del conjunto X en el conjunto

Y si algunos elementos de X tienen una y sólo una imagen en el conjunto Y .

E (Euleriana): f es una función si su regla de correspondencia se puede ex-

presar mediante una expresión matemática variable única.

ED (Euleriana Despejada): una ecuación en x y y define a y como una función

de x, si y está expresada expĺıcitamente en términos de x.

G (Geométrica): f es una “función” si al trazar una recta perpendicular al

eje de abscisas, ésta no corta la gráfica en más de un punto.

GC (Gráfica Continua): f es una “función” si la gráfica de f es continua.

N: no contesta.

O: otro prototipo diferente de los anteriores.
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Definición formal o institucional (DI) de función: la definición institucional

de función que se usó dentro del proyecto de investigación fue la Cuasiconjuntista

C (Dirichlet), ya que es la definición que más se aproxima a la que enuncia Stewart

(2003) en el texto gúıa para estudiantes de primer semestre de ingenieŕıa en la

Universidad de La Salle.

Para efectos del desarrollo del proyecto se usó una metodoloǵıa que permitió que

el estudiante transitara por las diferentes definiciones de función real y que, en ese

tránsito, se pudiera construir el concepto estructural de función.

3.4.2. Resultados

En la tabla 1 se recopilan los resultados de la preprueba y la posprueba, relacionados

con la disponibilidad del sistema simbólico abstracto (DSA) y nivel de éxito en la

realización de cálculos básicos (NECB).

Tabla 1. Disponibilidad del sistema simbólico abstracto (DSA) y nivel de éxito que tiene el

estudiante para realizar los cálculos básicos (NECB).

I= preprueba.

F= posprueba.

N= no contesta.

Los resultados de la preprueba y la posprueba, correspondientes a la definición

personal estable, a la coherencia global y a la definición personal bien adaptada al

concepto matemático de función, aparecen consignados en la tabla 2.
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Estudiante Pregunta DP ICE COH DPE COHG DP∗

I F I F I F I F I F I F

1 1 N O N E 0 0

2 N O N O 0 0 0 1 0,00 0,67 0 0

3 N O N E 0 0

15 O E

2 1 N O E O 0 1

2 N O O O 0 1 0 1 0,67 0,00 0 0

3 N N O O 0 0

15 O CS

3 1 N CI N O 0 0

2 O CI N CI 0 1 1 1 0,00 0,33 0 0

3 N N ED E 0 0

15 O E

4 1 N O N E 0 0

2 N R N R 0 1 0 1 0,00 0,00 0 0

3 N R N ED 0 0

15 O O

5 1 ED G E ED 0 0

2 O G O G 1 1 1 1 0,33 0,00 0 0

3 N ED ED ED 0 1

15 O O

6 1 O RR ED C 0 0

2 O G O C 1 1 1 1 0,33 1,00 0 1

3 ED RR ED C 1 0

15 O C

7 1 N CS ED ED 0 0

2 N N N N 0 0 0 1 0,00 0,00 0 0

3 N O N O 0 1

15 O CS

8 1 O CS O C 1 1

2 G G G C 1 1 1 1 0,67 1,00 0 1

3 ED CS G C 0 1

15 G C

9 1 ED N ED ED 1 0

2 O G GC G 0 1 1 0 0,00 0,00 0 0

3 N N N N 0 0

15 0 CS
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10 1 ED G ED C C 1 0

2 O C R C 0 0 1 1 0,67 1,00 0 1

3 ED ED ED C 1 1

15 ED C

11 1 N O N ED 0 0

2 N G N GC 0 0 0 1 0,00 0,00 0 0

3 N N N ED 0 0

15 N O

12 1 N ED ED ED 0 1

2 N G N G 0 1 0 1 0,00 0,33 0 0

3 ED ED ED ED 1 1

15 N G

13 1 N ED ED 0 0

2 N N O N 0 0 0 0 0,00 0,00 0 0

3 N N ED ED 0 0

15 G O

14 1 CS CS O C 0 0

2 CS G CS C 1 1 1 1 0,33 1,00 0 1

3 CS CS ED C 0 0

15 CS C

15 1 N R N C 0 0

2 N G N C 0 1 0 1 0,00 1,00 0 1

3 N R N C 0 0

15 N C

16 1 N N N ED 0 0

2 N G N O 0 0 0 0 0,00 0,33 0 0

3 N N N ED 0 0

15 N O

Tabla 2. Definición personal estable (DPE), coherente globalmente (COHG) y bien adaptada

(DP*) al concepto matemático de función.

De acuerdo con los datos de la tabla, se observa que:

El 43,8 % de la población teńıa una DPE de función aceptable y después de la

estrategia aumentó al 81,3 %.

El 18,8 % de la población teńıa una COHG aceptable; después de la estrategia,

el porcentaje aumentó a 37,5 %.
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Antes de la estrategia, ninguno de los estudiantes teńıa una DP*; después de

la estrategia, el 31,3 % de la población tuvo una DP* representativa.

Con respecto al indicador vectorial de comprensión básica de función (ICBF), a

continuación se muestran los resultados de la preprueba y la posprueba aplicadas a

la población objetivo, que permitieron determinar el nivel mı́nimo de comprensión,

y el segundo nivel de comprensión, del concepto de función (tabla 3).

Tabla 3. Indicador vectorial de comprensión básica de función (ICBF).

I = preprueba.

F= posprueba.

NO= no alcanza el nivel de comprensión.

SÍ= śı alcanza el nivel de comprensión.

Los resultados contenidos en la tabla anterior reflejan que ningún estudiante en el

momento de ingreso teńıa el nivel mı́nimo de comprensión del concepto de función.

Al finalizar la estrategia, el 31,3 % de la población obtuvo el nivel mı́nimo de com-

prensión del concepto de función, mientras que el 18,7 % de la población alcanzó el

segundo nivel de comprensión del concepto de función.
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En lo relacionado con las concepciones estructural y operacional de función, segui-

damente se muestran los resultados de la preprueba y la posprueba aplicadas a la

población objetivo (tabla 4).

Tabla 4. Análisis de la concepción estructural y la concepción operacional de función.

I= preprueba.

F= posprueba.

NO= no tener la concepción estructural u operacional de función.

SÍ= tener la concepción estructural u operacional de función.

Los resultados contenidos en la tabla anterior reflejan que antes de la aplicación de

la estrategia el 6,3 % de los estudiantes teńıa una concepción operacional de función,

después el 68,8 % alcanzó tal nivel.
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Antes de la aplicación de la estrategia, ningún estudiante teńıa una concepción

estructural de función; después sólo el 12,5 % alcanzó tal nivel.

Según el indicador vectorial de comprensión básica de función (ICBF), antes de la

estrategia ningún estudiante teńıa el nivel mı́nimo de comprensión del concepto de

función. Al finalizar la estrategia, el 31,3 % de la población obtuvo el nivel mı́nimo

de comprensión del concepto de función, mientras que el 18,7 % de la población

alcanzó el segundo nivel de comprensión.

Este resultado revela que en los cursos de primer semestre de ingenieŕıa en la Uni-

versidad de La Salle existen problemas de comprensión alrededor del concepto de

función, que persisten o evolucionan muy lentamente. Se advierte que ignorar la

presencia de esta problemática puede traer como consecuencia el fracaso de los estu-

diantes en los cursos de cálculo y, por tanto, un aumento en los niveles de deserción.

Estos resultados no difieren mucho de los obtenidos por Álvarez y Delgado (2001) en

un estudio realizado en la Universidad del Valle con estudiantes de primer semestre

de ingenieŕıa y ciencias, donde encontraron que al momento del ingreso a la univer-

sidad el 17,1 % de la población mostró tener el nivel uno de comprensión básica de

función y ningún estudiante alcanzó el nivel dos. Al término del semestre, 27,3 %

alcanzó el nivel uno y 9,1 % el nivel dos.

3.4.3. Conclusiones

Los resultados mostraron que al parecer algunos estudiantes pueden alcanzar una

concepción estructural de función, sin tener una concepción operacional, lo cual se

contrapone a lo dicho por Sfard (1991), cuando afirma que “en el proceso de forma-

ción del concepto, las concepciones operacionales deben preceder a la estructural”,

proposición considerada básicamente verdadera en lo que concierne al desarrollo

histórico o al aprendizaje individual.

Por último, se comprobó emṕıricamente que la superación de obstáculos cognitivos

asociados al concepto de función es necesaria para la construcción de una concepción

estructural del concepto en mención.
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3.5. Actitudes hacia las matemáticas y rendimiento

académico; una experiencia en la Universidad Sergio

Arboleda.

Luis Eduardo Pérez L.7

Resumen

Se presentan los avances de la investigación “Actitudes hacia las matemáticas y

rendimiento académico”, logrados por el grupo IMA en la ĺınea de investigación

metamatemáticas, que se ha venido desarrollando durante más de dos años. Se in-

troduce el tema de la actitud, definición, estudios previos, importancia pedagógica

de las actitudes, medición de las actitudes, construcción de escalas de actitud. Apli-

cación al caso de los estudiantes que ingresan al primer semestre en la Universidad

Sergio Arboleda.

Palabras claves: actitudes, test, escala tipo Likert, rendimiento académico, ma-

temáticas.

3.5.1. Introducción

Las asignaturas de álgebra, trigonometŕıa y cálculo para la educación media, y cur-

sos como precálculo, cálculo diferencial y álgebra lineal para quienes ingresan a la

educación superior, representan, por el bajo rendimiento de los estudiantes, una gran

preocupación para quienes conforman el entorno social inmediato de los estudiantes.

Directivos, profesores y padres de familia buscan alternativas que permitan superar

las bajas calificaciones de los estudiantes; el cambio de profesores que imparten

las asignaturas, la implementación de estrategias pedagógicas para el desarrollo de

actividades en el aula y fuera de ella, y la contratación de profesores particulares que

dicten clases extras, son algunas de las estrategias empleadas, sin que ninguna de

ellas incremente significativamente y de manera general el rendimiento académico

de los estudiantes en dichos cursos. La aprobación de tales asignaturas se convierte,

en la mayoŕıa de los casos, en un logro parcial, ya que en el siguiente curso la

situación se repite, con la mismas alternativas parciales de solución y con tan sólo

la esperanza de que el tiempo pase para poder, en el caso de los estudiantes de

bachillerato, escoger una carrera que no tenga cursos de matemáticas, o para los

alumnos universitarios, superar los cursos para no volver a saber nada que tenga

7Investigador IMA (Instituto de Matemáticas y sus Aplicaciones), docente de matemáticas,

maǵıster en docencia e investigación universitaria con énfasis en matemáticas, especialista en ma-

temática aplicada, matemático y licenciado en matemáticas.

luis.pereze@usa.edu.co.
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que ver con éstos, dos cosas que casi en ningún caso se consiguen, ya que la reina

de las ciencias y sus aplicaciones hacen presencia en la mayor parte de las áreas del

saber.

La identificación espećıfica de los causantes del mal rendimiento en estas asigna-

turas se convierte en una prioridad, ya que su conocimiento permitirá tomar los

correctivos o implementar las poĺıticas que lleven a superar de manera significativa

el nivel académico actual. Emṕıricamente, los bajos resultados son atribuidos por la

comunidad académica a la formación previa de los estudiantes, a las acciones de los

profesores, a problemas de didáctica de la matemática y a las actitudes hacia la ma-

temática de profesores, directivos, alumnos y demás actores que pertenecen al ćırculo

social de los estudiantes. Al centrar la atención en el último aspecto mencionado,

es decir, en la influencia de las actitudes hacia las matemáticas en los resultados

académicos obtenidos en los primeros cursos por los estudiantes que ingresan por

primera vez a la educación superior, y buscar establecer la existencia de una corre-

lación positiva entre la actitud hacia la matemática y el rendimiento académico en

los cursos de matemáticas de los estudiantes que ingresan por primera vez a la Uni-

versidad Sergio Arboleda, con sedes en Bogotá, se ha desarrollado, durante más de

dos años, un trabajo en el interior del grupo MUSA. IMA18, con el que se pretende

determinar las causas reales del bajo rendimiento en matemáticas de los estudiantes

en la educación superior.

3.5.2. Actitudes y matemáticas

Las actitudes han sido uno de los temas más estudiados por los psicólogos sociales,

que han propuesto variadas definiciones; una que recoge las ideas aqúı enunciadas

acerca del concepto de actitud es la dada por Bazán y Aparicio (1998), quienes

manifiestan:

La actitud es una predisposición del individuo para responder de mane-

ra favorable o desfavorable a un determinado objeto (matemática - es-

tad́ıstica). La actitud es entonces una disposición personal, idiosincrási-

ca, presente en todos los individuos, dirigida a objetos, eventos o per-

sonas, que se organiza en el plano de las representaciones considerando

los dominios cognitivo, afectivo y conativo.

8MUSA.IMA1 significa Matemáticas Universidad Sergio Arboleda. Instituto de Matemáticas y

sus Aplicaciones, grupo 1.
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La actitud determina aprendizajes a través de procedimientos produc-

tivos, emotivos y volitivos elaborados a través de información pśıquica,

y a su vez estos aprendizajes pueden mediar como información social

futura para la estabilidad o no de esta actitud.

Como se puede observar en esta definición, el concepto enuncia y enumera algunas

componentes para la actitud. Aśı, una actitud hacia la matemática que refleje aprecio

e interés por esta ciencia hace referencia a una componente afectiva de ésta, mientras

que referencias hacia el modo de empleo de las capacidades generales y hábitos de

trabajo hacia esta disciplina evidencian un componente cognitivo de la actitud. Del

mismo modo, la disposición a participar en actividades que involucren conocimientos

matemáticos hace referencia al componente comportamental, y el reconocimiento o

no de la utilidad de los conocimientos matemáticos muestra la intervención de un

cuarto componente de la actitud: el valor.

3.5.3. Medición de actitudes

En 1926, el sociólogo norteamericano Emory Bogardus diseñó el primer instrumento

reconocido para medir cuantitativamente las actitudes, que llamó escala de distancia

social; con éste midió la disposición de la gente a mantener y aceptar una proximidad

con diversos grupos sociales.

Siguiendo la naciente ĺınea de la psicometŕıa, Rensis Likert diseñó en 1932 una escala

que permit́ıa situar a una persona en un continuo que iba desde una actitud muy

positiva hasta una actitud muy negativa hacia algo.

En la actualidad, de entre las múltiples técnicas de observación que se conocen

(entrevistas, cuestionarios, test proyectivos, observaciones de la conducta, etc.), el

instrumento de medida de actitudes son las escalas de actitud, porque como indica

Gaiŕın (1987), presentan como ventajas el anonimato, dan tiempo al encuestado

para pensar acerca de las respuestas, se pueden administrar de manera simultánea

a muchas personas, proporcionan uniformidad, los datos obtenidos son fácilmente

analizados e interpretados y pueden administrarlas terceros sin pérdida de fiabilidad

de los resultados.

Las investigaciones relacionadas con la evaluación de las actitudes hacia la matemáti-

ca en la década de los setenta se centraron en analizar las opiniones de los estudiantes

hacia las materias relacionadas con matemáticas y sus formas de enseñarlas, aśı co-

mo lo afirma McLeod (1992), algunos de los estudios más importantes que se han

desarrollado son los siguientes: Higgins (1970), realiza una investigación en la que
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evalúa las actitudes de los alumnos antes y después de la actividad instruccional;

Aiken (1974) diseñó dos escalas de actitud tipo Likert acerca de las matemáticas;

Harvey, Plake y Wise (1988) estudiaron la relación existente entre una serie de va-

riables afectivas y cognitivas; Garofalo y Lester (1985) evidencian la influencia de

las creencias de los estudiantes sobre las matemáticas a la hora de resolver un pro-

blema; Auzmendi (1992) analiza la vinculación de las actitudes con el logro y los

factores que constituyen las actitudes hacia las matemáticas y la estad́ıstica; Schau

et ál. (1992) describen la existencia de relación entre el grado de escolaridad de los

encuestados y la actitud antes y después de realizar la instrucción; Moyra, Rufel et

ál. (1998) confirman la influencia de las actitudes del profesor en sus alumnos como

un factor dominante; Bazán y Sotero (1997) muestran que no hay diferencias por

sexo en la actitud hacia las matemáticas, pero que śı existen discrepancias marcadas

de acuerdo con la edad; Bazán y Aparicio (2004-2005) muestran la relación entre

actitud y rendimiento en estad́ıstica de 87 maestros.

A nivel nacional se destacan los estudios de Gómez y Carulla, en la Universidad de los

Andes de Bogotá, quienes destacan el cambio en la percepción hacia la matemática

de los estudiantes que emplearon la calculadora graficadora en su primer curso de

matemáticas universitarias.

La mayoŕıa de las investigaciones mencionadas se caracterizan porque hacen uso de

escalas de actitud tipo Likert como instrumento de medición, además, evidencian la

necesidad de realizar investigaciones acerca de actitudes hacia las matemáticas en

contextos universitarios.

3.5.4. Desarrollo de la investigación

La investigación se desarrolló en tres etapas: en la primera se hizo un estudio ex-

ploratorio con el propósito de detectar el tipo de instrumento que se va a aplicar,

en la segunda se buscó aplicar un instrumento piloto fiable y en la tercera etapa se

pretendió decantar el instrumento y aplicarlo a una cohorte de estudiantes que in-

gresan por primera vez a la Universidad Sergio Arboleda, que permitiera responder

al problema planteado y verificar la hipótesis de investigación.

Primera etapa

La preocupación del grupo MUSA. IMA1 por el rendimiento académico en ma-

temáticas de los estudiantes que ingresan a la universidad llevó durante el primer

semestre de 2006 a la realización de una encuesta exploratoria. Los objetivos que

motivaron el diseño del mencionado instrumento fueron:
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Indagar sobre las experiencias de los encuestados con la matemática en la

primaria y el bachillerato.

Considerar la influencia de los profesores de matemáticas en el rendimiento

académico de los estudiantes en primaria y bachillerato.

Conocer el interés de los participantes por la matemática.

Determinar las expectativas de los estudiantes hacia los cursos universitarios

de matemáticas.

Determinar cuáles son los libros de matemáticas más recordados y utilizados

durante el bachillerato.

Verificar la incidencia del gusto por las matemáticas en la escogencia de la

carrera.

Conocer experiencias positivas y negativas en el estudio de las matemáticas.

Después de una exploración en el interior en el grupo, se decidió que la encuesta

contaŕıa con 16 preguntas: siete abiertas, seis con única respuesta y tres con respuesta

múltiple.

El instrumento diseñado se aplicó a 71 estudiantes que ingresaron a las carreras

de Ingenieŕıa y Administración de Empresas, de la Fundación Universitaria San

Mart́ın, universidad vinculada al comienzo del proyecto. El análisis de la informa-

ción emanada permitió concluir en primera instancia los aspectos que se citan a

continuación:

De la totalidad de los estudiantes, tan sólo ocho consideran que su desempeño

en los cursos de matemáticas de la universidad será excelente, cifra muy baja

si se tiene en cuenta que son alumnos que de antemano saben que en su carrera

enfrentarán un número significativo de cursos de matemáticas. Este resultado

induce a pensar que, en efecto, la actitud hacia la matemática puede afectar

el rendimiento académico en el área.

El 52 y el 38 % de los encuestados manifiestan haber tenido una experiencia

positiva con las matemáticas en primaria y bachillerato, respectivamente; la

diferencia pone de manifiesto un rompimiento respecto a la actitud hacia esta

ciencia en las dos etapas de formación.

No se encontró una relación directa de la influencia de los profesores de ma-

temáticas en el desempeño académico de los estudiantes, ya que apenas dos
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estudiantes en primaria y tres en secundaria la consideran negativa, y 69 es-

tudiantes reconocen a Pitágoras como un gran matemático; por el contrario,

un muy bajo número identifica a Gauss y Euler como tales. Curiosamente, 60

de los 71 estudiantes creen que Aurelio Baldor fue un matemático ilustre. Se

puede inferir que los estudiantes que ingresan a las carreras de ingenieŕıa con-

sideran que los cursos de matemáticas son indispensables para su formación

como futuros ingenieros, pero evidencian cierta resistencia y prevención hacia

éstos. En cuanto a los estudiantes de administración de empresas, se observa

que toman sus cursos de matemáticas como aquellos que deben aprobar pero

no manifiestan la importancia que tienen.

En cuanto a las preguntas abiertas, éstas presentaron bastantes dificultades para los

alumnos, puesto que en muchos casos los estudiantes no las respondieron o contes-

taron con frases cortadas o incoherentes; por ejemplo, a la pregunta “Describa una

experiencia positiva que lo(a) haya marcado en su estudio de las matemáticas”, se

obtuvieron respuestas como las que se transcriben a continuación de manera textual:

“Trigonometŕıa en 10o”.

“Ayuda a personas, con algunos problemas (temas)”.

“Superación en los últimos grados de bachillerato demostrando buen rendi-

miento”.

“Responsabilidad acerca a la persona con cosas”.

“Las matemáticas desarrollan el intelecto y eso es muy bueno”.

“Pues cuando fui el tercer mejor de esta área como en 8o”.

“Que siempre teńıa las mejores notas”.

“Indiferente”.

“El autoaprendizaje”.

El estudio de estas y otras respuestas similares a las preguntas abiertas evidenció la

dificultad de conocer el sentir de los estudiantes hacia la matemática mediante este

tipo de cuestionamientos. Por esta razón, dentro del grupo MUSA. IMA1 y con la

hipótesis de investigación: “Existe una correlación positiva entre las actitudes hacia

las matemáticas y el rendimiento académico en matemáticas de los estudiantes que

ingresan por primera vez a la Universidad Sergio Arboleda”, se desarrolló un trabajo

de investigación que permitió verificar esta hipótesis, midiendo la actitud a través
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de una escala de actitud tipo Likert y como resultado académico de los estudiantes

las calificaciones finales del primer curso de matemáticas de la respectiva carrera.

Para la variable “actitud hacia la matemática”, después de estudiar gran cantidad de

escalas tipo Likert empleadas en investigaciones similares y siguiendo la metodoloǵıa

de construcción de escalas de actitud de Elejabarrieta e Íñiguez [EI] (1984), se decide

adaptar y complementar la escala de actitud de 31 ı́tems hacia las matemáticas

diseñada por Bazán y Sotero [ByS] en 1997.

Segunda etapa

En esta etapa se llevaron a cabo la adaptación y la modificación de la escala men-

cionada a nuestro contexto y a las necesidades del estudio. Adicionalmente se cons-

truyeron siete ı́tems, completando aśı un instrumento de medición con 38 cuestiona-

mientos tendientes a medir la actitud hacia la matemática. Esta escala fue validada

por tres grupos: el primero, integrado por estudiantes de las universidades Sergio

Arboleda y San Mart́ın; el segundo, conformado por profesores con experiencia en la

enseñanza de las matemáticas, quienes hab́ıan tenido a su cargo en varias ocasiones

el primer curso de esta área a nivel universitario, y el tercero, compuesto por dos

psicólogas con experiencia en el tema. Según la valencia de los items, es decir, si

éstos reflejan una actitud positiva o negativa hacia el objeto actitudinal, esta ver-

sión de la escala tuvo 20 ı́tems positivos y 18 negativos. Además, de acuerdo con la

componente actitudinal medida, esta versión teńıa 17 ı́tems afectivos, 5 cognitivos,

10 comportamentales y 6 valorativos.

Aplicación a estudiantes

La aplicación de la escala versión 1 se realizó a un grupo de estudiantes, escogi-

dos al azar, de la población que en ese momento ya estaba en el primer curso de

matemáticas. Los objetivos al aplicar la escala a este grupo fueron:

Verificar la claridad y escritura de los ı́tems.

Determinar la impresión de los estudiantes sobre la escala.

Estimar el tiempo de aplicación de la escala.

Recoger las impresiones, comentarios y sugerencias de los estudiantes acerca

del instrumento.

Adicionalmente, en esta etapa del trabajo se llevó a cabo un análisis estad́ıstico

de los datos obtenidos a través de la suma de los puntajes de los ı́tems en la escala

para cada uno de los estudiantes. Algunos de estos puntajes aparecen a continuación

(tabla 1).
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Tabla 1. Puntajes totales obtenidos.

En el cuadro 1 se han resaltado los puntajes máximo y mı́nimo, de 175 y 106, para

los estudiantes que hemos denotado como 13 y 12, respectivamente; estos valores

indican que debe existir una diferencia en la actitud de los estudiantes 12 y 13.

Adicionalmente, si se piensa en los objetivos al diseñar una escala de actitudes,

podŕıamos decir que el instrumento versión 1 mostró buenas perspectivas como

escala de medición y, además, que el estudiante 13 debe tener una mejor actitud

hacia la matemática que la mostrada por el estudiante 12.

A continuación se transcriben literalmente los comentarios escritos por cuatro estu-

diantes en la aplicación del instrumento:

Estudiante 24: “Las matemáticas realmente son fáciles, el problema es el

mito de que son dif́ıciles y por esta razón el estudiante no abre la mente de

forma adecuada puesto que se encuentra ya con obstáculos mentales...”.

Estudiante 31: “Las matemáticas es una ciencia que uno practica en todo

momento de su vida, por eso es tan importante”.

Estudiante 13: “Las matemáticas son una excelente materia. Para aprender

bien, hay que practicar y hacer ejercicios. No es dif́ıcil”.

Estudiante 14: “En ocasiones las clases son tediosas y no se entiende”.
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Al leer los renglones anteriores puede inferirse que los estudiantes 24, 31 y 13 parecen

tener una mejor actitud hacia la matemática que el estudiantes 14, y al verificar los

puntajes de estos estudiantes en el cuadro 1, se puede ver que, en efecto, quienes se

expresan positivamente hacia la matemática, los estudiantes 24, 31 y 13, obtienen un

mayor puntaje que quien no lo hace, el estudiante 14, corroborando aśı la impresión

que se mencionó anteriormente acerca del cuadro 1.

Las conclusiones obtenidas fueron:

El número de preguntas no pareció afectar en forma alguna la contestación de

la prueba.

Algunas palabras causaron dificultad y preguntas por parte de los estudiantes.

El número de comentarios y sugerencias puestos por los estudiantes en las

pruebas son muy bajos, y ninguno hace referencia a los objetivos de la aplica-

ción de esta primera versión.

Aplicación a profesores

Se llevó a cabo la aplicación de la escala versión 1 a un grupo de 24 profesores de

la Escuela de Matemáticas de la Universidad Sergio Arboleda, seleccionados por su

experiencia en la enseñanza, especialmente en los primeros cursos de esta ciencia en

cada una de las carreras mencionadas.

En esta aplicación se cambió la graduación para cada uno de los ı́tems, ya que no se

pretend́ıa medir la actitud hacia la matemática sino conocer la opinión acerca de cada

ı́tem, es decir, si éste parećıa ser pertinente para el trabajo que se iba a desarrollar

con los estudiantes. Se pidió entonces a los profesores que calificaran cada pregunta

como: excelente, si según su apreciación la pregunta daba indicios sobre la actitud

de los estudiantes hacia la matemática y, por el contrario, calificarla como “mala” si

no daba ningún indicio hacia la actitud, pasando por las posibilidades intermedias

“buena” y “regular”.

Los objetivos de la aplicación de la escala a este grupo fueron:

Verificar la claridad y escritura de los ı́tems.

Determinar la pertinencia de los ı́tems planteados en la escala.

Recoger las sugerencias y comentarios acerca de la escala.

Las conclusiones obtenidas de este grupo fueron las siguientes:
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Los ı́tems 9 y 38 presentaban muy poca diferencia. Por esta razón se deter-

minó eliminar el ı́tem 38.

Por sugerencia de los profesores se deb́ıan eliminar de todos los ı́tems las dobles

negaciones, con el único fin de hacer más claros los enunciados y no confundir

a los estudiantes al responderlos.

Aplicación a psicólogas

De manera individual dos psicólogas, con experiencia en el tema de actitudes, revi-

saron la escala construida para corroborar la valencia de los ı́tems y la componente

actitudinal que cada uno de ellos media. Además sugirieron:

Eliminar el ı́tem 38, ya que se correspond́ıa con el ı́tem 9.

Al igual que los docentes evaluadores, invitaron a eliminar de la redacción de

los ı́tems las dobles negaciones.

Con el trabajo desarrollado hasta aqúı, y las conclusiones descritas anteriormente

para cada uno de los grupos de aplicación, se elaboró la segunda versión de la escala,

a la que nos referimos a continuación.

Tercera etapa

La aplicación de la escala se realizó previa validación del instrumento con una bateŕıa

de 34 ı́tems. La muestra considerada para este estudio estuvo conformada por 239

alumnos de las universidades Sergio Arboleda y San Mart́ın con sede en Bogotá, de

los programas de Ingenieŕıa, Marketing y de Ciencias Económicas y Empresariales

para el segundo semestre de 2007; la ejecución de la prueba piloto se realizó con

similares caracteŕısticas a la prueba prepiloto, para que cada uno de los estudiantes

de la muestra seleccionada la aplicara y resolviera de manera individual.

Para el análisis de la información, procesamiento y presentación de datos, se uti-

lizaron la hoja electrónica de Excel y el software SPSS, al igual que las medidas

estad́ısticas correspondientes, tales como las pruebas de normalidad de Jarque-Bera

y la de Kolmogorov-Smirnov, pruebas de hipótesis, correlación de Pearson, la fórmula

de Spearman-Brown, e insumos como la distribución F de Snedecor, la distribución

t de Student y el alfa de Cronbach, entre otros.

La escala piloto constó de 19 ı́tems positivos, es decir, aquellos proposiciones que se

presentaron con una redacción tal, que indique directamente una actitud favorable

hacia las matemáticas y 15 ı́tems negativos para aquellas proposiciones que indiquen

una relación desfavorable hacia las matemáticas. La escala se aplicó en la primera
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clase de matemáticas por profesores no titulares de la asignatura de matemáticas, con

el propósito de obtener la verdadera opinión de los estudiantes hacia las matemáticas.

3.5.5. Metodoloǵıa

A continuación se presenta grosso modo la metodoloǵıa seguida, que validó la hipóte-

sis de la investigación:

Existe una correlación positiva entre las actitudes hacia las ma-

temáticas y el rendimiento académico de los estudiantes que ingre-

san por primera vez a la Universidad Sergio Arboleda.

En principio se buscó saber si los datos obtenidos siguen una distribución normal o

no, con el propósito de establecer el camino del análisis estad́ıstico que hab́ıa que

seguir; para tal efecto se realizaron los dos test de normalidad:

Prueba de normalidad de Jarque-Bera.

Prueba de normalidad de Kolmogorov-Smirnov.

Éstas determinaron que los datos obtenidos por la escala siguen una distribución

normal, como se puede advertir a continuación (tabla 1):

Tabla 1.

Se trabajó con un nivel de significancia del 5 % y no se encuentran elementos para

rechazar la hipótesis de normalidad, es decir, de que los datos sigan una distribución

normal.

Una vez obtenidos estos resultados, se procedió a ratificar que el instrumento med́ıa

lo que se pretend́ıa medir, las actitudes hacia las matemáticas; para ello se trabajó de

nuevo en la verificación de que los ı́tems evidentemente discriminaban, proceso que

se realizó por el método de los grupos extremos y por el de correlación ı́tem-test,

método este último que permitió además estudiar la fiabilidad de la escala.
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El método de los grupos extremos consiste en asignar a cada ı́tem los pesos o puntua-

ciones correspondientes, dependiendo de si es un ı́tem positivo o un ı́tem negativo,

tal como se observa en la tabla 2:

Ítems negativos Ítems positivos

TA A I D TD TA A I D TD

1 2 3 4 5 5 4 3 2 1

Tabla 2.

Hallada esta información, se calcularon las puntuaciones globales de cada estudiante.

Se eligió un grupo de estudiantes con puntuaciones globales altas (25 % superior)

y un grupo con puntuaciones globales bajas (25 % inferior), esto es, los estudiantes

que se encuentran en los extremos. Dicho de otro modo, para formar estos grupos

se tomaron los estudiantes que integran el cuartil superior Q3 y los estudiantes

del cuartil inferior Q1. Aśı, 60 estudiantes con puntajes iguales o inferiores a 117

conformaron el cuartil Q1 y 61 estudiantes con puntajes iguales o mayores que 141

conforman el cuartil Q3.

Para que un ı́tem sea discriminativo es necesario que los estudiantes del cuartil Q3

(grupo 2) tengan puntajes más elevados en media que los individuos del cuartil Q1

(grupo 1). Se plantearon, por tanto, las siguientes hipótesis:

Hipótesis nula. Los estudiantes del grupo 2 tienen igual media en promedio

(2) que los estudiantes del grupo 1 (1), esto es:

H0 : µ1 = µ2 ⇒ µ1 − µ2 = 0

Hipótesis alterna. Los estudiantes del grupo 2 tienen diferente media en pro-

medio que los estudiantes del grupo 1, esto es:

H1 : µ1 6= µ2 ⇒ µ1 − µ2 6= 0

Es de anotar que esta comparación se realizó porque la distribución de los datos

corresponde a una distribución normal y, por tanto, se utilizó la t de Student. Un

insumo que se tuvo en cuenta fue la prueba de hipótesis para el cociente de varianzas
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usando la prueba F de Snedecor, con el fin de ver la homogeneidad entre las va-

rianzas de los dos grupos. Aśı, mediante la F de Snedecor se verificó si se cumple la

condición de igualdad de las varianzas para cada uno de los ı́tems y se compararon

posteriormente las medias mediante la t de Student, ratificando que los 34 ı́tems

discriminan.

El método de correlación ı́tem-test se aplicó con un doble propósito: por un lado,

verificar si los ı́tems de la escala discriminan y comparar dichos resultados con los

obtenidos por el método de los grupos extremos, y por otro establecer la consistencia

interna de los ı́tems, es decir, la fiabilidad de la escala. Al igual que el método de

grupos extremos, se realizó una prueba de hipótesis, a saber:

Hipótesis nula. El ı́tem no discrimina si no hay correlación entre las puntua-

ciones de cada ı́tem y las puntuaciones globales de la escala, es decir:

H0 : ρ = 0

Hipótesis alterna. El ı́tem discrimina si hay correlación diferente de cero (0)

entre las puntuaciones de cada ı́tem y las puntuaciones globales de la escala:

H1 : ρ 6= 0

Para ello se utiliza la correlación r de Pearson. Hay varias fórmulas para calcular r

de Pearson, pero la que se usó en esta investigación fue:

r =
n

∑
xy − (

∑
x) (

∑
y)√[

n
∑

x2 − (
∑

x)2] [
n

∑
y2 − (

∑
y)2]

Donde x representa puntuaciones en una de las variables. Por ejemplo, de uno de

los ı́tems y representa las puntuaciones globales y n es el número de pares de pun-

tuaciones; cabe señalar que siempre debe haber igual número de puntuaciones de

cada variable. La correlación r de Pearson es un valor que corresponde a; |r| ≤ 1;

por tanto, fue indispensable conocer a partir de qué valor un ı́tem discrimina, para

lo cual se utilizó el contraste estad́ıstico de la distribución t de Student.

Por este método se observó el buen comportamiento de todos los ı́tems de la escala,

pues todos los ı́tems discriminan; vale la pena anotar que la escala muestra además

una alta fiabilidad, pero la fiabilidad de la escala se estudió por otros dos métodos:

Dos mitades (split-half ).

Alfa de Cronbach.
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El método de las dos mitades o split-half consiste en hallar la correlación entre

dos grupos de ı́tems; los grupos de ı́tems se pueden escoger de manera aleatoria

para garantizar el equilibrio en la prueba. En la investigación se recurrió a la hoja

electrónica Excel para hallar la generación de 34 números aleatorios con una distri-

bución de Bernoulli y una probabilidad de 0,5; aśı, los ı́tems se dividieron en dos

grupos. Una vez seleccionados estos dos grupos de ı́tems, A y B, se halló la suma de

los puntajes de los ı́tems que conformaban el grupo A y los puntajes de los ı́tems del

grupo B; además, se calculó el coeficiente de correlación r de Pearson entre los tota-

les parciales de los dos conjuntos de valores (grupos A y B) y se obtuvo el siguiente

resultado: r 1

2

1

2

= 0,86. Como en este cálculo sólo se utilizó la mitad de la prueba,

fue necesario corregir el resultado con la fórmula de Spearman-Brown, que arrojó el

siguiente resultado: 2rxx =
2r 1

2

1

2

1 + r 1

2

1

2

= 0,93. Este valor está bastante alejado de la

correlación nula.

Dentro de la categoŕıa de coeficientes, el alfa de Cronbach, α =
k

k − 1

(
1 −

∑
S2

i

S2

)

es uno de los más relevantes, ya que mide la confiabilidad de la escala en función

del número de ı́tems y la proporción de la varianza total de la prueba, donde k es el

número de ı́tems;
∑

S2
i es la suma de las varianzas de los ı́tems y S2 la varianza del

puntaje total. Como resultado de calcular el alfa de Cronbach se obtuvo: α = 0,92.

Por tanto, la escala es bastante confiable.

3.5.6. Conclusiones

Se adaptó la escala actitudinal del profesor Jorge Luis Bazán a nuestro medio edu-

cativo, la cual se validó con un grupo de expertos integrado por los profesores de

la Escuela de Matemáticas de la Universidad Sergio Arboleda y por dos psicólogas.

Además, se aplicó la escala piloto a un corte de estudiantes en el segundo semestre

de 2007, en el que se verificaron la fiabilidad y la validez de la escala, pero sobre

todo se concluyó que existe una correlación positiva entre la actitud de los estudian-

tes hacia las matemáticas y su rendimiento académico. Para probar la hipótesis de

investigación que nos convocaba en este trabajo, se hizo una prueba de hipótesis:

Hipótesis nula. No existe correlación entre las actitudes hacia las matemáticas

y el rendimiento académico de los estudiantes que ingresan por primera vez a

las universidades Sergio Arboleda y San Mart́ın.

H0 : ρ = 0

Hipótesis alterna. Existe una correlación positiva entre las actitudes hacia las

matemáticas y el rendimiento académico de los estudiantes que ingresan por
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primera vez a las universidades Sergio Arboleda y San Mart́ın, es decir:

H0 : ρ > 0

Para esta prueba de hipótesis, el cálculo se realizó en Excel y se obtuvo el estad́ıstico

de prueba teórico con t = 1,65 y el calculado de t = 3,89; para este caso, el coeficiente

r de Pearson que se utilizó fue el calculado entre las puntuaciones de la escala

frente a las notas obtenidas por los estudiantes al final del semestre académico,

r = 0,22; de esta manera se rechazó la hipótesis nula y por tanto se validó la hipótesis

alterna, ρ > 0, es decir, existe una correlación positiva entre las actitudes hacia las

matemáticas y el rendimiento académico de los estudiantes que ingresan por primera

vez a las universidades Sergio Arboleda y San Mart́ın. La anterior información se

resume a renglón seguido (tabla 3):

Test de la hipótesis de la investigación

Probabilidad p = 0, 1

Grados de libertad gl = 218

Test de prueba (t teórico) t = 1, 65

Test de prueba (t calculado) t = 3, 89

Conclusión Hay correlación

Tabla 3.

3.5.7. Proyección de la investigación

A partir del segundo semestre de 2008, el grupo de investigación se plantea el si-

guiente interrogante: ¿cómo construir una metodoloǵıa de intervención directa para

el cambio de actitudes negativas hacia la matemática?

Para ello ha trabajado en torno de los siguientes interrogantes:

1. ¿Qué metodoloǵıa es la más adecuada para seguir con los estudiantes ya cla-

sificados mediante la escala?

2. ¿Qué perfil deben tener los docentes para cada uno de estos grupos de estu-

diantes?

3. ¿Qué papel desempeñan en esta labor docentes de otras áreas, administrativos,

funcionarios y padres de familia?

4. ¿Qué estrategias se han de seguir para un cambio actitudinal hacia las ma-

temáticas?
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5. ¿Cómo implementar una nueva cultura matemática en la comunidad universi-

taria, en particular de la Universidad Sergio Arboleda?

6. ¿Cambia la actitud de los estudiantes hacia las matemáticas según el sexo?

7. ¿Cambia la actitud de los estudiantes hacia las matemáticas de acuerdo con

su edad?

3.5.8. Construyendo una metodoloǵıa de intervención

En el primer semestre de 2009, el grupo de investigación aplicó el primer d́ıa de clase

de cálculo diferencial dos indicadores: una escala de actitudes hacia las matemáticas,

que consta de 34 ı́tems, y una prueba de conocimiento de 20 preguntas a estudiantes

que ingresaron a los programas de las Escuelas de Marketing & Negocios Interna-

cionales, Ciencias Empresariales e Ingenieŕıa. El propósito de estos indicadores en

principio fue establecer una correlación entre la actitud de los estudiantes que ingre-

san por primera vez a la Universidad Sergio Arboleda y los conocimientos previos

que ellos poseen. El estudio, que se realizó a toda la población (363 estudiantes),

arrojó los siguientes resultados:

1. Se halló una correlación positiva entre las actitudes y los conocimientos con que

ingresan los estudiantes al primer semestre de la Universidad Sergio Arboleda.

2. De la población estudiada, se encontró que:

a) En cuanto a actitud:

b) En cuanto a conocimientos:
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Analizados los resultados, el grupo MUSA. IMA1 decidió tomar algunas acciones

para mejorar el nivel académico de los estudiantes y prevenir en lo posible un alto

ı́ndice de mortalidad académica, a saber:

1. Reunión con los profesores titulares de cálculo diferencial todos los lunes de

4:00 a 6:00 p.m. para:

a) Brindar un informe del desarrollo del curso.

b) Revisar los temas vistos en clase con el objetivo de ir ajustando el pro-

grama.

c) Elaborar en conjunto un taller que consta de dos partes para aplicarlo en

la última sesión de clase de cada semana.

2. Con ayuda de las escuelas se organizaron los cursos de cálculo diferencial en

franjas horarias, con el propósito de:

a) Contar con un horario para reunión de profesores.

b) Dictar charlas magistrales para los cursos.

c) Disponer de un mejor horario para el desarrollo de los cursos.

3. Se vincularon al proyecto estudiantes del semestre anterior con un excelente

nivel académico, para que sirvan de apoyo a los estudiantes el d́ıa del taller.

4. Se estableció un horario de asesoŕıas para estudiantes con 40 horas de atención

de lunes a viernes, a cargo de los profesores del Departamento de Matemáticas.

5. Con el apoyo del director del Departamento de Matemáticas se planteó y

elaboró el siguiente sistema de evaluación:

a) Primer corte: 30 %

30 % parcial

Hasta + 0,5 décimas por asesoŕıas, asistencia a clase y presentación

de talleres y quizzes.
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b) Segundo corte: 30 %

15 %: parcial

15 %: informe del monitor, tutoŕıas, tareas, talleres, trabajos y quiz-

zes.

c) Tercer corte: 40 %

30 %: examen final.

5 %: profesor.

5 %: monitor.

6. Se organizó un taller como propuesta de intervención psicológica para modifi-

car la actitud negativa hacia las matemáticas de un grupo de 30 estudiantes

de la Universidad Sergio Arboleda con edades comprendidas entre los 17 y 23

años, taller que se desarrolla en dos jornadas horarias: miércoles de 7:00 a 9:00

a.m. y de 4:00 a 6:00 p.m.

7. Se repartió una circular a los estudiantes en la que se les recordaban los recursos

y apoyos que brinda el Departamento de Matemáticas, tales como:

a) Página web http://espanol.geocities.com/usa.calculo.

b) Aulas virtuales.

c) Asesoŕıas académicas.

d) Asesoŕıas de tipo psicológico.

e) Monitores.

Con estas acciones, el grupo MUSA. IMA1 realizó el 14 de marzo del año en curso

un balance del desempeño académico de los estudiantes, para el cual analizó los

resultados alcanzados al cierre del primer corte académico.
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Como se observa en la tabla 2, de 363 estudiantes que ingresaron al primer semes-

tre, 313 (86,2 %) obtuvieron deficiente en la prueba de conocimientos, de los cuales

164 alumnos aprobaron el primer parcial, correspondiente al primer corte académi-

co, lo cual muestra una reducción del 52,4 % de estudiantes que presentaban bajo

rendimiento académico. Es de anotar que 66 estudiantes obtuvieron notas iguales o

superiores o 4,0, que corresponden a un 21,1 %.

Una vez que presentaron el primer parcial, se encuestó a todos los estudiantes (455)

que toman cálculo diferencial (incluyendo los que están repitiendo la asignatura)

con el propósito de evaluar el proceso realizado por el grupo de investigación; a

continuación se presenta el instrumento aplicado, con sus respectivos resultados:
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Al cierre del semestre se aplicaron de nuevo los dos instrumentos, los cuales arrojaron

los siguientes resultados:

A continuación se muestra un cuadro comparativo entre la tabla anterior y las notas

finales del semestre.

3.5.9. Informe taller de actividades en cálculo diferencial

Grupo de la mañana

El 29 de enero de 2009 se realizó, en el auditorio principal de la universidad, una

reunión con todos los estudiantes de los cursos de cálculo diferencial, con el fin

de invitarlos a participar en este taller de actividades; luego de la inscripción, se

conformaron dos grupos de trabajo: uno en la mañana y el otro en la tarde.

Los talleres se iniciaron el 4 de febrero del presente año con el grupo de la mañana,

integrado por estudiantes que se inscribieron de manera voluntaria para mejorar su

actitud hacia las matemáticas, debido a que los resultados arrojados en las pruebas
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de diagnóstico que se realizaron en los diferentes cursos de cálculo diferencial no

fueron satisfactorios, ya sea en la escala de actitud o en la prueba de conocimientos.

Se celebraron reuniones semanales en el auditorio principal de la universidad todos

los miércoles, en el horario de 7:00 a 9:00 a.m., con la orientación de la psicóloga

Liliana Castro, quien diriǵıa las diferentes actividades con las que se buscaba mejorar

la motivación hacia las matemáticas.

A continuación se presenta un cuadro comparativo de los resultados en las pruebas

iniciales de actitud y conocimiento, la prueba final del taller y la nota definitiva en

el curso de cálculo diferencial de estos estudiantes.

Grupo de la tarde

El grupo de la tarde inició trabajos el d́ıa 11 de febrero. Este grupo se reuńıa

semanalmente en el salón E-403 de la universidad todos los miércoles, en el horario

de 4:00 a 6:00 p.m., con la orientación de la psicóloga Liliana Castro, quien diriǵıa

las diferentes actividades con las que se buscaba mejorar la motivación hacia esta

ciencia; también se contó con el apoyo del grupo de investigación conformado por

profesores de cálculo diferencial y dirigido por el profesor Jesús Hernando Pérez.
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Al finalizar el taller con este grupo, sólo un estudiante no participó en las últimas

tres sesiones. De los estudiantes que participaron en los talleres, se concluye que el

81 % de ellos aprobó el curso de cálculo diferencial. El trabajo con estos dos grupos

terminó el 22 de mayo, con una última prueba de actitud, la cual se presenta en la

tabla anterior.
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3.6. Herramientas didácticas en ciencias básicas.

Implementación de aulas virtuales como apoyo a la

presencialidad. Aciertos y dificultades

Guillermo Antonio Manjarrés9

Néstor Raúl Roa Becerra10

Jorge Enrique Tarazona Suárez11

Jair Zambrano Castro12

3.6.1. Introducción

Durante los últimos años se ha producido un gran avance en el desarrollo tecnológi-

co, lo cual justifica la necesidad de formar a los estudiantes en el campo de las

tecnoloǵıas de la información y comunicación (TIC). Los estudiantes precisan de los

conocimientos necesarios para ser agentes activos y “alfabetizados” en esta nueva

“aldea global”, que de manera continua presenta innovaciones técnicas y formales

en el campo de la comunicación y la información.

Estos medios, cada d́ıa más presentes en nuestra vida, obligan a los estudiantes a

adquirir los conocimientos necesarios para su utilización, tanto en su cotidianidad

como en su formación y educación; corresponde al profesorado realizar esfuerzos por

dominarlos y adquirir la capacidad de transmitirlos de manera que se usen en forma

cŕıtica, constructiva y eficaz.

Por otro lado, la gran accesibilidad que los alumnos tienen para manejar estas nuevas

tecnoloǵıas y el atractivo que sobre ellos ejercen permite que se conviertan en un útil

y eficiente instrumento pedagógico, a la vez que estimulante para ellos. Por tanto,

debemos ayudarles a que descubran que las TIC, además de ser una herramienta

lúdico-recreativa, constituyen también un valioso instrumento para su formación y

para su integración en la nueva sociedad de la comunicación.

Para una adecuada introducción de las TIC en el aula, se deben analizar todos

los factores del contexto (perfil del estudiante, infraestructura de la institución,

poĺıticas sobre programas, material existente, recursos financieros, de infraestructura

y humanos, que interaccionarán en las nuevas situaciones de aprendizaje), de modo

que el diseño de las nuevas actividades tengan la garant́ıa de éxito deseado.

En el caso de Uniminuto, el estudiante normal tiene un contacto limitado con las

9Corporación Universitaria Minuto de Dios. Ciencias Básicas.
10Corporación Universitaria Minuto de Dios. Ciencias Básicas.
11Corporación Universitaria Minuto de Dios. Ciencias Básicas.
12Corporación Universitaria Minuto de Dios. Ciencias Básicas.
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TIC, y un nivel bajo de empleo del computador y muy centrado en el aspecto re-

creativo. Los profesores apreciamos la necesidad de intervenir para que el estudiante

descubra los otros usos y ventajas que ofrecen estos nuevos instrumentos. Hay que

constatar también el hecho de que son aún escasos los alumnos que disponen en sus

hogares de equipos y conexiones adecuadas para acceder a todo el potencial que hoy

ofrecen estas nuevas tecnoloǵıas.

Junto con estas necesidades, que por śı solas justificaŕıan plenamente el desarrollo

de este proyecto, cabe destacar también una necesidad muy concreta que ha venido

surgiendo y es que existen actividades para las cuales el aula de clase no resulta

adecuada: presentaciones multimedias interactivas y participativas, programas para

realizar cálculos rápidos, eficientes y certeros, gráficos con representaciones dinámi-

cas sobre algunos temas espećıficos, debido a que la actitud pasiva de ésta da pie,

en muchas ocasiones, al aburrimiento y poca receptividad de los temas tratados.

3.6.2. Planteamiento del problema

Es claro que a partir de la justificación anterior surge una necesidad: utilizar las TIC

como un medio para reforzar conceptos que se ven en clase presencial. Para esto se

cuenta con el apoyo de la Facultad de ingenieŕıa y del Departamento de Ciencias

Básicas de Uniminuto.

Este proyecto pretende indagar, acorde con la experiencia personal del estudiante, si

el uso de un aula virtual, como complemento a las clases presenciales, rinde beneficios

a la hora de apropiar conceptos matemáticos espećıficos.

3.6.3. Objetivos generales del proyecto

Presentar un aula virtual como apoyo a la presencialidad en un curso.

Introducir el uso de las TIC como una herramienta de trabajo para el profe-

sorado, de modo que favorezca el proceso de enseñanza con los estudiantes.

Fomentar el uso de las TIC como herramienta en el proceso de aprendizaje.

Elaborar, en lo posible, materiales didácticos propios y contextualizados.

Facilitar el aprendizaje autónomo, individual o en grupo entre los alumnos.

Mostrar a los estudiantes otras formas de hacer uso de las TIC.

Desarrollar destrezas en el estudiante para el uso de la plataforma de apren-

dizaje Moodle.
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Presentar al estudiante información clara, oportuna, contextualizada y actua-

lizada de algunos de los temas vistos en clase.

3.6.4. Marco teórico

Sobre éstos se tiene bastante información, pero se hace un resumen de tres de ellos

que se consideran de importancia. Quesada (1994) realizó una investigación a lo

largo de tres semestres con 710 alumnos de un curso de precálculo de una universidad

de Estados Unidos. Se comparó el rendimiento de los estudiantes divididos en un

grupo control y un grupo experimental. Los estudiantes del grupo control cursaron

la materia del modo tradicional, utilizando una calculadora cient́ıfica y un libro

común de texto. El tratamiento del grupo experimental consistió en el empleo de la

calculadora gráfica y un texto espećıficamente escrito para ser usado con ella. Tres

instructores distintos enseñaron al grupo experimental y siete al grupo control. Los

instructores del grupo experimental usaban un aparato que, junto con un proyector,

les permit́ıa mostrar el display de la calculadora en la pantalla. La evaluación de los

estudiantes fue la misma para ambos grupos, y consistió en cuatro test, un examen

comprensivo final y una o dos encuestas semanales.

Según los autores, la aproximación gráfica agregó una nueva luz al conocimiento de

conceptos, y permitió que los estudiantes mantuvieran su interés en los distintos

temas. La aproximación manual y la habilidad de chequear sus respuestas con la

calculadora gráfica aumentaron la motivación de los estudiantes.

En un trabajo (Ruthven, 1990) hecho en Inglaterra durante 1990 y 1991, seis gru-

pos de profesores participaron en el proyecto denominado “Graphic Calculators in

Mathematics”, subvencionado por el National Council for Educational Technology.

En este proyecto participaron estudiantes que hab́ıan tenido acceso permanente a

las calculadoras gráficas en el transcurso de los dos últimos años del secundario.

Ruthven, como investigador principal, examinó el rendimiento en matemática cerca

del final del primer año del proyecto, y lo comparó con el de estudiantes que segúıan

el mismo curso de matemática pero que no teńıan acceso a las calculadoras gráfi-

cas. La muestra constaba de 87 estudiantes: 47 estaban en las clases del proyecto y

40 pertenećıan al grupo de comparación. En este estudio, Ruthven prestó especial

atención a los ı́tems simbólicos, pues estaban más influenciados por el uso de las

calculadoras gráficas y porque revelaron importantes diferencias en el rendimiento

de los dos grupos. En estos ı́tems, el estudiante primero identificaba los gráficos de

funciones como correspondientes a alguna familia y luego efectuaba el refinamiento,

utilizando aśı sus conocimientos matemáticos; el autor encontró que los estudiantes

que hab́ıan usado calculadoras gráficas tuvieron mayor rendimiento en los ı́tems de
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simbolización, pero no en los de interpretación. La diferencia la atribuyó a que la

utilización regular de las calculadoras gráficas hab́ıan generado en los estudiantes un

mayor uso de aproximaciones gráficas en la resolución de problemas y el desarrollo

de nuevas ideas matemáticas, que fortalecieron no sólo esas relaciones espećıficas,

sino también generaron mayores relaciones entre las formas gráficas y simbólicas.

Por otra parte, notó que al aumentar el éxito del estudiante se redujo su ansiedad,

generando indirectamente un mayor rendimiento en aquellos estudiantes que usaron

calculadoras gráficas.

Aldanondo (2002) confirma el hecho de que las personas aprenden haciendo y no

escuchando. La práctica diaria en las aulas de clase nos lleva a tener presentes dos

cosas: que el docente busca explicar con la mejor metodoloǵıa los temas y que si

el estudiante quiere mejorar lo aprendido en el aula de clase, tiene que practicar.

Pero tendrá que hacerlo él, con su cerebro y su razonamiento. Y especialmente

fracasando y razonando sobre los motivos de su fracaso hasta dar con la solución.

No hay mejor tutor que uno mismo cuando está cautivado por una actividad que

lo fascina. Para aprender, el protagonista debe ser el alumno que tiene que hacer

cosas y no escuchar pasivamente cómo se las cuenta otra persona. La memoria y el

aprendizaje van ı́ntimamente ligados a las emociones.

3.6.5. Descripción de la metodoloǵıa propuesta

La educación electrónica (e-learning) sirve de ĺınea conductora a este proyecto, ya

que por definición el e-learning es el suministro de programas educacionales y siste-

mas de aprendizaje a través de medios electrónicos. De acuerdo con Mendoza (2003),

el e-learning se basa en el uso de un computador u otro dispositivo electrónico (por

ejemplo, un teléfono móvil) para proveer a las personas de material educativo. La

educación a distancia creó las bases para el desarrollo del e-learning, el cual viene

a resolver algunas dificultades en cuanto a tiempos, sincronización de agendas, asis-

tencia y viajes, problemas t́ıpicos de la educación tradicional. Este término abarca

un amplio paquete de aplicaciones y procesos, como el aprendizaje basado en web,

capacitación basada en computadores, salones de clases virtuales y colaboración

digital (trabajo en grupo).

Se ha escogido la plataforma Moodle por ser ésta la que maneja la universidad.

Además, es de carácter libre y posee caracteŕısticas ideales para hacer seguimiento

a los estudiantes.

Se implementarán cursos de apoyo, en los cuales se incluirán lecturas motivadoras,

ejercicios resueltos y propuestos, teoŕıa sobre algunos temas, páginas interactivas,

applets realizados en Java, animaciones, videos y un foro. Todos los cursos tendrán
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estas caracteŕısticas. No se pretende brindar apoyo a cada uno de los temas que se

tratan en el curso presencial, sino más bien de respaldar las grandes temáticas que

se presentan a los estudiantes en cada curso presencial. El aula virtual en ningún

momento sustituirá al profesor-tutor, ni tampoco la presencia del estudiante en la

clase.

Se han creado equipos de trabajo compuestos de dos profesores que estarán encar-

gados de geometŕıa, cálculo integrodiferencial y precálculo; a la par, un equipo de

cuatro profesores trabajará con la asignatura f́ısica en tres cursos que se vienen desa-

rrollando hace un par de semestres. Se han escogido estas asignaturas por ser las

que ofrecen un nivel de dificultad relativamente alto al estudiante y además porque

los profesores tienen a su cargo esas materias en este momento.

Se hará una encuesta a cada uno de los estudiantes que accedan al curso para evaluar

el grado de satisfacción con éste, comparándolo con la experiencia que cada uno de

ellos posee en otros cursos que no tienen tal apoyo.

La infraestructura de la universidad permite que los estudiantes puedan acceder a

esta plataforma desde cualquiera de las salas de informática, aparte de que pueden

hacerlo desde la casa, un café internet o desde el campus por red inalámbrica. Todo

alumno que tome las asignaturas estudiadas puede matricularse en el curso, pero

se seleccionarán algunos espećıficos con el propósito de tener cursos que no hayan

recibido el beneficio del aula de apoyo y poder hacer comparaciones en un estudio

futuro; a los estudiantes seleccionados se les informa, mediante una gúıa impresa y

una visita al aula de informática, cómo pueden matricularse en un curso dado.

A los profesores involucrados se les asignará tiempo, dentro de su carga del semestre,

para la realización de este proyecto, ya que éste sólo se trabajará en dichos espacios.

3.6.6. Muestra

La población meta consta de estudiantes de primer y segundo semestre de las carreras

de Ingenieŕıa Civil, Agroecológica y Tecnoloǵıas, entre 18 y 25 años que no han tenido

un gran contacto con las TIC y cuyo nivel académico es bajo o regular.

3.6.7. Modelo educativo

Caracteŕısticas de operación

El curso se desarrolla en internet en un “entorno” al que pueden acceder aque-

llos estudiantes seleccionados de los cursos presenciales y a los que se les ha

dado una contraseña.
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Funciona en forma asincrónica y los alumnos pueden utilizar el horario que

más les convenga para acceder. Además, en la página del curso se les marcan

pautas, ejercicios y lecturas, entre otras actividades. Hay profesores-tutores

que hacen el seguimiento de los alumnos y marcan dichas pautas.

El estudiante se comunica con los tutores y compañeros a través del servicio

de mensajes de la plataforma y por medio de un foro de discusión dispuesto

para este fin.

Los materiales y lecturas necesarios para el curso se encuentran en internet, y

si el alumno quiere, puede imprimirlos y tenerlos en formato papel.

Por ser un curso de apoyo no se evaluará, pero se proponen ejercicios de au-

toevaluación que pueden resolverse y presentarse al tutor para su discusión.

3.6.8. Puesta en acción

Desarrollo de los cursos

En reunión con los profesores encargados, se acordó el uso de la plataforma Moodle.

Con miras a llevar un formato, se llegó al acuerdo de utilizar el siguiente esquema:

Trabajar en formato tipo módulo, cuatro o cinco.

Insertar una imagen alusiva al tema que se va a tratar en cada módulo, junto

con un t́ıtulo en color y resaltado y un texto de bienvenida.

Presentar un texto introductorio de corte histórico sobre el tema, textos en

formato PDF sobre algunos de los temas vistos en la sesión presencial y que

el tutor diseñador considere que es vital que aparezca en el curso.

Presentaciones, animaciones, applets en Java y demás medios multimedia que

traten uno o varios de los temas que se quieren apoyar.

Ejercicios resueltos paso a paso.

Ejercicios propuestos para que el estudiante los realice.

Un foro para la interacción estudiante-tutor.

Encuesta de opinión y satisfacción.

Cada grupo hace seguimiento de las actividades realizadas y pasa un informe a

coordinación.
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Los cursos se han venido diseñando desde el semestre inmediatamente anterior.

Se planeó presentarlos a los estudiantes en el primer semestre del 2008, pero por

sugerencia de la decanatura de ingenieŕıa se decidió realizar una prueba piloto con

los cursos como están; aśı las cosas, a partir de octubre de 2007 se escogieron tres

cursos: geometŕıa, precálculo y cálculo integrodiferencial para realizar la prueba, que

se encuentra en curso.

3.6.9. Tipo de investigación

El tipo de investigación es cuantitativo - experimental, con levantamiento de mues-

tras, utilizando un muestreo aleatorio simple, en el que se combinan las metodoloǵıas

pre-post y experimental - control.

Se optó por este tipo de investigación debido a los instrumentos evaluativos que se

aplicaron para la recolección de la información. Se aplicó un primer instrumento de

evaluación (pretest) al grupo experimental y al de control, con el fin de determinar

los conocimientos previos de los estudiantes sobre el tema. Al finalizar el proceso de

la aplicación del aula virtual de aprendizaje (grupo experimental), y desarrollados

los temas en clase (grupo de control), se aplicó una segunda evaluación (postest),

donde el estudiante deberá presentar los respectivos algoritmos y demostrar sus com-

petencias para brindar soluciones a situaciones sencillas en el campo de la ingenieŕıa

civil.

3.6.10. Evaluación del aula virtual

Al finalizar el aula virtual, se realizó una encuesta al grupo experimental, en la que

se evaluó cada ı́tem de uno a cinco y se obtuvo la siguiente calificación promedio:

Evaluación del aula virtual

Pregunta Descripción Promedio

1 El número de imágenes fue suficiente y aportó a la com-

prensión de los contenidos.

4,6

2 Las imágenes lograron apoyar, sintetizar y complemen-

tar el texto, facilitando el aprendizaje de los contenidos.

5,0

3 Las imágenes conectadas lógicamente con el texto cum-

plieron un papel didáctico en mi aprendizaje.

4,8

4 Las imágenes que apoyaron el texto fueron necesarias

para el aprendizaje de los contenidos.

4,6

5 Las imágenes dinámicas como estrategia visual incidie-

ron positivamente en mi aprendizaje.

4,8
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6 La forma en que se representaron los contenidos faci-

litó notoriamente la comprensión y el aprendizaje de los

contenidos.

5,0

7 Las tareas propuestas en cada módulo me permitieron

aplicar en forma significativa los conocimientos adquiri-

dos.

4,0

8 Las imágenes y textos fueron presentados en forma gra-

dual y lógica.

4,8

9 Su participación en cada una de las actividades propues-

tas en el aula.

4,0

10 El soporte del tutor en el aula. 5,0

3.6.11. Conclusiones

Ambos grupos demuestran gran cantidad de conceptos adquiridos, lo cual se eviden-

cia en las preguntas acertadas al comparar los resultados del pretest y del postest.

Los estudiantes relacionan correctamente las matemáticas y la geometŕıa, lo cual se

evidencia en las preguntas de la tercera a la sexta.

De la séptima a la décima preguntas, los estudiantes demuestran la aplicación de

los algoritmos sugeridos. Comparando los resultados del grupo experimental y del

grupo de control, se puede afirmar que:

El grupo que utilizó el ambiente de aprendizaje presenta mayor cantidad de

conceptos adquiridos.

Este grupo integra mejor los conceptos de las matemáticas y de la geometŕıa

para realizar cálculos.

Las animaciones son de gran ayuda al exponer un tema, ya que en el salón de

clases los gráficos son estáticos y su tiempo de presentación es muy limitado,

mientras que al utilizar el ambiente virtual el estudiante puede retomar los

gráficos y diagramas cada vez que lo considere necesario.

Los estudiantes manifiestan su interés de consulta cuando se remiten a la parte teóri-

ca, complementando los conceptos primarios presentados en forma visual y animada.

Dentro del proyecto se aprecian los siguientes aciertos:

Actitud positiva de los profesores encargados.
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Actitud positiva de los estudiantes hacia la virtualidad.

Construcción de instrumentos propios por parte de los docentes.

Creación de un grupo fuerte de tutores.

Para la realización del proyecto se han presentado algunos inconvenientes, tales

como:

Falta de computadores en ciencias básicas durante los horarios asignados para

el diseño y manipulación de los cursos.

Poca capacitación en el manejo de la plataforma Moodle.

La incorporación de material en la plataforma se ha hecho con documentos,

animaciones y applets que se encuentran en internet, los que, con alguna re-

gularidad, no cumplen con lo que el profesor desea mostrar.

Falta capacitación en el manejo de programas multimedia de gran utilidad

para la elaboración de instrumentos adecuados (Flash y Java, especialmente).
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3.7. Concepciones y creencias de algunos profesores

universitarios sobre la evaluación en matemáticas

Grupo Pentagoǵıa13

Grupo Matemática Computacional14

Resumen

En este art́ıculo se presenta un informe de avance de la investigación “Concepciones

y creencias de algunos profesores universitarios sobre la evaluación en matemáticas”,

que están realizando los grupos Pentagoǵıa, de la Escuela Colombiana de Ingenieŕıa,

y Matemática Computacional, de la Pontificia Universidad Javeriana. Hasta el mo-

mento se han terminado las etapas de diseño del instrumento para recolectar la

información que les interese a los profesores que enseñan matemáticas en los progra-

mas de ingenieŕıa de las dos universidades. Actualmente se está realizando el análisis

de la información que permitirá identificar las concepciones y creencias de los pro-

fesores, con el fin de poder proponer acciones tendientes a mejorar las prácticas

evaluativas en las dos instituciones.

Palabras claves: evaluación, concepciones y creencias sobre evaluación, matemáti-

cas universitarias, enseñanza, aprendizaje.

3.7.1. Introducción

Como resultado de los cambios curriculares que se gestan dentro de las instituciones,

la evaluación de los aprendizajes es un elemento que debe evolucionar paralelamente

para dar respuesta a los procesos asociados a la enseñanza y el aprendizaje.

Niss (1993, citado por Becerra y Moya, 2008) reporta que el campo de la educación

matemática ha centrado su atención en los procesos de formación y adquisición

de conceptos matemáticos, dejando de lado la evaluación; “se ha considerado que la

evaluación es un factor de menor importancia para la educación matemática, siendo,

además, un factor externo a ella”.

Actualmente, la sociedad reclama personas competitivas, calificadas, con capacidad

de aprender a aprender, lo que ha llevado a plantear cambios curriculares en los

que los estudiantes sean el centro del proceso, individuos activos y responsables en

su formación. Dentro de este panorama cobra importancia el papel del profesor, al

igual que las concepciones, creencias y actitudes que éste tenga sobre la evaluación,

el aprendizaje, la enseñanza y la matemática.

13Bernarda Aldana, Carlos Álvarez, Sandra Gutiérrez, Guiomar Lleras y Édgard O’bonaga.

Escuela Colombiana de Ingenieŕıa.
14Martha Alvarado Gamboa y Patricia Hernández Romero. Pontificia Universidad Javeriana.
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Uno de los objetivos a largo plazo de la comunidad cient́ıfica es construir bases teóri-

cas que permitan avanzar en el campo de estudio sobre el profesor y su desarrollo

profesional (Moreno y Azcárate, 2003). En este aspecto, y dentro de las ĺıneas de

investigación en educación, uno de los focos de estudio es el pensamiento del pro-

fesor, en particular las concepciones y creencias como factores determinantes de las

prácticas y de las acciones en el aula, a lo cual no es ajena la matemática, según

lo demuestra el creciente número de estudios al respecto (Houston, 1990; Thom-

pson, 1992; Llinares, 1998, Ponte, 1996; Garćıa, 1997 citados por Gil y Rico, 2003).

Por esto consideramos clave identificar las concepciones y creencias que sobre la en-

señanza y aprendizaje de las matemáticas tienen los profesores pero por ser un tema

tan amplio creemos que podŕıamos indagar por un elemento fundamental en este

proceso, que corresponde a la evaluación en matemáticas. También es importante

preguntarse qué tanto inciden las concepciones del docente en el desempeño de los

estudiantes; cómo podŕıamos cambiar la evaluación para que esté acorde con los

procesos de enseñanza - aprendizaje y permita generar aprendizajes significativos

en los estudiantes.

Interesados por dar pasos encaminados a solucionar preguntas de esta ı́ndole, se

considera necesario indagar por las concepciones y creencias que los profesores de

matemáticas del nivel universitario tienen de la evaluación. En principio, en esta

investigación se trabajará con el grupo de profesores de matemáticas de la Escuela

Colombiana de Ingenieŕıa y la Pontificia Universidad Javeriana. Las respuestas a

estas preguntas nos ayudaŕıan a identificar el perfil del profesor de matemáticas en

nuestras universidades y, a partir de ellas, podŕıamos proponer acciones que incidan

en las prácticas pedagógicas de los docentes en las dos instituciones.

Se habla en general de la práctica pedagógica porque una reflexión sobre la evalua-

ción en matemáticas debe tener en cuenta también el proceso enseñanza-aprendizaje

de las matemáticas, pues están ı́ntimamente relacionadas dado que la evaluación de

alguna manera ayuda a regular y controlar este proceso, y a reconocer los cambios

que se presentan para generar un trabajo en el aula a partir de los errores de los

estudiantes y de los planes de mejoramiento, mediante los cuales dichos errores pue-

dan superarse. Aśı, se comparte el criterio del documento Estándares curriculares,

elaborado por el National Council of Teachers of Mathematics (NCTM), y más es-

pećıficamente la sección final, Estándares para la evaluación de las matemáticas,

en la que se afirma que “para desarrollar la capacidad matemática en todos los es-

tudiantes, la evaluación debe apoyar el aprendizaje matemático continuo de cada

estudiante”, y además recomienda abandonar el tratamiento de la evaluación como

una parte independiente del curŕıculo o la instrucción.
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3.7.2. Objetivos

Los objetivos que se proponen en la investigación son los siguientes:

Objetivo general

Determinar las concepciones y creencias que sobre la evaluación tienen los profe-

sores de matemáticas en la Escuela Colombiana de Ingenieŕıa y en la Pontificia

Universidad Javeriana.

Objetivos espećıficos

Adaptar y diseñar un instrumento para caracterizar las concepciones y creen-

cias que sobre la evaluación tienen los profesores de matemáticas de la Escuela

y de la Universidad Javeriana.

Aplicar el instrumento de medición en las dos instituciones participantes en el

proyecto.

Proponer acciones tendientes a incidir en las prácticas evaluativas en las dos

instituciones participantes en el proyecto.

3.7.3. Marco conceptual

Este proyecto se enmarca dentro de las investigaciones en educación que estudian el

pensamiento del profesor y que, según Llinares (1998, citado por Gil y Rico, 2003),

pretenden ofrecer una mejor comprensión de los procesos de enseñanza-aprendizaje,

de reforma y de desarrollo curricular.

En virtud de que consideramos que la evaluación es un elemento del proceso de

enseñanza-aprendizaje, pretendemos explorar las concepciones y creencias que sobre

ésta tienen los profesores de la Escuela Colombiana de Ingenieŕıa y de la Pontificia

Universidad Javeriana que enseñan matemáticas en las facultades de Ingenieŕıa,

Economı́a y Administración. De esta manera, se pueden entender y analizar sus

acciones y proponer, quizás, nuevos enfoques en la forma de concebir la enseñanza-

aprendizaje de las matemáticas y en particular la evaluación de éstas.

Por otra parte, para enseñar matemáticas no sólo es necesario conocerlas sino además

cada profesor necesita saber las razones por las cuales actúa en una u otra forma.

Debe conocer qué es lo que debe enseñar y cómo lo debe enseñar, a quién se dirige su

acción y para qué lo hace. Debe saber también qué y cómo evaluar. Éstas seŕıan las

preguntas fundamentales que se deben plantear cuando se quiere reflexionar sobre la

enseñanza de una materia. Su actuación se orientará dependiendo de las respuestas

que dé a cada una.
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Pensamos que cada profesor da una respuesta personal a cada pregunta y tratamos

de indagar cuáles son sus concepciones y creencias con respecto a ellas y, más es-

pećıficamente, con respecto a la evaluación (Gil, Moreno, Olmo, Fernández, 1997;

Gil y Rico, 2002).

Una reflexión sobre el proceso de enseñanza-aprendizaje de las matemáticas nos lleva

a tener en cuenta la evaluación, pues ésta es la concreción de las expectativas del

profesor y, por consiguiente, de la manera como los estudiantes entienden lo que su

profesor espera de ellos. ¿Qué saben sus estudiantes? ¿Cómo aprenden matemáticas?

¿Qué ajustes y cambios son necesarios en el curŕıculo?

Cuando se trata de reflexionar sobre la evaluación en general o en particular del

aprendizaje de las matemáticas, surgen muchas preguntas que sobrepasan las fron-

teras del salón de clase y la interacción entre un grupo de estudiantes y un profesor,

como las siguientes: ¿puede la evaluación constituirse en un componente del apren-

dizaje? ¿Qué elementos hay que tener en cuenta cuando se evalúa el desempeño

en matemáticas de un estudiante? ¿Hay otras posibilidades de evaluar, además de

las pruebas tradicionales escritas, bien sean de preguntas abiertas o en forma de

test? Las respuestas a éstas y otras preguntas similares implican una toma de con-

ciencia sobre el sentido de la evaluación y de alguna manera condicionan la acción

pedagógica en el trabajo con los estudiantes. Se espera que como resultado de esta

investigación se puedan ofrecer unas primeras respuestas a estas preguntas en el

marco de las dos instituciones en las que se aplicarán los instrumentos.

Lo que es claro es que con la evaluación se pretende indagar por lo que han aprendido

los estudiantes. Encontrar diferentes formas de evaluar el aprendizaje apunta a la

búsqueda de que las calificaciones que se dan reflejen lo que realmente han aprendido

y, aún más que eso, que lo que han aprendido lo puedan aplicar en otros contextos, es

decir, que puedan efectuar la transferencia de conocimiento, que es tan importante

especialmente cuando nuestros alumnos no estudian una carrera de matemáticas,

sino que la aplican en programas de Ingenieŕıa, Economı́a y Administración.

Por otro lado, como nuestro propósito es indagar sobre las concepciones y creencias

que tienen los profesores de matemáticas acerca de la evaluación, vale la pena aclarar

los significados de los términos que estamos empleando. En este sentido, revisando

la literatura se encuentra una estrecha relación existente entre los términos concep-

ción y creencia; en la presente investigación adoptaremos las definiciones de Moreno

y Azcárate (2003), adaptadas de Linares (1991), Pajares (1992), Ponte (1994) y

Thompson (1992).

Las creencias son conocimientos subjetivos, poco elaborados, generados a nivel particular
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por cada individuo para explicarse y justificar muchas de las decisiones y actuaciones

personales y profesionales vividas. Las creencias no se fundamentan en la racionalidad, sino

más bien en los sentimientos, las experiencias y la ausencia de conocimientos espećıficos

del tema con el que se relacionan, lo que las hace ser muy consistentes y duraderas para

cada individuo.

A nivel universitario se percibe que el conocimiento que tienen algunos de los profe-

sores, no sólo de matemáticas, sobre los procesos de enseñanza-aprendizaje, aśı como

de la evaluación, son el resultado de sus experiencias como docente y estudiante, lo

que hace que estén cargados de subjetividad y generalmente sin una base pedagógica,

con lo cual se conforma una creencia.

Las concepciones son organizadores impĺıcitos de los conceptos, de naturaleza esencial-

mente cognitiva y que incluyen creencias, significados, conceptos, proposiciones, reglas,

imágenes mentales, preferencias, etc., que influyen en lo que se percibe y en los procesos

de razonamiento que se realizan. El carácter subjetivo es menor en cuanto se apoyan sobre

un sustrato filosófico que describe la naturaleza de los objetos matemáticos.

3.7.4. Antecedentes

Cuando reflexionamos acerca del proceso enseñanza-aprendizaje, teniendo en cuenta

que nuestros estudiantes parecen, cada vez más, estar interesados en la nota y no

en el aprendizaje, es decir, más en el 3,0 y en aprobar la asignatura que en lo

que realmente deben y pueden aprender en un curso, es factible pensar que es un

problema de la modernidad o la posmodernidad, pero realmente los planteamientos

sobre la evaluación y sus problemas surgen desde tiempos remotos, esto es, desde

cuando el hombre tiene la necesidad de evaluar.

En las sociedades primitivas la actividad valorativa se desarrollaba por ejemplo

cuando a los jóvenes que hab́ıan adquirido conocimientos sobre la vida se les haćıan

pruebas para convertirlos en miembros del grupo. En la sociedad esclavista empie-

za el nacimiento de una teoŕıa pedagógica que se véıa reflejada en los tratados de

filósofos griegos, como Sócrates, Platón y Aristóteles. Sócrates introdujo el método

socrático para enseñar y evaluar, en tanto que Aristóteles planteaba que en cualquier

actividad puede haber defecto, exceso y término medio. Él estableció con esto nor-

mas para evaluar. En la época del feudalismo, la Iglesia católica teńıa el monopolio

de la formación intelectual. La evaluación era totalmente reproductiva. El pensa-

miento pedagógico comienza a desarrollarse cuando surge la lucha de clases contra

la nobleza. Se destaca el pedagogo Juan Amos Comenius, quien escribe varias obras,

entre las que se encuentra Didáctica magna.
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Del siglo XVII al siglo XIX hubo un gran desarrollo social y cient́ıfico que influyó mu-

cho en las teoŕıas de la educación. En este peŕıodo se tienen pedagogos y filósofos

como Rousseau, Pestalozzi, Tolstoi, etc.

Ya a finales del siglo XIX y en todo el siglo XX existen varias corrientes pedagógicas

y en cada una de ellas se hacen planteamientos sobre la evaluación:

En el conductismo se prefiere la evaluación que compara la actuación de una

persona consigo misma.

En el cognoscitivismo se nos muestra la importancia de evaluar las habilidades

del pensamiento y de reforzamiento del alumno.

El humanismo dice que el objetivo de la educación es promover la autorreali-

zación. La única evaluación válida es la autoevaluación del alumno.

Los psicoanalistas dan importancia a una evaluación que dé más prioridad al

proceso que al resultado educativo.

La teoŕıa piagetiana (años sesenta) hace hincapié en la evaluación en el estudio

de los procesos cognitivos y en la utilización del método cŕıtico-cĺınico.

La teoŕıa sociocultural, desarrollada por Vigotsky, plantea que la evaluación

debe apuntar a determinar y promover el nivel de desarrollo potencial para

verificar el desarrollo real del estudiante.

El docente y el sistema educativo en general, inmersos en el proceso enseñanza-

aprendizaje, han seguido una u otra teoŕıa e incluso varias al mismo tiempo, y de

acuerdo con sus creencias y formación el maestro se ve enfrentado a la dif́ıcil tarea

de evaluar a sus alumnos. Se establecen entonces algunos enfoques que pretenden

comprender y explicar el papel que desempeña la evaluación en la educación: como

medición, como juicio de expertos, basada en objetivos, como toma de decisiones y

como comprensión. Analizando los diferentes planteamientos se puede concluir que

no hay enfoques evaluativos buenos o malos, sino enfoques adecuados para determi-

nadas circunstancias educativas, y es el docente el que debe tener la capacidad de

decidir qué enfoque utilizar en su acción evaluativa.

A pesar de todas las teoŕıas y tendencias pedagógicas en general y sobre la evaluación

en particular, la sociedad descarga en el docente la responsabilidad, no sólo de formar

a los jóvenes, sino de evaluarlos. Entonces es muy importante tener en cuenta que

la práctica evaluativa del docente responde a sus principios educativos, sus valores

personales, su formación técnica como evaluador, la naturaleza del conocimiento en

el que se desempeña y toda la normatividad tanto oficial como institucional.
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Teniendo en cuenta todos los planteamientos anteriores parece claro que si deseamos

impactar, reestructurar o cambiar las formas de evaluar a los estudiantes en las

instituciones universitarias, el primer paso que hay que dar consiste en explorar las

concepciones y creencias que sobre la evaluación tienen los profesores, y como una

de las variables principales es el conocimiento experto por áreas, entonces es lógico

empezar con una primera agrupación de los docentes por áreas del saber en las que

se desempeñan. En nuestro proyecto en particular, se realiza con los profesores que

enseñan matemáticas.

3.7.5. Metodoloǵıa

La propuesta recurre a métodos con una orientación predominantemente explorato-

ria y descriptiva. Como instrumento de recolección de datos se utiliza una encues-

ta cerrada, elaborada tomando como punto de partida un cuestionario propuesto

por Gil y su grupo de investigadores (Gil, 1997). La validación del instrumento se

realizó con un grupo de profesores de las dos universidades, luego se hicieron los

ajustes pertinentes y se obtuvo el instrumento definitivo. Es de anotar que el ins-

trumento resultó ser muy diferente del diseñado por el grupo de Gil, debido por un

lado a que nuestro medio es distinto y por otro a que ellos trabajaron en el contexto

de la educación básica, mientras que esta investigación se hace en el contexto de la

educación universitaria.

Una vez validado el instrumento, se aplicó a todos los profesores que imparten los

cursos de matemáticas en las dos universidades y se sistematizó la información en

una hoja de Excel; actualmente se está realizando el análisis que permitirá establecer

las concepciones y creencias de los profesores acerca de la evaluación en matemáticas.

Instrumento de recolección de datos

Como ya se mencionó, el instrumento se diseñó tomando como punto de partida el

propuesto por Gil y su grupo de investigadores (Gil, 1997). Se analizó cada una de

las preguntas, teniendo en cuenta lo que se queŕıa indagar y si era o no pertinente

en nuestro medio y en el ámbito universitario. A partir de la discusión del grupo de

investigación se llegó a una primera propuesta, que fue aplicada a un grupo reducido

de profesores de las dos universidades; estos profesores hicieron los comentarios y

sugerencias que consideraron pertinentes, conociendo de antemano el objetivo del

cuestionario, y después de otras discusiones acerca de los comentarios y sugerencias

se concretó la encuesta definitiva, que se presenta a continuación:
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3.7.6. Análisis de la información

A continuación se presenta un avance de la manera en que se está analizando la

información.

Al investigar sobre las concepciones de los profesores de matemáticas acerca de la

evaluación en la universidad, el instrumento diseñado indaga sobre los siguientes

factores:

1. La evaluación: preguntas 1, 5, 6 y 14.

2. Razón de ser de la evaluación: preguntas 2, 3 y 12.

3. Importancia de la formación matemática en las carreras: preguntas 8,

10, 13 y 16.

4. Perfil del estudiante: preguntas 4, 7 y 11.

5. Caracteŕısticas del profesor: preguntas 9 y 15.

Las variables de cada uno de esos factores son cualitativas, con posibles valores

definidos por los investigadores, de acuerdo con el cuestionario diseñado por Gil et

ál. en las universidades de Almeŕıa y Granada. También se asignó un puntaje para

cada respuesta, desde menor importancia (1) hasta mayor importancia (5).

Se consideraron dos grupos de estudio compuestos por los profesores de matemáticas

de la Escuela Colombiana de Ingenieŕıa y la Pontificia Universidad Javeriana, sede

Bogotá, adscritos a los departamentos de Matemáticas de cada una de ellas. La

muestra estuvo conformada por 77 personas: 38 profesores de la Escuela Colombiana

de Ingenieŕıa y 39 profesores de la Pontificia Universidad Javeriana, sede Bogotá.

Presentación descriptiva de la información

Para la presentación descriptiva de la información se usarán las tablas, medidas y

gráficas que aplican para este caso.

En la información básica se tienen los siguientes resultados:

T́ıtulos profesionales. La mediana de los años de experiencia de los docentes

encuestados fue de 20; esto significa que el 50 % de las personas encuestadas tienen

una experiencia de 20 años o más como docentes universitarios.

La distribución por formación básica de los profesores se muestra en el siguiente

diagrama.
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3.7.7. Análisis de las variables

El análisis contempla varios aspectos: el resultado de cada pregunta en el conjunto

total de individuos, el resultado de cada pregunta en cada grupo de estudio y la

comparación de los dos grupos. Además, a los investigadores les interesa determi-

nar el grado de asociación de algunos grupos de preguntas mediante el análisis de

correlación, ya que esto evidenciará la coherencia en las respuestas de los profesores.

Ejemplo del análisis de una de las preguntas.

Resultados de la pregunta 1 en el grupo total de profesores

Pregunta 1: Lo que debe ser objeto de evaluación en los cursos de matemáticas es :

a) El conocimiento adquirido por los estudiantes.

b) El trabajo realizado por los estudiantes.

c) La actitud y el interés del estudiante.

d) La labor del profesor.

e) Los contenidos con énfasis en lo conceptual.

f) Los contenidos con énfasis en las aplicaciones.

g) Los logros alcanzados respecto de los objetivos.

h) Otros.
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INC.1 INC.2 INC.3 INC.4 INC.5 INC.6 INC.7

PRIORIDAD 1 1 1 5 14 6 1 6

PRIORIDAD 2 1 4 1 6 3 6 1

PRIORIDAD 3 3 14 24 19 7 6 5

PRIORIDAD 4 27 25 21 13 27 30 22

PRIORIDAD 5 45 33 26 25 34 34 43

TOTAL 77 77 77 77 77 77 77

La categorización de la prioridad dada a cada aspecto fue la siguiente:

Prioridad alta a los puntajes 4 y 5.

Prioridad media al puntaje 3.

Prioridad baja a los puntajes 1 y 2.

Si se enfoca la atención en el número de personas que respondieron las opciones 4 y

5, es decir, que asignaron prioridad alta a cada uno de los incisos de la pregunta 1,

se encuentra la distribución de respuestas que se muestra en la siguiente gráfica:
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Se decidió entonces explorar esta distribución en una forma más profunda y para

ello se decidió hacer una prueba de proporciones múltiples.

Prueba de proporciones múltiples para la pregunta 1

Aqúı se realiza la siguiente prueba de hipótesis:

Ho: La forma de escogencia de las prioridades más altas por inciso en la pregunta

1 es la misma en todos los profesores.

H1: Hay diferencias significativas en la escogencia de las prioridades más altas por

inciso en la pregunta 1.

Se realiza la prueba chi cuadrado de proporciones múltiples y se halla un valor

calculado de 15,80, lo cual nos permite concluir que hay diferencias significativas en

la escogencia de las prioridades más altas (p < 0,05).

Al examinar la estructura de la pregunta se llega a la conclusión de que los incisos

1, 7, 6 y 5 son considerados prioritarios en la pregunta 1 por parte de los profesores.

Por tanto, en la pregunta 1 los profesores consideran que los aspectos más impor-

tantes que deben ser objeto de evaluación son, en su orden:

1. El conocimiento adquirido por los estudiantes (94,8 %).

2. Los logros alcanzados respecto de los objetivos (85,7 %).

3. Los contenidos con énfasis en las aplicaciones (84,4 %).

4. Los contenidos con énfasis en lo conceptual (81,8 %).

5. El trabajo realizado por los estudiantes (75,3 %).

6. La actitud y el interés del estudiante (61 %).

7. La labor del profesor (48 %).
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Análisis de las diferencias de opinión entre los dos grupos que conforman

la muestra

Con el objeto de determinar si hay homogeneidad en las opiniones expresadas por los

profesores de ambas universidades o si éstas difieren significativamente, se analizaron

los dos grupos por separado, encontrándose lo siguiente:

Escuela Colombiana de Ingenieŕıa

INC.1 INC.2 INC.3 INC.4 INC.5 INC.6 INC.7

PRIORIDAD 1 0 0 2 6 3 0 3

PRIORIDAD 2 1 3 1 6 1 6 1

PRIORIDAD 3 2 11 17 11 6 2 4

PRIORIDAD 4 17 12 5 6 14 12 7

PRIORIDAD 5 18 12 13 9 14 18 23

TOTAL 38 38 38 38 38 38 38

Pontificia Universidad Javeriana

INC.1 INC.2 INC.3 INC.4 INC.5 INC.6 INC.7

PRIORIDAD 1 1 1 3 8 3 1 3

PRIORIDAD 2 0 1 0 0 2 0 0

PRIORIDAD 3 1 3 7 8 1 4 1

PRIORIDAD 4 10 13 16 7 13 18 15

PRIORIDAD 5 27 21 13 16 20 16 20

TOTAL 39 39 39 39 39 39 39
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Al enfocar el interés en la asignación de prioridad alta (puntaje 4 y 5) a cada inciso

de la pregunta 1 por universidad, se encontró lo siguiente:

ECI PUJ

INCISO 1 35 37

INCISO 2 24 34

INCISO 3 18 29

INCISO 4 15 23

INCISO 5 28 33

INCISO 6 30 34

INCISO 7 30 35

Los profesores de las dos universidades coinciden, con ligeras variaciones,

en que el objeto de la evaluación debe considerar que los aspectos fun-

damentales son el conocimiento adquirido por los estudiantes, los logros

alcanzados respecto de los objetivos, el trabajo de los estudiantes, los

contenidos con énfasis en las aplicaciones y los contenidos con énfasis en

lo conceptual.
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Cada una de las preguntas del cuestionario tiene un análisis igual al del ejemplo

mencionado.

En este momento se está terminando el análisis de cada pregunta, que dará como

resultado las concepciones que los profesores tienen en relación con la evaluación,

identificando aśı los aspectos que consideran prioritarios a la hora de evaluar los

grupos de asignaturas a su cargo.

Posteriormente se realizará un consolidado por cada factor, definido al comienzo, y

esto determinará los aspectos prioritarios por factor.

3.7.8. Conclusiones generales

Se sacarán después del análisis de los resultados. Por lo pronto queremos destacar

la gran acogida de la encuesta, el interés que ha despertado su análisis y las expec-

tativas que se tienen con respecto a hacer alguna propuesta que permita incidir en

las prácticas de la evaluación en matemáticas en las dos instituciones, la Escuela

Colombiana de Ingenieŕıa y la Pontificia Universidad Javeriana, que formaron parte

de este proyecto de investigación.
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(1996). Investigación evaluativa. Bogotá: Instituto Colombiano para el Fomento de

la Educación Superior (Icfes).

Gil Cuadra, Francisco, Moreno Carretero, Francisca, Del Olmo Romero, M. Ángeles
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3.8. Registros semióticos presentes en los significados

personales declarados por estudiantes de décimo grado

que son observables desde la probabilidad frecuencial

Diana Isabel Torres Rojas15

Pedro Rocha Salamanca16

Resumen

El mundo está inmerso en situaciones que en ocasiones no logramos comprender, al-

gunas llenas de incertidumbre o regidas por el azar. Cuando esta clase de situaciones

se llevan al aula, carecen de sentido para el estudiante al no ser contextualizadas y

lo involucran en un mundo determinista y ligado a la aplicación de reglas de cálculo,

perdiéndose del proceso de construcción del significado de probabilidad. Por eso, con

el presente escrito se busca dar respuesta a una pregunta de investigación emergente

a lo largo de mi ejercicio docente: ¿cuáles son los registros semióticos presentes en

los significados personales declarados por estudiantes de décimo grado del Colegio

Colombo Internacional Acoinprev que son observables desde la probabilidad frecuen-

cial? Se dan a conocer la problemática presente dentro del curŕıculo de matemáticas,

los hechos de aula y la construcción de un pensamiento determinista frente al sig-

nificado de probabilidad en los estudiantes de la educación media, al igual que la

necesidad de identificar los elementos de significado de un objeto y la importancia

del uso de las representaciones, en particular de los registros semióticos. Finalmente,

se plantea la metodoloǵıa de investigación utilizada y se presentan algunos instru-

mentos que permitieron recolectar información con el propósito de dar respuesta a

nuestra pregunta de investigación.

Palabras claves: elementos de significado, registro semiótico, significados persona-

les declarados, aleatoriedad y probabilidad frecuencial.

3.8.1. Introducción

En los procesos de formación escolar para el desarrollo del pensamiento estad́ıstico

y aleatorio los sistemas de datos se han introducido con el fin de considerar, tratar,

interpretar y comprender aquellas situaciones que, por presentar múltiples variables

y resultados impredecibles, se consideran regidas por el azar. Según Batanero (2001,

p. 117), Borba y Skovsmose (1997, p. 10) y MEN (1998, p. 47), en la formación
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estocástica escolar tradicionalmente se ha hecho énfasis en la construcción del pen-

samiento determinista, en el que priman la apropiación de métodos deductivos, el

tratamiento y la búsqueda de solución a problemas con una y sólo una respuesta

correcta, limitando a los estudiantes en la posibilidad de enfrentar, analizar y tratar

la realidad compleja del mundo, influyendo aśı de manera directa o indirecta en su

capacidad frente a la toma de decisiones en situaciones afectadas por la incertidum-

bre, tan habituales en nuestra sociedad; esto los lleva a dejar de lado la comprensión

y el significado de los objetos estocásticos y limitarse meramente a la aplicación de

una regla de cálculo.

Cuando se habla del significado de un objeto matemático o estocástico, Wittgenstein

(citado por Godino, 2003, p. 35) comenta que “El verdadero significado de una

palabra ha de encontrarse observando lo que un hombre hace con ella, no lo que dice

de ella”. Es en este uso donde los estudiantes ponen en juego sus elaboraciones y

en el cual es posible reestructurar sus conocimientos; sin embargo, como lo plantea

Behar (2004), en las investigaciones realizadas al analizar los libros de texto las

situaciones planteadas a los estudiantes no los llevan hacia una contextualización de

las situaciones aleatorias, sino que, por el contrario, los centran en la operatividad

y aplicación de una regla de cálculo. Para este autor, el significado de una palabra

radica en su uso, comenta que el mundo se nos revela sólo en la descripción lingǘıstica

y es a través de esta percepción e interpretación del mundo como es posible construir

un significado del objeto puesto en juego. La enseñanza ha dejado de lado el carácter

metacognitivo del lenguaje y se ha centrado en la operatividad, olvidando la función

que tienen la representación y el lenguaje en la construcción de un objeto estocástico,

en este caso en particular.

De esta manera se convirtió en algo necesario e importante investigar sobre los re-

gistros semióticos ligados al significado de probabilidad frecuencial, ya que como lo

comenta Azcárate (1996), “Existen muy pocos datos sobre los diferentes aspectos

relacionados con el conocimiento matemático y prácticamente inexistentes los estu-

dios de concepciones de profesores sobre el conocimiento estocástico”, razón por la

cual se hizo primordial reconocer las funciones de las representaciones y los registros

semióticos en la enseñanza y el aprendizaje de la probabilidad.

Además, los registros semióticos son una de las dos caracteŕısticas que distinguen la

actividad cognitiva; éstos permiten efectuar operaciones de diferente naturaleza, van

desde lo verbal hasta lo formal, llevando al estudiante no sólo a determinar y utilizar

diferentes tipos de registro, sino a establecer una relación entre éstos y aśı construir

un significado de probabilidad que le permita interpretar su mundo (Duval, 1999, p.

24). Por ejemplo, al enfrentarse a situaciones de tipo aleatorio desde el enfoque fre-
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cuencial de probabilidad, le permitirá al estudiante verse en la necesidad de realizar

varias veces el experimento, recoger datos, analizarlos, identificar regularidades, de-

finir conceptos, modificar estructuras, establecer patrones de variación, y en medio

de este proceso los registros serán una herramienta y en ocasiones instrumentos que

le permitan comprender lo que sucede, establecer hipótesis, validarlas o refutarlas

y, finalmente, establecer o hacer una estimación frente a la probabilidad de que el

evento ocurra.

Análisis del significado de probabilidad y el uso de los registros semióticos

desde el enfoque ontosemiótico

Para enfrentar el problema de la significación y representación nos enfocaremos en el

EOS (enfoque ontosemiótico). Godino, Font y D’Amore (2007) consideran el objeto

matemático como “cualquier entidad o cosa a la cual nos referimos, o de la cual ha-

blamos, sea real, imaginaria o de cualquier otro tipo”. En este caso en particular, el

sistema de prácticas declarado por los estudiantes permite evidenciar el significado

del objeto, probabilidad que está presente en las actuaciones o expresiones (verbal,

gráfica) que realizan al resolver problemas, comunicar soluciones o generalizar en

otros contextos (Batanero y Godino, 1998). Dichos objetos matemáticos, al surgir

en el interior de las prácticas o intervenir en éstas, se desenvuelven en un deter-

minado lenguaje y pueden considerarse ostensivos y no ostensivos. Dentro del EOS

las representaciones pueden dividirse en diferentes facetas o dualidades, una de las

cuales es la faceta ostensiva, en el interior de la cual las representaciones generan

configuraciones de tipo epistémico (relacionado con el saber).

Teniendo en cuenta lo planteado anteriormente, se hace necesario:

A. Identificar y describir en las prácticas observables los significados personales

declarados por los estudiantes frente al concepto de probabilidad frecuencial.

Los significados personales desde el punto de vista de Godino se entienden

como el conjunto de “sistemas de prácticas operativas y discursivas que son

capaces de realizar los estudiantes a propósito de un cierto tipo de probabili-

dad” (Godino, 2002), es decir, comprender el proceso que llevan los estudiantes

en la construcción del significado de probabilidad y todos los elementos que es-

te proceso implica (acciones, estrategias, hipótesis, representaciones y registros

semióticos, etc.).

Los significados personales están divididos en tres: el significado global, el

logrado y el declarado; este último da cuenta de las prácticas efectivamente

expresadas a propósito de las pruebas de evaluación propuestas y evidencia las

estrategias, las hipótesis, la propiedad, los conceptos, los registros (lenguajes,

términos, expresiones simbólicas) utilizados por los estudiantes al momento de
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formular y validar sus acciones dentro de la solución a la situación planteada.

B. Identificar y describir los registros semióticos emergentes en los significados

personales declarados por los estudiantes (oral y escrito) al resolver problemas

relacionados con probabilidad frecuencial.

Para la exploración de los significados personales se tomaron en cuenta los registros

semióticos o, como lo cita Godino, el lenguaje, simbolizado en las representaciones

ostensivas y las configuraciones de tipo epistémico. Estos elementos del EOS permi-

ten una mirada mucho más amplia del significado del objeto puesto en juego, ya que

como comenta Duval (1992, cap. 2), las representaciones y las relaciones estableci-

das entre éstas permiten la comprensión y construcción del significado de un objeto

matemático y sin ellos la comprensión quedaŕıa de lado. “No hay comprensión del

significado de un objeto si no se logra establecer una relación entre el objeto repre-

sentado y su representante y viceversa, en un contexto determinado” (Duval, 1999,

p. 13).

¿Cuál es el significado de probabilidad frecuencial emergente en los registros semióti-

cos declarados por los estudiantes de décimo grado?

¿Cuáles son los registros semióticos empleados por los estudiantes al momento de

solucionar una situación cotidiana relacionada con la aleatoriedad?

Antecedentes

Algunas investigaciones relacionadas con este tema son:

a) Tesis doctoral. Luis Serrano (1996). “Significados institucionales y personales

de objetos matemáticos ligados a la aproximación frecuencial de la enseñanza

de la probabilidad”.

b) Investigaciones sobre enseñanza y aprendizaje de las matemáticas. Carmen

Batanero (2002). “Un reporte iberoamericano. Significados de la probabilidad

en la educación secundaria”.

3.8.2. Metodoloǵıa

“La comprensión del lenguaje y su uso por el niño depende de su implicación en las

situaciones en que se utiliza; por ello se considera esencial que el estudiante y el maestro

analicen los diversos significados e interpretaciones de las expresiones lingǘısticas (registros

semióticos), de manera que cada uno sepa claramente lo que el otro quiere decir al usar

determinadas formas lingǘısticas” (Dickson et ál., 1991).

A continuación se describirá la metodoloǵıa que guió esta investigación, teniendo en

cuenta los elementos que hacen de ésta una investigación de tipo cualitativo.



3.8. DIANA TORRES & PEDRO ROCHA. REGISTROS SEMIÓTICOS 261

Fase I. Se realizó una revisión bibliográfica del objeto estocástico probabilidad, los

registros semióticos que le son propios y su relación con lo propuesto en los marcos

legales. Posteriormente se hizo un estudio de la teoŕıa de las funciones semióticas

formulada por Godino, ya que a partir de este estudio fue posible considerar los

elementos de significados que hay que tener en cuenta para la caracterización del

significado de probabilidad frecuencial y los registros involucrados en ésta, con el fin

de delimitar la investigación y construir aśı el marco teórico y conceptual.

Fase II. Se diseñó e implementó una situación en torno al significado de probabilidad

y aleatoriedad, la cual se desarrolló en el aula a partir de la teoŕıa de las situaciones

didácticas propuesta por Guy Brouseau, teniendo como prioridad sus tres primeras

etapas (acción, formulación y validación).

Fase III. Establecimiento de categoŕıas desde los registros semióticos, análisis de

resultados y conclusiones.

3.8.3. Elementos para el análisis de resultados

Al analizar los registros semióticos declarados por los estudiantes es necesario re-

conocer la relación existente entre las representaciones semióticas y los registros

semióticos. Recordemos que entenderemos registro semiótico como el conjunto de

reglas entre signos, reglas que se pueden aplicar en el interior de un registro (tra-

tamiento) o de un registro a otro (conversión); en este caso en particular, nos cen-

traremos en analizar los registros utilizados y el tratamiento que se da dentro de un

mismo registro.

Para el análisis de resultados en los registros semióticos y en las nociones de pro-

babilidad presentes en los significados personales declarados por los estudiantes, se

tendrán presentes:

a) Las representaciones y los registros semióticos trabajados desde la teoŕıa de

Godino, particularmente los escritos y orales.

b) El sistema de categoŕıas propuesto por Azcárate en su libro Estudio de las

concepciones disciplinares de futuros profesores de primaria en torno a las no-

ciones de aleatoriedad y probabilidad (1996). Estas categoŕıas son pertinentes y

contribuyen a la orientación y análisis de los significados personales declarados

por los estudiantes.

CÓDIGOS DESCRIPCIÓN

CATEGORÍA 1 No hay respuesta o justificación, explicación.
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CATEGORÍA 2 Los argumentos presentados son confusos y no están claros

los criterios utilizados en la explicación.

CATEGORÍA 3 No se reconoce el suceso como aleatorio, se analiza como su-

ceso determinista.

CATEGORÍA 4 Se utilizan valoraciones cualitativas de tipo personal, sin cri-

terios objetivos de justificación.

3.8.4. Análisis de resultados

Al analizar los registros semióticos (representaciones ostensivas) declarados por los

estudiantes desde EOS, identificamos el sistema de prácticas como el conjunto de

situaciones, acciones, lenguaje, conceptos y argumentos relacionados frente a una

práctica matemática. La relación de estos objetos genera una configuración, en este

caso de tipo epistémico.

A continuación se presentan las respuestas dadas por los estudiantes, los registros

declarados al momento de enfrentarse a la siguiente pregunta: plantee una situación

de su vida diaria que considere aleatoria y justifique su respuesta. Estas respuestas se

han categorizado a partir de los niveles planteados por Azcárate y algunas categoŕıas

que se establecen como emergentes y que están ı́ntimamente ligadas a diferentes

significados de la aleatoriedad.

Grupo de es-

tudiantes

Situación relatada Justificación (escrita)

1 La vida es aleatoria. No es constante, suceden

cada d́ıa diferentes cosas,

siempre cambiamos de ropa.

Diferentes resultados.

2 Invitación a fumar. Hacer el

bien o el mal.

Cuando me invitaron a fu-

mar marihuana, teńıa un di-

lema: hacerlo o no.

3 Al momento de comer. No hay un orden estableci-

do, no hay un horario. No

existe un patrón de compor-

tamiento en la información.
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4 Un partido de fútbol. Puede ir ganando, y luego

empatar, es aleatorio, no se

sabe cuál puede ser el re-

sultado. La aleatoriedad co-

mo ignorancia sobre resulta-

do del experimento.

5 La amistad “es como un

barco que sube y baja”

Puede hundirse o flotar.

6 Las emociones en un parti-

do.

Alegŕıa, preocupación, tris-

teza.

7 Diferentes momentos de la

vida en la que el diablo nos

ataca en nuestra debilidad.

Es algo no repetitivo que

transcurre en varios proce-

sos. No existe un patrón de

comportamiento en la infor-

mación.

8 El cuidado del cabello. El

estado de ánimo.

Cada persona tiene diferen-

tes facetas (estados de áni-

mo). Diferentes resultados.

9 Las etapas de la vida. No responde.

Los estudiantes consideran que una situación aleatoria es aquella que vaŕıa, no es

estable, depende de las circunstancias y cambia constantemente. Teniendo en cuenta

los significados personales que declaran los estudiantes, es posible ubicarlos en las

categoŕıas 2 y 4, debido a que los argumentos presentados en sus declaraciones son

confusos, no son claros los criterios utilizados en su explicación, además de que sus

valoraciones son de tipo personal y carecen de justificación.

Ningún grupo puede ubicarse en la categoŕıa número 1, ya que todos asocian una si-

tuación de su vida a la aleatoriedad y logran explicarlo a partir de ejemplos; además,

se apoyan en sus representaciones escritas (lenguaje natural, gráfico, tablas) y orales.

Después de analizar las declaraciones escritas de los estudiantes, es posible establecer

otras categoŕıas que subyacen en la noción que éstos tienen sobre aleatoriedad.
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GRUPO CATEGORÍA REGISTRO ESCRITO DE-

CLARADO

3, 7 No existe un patrón de

comportamiento en la

información.

Al momento de comer: No hay

un orden establecido, no hay

un horario. Diferentes momen-

tos de la vida en la que el dia-

blo nos ataca en nuestra debili-

dad: Es algo no repetitivo que

transcurre en varios proce-

sos.

4 La aleatoriedad como ig-

norancia sobre resultado

del experimento.

Un partido de fútbol: Puede ir ga-

nando y luego empatar, es aleato-

rio, no se sabe cuál puede ser el

resultado.

1, 8 Diferentes resultados, posi-

bilidad de cambio.

La vida es aleatoria: No es cons-

tante, suceden cada d́ıa di-

ferentes cosas, siempre cam-

biamos de ropa. El cuidado del

cabello. El estado de ánimo: ca-

da persona tiene diferentes face-

tas (estados de ánimo).

2, 5, 6, 9 Incertidumbre, otros

(equiposibilidad)

Invitación a fumar. Hacer el

bien o el mal. La amistad

“es como un barco que sube

y baja”(puede hundirse o flotar)

Las emociones en un partido

(alegŕıa, preocupación, tristeza).

Las etapas de la vida.

Al analizar las declaraciones de los estudiantes fue posible identificar similitudes y

diferencias entre ellas. Por ejemplo, los grupos 3 y 7 no reconocen un patrón de

comportamiento en la información y la noción que declaran de aleatoriedad

gira en torno a un suceso sin orden y no repetitivo. Caso contrario ocurre con el

grupo 4, cuyos integrantes consideran que no es posible estimar sobre la infor-

mación debido a que hay una variación en los datos; de esta manera, el significado

de aleatoriedad surge como ignorancia sobre el resultado del experimento.

Los grupos 1 y 8 reconocen el significado de aleatoriedad ligado a la diferencia
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de resultados, ya que algo aleatorio es algo que cambia. Pero en el caso de los

grupos 2, 5, 6 y 9 sus declaraciones relacionan el significado de aleatoriedad con la

incertidumbre, o con la posibilidad de que suceda una cosa o la otra.

El instrumento se aplicó a 30 estudiantes de grado décimo del Colegio Colombo

Internacional Acoinprev (ver anexos). A partir de las respuestas obtenidas se esta-

blecieron las categoŕıas, cada una relacionada con el uso de las representaciones y

registros semióticos que emplean los estudiantes en sus declaraciones (justificacio-

nes, procedimientos, etc.) al momento de enfrentarse a una situación relacionada

con probabilidad y aleatoriedad.

3.8.5. Conclusiones

Los estudiantes de décimo grado del Colegio Colombo Internacional Acoinprev uti-

lizan diferentes registros semióticos como herramientas para justificar sus procedi-

mientos, concepciones o nociones intuitivas frente al significado de aleatoriedad y

probabilidad.

El uso de representaciones y registros semióticos permite evidenciar las nociones,

creencias y concepciones que tienen los estudiantes frente al significado de aleato-

riedad y probabilidad. Ellos consideran que una situación aleatoria es aquella que

vaŕıa, no es estable, depende de las circunstancias y cambia constantemente.

Los argumentos presentados en sus declaraciones son confusos, no son claros los cri-

terios utilizados en su explicación, fuera de que sus valoraciones son de tipo personal

y carecen de justificación.

A partir del análisis de las declaraciones de los estudiantes se establecieron cuatro

categoŕıas emergentes sobre el significado de aleatoriedad: No existe un patrón de

comportamiento en la información; La aleatoriedad como ignorancia sobre resultado

del experimento; Diferentes resultados, posibilidad de cambio; Incertidumbre, otros

(equiposibilidad).

Los registros semióticos presentes en los significados personales declarados por los

estudiantes más utilizados son gráfico y verbal (oral-escrito). Dentro del registro

gráfico los estudiantes recurren con mayor constancia a uso de tablas, pictogramas

o diagramas de árbol.

Los estudiantes dieron cuenta de sus nociones sin necesidad de recurrir a una regla de

cálculo o algún algoritmo matemático; utilizaron las representaciones para justificar

o refutar sus hipótesis o planteamientos.

Finalmente, esta investigación permite corroborar que el análisis hacia el uso de
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las representaciones y los registros semióticos permite evidenciar las diferentes in-

terpretaciones o concepciones que los estudiantes tienen sobre el significado de la

probabilidad y, a su vez, ver la oportunidad que ofrece el manejo de los registros en

el aula cuando el docente reconoce su necesidad y lleva al estudiante, por medio de

preguntas orientadoras, a realizar el tratamiento y, si es posible, el tránsito entre los

registros semióticos, llegando aśı a una construcción del significado de probabilidad

lejana del pensamiento determinista.
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Recherches en Didactique des Mathématiques, 7 (2): 33-115.
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objetos matemáticos. Recherches en Didactique des Mathématiques, 14 (3): 325-355.
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3.9. Una propuesta didáctica para la enseñanza del

concepto de ĺımite de una función

William Jiménez Gómez17

Sandra Milena Rojas T.18

Camilo Ramı́rez Sánchez19

Resumen

Se presenta una propuesta didáctica para la enseñanza del concepto de ĺımite de

una función en grado once de la educación media colombiana, compuesta de dos

actividades en las que subyacen tres tipos de representaciones y una noción del ĺımite

de una función. La propuesta contiene un alto componente lúdico, lo que permite que

el trabajo en el aula de matemáticas sea placentero; dicha propuesta didáctica fue

aplicada, evaluada y finalmente reformulada utilizando herramientas tecnológicas,

atendiendo a las necesidades actuales de la educación colombiana. La definición de

ĺımite de una función que se trabajó es la propuesta por Blázquez, Gatica, Benegas

y Ortega (2006), que enlaza las concepciones de D’Alembert y Cauchy, lo que hace

que sea más sencilla y más adecuada de utilizar en la secundaria.

3.9.1. Presentación

El concepto de ĺımite de una función es uno de los conceptos matemáticos sobre

los cuales se han realizado múltiples investigaciones didácticas, pero pocas tienen

que ver con su enseñanza, contrario a lo que ocurre con las relacionadas con el

aprendizaje de este concepto, de las cuales se encuentra una extensa bibliograf́ıa

(Azcárate, 1996). En las investigaciones referentes al aprendizaje de este concepto

se han estudiado y analizado, entre otros aspectos, los obstáculos epistemológicos,

los errores y las dificultades que los estudiantes presentan al abordar su estudio.

A manera de ejemplo, Cornu (1983), al igual que Sierpinska (1985), considera que

una de las dificultades que presenta la definición de ĺımite de una función es la

ruptura que hay entre el significado de la palabra “ĺımite” en el lenguaje coloquial

y su definición matemática. Con estos antecedentes de investigación y reconociendo

la trascendencia del concepto de ĺımite de una función en el contexto del cálculo,

se diseñó una propuesta que atienda a la solución de las dificultades relacionadas

17Estudiante de la maestŕıa en docencia de las matemáticas. Grupo de Álgebra de la Universidad

Pedagógica Nacional. Profesor del Instituto Pedagógico Nacional. Williamajg@hotmail.com.
18Estudiante de la maestŕıa en docencia de las matemáticas. Grupo de Álgebra de la Universidad

Pedagógica Nacional. Profesora del Instituto Pedagógico Nacional. rojastolosa@yahoo.com.ar.
19Estudiante de la maestŕıa en matemática aplicada, Universidad Nacional de Colombia. Profesor

del Instituto Pedagógico Nacional. kamandramsan@gmail.com.
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con este concepto por medio de la utilización de material concreto y del juego como

estrategia didáctica y motivadora.

3.9.2. Referentes teóricos

Historia del concepto de ĺımite

Son diversas las investigaciones (Sánchez y Contreras de la Fuente, 1998; Cornu,

1983; Deledicq, 1994; Sierpinska, 1985; Blázquez y Ortega, 2001) que se han dedicado

a estudiar aspectos relacionados con la enseñanza y el aprendizaje del ĺımite de

una función como la historia, concepciones, dificultades, obstáculos epistemológicos,

representaciones, entre otros; en este marco, la historia de las matemáticas permite

identificar aspectos relativos a la evolución de los conceptos, las ideas de donde

surgieron, el origen de los términos, lenguajes y notaciones, las dificultades que

involucraban, los problemas que dichos conceptos resolv́ıan, entre otros aspectos.

Adicionalmente, la historia de las matemáticas se considera un recurso didáctico que

mejora la calidad de la transmisión del conocimiento matemático (González, 2004).

Por tales razones, en principio se presentará una breve reseña histórica del concepto

de ĺımite, identificando los aspectos históricos más relevantes de su evolución.

Aunque se podŕıa fijar la fecha del nacimiento del ĺımite en 1850, los antecedentes

de este concepto aparecen en una época anterior, claro que con fisonomı́a diferente,

pues como se puede notar en análisis matemáticos, este concepto está ligado con

otros dos: el infinitesimal y el infinito, que aparecen desde la época griega. Un

ejemplo de esto se hace evidente en el trabajo de Arqúımedes (287-212 a. de C.),

El método, estudiado por J. L. Heiberg en 1906. En éste se aprecia cómo el autor,

para calcular el volumen de algunos sólidos, haćıa infinitas divisiones de ellos que

mantuvieran un espesor infinitesimal (Stewart, 2005), lo que muestra claramente

dos ĺımites: uno tendiendo a infinito y el otro tendiendo a 0. Sin embargo, aunque

Arqúımedes consideraba este método de gran importancia, carećıa de rigurosidad y

no se mostraba cuando se haćıan públicos los descubrimientos. De la misma manera

son renombrados los matemáticos griegos que usaban sistemas muy parecidos, entre

ellos Demócrito (470-370 a. de C.) con su método para hallar el volumen de un cono,

Eudoxo de Crudo (350 a. de C.) con su método exhaustivo y Nicolás de Cusa, que

lo usaba para encontrar el área del ćırculo.

Pero ¿por qué si el concepto se conoćıa desde la época griega, no tuvo un desarrollo

matemático en ésta? La respuesta a este cuestionamiento tiene muchas razones, pero

dos de las más destacadas son: por el rigor que requeŕıa el concepto y por conflictos

filosóficos. Un ejemplo de este último es el filósofo Zenón (450 a. de C.), de la escuela

eleática, que propuso cuatro paradojas referidas al espacio y al tiempo; en dos de
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ellas atacaba la idea de que son discretos y en las otras dos, que son continuos,

basándose en ideas que pueden sostenerse desde el infinitesimal e infinito. Estos

problemas significaron para las matemáticas griegas avances referidos a la geometŕıa,

pero a pesar de ser amplios, dicha falta de equilibrio ocasionó una grave distorsión

en el desarrollo de las matemáticas. Sus repercusiones aún se dejaban sentir dos mil

años más tarde, cuando Isaac Newton y Gottfried Leibniz se propusieron inventar

el cálculo (Stewart, 2005).

Lo interesante es que debido a que los griegos estuvieron en los brazos de la geo-

metŕıa, surgieron varios problemas. Uno de ellos, estudiado desde la época de Apo-

lonio (250 a. de C.), fue el punto de partida para la ratificación del concepto de

ĺımite; el problema consist́ıa en dibujar una recta tangente a una curva dada. Aun-

que Apolonio lo resolvió para las cónicas, en especial para la parábola, la solución

general apareció alrededor del año 1734, gracias a dos matemáticos; claro está que

esta construcción es un edificio en el que importantes matemáticos colaboraron con

uno o más aportes. La siguiente es una lista de los más destacados junto con sus

aportes, aunque tan sólo se mencionan los posteriores al año 1637, una época en

que la matemática contaba con un álgebra literal, heredada de la escuela italiana

y de Vieta, una notación algebraica fijada, el cálculo logaŕıtmico, el método de los

indivisibles de Cavalieri (1548-1647) (Collette, 2000), y además fue alĺı donde se

marcó el desarrollo de la geometŕıa anaĺıtica como una importante columna de la

edificación.

René Descartes (1596-1650). Este matemático, debido a su relación con Fer-

mat, manifestó interés en el tema de las tangentes; aunque no utiliza el con-

cepto de ĺımite o infinitesimal, usa un procedimiento equivalente a definir la

tangente como ĺımite de una secante.

Pierre Fermat (1601-1665). Desarrollando su geometŕıa anaĺıtica en 1629 hizo

dos descubrimientos, el más importante de los cuales fue un método para dis-

tinguir los máximos y los mı́nimos de una función algebraica (curva), escrito en

Méthodus ad disquirendam maximam et minimam en 1637. El método consiste

en remplazar en una función f de variable a por a+x y hacer f(a+x) ≈ f(a),

lo que después de un procedimiento algoŕıtmico resulta ser equivalente a cal-

cular ĺım
x→0

f(a + x) − f(a)

x
. “Aunque Fermat no poséıa el concepto de ĺımite,

el cambio de a a a + x es la esencia del análisis infinitesimal” (Collette, 2000,

p. 29). El resultado del ĺımite anterior también se puede obtener analizando el

método que Fermat usa para resolver el problema de las tangentes.

Evangelista Torricelli (1608-1647). Este alumno de Galileo, preocupado por

la falta de rigor y las dificultades lógicas que implicaba el método de los in-
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divisibles, elaboró pruebas a la manera griega usando el método exhaustivo,

haciendo 21 demostraciones sobre la cuadratura de la parábola con el método

de los antiguos y once utilizando los indivisibles.

Gregorie Saint-Vincent (1584-1667). Basado en el método de los antiguos grie-

gos (exhaustivo), pero con algunas modificaciones, publicó en el tratado Opus

geometricum quadrature circuli et sectionum coni, un nuevo método utilizando

rectángulos infinitamente delgados en un número infinito, de aqúı que Saint-

Vincent no se conformó con una aproximación arquimediana. Este procedi-

miento equivale a definir una curva por el poĺıgono inscrito cuando se duplica

infinitamente el número de los lados.

James Gregory (1638-1675). En trabajos como Vera circuli et hyperbolae qua-

dratura, utilizaba la idea de convergencia doble, haciendo gran uso de los in-

finitesimales, inscribiendo y circunscribiendo poĺıgonos para encontrar con-

vergencia de series dobles; las ideas de Gregory se inspiraron en trabajos de

Saint-Vincent y sus demostraciones en el método exhaustivo modificado, como

se puede evidenciar en Geometriae parts universalis, donde determina arcos,

tangentes, volúmenes y superficies.

Antes de continuar el listado es conveniente mencionar que los dos siguientes ma-

temáticos parten la historia del ĺımite, pues son ellos quienes, según autores como

Cornu (1983, citado en Blázquez, Ortega, Gatica y Benegas, 2006), nos llevan a

“la supremaćıa del cálculo”. Aunque los historiadores no atribuyen la invención del

cálculo a un matemático por la controversia generada entre Newton y Leibniz, lo

interesante es que esta rama de las matemáticas nace en el problema de las tangen-

tes, usando una geometŕıa semejante a la de Apolonio pero mirando el problema de

una manera general.

Isaac Newton (1642-1727) y Gottfried Leibniz (1646-1716) desarrollaron un método

práctico y nuevo para resolver gran cantidad de problemas de f́ısica y geometŕıa,

y superaron los obstáculos que impidieron a numerosos matemáticos encontrar un

método general para la obtención de tangentes, máximos y mı́nimos, y el cálculo de

las cuadraturas. Para lograr esto, los padres del cálculo basaron su trabajo en tres

pilares:

1. Elaboraron su trabajo en el análisis infinitesimal.

2. Comprendieron la reciprocidad entre el problema de las tangentes y el de las

cuadraturas.

3. Gracias a la geometŕıa de Fermat y Descartes trataron los problemas con un

método general, aplicable a todas las curvas de una clase.
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Adicionalmente, el desarrollo del cálculo diferencial e integral se sometió a la asimi-

lación de métodos geométricos de Cavalieri, Barrow, Descartes, Fermat y Wallis.

Newton hizo diversos trabajos que aportaron a las matemáticas y a la f́ısica, como el

teorema del binomio y numerosos textos, pero sin duda el que más aportó al cálculo

fue el método de las fluxiones en su obra Methodus fluxionum et serieum infiniturum

(1671), en la que define dos términos: fluente y fluxión:

Llamaré fluentes a cantidades aumentadas gradual e indefinidamente, representadas por v,

x, y y z, y las letras con un punto arriba serán las velocidades con las que éstas aumentan

por el movimiento que las produce y por consiguiente las llamaré fluxiones.

De aqúı se deduce que las fluentes son las variables y la fluxión, la tangente de la

función. Para observar la forma en que Newton abordó el problema de las tangentes,

se muestra a continuación una interpretación del matemático Ian Stewart (2005)

de las ĺıneas de razonamiento de Newton para las tangentes de la parábola, cuya

ecuación es y = x2:

1. Se incrementa el valor de x a x + o, como consecuencia x2 pasa a ser (x + o)2.

2. Las razones de los incrementos son, por consiguiente, las diferencias de los

cuadrados sobre la diferencia de los valores de x; dicho en otra forma:

(x + o)2 − x2

x + o − x
=

x2 + 2ox + o2 − x2

o
= 2x + o

3. Se hace que o tienda a 0, obteniendo la pendiente 2x, o como Newton la llamó,

la fluxión de la fluente.

Leibniz desarrolló un razonamiento similar pero no utilizó o sino dx (una pequeña

porción de x), que es la notación actual. Sin embargo, no fue aqúı donde se defi-

nió verdaderamente el ĺımite, pues surgieron grandes opositores de este razonamien-

to, entre ellos George Berkeley, que insist́ıa en pensar como un algebrista, en cuyo

caso o debeŕıa ser una constante definida. Berkeley objetó que o no es exactamente

cero, en cuyo caso las condiciones no son válidas, pero si o es cero, no puede usarse

como divisor. Según este matemático, el método funcionaba debido a errores que se

compensan entre śı; aunque el opositor teńıa razón en cuanto a lógica, el método

tuvo gran resonancia, pues funcionaba perfectamente.

Pero ¿por qué no se formalizó el ĺımite en esta época? Existen muchas razones para

dar respuesta a este hecho, pero la más importante puede ser la insistente contro-

versia sobre la invención del cálculo entre los matemáticos ingleses, que apoyaban

a Newton, y los matemáticos del resto de Europa, en especial los Bernoulli, que

apoyaban a Leibniz; adicionalmente, los argumentos del caballero inglés estaban
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sustentados en la f́ısica y, por tanto, en el movimiento. Claro está que fueron bas-

tantes los matemáticos que trataron de definir el ĺımite a partir del infinitesimal.

Leibniz: “Hay que especificar que dx y dy se toman de tal modo que sean infini-

tamente pequeñas, de tal forma que cuando se busca su cociente, no puedan ser

consideradas como cero, pero que se puedan desechar siempre” (Stewart, 2005, p.

85); es decir, lo que es válido para cualquier valor distinto de cero es válido para o=0.

Johann Bernoulli (1667-1784): “Una cantidad que se reduce o incrementa mediante

una cantidad infinitamente pequeña, no se incrementa ni se reduce” (Stewart, 2005,

p. 85) y trató de definir el infinitesimal como 1
∞

.

Aunque ninguna definición acierta por completo, aparecen dos grandes matemáticos,

Euler y Cauchy, que hacen grandes aportes:

Leonard Euler (1707-1883) integró el cálculo de Leibniz y la teoŕıa de las fluxiones,

dando lugar al “análisis” como área de la matemática que estudia los procesos in-

finitos, basándose en el concepto de función: “Cualquier expresión anaĺıtica finita o

infinita formada por una cantidad de variables y números o cantidades constantes”

(Boyer, 1996, p. 58). Este adelanto, junto a la complicación de los números comple-

jos, hizo necesario que Agustin-Louis Cauchy (1789-1857) definiera como principal

arma del análisis el ĺımite de la siguiente manera:

Cuando los valores atribuidos sucesivamente a una variable se aproximan indefinidamente

a un valor fijo, para llegar finalmente a diferir de este valor una cantidad tan pequeña

como se desee; dicho valor fijo recibe el nombre ĺımite (Stewart, 2005, p. 86).

Lastimosamente, Cauchy segúıa utilizando procesos infinitos para definir el ĺımite,

pero 29 años más tarde se puso fin a este problema, convirtiendo la variable, que

cambia de una forma activa en un śımbolo estático. Karl Theodor Weierstrass (1815-

1897) definió:

“Una función f(x) tiende a un ĺımite L cuando x tiende a un valor a si, dado

cualquier número ǫ la diferencia f(x) − L es menor que ǫ, cuando x − a es menor

que cierto número δ dependiente de ǫ” (Stewart, 2005, p. 86), haciendo todo como

un juego: “Si tú me dices qué tan cerca quieres que esté f(x) de L, entonces yo te

digo cómo de cerca tiene que estar x de a” (Stewart, 2005, p. 86).

Esta definición liberó al cálculo de consideraciones metaf́ısicas y aśı nació el análisis

moderno, pero también trajo consigo maravillosos avances, entre los cuales se puede

contar el análisis no convencional entre 1920 y 1950.

Por último, avances nuevamente relativos a la geometŕıa, como la geometŕıa no

euclidea y el programa de Erlangen en 1872, sugerido por Felix Klein (1849-1925),
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dieron origen a la topoloǵıa, y fue alĺı donde la matemática consiguió un pilar desde

donde se pod́ıan generar innumerables logros gracias a Gauss (1777-1855), Johann

Listin (1808-1882), Mobius (1790-1868), entre otros, que consiguieron generalizar la

idea de transformación, entregándonos la definición más amplia de ĺımite en la que

las anteriores son casos particulares:

Si f : A → Y es una aplicación de un subconjunto A de un espacio topológico X en

un espacio topológico Y y x0 es un punto de adherencia de A, entonces se dice que

y en Y es ĺımite de f en x0 si para toda vecindad V de y en Y existe una vecindad

U de x0 tal que

f
(
A ∩ CU

x0

)
⊂ V

Marco didáctico

Según El Bouazzaoui (1998), Cornu (1983), Deledicq (1994) y Sánchez y Contreras

(1995), se distinguen cuatro concepciones históricas relacionadas con el concepto de

ĺımite de una función (Sánchez y Contreras, 1998):

1. Concepción geométrica (CG). Está relacionada con situaciones ligadas al con-

texto geométrico, procesos geométricos infinitos que surgen de las paradojas de

Zenón. Algunas situaciones que se pueden plantear desde este punto de vista

pueden ser la aproximación de las áreas de poĺıgonos inscritos en un ćırculo,

según se aumenta el número de lados.

2. Concepción numérica (CN). Está ligada a la utilización de sucesiones de valores

de la variable independiente y las correspondientes de la variable dependiente.

3. Concepción anaĺıtica o métrica (CAM). Está relacionada con la introducción

de las variables lógicas.

4. Concepción topológica (CT). Es la definición más general y en la que se utiliza

el concepto de punto de acumulación.

Dependiendo de la concepción de ĺımite que se pretenda enseñar, se pueden identifi-

car algunas dificultades; Sánchez y Contreras (1998) realizaron una investigación en

la cual analizan el tratamiento didáctico, dado el concepto de ĺımite de una función

en algunos manuales, identificando las definiciones que emplean y las concepcio-

nes que se toman sobre este concepto, además de las dificultades que presenta su

enseñanza.

Una manera de introducir el concepto de ĺımite de una función es:

A través de una tabla de valores y la gráfica de una función, haciendo referen-

cia al término de aproximación, la dificultad que puede presentar esta forma de
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introducir este concepto es que no se establezca la relación entre la gráfica y la

tabla de valores con las aproximaciones numéricas, haciendo que el estudiante

no pueda solucionar un problema de ĺımite si no dispone de una representa-

ción gráfica. Esta forma de introducir el concepto de ĺımite se enmarca en las

concepciones CN y CAM.

Otra forma es la siguiente:

Por medio de la definición: si x se aproxima hacia x0, los valores correspon-

dientes de f se aproximan hacia un número real L, diremos que L es el ĺımite

de f cuando x se aproxima al número x0; si no se aclara el término de apro-

ximación, el estudiante puede no distinguir entre aproximación y distancia, y

además puede suceder que el alumno crea que una función que sólo tiene un

ĺımite lateral, tiene ĺımite en el punto.

A través de la definición métrica, empleando las variables lógicas ǫ y δ. Si no se

hace una explicación previa o posterior y la utilización de una excesiva forma-

lización teórica, se obliga al estudiante a realizar un esfuerzo de comprensión

muy superior, creando dificultades de aprendizaje.

Mediante la gráfica de una función abstracta para la interpretación geométrica

del concepto de ĺımite de una función, lo que conduce al estudiante a reconocer

el ĺımite de una función sólo cuando dispone de la gráfica.

De las diferentes formas de abordar el concepto de ĺımite aludidas, las que se emplean

en general para su enseñanza son las que tratan el concepto de ĺımite de una función

a partir del análisis de gráficas con la ayuda de tablas de aproximación, y en algunas

ocasiones se emplea la definición métrica. Posteriormente se trabaja la algebrización

del ĺımite, basándose en las operaciones algebraicas.

La definición que se trabaja en este documento es la propuesta por Blázquez, Gatica,

Benegas y Ortega (2006). Según estos autores, las conceptualizaciones del concepto

de ĺımite han sido el resultado del desarrollo de la matemática y no desde la didáctica,

pues van orientadas al rigor matemático. En este sentido, la definición que proponen

es la conceptualización de ĺımite funcional como aproximación óptima, que enlaza

las concepciones de D’Alembert y Cauchy, lo que hace que sea más sencilla y más

adecuada de utilizar en la secundaria.

Definición de ĺımite de una función

“El ĺımite de la función f en x − a es L si para cualquier aproximación K de L,

K 6= L existe un entorno reducido de a, tal que las imágenes de todos sus puntos

están más próximas a L que K.
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Si se emplea la significación de tendencias, el ĺımite de la función f en x − a es L

si cuando x tiende a a sus imágenes f(x) tienden a L” (Blázquez y Ortega, 2002,

citado en Blázquez, Ortega, Gatica y Benegas, 2006, p. 195).

3.9.3. Secuencia de actividades

Se diseñaron tres actividades, en las cuales se proponen situaciones novedosas, con

sentido para los estudiantes que incorporan elementos que se asemejan a los proble-

mas y situaciones que dieron origen al concepto; teniendo en cuenta que la compren-

sión del concepto de ĺımite en su dimensión “aprendizaje con significado” está carac-

terizada por el dominio de sus sistemas de representación y por los distintos tipos de

actividad asociadas a éstos (Medina, 2001), supuesto que comparten otros autores

(Blázquez y Ortega, 2001; Javier, 1987; Sfard, 1991; Hiebert y Carpenter, 1992; Du-

val, 1991), cada una de las actividades está enfocada en un sistema de representación

del concepto de ĺımite.

Actividad 1

En esta actividad se trabaja el ĺımite en el contexto geométrico con ayuda de material

concreto: el geoplano. Aqúı el ĺımite es una aproximación de procesos geométricos

infinitos.

A cada estudiante se le entregan un geoplano, un caucho y un pitillo; el geoplano

se usa por la parte donde se encuentra el esbozo de una circunferencia (figura 1).

Se acuerda con los estudiantes como unidad de medida la longitud del arco com-

prendida entre dos puntos consecutivos del geoplano. Se debe tener en cuenta que

el geoplano con el que se trabajará tiene 24 taches, los cuales representarán puntos

que se enumerarán en el sentido de las manecillas del reloj (figura 1).

Paso seguido, el profesor propondrá a los estudiantes representar la circunferencia

con el caucho, poniéndolo alrededor de los puntos del geoplano, y se plantearán los

siguientes cuestionamientos: estando de acuerdo con que el peŕımetro de la circun-

ferencia es 24 unidades, aproximadamente, ¿cuál es el valor aproximado del área
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comprendida por la circunferencia, representada por el caucho puesto alrededor de

los puntos del geoplano?

Después de entregado el material, y dadas las instrucciones anteriores, el maestro

propondrá el siguiente ejercicio:

1. Ubique el pitillo en la circunferencia de tal manera que la longitud de la cuerda

sea la mayor posible; ¿sobre cuáles puntos ubicó el pitillo?

2. Ubique el pitillo en la circunferencia de tal manera que la longitud de la cuerda

sea la menor posible; ¿sobre cuáles puntos ubicó el pitillo?

Extremos de

la cuerda

Longitud aproxi-

mada de la cuerda

Valor aproximado del

área de la región com-

prendida por la semicir-

cunferencia y la cuerda

1,13 8 unidades 24 unidades

1,12

1,10

1,3

1,2

1,1
2

1,1
6

1, 1
n

Actividad 2

En esta actividad se plantea un juego de estrategia, en el que se trabajan los sistemas

de representación anaĺıticos del ĺımite de una función, haciendo uso de la aproxima-

ción con el fin de construir, junto con los estudiantes, la definición de ĺımite.

En la figura 3 se presenta un mapa con tres páıses A, B y C, comunicados entre

śı por dos caminos, y cada páıs desea invadir a los otros dos. En la figura 4 se

muestra una representación de esta situación en un plano cartesiano. Los páıses A,

B y C están representados por los puntos de coordenadas (1, 1), (0, 0) y (−1,−1),

respectivamente; los caminos se representan con la gráfica de las siguientes funciones:

f(x) = x Dominio: R; Rango: R

f(x) = x3 Dominio: R; Rango: R
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El juego consiste en situar las tropas en todos los caminos de los páıses que se

pretenden invadir, tan cerca como sea posible. Esto con el objetivo de desarrollar

una noción básica del ĺımite como aproximación óptima.

Se entregarán dos dados. Uno de ellos tendrá las funciones que representan los

caminos (f(x) = x y g(x) = x3), y cada función se encuentra en tres caras del dado;

el otro tendrá los números de uno al seis. Este dado decide la cantidad de números

del dominio que cada jugador puede escoger en su turno.

Cada jugador lanza los dados y escoge los números del dominio que, a su juicio, lo

acerquen más a los páıses que desea invadir (teniendo en cuenta las limitaciones que

le impongan los dados); el propósito del juego es situar tropas tan cerca como sea

posible en todas las rutas de acceso a los territorios enemigos. Con estas reglas el

juego no tiene fin, dada la densidad de los números reales, aśı que se conjetura que los

estudiantes, después de un rato de juego, noten este detalle, y a que al preguntarles

por posibles estrategias para terminar el juego den un paso de aproximación al

concepto de ĺımite de una función.

Conclusiones de la aplicación

Las actividades se realizaron con 30 estudiantes de grado once, con énfasis en socia-

les del Instituto Pedagógico Nacional, durante dos sesiones de 90 minutos cada una.

El análisis de la aplicación de la propuesta se hizo con base en el análisis de dos

categoŕıas referidas a aspectos relacionados con la enseñanza y el aprendizaje. La

primera hace referencia al modelo de enseñanza, la secuencia de actividades, la per-

tinencia de los materiales y la motivación generada en los estudiantes; en la segunda

se analizan aspectos relacionados con el aprendizaje logrado por los estudiantes, co-

mo la actividad generada, obstáculos evidenciados y superados, dificultades, entre

otros.

Los instrumentos utilizados para recolectar esta información fueron las grabaciones

en audio y video, una encuesta a los estudiantes y la entrevista a la profesora titular

del curso, todas evaluadas en las categoŕıas que mostramos a continuación.
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Las categoŕıas fueron:

1. Existencia y coherencia de un modelo de enseñanza (por descubrimiento) en

la propuesta didáctica y generación de motivación de los estudiantes.

2. Aprendizaje promovido por la propuesta didáctica.

3. A partir de la manipulación y visualización de los materiales empleados (geo-

plano, cauchos y pitillo), los estudiantes construyeron una sucesión de apro-

ximaciones que les permitieron conjeturar sobre el trabajo realizado; las ca-

racteŕısticas del material hacen que el estudiante se abstraiga después de un

número de pasos. Sin embargo, las caracteŕısticas del pitillo hacen que este

paso se dé demasiado rápido.

4. Proponer actividades matemáticas a través de situaciones variadas y cercanas

al estudiante que involucran diversas representaciones del concepto de ĺımite de

una función con sentido, y que incorporan elementos que se asemejan a los pro-

blemas y contextos que en la historia dieron origen al concepto, permitió que

los estudiantes construyeran una definición del concepto a partir de su propia

actividad y establecieran relaciones entre las diferentes representaciones.

5. Trabajar con la definición del ĺımite de una función como aproximación óptima

sugerida por Blázquez y Ortega (2002, citado en Blázquez, Ortega, Gatica y

Benegas, 2006) generó un aprendizaje con comprensión del concepto y evita

caer en los obstáculos epistemológicos referidos a la simboloǵıa de la definición

métrica.

6. El uso de material didáctico y del juego como estrategias estimulantes hace de

la clase de matemáticas un espacio placentero para los adolescentes. El alto

componente lúdico promueve la interacción entre los estudiantes y el maestro,

y posibilita que el conocimiento se construya colectivamente.

Herramientas tecnológicas

“La matemática es un campo del conocimiento en el cual el reto de dirigir el apren-

dizaje hacia la búsqueda de estructuras cognitivas preparadas para la indagación

genuina es fundamental. Para ello ha resultado de la mayor importancia la me-

diación de las nuevas tecnoloǵıas” (Ministerio de Educación Nacional, 2001). En

el desarrollo de las actividades planteadas anteriormente, se teńıa la dificultad pa-

ra modelar y presentar los resultados parciales, dificultando el acercamiento a la

definición de ĺımite; por tal razón se propone utilizar el computador como agente

mediador entre la actividad propuesta y el estudiante.
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Para esto se propone utilizar Descartes, el cual es un applet configurable; que sea un

applet significa que puede insertarse en páginas web y que sea configurable significa

que cada aplicación o configuración puede tener un aspecto diferente. Las aplica-

ciones de Descartes son escenas educativas con gráficas y números y en las que el

estudiante puede modificar parámetros manipulando controles y observando el efecto

que esas modificaciones tienen sobre las gráficas y números.

Descartes no es un programa y su licencia es gratuita, para su utilización es necesario

contar con un explorador web y tener instalado la máquina virtual de Java. Estos

requisitos facilitan enormemente la utilización de Descartes, pues en la actualidad

la mayoŕıa de los computadores los cumplen.

A continuación se combina el uso de Descartes con las dos actividades propuestas

para facilitar la modelación, esperando que la comprensión del concepto de ĺımite

sea más eficaz que al hacer la modelación con geoplanos, lápiz y papel.

Actividad 1.01

En esta actividad se trabaja el ĺımite en el contexto geométrico con ayuda del applet

Descartes; aqúı el ĺımite es una aproximación de procesos geométricos infinitos. Los

estudiantes se ubicarán por parejas en un computador, el cual tendrá abierto el

explorador web con la siguiente pantalla.

Se indica a los estudiantes que el radio de la circunferencia son cinco unidades.

Acto seguido se plantearán estos cuestionamientos: estando de acuerdo en que el

peŕımetro de la circunferencia es de unas 30 unidades, ¿cuál es el valor aproximado

del área comprendida por la circunferencia?

Después de entregado el material y dadas las instrucciones anteriores, el maestro

propondrá el siguiente ejercicio:
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1. Ubique la cuerda en la circunferencia de tal manera que su longitud sea la

mayor posible; ¿sobre cuáles puntos la ubicó?

2. Ubique la cuerda en la circunferencia de tal manera que la longitud de la

cuerda sea la menor posible; ¿sobre cuáles puntos la ubicó?

Complete la siguiente tabla.

Extremos de

la cuerda

Longitud aproxi-

mada de la cuerda

Valor aproximado del

área de la región com-

prendida por la semicir-

cunferencia y la cuerda

1,20 10 unidades 36 unidades

1,18

1,15

1,12

1,10

1,8

1,5

1,2

1,1
2

1,1
6

1, 1
n

Actividad 2.1

En esta actividad se plantea un juego de estrategia para dos o tres jugadores, en el

que se trabajan los sistemas de representación anaĺıticos del ĺımite de una función,

haciendo uso de la aproximación con el fin de construir junto con los estudiantes la

definición de ĺımite.

En la figura se presenta un mapa con tres páıses A, B y C, comunicados entre śı por

dos caminos; cada páıs desea invadir a los otros dos. El plano de la mitad muestra

una representación de esta situación en un plano cartesiano. Los páıses A, B y C

están representados por los puntos de coordenadas

(−0,744,−0,9) (0, 0) (0,744, 0,9)

respectivamente, los caminos se representan con la gráfica de las siguientes funciones:

f(x) = 3
√

x Dom: R; Rang: R g(x) = 4x3 − x Dom: R; Rang: R
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El juego consiste en situar las tropas en todos los caminos de los páıses que se

pretenden invadir, tan cerca como sea posible, con el objetivo de desarrollar una

noción básica del ĺımite como aproximación óptima.

Se entregarán dos dados: uno de ellos tendrá las funciones que representan los cami-

nos (f(x) = 3
√

x g(x) = 4x3 − x). Cada función se encuentra en tres caras del dado,

el otro tendrá los números de uno al tres; este dado decida la cantidad de números

del dominio que cada jugador puede escoger en su turno.

Cada jugador lanza los dados y escoge los números del dominio que a su considera-

ción lo acerque más a los páıses que desea invadir (teniendo en cuenta las limitaciones

que le impongan los dados); el propósito del juego es situar tropas tan cerca como

sea posible en todas las rutas de acceso de los territorios enemigos. Con estas reglas

el juego no tiene fin, dada la densidad de los números reales, aśı que se conjetura

que los estudiantes después de un rato de juego noten este detalle y a que al pregun-

tarles por posibles estrategias para terminar el juego den un paso de aproximación

al concepto de ĺımite de una función. El applet utilizado permite hacer tanto zoom

como se quiera y a medida que el jugador escoge las tropas, éste las acomoda en la

función.
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3.9.4. Conclusiones

Al poder dinamizar las actividades, los estudiantes se enfocan mejor en lo que el

maestro quiere mostrar, esto es, la aproximación al concepto de ĺımite. Como el

computador realiza las diferentes operaciones requeridas en cada actividad de ma-

nera automática, esto agiliza el tiempo de ejecución y fomenta la formulación de

hipótesis y sus posibles demostraciones.

Aśı mismo, el maestro en el momento de la puesta en común y generalización del

concepto puede utilizar las actividades dinámicas en una presentación frente al curso,

para mostrar visualmente el concepto de ĺımite trabajado en las dos actividades.

Aśı como se formularon y ejecutaron estas dos actividades, se pueden crear muchas

más que al poder dinamizar facilitan la aprehensión del concepto. Se extiende la in-

vitación para que el docente interesado formule sus propias actividades, las dinamice

con este o cualquier programa y saque sus propias conclusiones.
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obstáculos epistemológicos y los actos de comprensión. [Sitio en internet]. Disponi-
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3.10. Análisis didáctico de la igualdad en los números

reales

Édgar Alberto Barón Poveda20

Hugo Edver Zamora Coronado21

Palabras claves: análisis didáctico, actividad de aprendizaje, noción de igualdad,

construcción de conocimiento matemático escolar.

3.10.1. Resumen

Desde nuestro trabajo investigativo en educación matemática, junto con la expe-

riencia universitaria directa de orientar cursos de matemáticas a estudiantes que

ingresan a primer semestre, hemos avanzado en la caracterización de situaciones del

aula de clase que obstaculizan el aprendizaje comprensivo de la noción de igualdad.

El escaso nivel de reflexión que se propone acerca de nociones como equilibrio,

desequilibrio, semejanzas, diferencias o tantas otras de la cotidianidad vinculadas a la

noción de igualdad, genera que las actividades planteadas alrededor de las ecuaciones

no superen el aspecto procedimental de la solución y más bien incentiven el uso

de saberes informalmente construidos, que posibiliten tales soluciones sin alcanzar

comprensión sobre el conocimiento matemático que apoya dichos procedimientos.

Por consiguiente, los supuestos y las exigencias que la escolaridad superior plantea

a los estudiantes que ingresan a sus programas no siempre concuerdan con los co-

nocimientos y estado de desarrollo intelectual de la mayoŕıa de ellos. Es aśı como

los propósitos que se desean alcanzar en los primeros semestres de la formación pro-

fesional de un estudiante, en cuanto a que el desarrollo de su pensamiento avance,

mediante la integración que logre entre el conocimiento matemático, su cotidianidad

y su entorno disciplinar, no siempre se consiguen.

La aproximación a la propuesta que fundamenta la investigación en didáctica de

las matemáticas, orientada en la perspectiva del aprendizaje y que se desarrolla en

AprendEs, encaminó la reflexión sobre la escolarización del conocimiento matemático

en nuestros entornos de desempeño profesional hacia el diseño de un proyecto de

investigación que hemos venido desarrollando en el Politécnico Grancolombiano.

Presentamos los avances de este proyecto de investigación que intenta dar respuesta

al siguiente interrogante: ¿existe un posible camino de elaboración comprensiva de

las nociones y conceptos asociados a la igualdad, que tenga como punto de partida

20Politécnico Grancolombiano. eabaronp@poligran.edu.co.
21Politécnico Grancolombiano. hzamora@poligran.edu.co.
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los conocimientos aritméticos, el cual le permita al estudiante conocer, comprender,

modelar y resolver situaciones y problemas cotidianos, a la vez que desarrollar su

pensamiento y avanzar en los procesos de generalización, abstracción y simboliza-

ción?

Dar respuesta a la pregunta formulada implica la tarea de identificar los conocimien-

tos matemáticos y no matemáticos que posibilitan la comprensión de las nociones

y conceptos especificados, desde la aritmética y a través del avance en el estudio

de los sistemas numéricos. También está explorar con estudiantes de asignaturas de

matemáticas en los primeros semestres de la universidad, actividades que posibiliten

aprender comprensivamente esos conocimientos mediante procesos de construcción.

Las actividades que se van a proponer a los estudiantes se diseñaron en concordancia

con algunos lineamientos que sustentan el trabajo de aula en forma de taller. Ini-

cialmente, presentamos de manera sintética los dos elementos con los que miramos

el problema de investigación que nos ocupa. Cabe anotar que estos dos elementos

son parte fundamental del programa de investigación centrado en el aprendizaje en

el que estamos avanzando.

1. Didáctica de las matemáticas. Aqúı exploramos lo que seŕıa posible y necesario

de aprender y cómo desarrollar y orientar procesos de aprendizaje. Para ello

estudiamos la historia de las matemáticas desde una mirada más allá de lo

anecdótico. Nos adentramos en reflexionar el desarrollo de nociones y conceptos

en el contexto donde éstas aparecen; por otra parte, soportamos este trabajo

desde el conocimiento de lo disciplinar y también desde la epistemoloǵıa.

2. Epistemioloǵıa genética en términos escolares. Partimos del hecho de que una

actividad significativa es fuente de conocimiento. Revisamos el conocimien-

to anterior, la cotidianidad, el entorno y la experiencia. Es importante hacer

notar que la reflexión sobre el objeto de conocimiento debe hacerse de ma-

nera individual y colectiva. Es el maestro responsable de proponer, diseñar y

orientar actividades de aprendizaje.

El trabajo de investigación llevado a cabo nos ha permitido construir una primera

red didáctica acerca de la ecuación y la igualdad, la cual aparece en la siguiente

figura:
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En los seminarios que hemos realizado, la reflexión se centró en las palabras asociadas

a la idea de igualdad que aparecen en la red. Es aśı como hicimos una primera

aproximación a:

La noción de relación (desde la cotidianidad)

• Funcionamiento y uso de las cosas. Correspondencias.

• Relaciones interpersonales.

• Relaciones sociales.

La palabra igualdad (uso corriente)

• Palabras relacionadas: semejante, parecido, equivalente, idéntico, ser lo

mismo, tantos como.

• Por contraste: diferentes, tantos más, más grande que.

• Referido a la misma cualidad o caracteŕıstica de objetos.

Aparece también el tránsito de la cotidianidad a la aritmética, donde se busca refle-

xionar acerca de:

La cantidad como elemento de comparación de caracteŕısticas de los objetos.

El signo igual ( = ) como śımbolo de la igualdad.

La igualdad como identidad

6 = 6 3x = 3x

La igualdad como indicador de resultado de operación

2 + 4 = 6 2a + 5 = 17

La igualdad como equivalencia

4 + 2 = 5 + 1 3x = x + x + x

3x2 = 5 + 1 3x = 4x − x
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Finalmente, presentamos un par de resultados obtenidos en un taller que consistió en

resolver el siguiente problema:

El señor Pérez distribuye su sueldo mensual aśı: 2/5 lo destina para alimentación;

de lo que queda destina el 60 % para arriendo. Del nuevo saldo asigna 3/4 para pago

de estudio y el resto lo ahorra. Si el ahorro es de $108.000, ¿cuál es el sueldo del

señor Pérez?

Las ideas de trabajo para resolver este problema pasaron por las siguientes posibi-

lidades:

Un trabajo gráfico

Un trabajo aritmético, donde se completa la unidad:

En cuanto a la reflexión docente, es importante considerar los siguientes aspectos,

que son vitales al momento de proponer una actividad significativa a nuestros estu-

diantes y que involucra directamente al docente:

¿Cómo resuelve el docente ejercicios asociados a la igualdad? Aqúı debe reflexionarse

acerca de cómo plantea la justificación y reconstrucción de procedimientos seguidos.

¿Cómo resuelven los estudiantes el ejercicio? ¿Cómo lo resolveŕıan? Se intenta des-

cribir la manera como los estudiantes buscan la solución.
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Una actividad de taller incluye el diálogo entre los estudiantes y el maestro. Nece-

sariamente aparecen estas preguntas: ¿cómo orientar el aprendizaje de conocimien-

tos matemáticos involucrados en la solución del problema? ¿Cómo podŕıan ser las

posibles secuencias de aprendizaje, de tal manera que los estudiantes utilicen sus

conocimientos anteriores?

En śıntesis, ¿cómo orientar una reelaboración de conocimientos asociados a la igual-

dad e involucrados en un problema?

Estas preguntas proponen al maestro la necesidad de reflexionar al momento de

proponer una actividad que en verdad resulte significativa para sus estudiantes.

Exigen que el maestro avizore nuevas maneras de resolver problemas y abandone

la comodidad que le ofrece un solo procedimiento para resolver un determinado

problema asociado con la igualdad.

Terminamos citando a la doctora Myriam Ortiz, cuando se refiere al taller como

actividad de reelaboración de conocimientos: “Forma de trabajo a establecer dentro

del aula, en la que lo fundamental es el hacer significativo, individual y colectivo

del estudiante y la confrontación de sus elaboraciones. Hacer orientado por el maes-

tro con el propósito de que a partir de él, los estudiantes construyan o reelaboren

conocimientos matemáticos, socialmente aceptados y exigidos”.
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3.11. Construcción de conocimiento matemático: el caso

de la transformación lineal

Solange Roa Fuentes22

Asuman Oktaç23

Resumen

En este trabajo se muestra un análisis cognitivo sobre cómo un estudiante universi-

tario puede construir el concepto de transformación lineal, mediante la descripción

de las construcciones y mecanismos mentales que puede realizar al abordar dicho

concepto. Las evidencias emṕıricas muestran cómo los conceptos de función y es-

pacio vectorial son fundamentales en la construcción de la transformación lineal y

las dificultades que los estudiantes enfrentan al no tenerlos como elementos prelimi-

nares. Además, se evidencia la necesidad de motivar el desarrollo del pensamiento

matemático de los estudiantes abordando los conceptos del álgebra lineal desde su

propia naturaleza: la abstracción.

3.11.1. Introducción

Durante los últimos 20 años, investigadores de diferentes páıses como Canadá, Es-

tados Unidos, Francia y México, entre otros, han centrado sus trabajos en el estudio

de la enseñanza y el aprendizaje del álgebra lineal. En estos páıses, al igual que

en Colombia, los programas universitarios de ingenieŕıa y ciencias incluyen en sus

dos primeros años de estudio los requisitos básicos de matemáticas en cursos de

álgebra y cálculo. Pero la experiencia de los alumnos al intentar comprender los

conceptos propios del álgebra lineal ha causado sensaciones de frustración en los

estudiantes y la necesidad, por parte de los profesores, de crear cursos donde los

conceptos sean tratados con un mayor o menor grado de formalidad, dependiendo

de las caracteŕısticas de los programas que incluyen esta materia. Por tal razón, es

fácil encontrar en una misma escuela o departamento cursos de álgebra lineal con el

mismo contenido pero con un énfasis distinto en su desarrollo en el aula; basta con

comparar el desarrollo de una clase para matemáticos con una para ingenieros.

Estudios realizados en Francia (Dorier, 2002) muestran que algunos estudiantes, al

enfrentarse con el primer tema de álgebra lineal (teoŕıa de los espacios vectoriales),

22M. en C. Solange Roa-Fuentes. roafuentes@gmail.com. Grupo Educación Matemática Edumat

de la Universidad Industrial de Santander (UIS), Colombia. Centro de Investigaciones y de Estudios

Avanzados del IPN, Cinvestav, México.
23Dra. Asuman Oktaç. oktac@cinvestav.mx. Centro de Investigaciones y de Estudios Avanzados

del IPN, Cinvestav, México.
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experimenten la sensación de aterrizar sobre un nuevo planeta donde no logran ubi-

carse. Los contenidos del álgebra lineal no tienen relación con las matemáticas que

ellos conoćıan; éstas están más relacionadas con los conceptos de cálculo. Ante tal

panorama, decidimos reflexionar sobre la importancia de incluir el curso de álgebra

lineal en los programas universitarios. Consideramos que un elemento fundamental,

como lo menciona Dubinsky (2001), es que su estudio es el camino hacia el desa-

rrollo del pensamiento matemático avanzado, ya que su aplicación cumple un papel

fundamental dentro de la misma matemática en áreas como el cálculo multivariado,

ecuaciones diferenciales, geometŕıa diferencial y análisis funcional. Este comienzo

hacia el desarrollo del pensamiento matemático avanzado está determinado, desde

nuestra perspectiva, por la esencia abstracta del álgebra lineal. Aunque según Du-

binsky (2001), los elementos del álgebra lineal pueden clasificarse en dos grupos: los

abstractos (como transformaciones lineales) y los concretos (como matrices y vecto-

res), consideramos que establecer qué es concreto para un individuo es una situación

compleja, determinada por su propia experiencia y por la naturaleza de los concep-

tos. Por ejemplo, podŕıamos señalar que un vector es concreto para un estudiante si

lo considera una pareja ordenada o una flecha. Pero éstas son sólo representaciones

de un objeto matemático mucho más complejo y abstracto que fundamenta el estu-

dio del álgebra lineal. Desde nuestra opinión, un vector debe construirse como un

elemento de un espacio vectorial; esta idea no es concreta e incluso es imperceptible

para muchos estudiantes que han aprobado un curso de álgebra lineal.

Entonces, ¿qué hace un concepto más concreto que otro? Desde nuestro punto de

vista, esto está ligado con la idea que tengamos del concepto y determinado por el

tipo de situaciones que hayamos experimentado. Dubinsky (1997) se refiere a este

hecho realizando un análisis a la propuesta de LACSG (Linear Algebra Curriculum

Study Group), que presenta una lista de recomendaciones para la enseñanza de un

curso básico de álgebra lineal en Estados Unidos. En términos generales, LACSG

propone que un curso basado en las aplicaciones y operaciones con matrices dismi-

nuiŕıa las dificultades que tienen los estudiantes en esta área. Dicha propuesta hace

énfasis en el trabajo con matrices, dando menos importancia a los conceptos abs-

tractos y tratando las transformaciones lineales como matrices y los vectores como

énuplas. Con base en nuestra experiencia, podemos decir que un énfasis desmedido

en el uso de matrices y vectores desvirtúa la esencia del álgebra lineal y sólo logra

ejercitar a los estudiantes en la imitación y memorización de procedimientos, algo-

ritmos y resultados mecánicos, sin que se logre la construcción de conceptos. Este

velo sobre los conceptos básicos del álgebra lineal genera un aprendizaje superficial,

generando sentimientos de inconformidad y frustración en aquellos estudiantes que

creen comprender determinados conceptos, pero que al enfrentarse con situaciones

que requieren algo más que la aplicación de acciones espećıficas no encuentran las
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estrategias adecuadas para abordarlos.

Con este trabajo buscamos aportar, desde nuestra perspectiva, un análisis cognitivo

de uno de los conceptos básicos del álgebra lineal: el concepto de transformación

lineal. En particular, buscamos dar cuenta de las construcciones (acciones, proce-

sos, objetos y esquemas) y mecanismos (interiorización, coordinación, encapsulación

y asimilación) mentales que un estudiante universitario puede realizar sobre dicho

concepto. Para esto presentaremos un análisis cognitivo denominado descomposi-

ción genética por la teoŕıa Apoe, donde de manera espećıfica señalamos un camino

mediante el cual es posible construir dicho concepto (Roa y Oktaç, 2009). En es-

ta presentación espećıficamente, nos centraremos en el análisis de las evidencias de

dicho análisis con base en los datos emṕıricos presentados en Roa (2008).

Esperamos contribuir con esta presentación en la reflexión sobre la importancia de

la construcción del conocimiento matemático, en particular sobre la importancia del

álgebra lineal como motor de procesos de abstracción, fundamentales en el desarrollo

de conceptos matemáticos avanzados.

3.11.2. Fundamentos teóricos

La teoŕıa ApoeOE se fundamenta en la relación entre la naturaleza de los conceptos

matemáticos y su desarrollo en la mente de un individuo. Por tanto, las explica-

ciones dadas por esta teoŕıa son de orden epistemológico y psicológico (Dubinsky

et ál., 2005). En este sentido, la teoŕıa Apoe es una herramienta que se puede usar

para explicar las dificultades de los estudiantes con un concepto y plantear caminos

de construcción para su aprendizaje. Este análisis dado por la teoŕıa arroja resul-

tados concretos respecto a las estrategias pedagógicas pertinentes para motivar la

construcción de un concepto en particular. El principal interés que compartimos con

este marco de referencia es que permite describir la manera como se construye el

conocimiento matemático, y una de las principales herramientas para este fin es la

descomposición genética, ya que en ella se describen los aspectos constructivos de

una porción de conocimiento matemático que a su vez, se espera, determinen as-

pectos metodológicos relacionados con la enseñanza de los conceptos matemáticos.

Aśı, se espera comprender cómo los estudiantes construyen conceptos o adquieren

habilidades para abordar y resolver problemas matemáticos (Asiala et ál., 1996).

A continuación se describe el proceso dinámico mediante el cual un estudiante cons-

truye los conceptos matemáticos desde el punto de vista de dicha teoŕıa. Las acciones

y procesos son transformaciones sobre objetos que el estudiante posee previamen-

te; un estudiante que posee una concepción acción de un concepto depende de los

est́ımulos externos para realizar tales acciones y es controlado por dichos est́ımulos.
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Pero una vez que logra interiorizar estas acciones, se dice que el estudiante tiene una

concepción proceso del concepto, ya que toma el control sobre dicha acción y puede

pensar en ella sin necesidad de realizar cálculos expĺıcitamente (figura 1).

Otro mecanismo importante es la encapsulación. Cuando el estudiante reflexiona

sobre las operaciones aplicadas a un proceso particular, tiene conciencia de dicho

proceso como una totalidad y da cuenta de las transformaciones que puede realizar

sobre él, se considera que lo ha encapsulado en un objeto. Finalmente, una colección

coherente de acciones, procesos, objetos y otros esquemas, y las relaciones entre

ellos, todos relacionados con el concepto, se denomina esquema; la coherencia es

una herramienta mental que le permite al estudiante determinar si una situación se

puede manipular con dicho esquema. A continuación presentamos una descripción

detallada de cada una de estas construcciones, tomando como ejemplo el concepto

de función definido por Breidenbach et ál. (1992):

Acción. Diremos que un estudiante posee una concepción acción de un concepto de-

terminado si su entendimiento está limitado por la realización de acciones espećıficas

motivadas por est́ımulos externos. Por ejemplo, un estudiante con una concepción

acción de función relaciona el concepto con la acción de remplazar ciertos valores

dados en una expresión o fórmula para obtener otros valores, por ejemplo en la expre-

sión f(x) = x2 +1. Esta concepción de función limita el entendimiento de conceptos

relacionados con ella y los contextos en que este concepto se puede abordar.

Proceso. Cuando el estudiante puede pensar en un determinado concepto sin actuar

de manera directa sobre él, diremos que el estudiante ha interiorizado tal concepto en

un proceso. En contraste con las acciones, los procesos se perciben como algo interno,

donde el individuo tiene el control y está en capacidad de describir el concepto sin

actuar de manera directa sobre él. Por ejemplo, en el caso de las funciones, un

estudiante con una concepción proceso de función puede determinar la composición

de funciones sin estar limitado por su representación. Determinando sin dificultad,
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por ejemplo, la función f ◦ g para las funciones

f(x) = x2 + 1 g(x) =





x2 + 1 si x ≤ 0

1 + sen x si x > 0

Objeto. Cuando un individuo reflexiona sobre las operaciones aplicadas a un proceso

particular, tiene conciencia de dicho proceso en su conjunto y puede identificar

las transformaciones (acciones o procesos) que puede aplicar sobre él, diremos que

el proceso ha sido encapsulado en un objeto, y por tanto el individuo posee una

concepción objeto del concepto. En esta concepción, el mecanismo de desencapsular

es tan importante como el de encapsular; mediante este mecanismo, un individuo

puede regresar al proceso por el cual generó un determinado concepto. Por ejemplo,

en una concepción objeto de función un estudiante puede determinar la derivada de

una función f cualquiera, sin depender de la forma como esté dada y puede pensar

en f ′ como función. Es importante mencionar que la naturaleza del objeto depende

del proceso por el cual fue encapsulado. En muchos casos es muy dif́ıcil cambiar

la concepción que un estudiante posee sobre un concepto en particular; esto puede

deberse a que dicho concepto ha sido encapsulado mediante un proceso no adecuado,

y por tanto es necesario cambiar este proceso y encapsularlo en un nuevo objeto.

Esta descripción de las construcciones y mecanismos involucrados en la formación

de un concepto matemático se reporta finalmente en una descomposición genética

de dicho concepto.

Una descomposición genética es el resultado del análisis teórico, primera componente

del paradigma de investigación de Apoe, donde se describen las actividades mentales

que un individuo debe realizar para construir su conocimiento. En este reporte,

presentaremos una descomposición genética del concepto transformación lineal que

muestra dos posibles caminos de construcción del concepto determinados por el

objeto transformación.
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Siguiendo con las componentes de nuestro paradigma de investigación (figura 2),

presentaremos el diseño de la prueba diagnóstica y la entrevista, además de algunos

de los resultados obtenidos al aplicar dichos instrumentos a dos grupos de estudian-

tes de la Pontificia Universidad Católica de Valparáıso (Chile), matriculados en los

programas de Matemáticas y Estad́ıstica del Instituto de Matemáticas de dicha uni-

versidad. Estos datos emṕıricos permitirán enriquecer la descomposición genética

preliminar y presentar una más cercana a la realidad, que ofrezca a los docentes un

camino viable para ayudar a sus estudiantes a levantar las estructuras apropiadas

para la construcción del concepto transformación lineal. Esperamos que esta presen-

tación enriquezca nuestro trabajo y contribuya a la reflexión de los asistentes sobre

la importancia de ayudar a los estudiantes a construir en forma adecuada los obje-

tos matemáticos. De esta manera, todo estudiante que construya adecuadamente las

estructuras mentales apropiadas para aprender un concepto particular estará en ca-

pacidad de construir su esquema y propiciar la continua evolución de sus estructuras

mentales.

3.11.3. Descomposición genética

Teniendo en cuenta la intención de nuestro trabajo y la descripción del marco de

referencia, empezaremos con la descripción de nuestra descomposición genética, re-

sultado de la aplicación del ciclo de investigación. Consideramos conceptos previos

esenciales en la construcción del concepto transformación lineal, el de función y

de espacio vectorial. Los resultados que a continuación presentamos partirán de la

asimilación del objeto espacio vectorial por el esquema de función.

La construcción del concepto parte de la construcción de las dos propiedades de

linealidad por separado. Mediante la asimilación del espacio vectorial como objeto

por el esquema de función, un estudiante puede determinar la existencia de funciones

definidas entre espacios vectoriales. Cuando estas acciones se interiorizan por el uso

del cuantificador, se construyen las propiedades como procesos por separado. Esto

permite que los individuos reflexionen sobre el concepto más allá de la memoriza-

ción. La coordinación entre los dos procesos es posible cuando se tiene conciencia

de que el cumplimiento de las dos propiedades es equivalente a la preservación de

combinaciones lineales. Un estudiante con esta concepción puede determinar antes

de la realización de acciones sobre la función dada si ésta es o no una transformación

lineal y elegir el tipo de argumento que utilizará para validar sus razonamientos. Una

vez que el estudiante tenga una concepción proceso, puede encapsularlo en un ob-

jeto. Cuando necesita aplicar determinadas transformaciones (acciones o procesos),

no es posible si no se han encapsulado en un objeto. En este camino consideramos

que esta construcción está determinada por las transformaciones particulares que un
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estudiante puede considerar en un curso de álgebra lineal básico. Por ejemplo, me-

diante el álgebra de transformaciones lineales, donde ya sea por la suma, el producto

escalar o la composición se definen nuevas transformaciones lineales como resultado

de una transformación sobre dos o más transformaciones lineales dadas (para más

detalle sobre este análisis, consultar Roa y Oktaç, 2009).

Figura 3. Descomposición genética refinada (Roa y Oktaç, 2009)

Durante el análisis de los resultados fue evidente la necesidad de construir este con-

cepto de manera paralela con otros, como por ejemplo establecer principalmente

fuertes conexiones con el concepto de base, ya que éste cumple un papel fundamen-

tal en la construcción y evolución del esquema. A continuación presentaremos las

principales construcciones realizadas por los estudiantes.

3.11.4. Evidencias de los estudiantes

Una vez determinada la descomposición genética, como resultado del análisis teórico,

realizamos el diseño de instrumentos para validar dicho análisis. En esta investiga-

ción decidimos diseñar un diagnóstico donde participaron 17 estudiantes (ocho de

licenciatura en matemáticas, ocho de estad́ıstica y uno de ingenieŕıa) y una en-

trevista donde participaron seis estudiantes, todos del programa de licenciatura en

matemáticas. Estos últimos estaban tomando un curso de álgebra lineal II y los
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demás un curso de álgebra lineal I; en el momento de tomar los datos, este último

grupo acababa de abordar el concepto de transformación lineal. Es pertinente acla-

rar que en la realización de esta investigación no hicimos ningún tipo de intervención

en el proceso de enseñanza del concepto. Nosotros intervenimos una vez, ya que se

consideraba que los estudiantes hab́ıan abordado los conceptos de interés. El diseño

y la aplicación de un modelo de clase con base en nuestro análisis teórico es un

trabajo del que pensamos hablar más adelante.

Dadas las caracteŕısticas de los grupos, consideramos que el diagnóstico nos per-

mit́ıa encontrar aquellos estudiantes que dieran algún tipo de evidencias sobre la

construcción del concepto transformación lineal, y la entrevista nos dejaba indagar

en estos estudiantes acerca de aquellas construcciones tal vez más complejas sobre

el concepto que no pod́ıan evidenciarse en los resultados del diagnóstico. Una ca-

racteŕıstica muy importante de las entrevistas es que fueron de tipo didáctico. Es

decir, las situaciones planteadas alĺı no son de respuestas inmediatas, pues lo que

buscamos era motivar en el estudiante estados de desequilibrio que nos permitan ver

cómo al abordar un problema su propia comprensión de un concepto pod́ıa hacerse

evidente incluso para él mismo (Roa, 2008). La prueba diagnóstica estaba compues-

ta por siete problemas, y los estudiantes deb́ıan contestarla de manera individual y

por escrito. La entrevista se grabó en video y se realizó de manera individual; cada

entrevista duró un tiempo aproximado de dos horas. Los resultados del diagnóstico

y de la entrevista se transcribieron, para hacer un análisis más detallado de ellas

(para más detalle, consultar Roa, 2008).

Los resultados del diagnóstico nos demostraron la importancia de las construcciones

que consideramos indispensables en la construcción del nuevo concepto. Encontra-

mos que particularmente los conceptos de función, espacio vectorial y vector cumplen

un papel fundamental; esto es consistente con el principio de aprendizaje que plantea

la teoŕıa Apoe, que hace referencia a la capacidad de todo individuo de construir

conceptos matemáticos, siempre y cuando cuente con las estructuras matemáticas

apropiadas. Esto fue muy evidente en los estudiantes del curso de álgebra lineal I,

ya que presentaron graves problemas con los conceptos de función y vector.

Sin duda, la entrevista fue el instrumento que nos dio mayor información sobre

las construcciones que los estudiantes hab́ıan realizado sobre el concepto que nos in-

teresa. En la aplicación de este instrumento encontramos evidencias de las siguientes

concepciones en los estudiantes: Concepción acción del producto escalar, Concepción

proceso de transformación lineal, Concepción objeto de transformación lineal (Roa,

2008).

En general, el análisis de los datos obtenidos en las entrevistas nos muestra la impor-
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tancia de relacionar la preservación de las propiedades de linealidad como un único

proceso para encapsularlo en un objeto. Considerar siempre las propiedades de ma-

nera independiente impide que un estudiante logre ver el concepto transformación

lineal como un objeto y realizar transformaciones sobre él.

Vale la pena mencionar que determinar ejemplos particulares de transformaciones

lineales no es una condición suficiente para garantizar que un estudiante tiene una

concepción objeto de este concepto. Este es el caso, como ya mencionamos, del estu-

diante 4, que puede dar ejemplos de transformaciones lineales a pesar de su concep-

ción del concepto, centrada sólo en la preservación del producto escalar para vectores

particulares de un espacio vectorial determinado. Contrario a esto, el estudiante 6

(Roa, 2008), durante el desarrollo de la pregunta 5, donde se preguntaba si exist́ıa

una transformación lineal con ciertas caracteŕısticas sobre su núcleo e imagen, pudo

caracterizar la transformación lineal T : R
2 → R

3, pedida mediante un análisis men-

tal de la información presentada en el problema, determinando que la transformación

T está definida por T (x, y) = (x−y, x−y, x−y). Este estudiante mostró evidencias

de su capacidad para pensar en la transformación lineal y caracterizarla a partir de

condiciones dadas sobre su imagen y núcleo. Además, reflexionó sobre la unicidad

de su ejemplo, y empezó a considerar otras transformaciones lineales que de la mis-

ma manera cumplen con las caracteŕısticas, llegando a una generalización sobre el

conjunto de transformaciones lineales de la forma (α(x−y), α(x−y), α(x−y)). Este

estudiante pudo generar nuevas transformaciones a partir de una transformación

determinada.

Los procedimientos de los estudiantes revelan diferentes formas de abordar los pro-

blemas, fijadas por las relaciones que logran establecer con otros conceptos. Esto,

desde nuestra mirada, hace referencia a los niveles de evolución de los esquemas

determinados por la coherencia que pueden establecer a la hora de abordar una

situación matemática.

El estudiante 5, en el desarrollo de la pregunta 3, donde se plantea una generaliza-

ción sobre transformaciones lineales (Roa, 2008), presenta un tipo de razonamiento

que da muestra de su capacidad para realizar acciones sobre objetos espećıficos al

determinar que dadas dos transformaciones lineales T1 : U → V y T2 : U → W es

posible determinar una nueva transformación lineal T : U → V × W de la forma

T (u) = (T1(u), T2(u)) para todo u en U . Este estudiante, sin ninguna dificultad,

puede establecer dos casos particulares de transformaciones lineales y mediante la

aplicación de acciones (determinando cada componente como la aplicación de T1 y

T2) sobre ellas puede establecer una nueva transformación lineal. Incluso es posible

percibir que puede desencapsular el objeto y volver sobre el proceso que lo determinó,
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la conservación de combinaciones lineales. De esta manera muestra que la función

definida es una transformación lineal. Aunque casi todos los estudiantes realizan un

procedimiento similar en este problema, este alumno después de contestar la pre-

gunta, expresa la necesidad de verificar la estructura de W ×V . Al parecer, no hab́ıa

considerado que el producto cruz entre dos espacios vectoriales es un espacio vec-

torial. Para esto define las operaciones para el producto cruz, y reflexionando sobre

ellas determina que W × V es un espacio vectorial y por tanto sus razonamientos

anteriores están completos. Consideramos que este tipo de razonamientos señala el

pensamiento global que un estudiante puede desarrollar al poseer una concepción

objeto de transformación lineal. Puede considerar los elementos que forman parte

del concepto e integrarlos a su pensamiento, sabe que una transformación lineal debe

estar definida entre espacios vectoriales; esto es parte de sus estructuras mentales y

por tanto es consciente de ello.

3.11.5. Conclusiones

Podemos afirmar que las estructuras de función y espacio vectorial como esquemas

son indispensables para la construcción del concepto transformación lineal. Además,

las dificultades de algunos estudiantes durante el diagnóstico nos indican la necesidad

de realizar acciones sobre vectores particulares, que después nos permitan generalizar

el cumplimiento de las propiedades para cualquier vector.

La construcción intermedia que hab́ıamos considerado entre la acción y el proceso

determinado por el uso de los cuantificadores no se presentó en nuestro análisis.

Pensábamos que en algunos casos los estudiantes podŕıan hacer uso de vectores en

su forma general, sin pensar en el cumplimiento de las propiedades para todos los

elementos del espacio vectorial; con todo, el análisis de los datos no mostró evi-

dencias de este tipo de construcciones. Los estudiantes consideran el cumplimiento

de las propiedades para todos los elementos del espacio vectorial cuando escriben

los vectores de manera general. Aunque no escriban espećıficamente los cuantifica-

dores, sus construcciones evidencian que tienen en cuenta el cumplimiento de las

propiedades para todos los vectores del dominio de las funciones presentadas en los

instrumentos.

Los datos también nos muestran la importancia de considerar la construcción de las

propiedades como lo mostramos en nuestro análisis (figura 3). Hacer la construcción

de las propiedades como procesos independientes ayuda a los estudiantes a eviden-

ciar la existencia de los espacios vectoriales y el campo, aśı como la importancia de

los cuantificadores. Esta construcción y la coordinación de ellas forman un papel

fundamental en la construcción del concepto de transformación lineal. La concep-
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ción proceso de este concepto como resultado de la coordinación de dos procesos

es, desde nuestra perspectiva, un camino muy viable para la construcción del con-

cepto. Mediante este camino es posible considerar su encapsulación como un objeto

y motivar la evolución de su esquema. Si los estudiantes perciben la construcción

de manera aislada, será imposible que éstas evolucionen, ya que su consideración

de las transformaciones lineales estará limitada por la percepción de dos procesos

independientes.

Un estudiante con una concepción proceso de transformación lineal puede determi-

nar, previamente a la realización de acciones sobre una función dada, si ésta es o no

una transformación lineal y elegir el tipo de argumentos que utilizará para validar

sus razonamientos. Es decir, podrá demostrar, mediante la preservación de operacio-

nes o la preservación de combinaciones lineales, si la función es una transformación

lineal; en caso contrario, presentará un contraejemplo para un caso particular donde

no preserve alguna de las operaciones.

Una vez que un estudiante logra tener una concepción proceso de este concepto,

está en capacidad de encapsularlo en un objeto. Cuando un estudiante necesita apli-

car determinadas transformaciones (acciones o procesos) sobre un concepto, no es

posible si éste no se ha encapsulado en un objeto. En este camino consideramos

que dicha construcción está determinada por las transformaciones particulares que

un estudiante puede considerar en un curso de álgebra lineal básico. De la misma

manera, creer que una transformación lineal es un elemento de un espacio vectorial

nos permite pensar que el estudiante ha logrado ver el proceso en su conjunto y pue-

de actuar de manera consciente sobre él. Como se pudo percibir durante el análisis

de los datos emṕıricos, las construcciones descritas en esta descomposición genética

no pueden verse de manera aislada. No es suficiente observar en un estudiante su

capacidad para describir determinadas transformaciones lineales y determinar otras

a partir de cierto procedimiento, para asegurar que tiene una concepción objeto del

concepto; en este asunto cumple un rol fundamental el mecanismo de desencapsu-

lación. Un estudiante que logra una concepción objeto del concepto debe mostrar

evidencias de su capacidad para regresar sobre el proceso mediante el cual logró en-

capsular dicho objeto; en este caso, su concepción proceso debe estar fundamentada

sobre la preservación de combinaciones lineales.

Un modelo de enseñanza que se base en nuestro análisis puede considerar la cons-

trucción de funciones que cumplen con una u otra propiedad. Esto implica un análisis

más espećıfico acerca de la naturaleza del campo sobre el cual estén definidos los

espacios vectoriales. Por ejemplo, consideremos la función T : C → C definida como

T (z) = z, esta función es una transformación lineal si el espacio vectorial C (con-
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junto de los números complejos) se define sobre R (conjunto de los números reales).

Pero si se define sobre el campo de los números complejos no lo es, ya que la suma

vectorial se preserva pero no el producto escalar (basta tomar z = 1− i y c = 1 + i,

es fácil ver que T (cz) = 2 y cT (z) = 2i). Este tipo de ejemplos promueve un tipo de

pensamiento distinto, que desde nuestra opinión puede generar el desarrollo de ra-

zonamientos abstractos, donde el estudiante siente la necesidad de reflexionar sobre

los contenidos más allá de desarrollar habilidades para repetirlos, por concebirlos

como algo acabado.

De la misma manera, cuando se están construyendo por separado la preservación de

la suma vectorial y el producto escalar, es posible determinar relaciones entre estas

propiedades.

Hay que considerar si las condiciones son independientes la una de la otra, o analizar

por ejemplo que para cualquier función definida entre espacios vectoriales sobre el

campo de los racionales, el cumplimiento de la suma vectorial implica el producto

escalar (Maher, 1987); esto genera en los estudiantes la reflexión más allá de la me-

canización. En este camino consideramos que los materiales propuestos por Weller

et ál. (2002), donde el trabajo con transformaciones lineales se inicia con acciones

sobre vectores espećıficos de espacios vectoriales de dimensión finita como Z3, per-

mite la reflexión sobre las caracteŕısticas de los vectores y las operaciones definidas

entre ellos.

Con este tipo de opciones buscamos que los maestros motiven el desarrollo del

pensamiento matemático en los estudiantes por medio de una reflexión profunda de

los conceptos. Indudablemente, el camino que describimos en nuestra descomposición

genética puede ser la base que motive esta reflexión, que ofrece mucho más que la

presentada en los textos. Tal vez ésta puede convertirse en una alternativa que

motive el razonamiento sobre éste y otros conceptos del álgebra lineal, sin evadir su

carácter abstracto, que es en definitiva una de las caracteŕısticas por las cuales nos

interesa incluir esta materia en los programas de formación profesional.
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