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Introduccion

La Escuela Colombiana de Ingenieria Julio Garavito ha venido realizando desde ha-
ce algunos anos el Seminario de Matematica Educativa, organizado por el Grupo de
Investigacion Pentagogia. Con este seminario se busca reunir a la comunidad ma-
tematica del pais en un encuentro de investigadores, profesores y estudiantes para
reflexionar sobre los problemas de la ensenanza y aprendizaje de las matematicas, y
para hallarles soluciones a estos inconvenientes, intercambiando experiencias y co-
nociendo propuestas novedosas que se desarrollan en diferentes ambitos educativos.
La idea es divulgar y socializar algunas de las experiencias que se desarrollan en la
ensenanza de la matematica a niveles medio y superior, contribuir a la actualizacién
en el quehacer del docente del area de la matematica, dar a conocer el avance y los
resultados de investigaciones en temas relacionados, y generar vinculos académicos
alrededor del tema de la educacion matematica.

Los temas que se trataron en el presente seminario estuvieron relacionados con la
problemaética de la ensenanza de los fundamentos de la matematica, tales como el
aprendizaje de conceptos basicos, nuevas metodologias, el uso de la tecnologia en el
aula, y en especial las experiencias exitosas de la ensenanza de la matematica. En
esta version se contd con la participacion de conferencistas nacionales e internacio-
nales de primera linea, como Carlos Leén Caamano Espinoza, doctor en didactica de
la matematica de la Universidad de Barcelona; Alberto Campos Sanchez, doctor de
la Universidad de Paris y profesor asociado de la Escuela Colombiana de Ingenieria;
César Augusto Delgado Garcia, doctor en didactica de las ciencias experimentales
y de la matematica de la Universidad Auténoma de Barcelona; Crisélogo Dolores
Flores, maestro en ciencias de la Universidad Auténoma de Guerrero (México); Ole
Ravn Christensen, profesor asociado del Departamento de Educacién, Aprendizaje

y Filosoffa de la Universidad de Aalborg (Dinamarca); Paola Valero Duenas, pro-
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fesora asociada de la misma universidad, y Carlos Eduardo Vasco Uribe, doctor en
matematicas de la Universidad de Saint Louis (Estados Unidos).

Las conferencias magistrales a cargo de los profesores invitados fueron “Desarro-
llo del pensamiento y lenguaje variacional. El caso de la graficacion covariacional”;
“Acercar el formalismo y el uso en la educacién matematica en ingenieria: el modelo
ABP en accién”; “La matematica para ingenieros. Una mirada desde la didéctica
de la matematica”; “Construccién de conocimiento matematico e inclusion. Expe-
riencia con indigenas y afrocolombianos en la Universidad del Valle”, y “Tres ideas
fuertes del calculo: variacion, tasa y acumulacién”. Asi mismo, contamos con los cur-
sillos “Graficacion covariacional”, “Estudio epistemolégico del desarrollo del dlge-
bra lineal”, “Las densidades de rotacion y expansién de un campo vectorial” y “La
computacién a través de los juegos discretos”. Ademas, hubo un ntimero importante
de ponencias que apareceran al final de estas memorias.

Los organizadores
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CAPITULO 1

Conferencias magistrales

1.1. Desarrollo del pensamiento y lenguaje variacional. El

caso de la graficacion covariacional

Dr. Crisélogo Dolores Flores*

El pensamiento y lenguaje variacional (PLV) es el campo en el que se estudian los
fenéomenos de ensenanza, aprendizaje y comunicacién de saberes matematicos pro-
pios de la variacion y el cambio, tanto en el sistema educativo como en el medio
social que le da cabida. Pone particular atencion en el estudio de los procesos cogni-
tivos y culturales con que las personas asignan y comparten sentidos y significados,
utilizando diferentes estructuras y lenguajes variacionales (Cantoral y Farfédn, 2000).
En cuanto vertiente investigativa, posee una triple orientacién; en primera instancia,
se ocupa de estructuras variacionales especificas desde un punto de vista matematico
y fenomenoldgico; en segundo término, estudia las funciones cognitivas que los seres
humanos desarrollan mediante el uso de conceptos y propiedades de la matematica
del cambio, y en tercer lugar, tiene en cuenta los problemas y situaciones que se

!Cicata-IPN, Cimate-UAG. cdolores@prodigy.net.mx, cdoloresl@hotmail.com.

Maestro en la especialidad de fisico-quimica, Escuela Normal Superior de la Universidad Auténoma
de Guerrero. Licenciado en matemédtica educativa, Universidad Auténoma de Guerrero, México.
Maestria en ciencias, Area de Matemética Educativa, Facultad de Matematicas de la Universidad
Auténoma de Guerrero, México. Doctor en ciencias pedagdgicas, Area Metodologia de la Ensenanza
de la Matematica, Instituto Superior Pedagdgico Enrique J. Varona, Cuba. Investigador nacional
nivel I desde 1999. Miembro de la Academia Mexicana de Ciencias. Coordinador del Cimate de la
UAG desde 1998.



2 CAPITULO 1. CONFERENCIAS MAGISTRALES

abordan y resuelven en el terreno de lo social mediante las estructuras variacionales

consideradas en la escuela y el laboratorio.

La investigacién en matematica educativa ha partido tradicionalmente del principio
de que el conocimiento matemaético es un saber fijo y preestablecido, ajeno a las
préacticas sociales. El PLV pone en el centro de la atencién las practicas sociales
asociadas a la variacion en lugar del limite, como lo presumen las aproximacio-
nes tradicionales (Dolores, 1999); por tanto, nuestros estudios se fundamentan en
la aproximacion socioepistemoldgica, la cual confiere un lugar preponderante a las
practicas sociales en la construcciéon del conocimiento matematico. En el contexto
del PLV me referiré a uno de los procesos de representacién de la variacién que
nosotros hemos llamado graficacién covariacional (Salgado, 2007). Tanto en los tex-
tos como en la practica escolar de la ensenanza de la matemaética se conocen varios
métodos de graficacion de funciones, pero estos métodos omiten los procesos de va-
riacion y covariacion subyacentes. En esta platica se discuten los fundamentos de
la graficacién covariacional, que posibilita la construccion de la grafica misma sobre
la base de tres elementos esenciales, introducidos por Dolores (1999) y Carlson et
al. (2002): la representacién de los cambios, la covariacién como la relacién causal
entre los cambios y el comportamiento de la variacion atendiendo a la magnitud, la

direccion y las razones de cambio.

Referencias

Cantoral, R. & Farfan, R. (2000). Pensamiento y lenguaje variacional en la introduc-
cién al andlisis. En R. Cantoral, Fl futuro del cdlculo infinitesimal, Icme-8. México
D.F.: Grupo Editorial Iberoamérica.

Carlson, M., Jacobs, S., Coe, E., Larsen, S. & Hsu, E. (2002). Applying covariational
reasoning while modeling dynamic events: a framework and a study. Journal for
Research in Mathematics Education, 33 (5), pp. 352-378.

Dolores, C. (1999). Una introduccion a la derivada a través de la variacion. México
D.F.: Grupo Editorial Iberoamérica.

Salgado, G. (2007). Graficacion covariacional. Tesis de maestria. Chilpancingo Gro.
México: Centro de Investigacion en Matematica Educativa, UA de Matematicas,

UAG.
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1.2. Acercar el formalismo y el uso en la educacién

matematica en ingenieria

Ole Ravn Christensen?
Paola Valero®

Resumen®.

Un problema comin en el aprendizaje de las matemaéticas tiene que ver con la bre-
cha entre el formalismo y los calculos de las matematicas abstractas, por una parte,
y su uso en un ambito contextualizado especifico, por ejemplo, en el mundo de la
ingenieria, por otra. Las destrezas adquiridas mediante el aprendizaje basado en
problemas (ABP), en el modelo especial que se usa en la Universidad de Aalborg,
en Dinamarca, nos puede dar alguna idea de como tender un puente para cerrar
esta brecha. A través del examen de varios ejemplos de proyectos que realizan estu-
diantes de primer ciclo de ingenieria, donde se recontextualizan temas matematicos
tales como matrices, ecuaciones diferenciales, analisis de clusters, teoria de grafos,
etc., en el abordaje de problemas interdisciplinarios complejos, describimos y ana-
lizamos en detalle las competencias logradas por los estudiantes cuando hacen ese
tipo de proyectos. Trataremos de mostrar cémo el trabajo de los estudiantes en su
aprendizaje de las matematicas, dentro de areas contextuales, ofrece posibilidades
de aprendizaje que van mas alla de la clasica distincion entre el aprendizaje formal

y los usos de las matematicas universitarias.

20le Ravn Christensen es méster en matemadticas y filosofia de la Universidad de Aalborg y
Ph.D. en teoria de la ciencia del Danish Centre for Educational Development in University Science.
En la actualidad es profesor asociado en el Departamento de Educacién, Aprendizaje y Filosofia de
la Universidad de Aalborg. Investiga en educaciéon matematica, con un foco especial en la relacién
de las matematicas con otras ciencias. Un punto especial de investigacion es el uso del modelo
del aprendizaje basado en problemas en la pedagogia universitaria en general y en la educacién
matematica en particular.

3Paola Valero se ha interesado por desarrollar un enfoque sociopolitico para la investigacién
de la educaciéon matematica, que permite relacionar las practicas de ensenanza y aprendizaje en
el aula con practicas fuera de ella. Ha sido profesora asociada del Departamento de Educacién,
Aprendizaje y Filosofia de la Universidad de Aalborg, en Dinamarca, donde lidera el grupo de
investigacién en educacién en ciencias y en matemadticas (Smerg). También es directora de estudios
doctorales del programa Ciencia y Tecnologia. Entre algunos de sus libros se encuentra Researching
the socio-political dimensions of mathematics education: issues of power in theory and methodology
(co-editado con Robyn Zevenbergen).

4Este articulo se basa en “Closing the gap between formalism and application -PBL and mathe-
matical skills in engineering”, escrito por Ole Ravn Christensen en 2008 y publicado en la revista
Teaching Mathematics and its Applications, 27(3), pp. 131-139. Agradecemos a la revista por per-
mitir la traducciéon de este material al espanol, asi como a Patricia Inés Perry Carrasco, de la
Universidad Pedagdgica Nacional de Colombia, por la traduccién al espanol del material original.



4 CAPITULO 1. CONFERENCIAS MAGISTRALES

1.2.1. Introduccion

En la educacion universitaria, las matematicas son una asignatura especial que se
ha presentado tradicionalmente a los estudiantes como una entidad muy bien or-
ganizada. Los cursos de matematicas se construyen a menudo sobre la estructura
axiomatizada de las teorias matematicas en cuestion. En un enfoque axiomatizado
para el aprendizaje de las matematicas, se acostumbra mostrar una porcion particu-
lar de las matematicas a partir de ciertos supuestos basicos para llegar a mas y mas
verdades por medio de demostraciones. La presentacién axiomatizada de los nuevos
temas matematicos a los estudiantes en forma de presentaciones magistrales es el
modelo privilegiado para la ensenianza de las matemaéticas. En este enfoque, el estu-
diante debe preocuparse por entender las estructuras de conceptos y procedimientos
expuestas por los profesores, patréon de ensenanza y aprendizaje predominante en la
mayor parte de las aulas de matematicas de las universidades del mundo, y para la
mayoria de los profesores y estudiantes, es una forma aceptada y hasta cierto punto
exitosa. Sin embargo, dicho enfoque presenta un problema central: es dificil recon-
textualizar el formalismo abstracto de las matematicas en un campo profesional
dado. Si los estudiantes estan aprendiendo matemaéticas como parte de su educacion
para la ingenieria, necesitaran competencias especiales para utilizar el formalismo
abstracto en una contexto de conocimiento diferente, pues la transferencia o la apli-
cacion de formas de conocimiento matematico abstracto a practicas matemaéaticas
dentro de otras areas de conocimiento puede ser extremadamente dificil, si no a
veces imposible. Esto puede dar como resultado una brecha en la competencia de
los estudiantes para usar matematicas en sus practicas de ingenieria; incluso puede
presentarse el caso de que, sin importar cuantas matematicas abstractas avanzadas
se ensenen a los estudiantes de ingenieria, esto no ayude a cerrar tal brecha.

El problema de la transferencia de competencias de un ambiente de matematicas
formales a un ambiente de matemaéticas aplicadas se ha estudiado mediante la in-
vestigacion educativa en ciencias y matematicas a nivel universitario. Basado en las
teorfas del aprendizaje situado como el trabajo fundamental de Lave (1988) y el
avance de teorias socioculturales del conocimiento para el estudio de la educacion
cientifica y matematica, Roth (2008) ofrece evidencia de que el supuesto de la trans-
ferencia de conocimientos de un area y de un contexto a otro no es sostenible como
un principio para la ensenanza de las matematicas en la universidad. Al estudiar la
manera como distintos expertos desarrollan una competencia matematica general,
como la lectura de graficas, Roth presenta pruebas de que cualquier tipo de persona
-desde el profesor titular de matematicas, hasta el estudiante, pasando por gente
en ambitos de trabajo- desarrolla habilidades especificas de lectura de graficas con
respecto al tipo de graficas y al tema con el que suelen trabajar. Estos hallazgos su-
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gieren que la incapacidad de transferir estudiantes del curso de matematicas a otras
areas, como la fisica o las ingenierias, no son un problema de las capacidades de
conocimiento de los estudiantes, sino mas bien un malentendido del sistema de en-
senanza y aprendizaje sobre como funciona el pensamiento humano, y en qué deberia
consistir el aprendizaje de las matematicas y las ciencias, asi como las competencias
asociadas con ellas. Para abordar este problema en la ensenanza universitaria, Roth
recomienda el uso de pedagogias activas como el aprendizaje basado en problemas
(ABP), como una forma que puede abrir posibilidades de generacién de conocimiento

en relacion con diversos contextos.

Como estamos de acuerdo con Roth, no hablamos de esta brecha en lo referente
a formalismo y “aplicaciones”. Dentro de la perspectiva tedrica sociocultural a la
que nos adherimos para referirnos a los procesos de pensamiento y aprendizaje ma-
tematico no tiene sentido hablar de “aplicaciones”, ya que este término senalaria
que un conocimiento o una competencia puede emplearse simplemente de manera
indiscriminada, lo cual implicaria que es posible hacer una transferencia de conoci-
mientos y habilidades de un contexto de conocimiento a otro. En cambio, decidimos
usar el término “usos”, que para nosotros se refiere al hecho de que cada tipo de
conocimiento y de competencia parte de un juego de lenguaje matematico asociado
con practicas y reglas determinadas, y desarrollado en dmbitos contextuales defini-
dos. El término “recontextualizacién” indica que cada vez que una persona entra en
un campo especifico y nuevo de conocimiento y practica, la persona se involucra en
un proceso complejo de reconstruccion contextual dentro de un juego de lenguaje
distinto, pero que guarda similitudes con aquellos a&mbitos y juegos que ya conoce.
También hablamos de “competencias” para senalar el hecho de que todo conoci-
miento esta presente sélo en relacién con una accién. Para nosotros no es posible
hablar de destrezas o habilidades como capacidades independientes de la participa-
cién y accion en practicas de generacién de conocimiento y de aprendizaje. Nuestras
fuentes de inspiracién teérica estan en el trabajo del segundo Wittgenstein (1997) y
en fuentes recientes como Sfard (2008), entre otros.

En este articulo analizamos un enfoque bien establecido para cerrar la brecha entre
el formalismo de las matematicas y sus usos: el asi llamado modelo de aprendizaje
basado en problemas (en adelante, modelo ABP). No lo investigaremos como un mo-
delo tedrico de aprendizaje, entre otros, ni compararemos diferentes tipos de modelos
ABP. Mas bien, nos enfocaremos en presentar varios estudios de caso provenientes
de experiencias de ensenanza de matematicas con estudiantes del ciclo basico de
ingenieria y ciencias de la Universidad de Aalborg, donde toda la educacién estéd ba-
sada en el modelo ABP. Con fundamento en estos ejemplos trataremos de esbozar
algunas de las conclusiones que se pueden obtener con respecto a la brecha entre el
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formalismo de las matematicas y su uso. No obstante, para comenzar, sera conve-
niente considerar el marco educativo general en el que el modelo ABP se ha puesto
en accién; por tanto, presentaremos algunos de los elementos claves del modelo ABP
en la Facultad de Ciencias, Ingenieria y Medicina de la Universidad de Aalborg. A
continuaciéon mostraremos y discutiremos tres ejemplos de proyectos realizados por
tres grupos de estudiantes. Con base en los ejemplos discutiremos las caracteristicas
de su actividad matematica, en especial en lo referente al cierre de la brecha entre
formalismo y uso. Concluimos con unas reflexiones sobre las ventajas de este tipo
de ambientes de ensenanza universitaria.

1.2.2. Breve resena del ABP en Aalborg

La Universidad de Aalborg se creé a principios de la década de los setenta y se
desarrolld en el espiritu de cambio que marcaba esa época de revolucién estudiantil
en Europa. Un aspecto de estos cambios fue la atencién que se prestaba al espacio
y a los procesos de aprendizaje que ocurrian en las universidades. Se decia que la
educacién superior trataba sélo con teoria abstracta en la “torre de marfil” de la
academia, en lugar de enfocarse en problemas del mundo real que ocurrian fuera
de los muros de la universidad (Illeris, 1974). En un proceso histérico complejo,
donde casi toda la retérica politica inicial ha desaparecido de manera gradual -o
por lo menos se ha transformado radicalmente-, el modelo ABP de Aalborg es en la
actualidad, y ante todo, un sistema educativo eficiente. Este sistema es, de hecho, una
diversidad de modelos educativos especificos en las facultades y departamentos de la
universidad, y por ello puede ser dificil senalar una caracteristica central del modelo
ABP de Aalborg. No obstante, en lo que sigue intentaremos describir algunas de las
caracteristicas fundamentales sobre las cuales tratamos de construir especificidades
adaptadas a distintos programas de estudio. Para un recuento mas elaborado y
profundo del modelo ABP de Aalborg, véanse Kolmos, Fink y Krogh (2004), y
Kolmos (2008).

El modelo ABP no sélo se fundamenta en la definiciéon de problemas que guian el pro-
ceso de aprendizaje, sino que también se organiza en proyectos colectivos realizados
por un grupo de hasta siete estudiantes. Este niimero varia mucho y normalmente
decrece de modo gradual a medida que los estudiantes se especializan y tienen mas
experiencia. Cada grupo tiene que involucrarse en el proceso de indagaciéon para
abordar un problema, bien sea practico o tedrico, definido por ellos y que resulta en
la produccion semestral de un reporte de proyecto, en la mayor parte de los casos
con una extension de entre 70 y 80 péaginas. En el ciclo basico de la Facultad de In-
genierfa, Ciencias y Medicina -un programa educativo de un ano al que trataremos
de prestar un interés particular en lo que sigue-, cada grupo esté asociado con dos
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facilitadores para la escritura del proyecto. Si tomamos un grupo de cientificos de la
computacién como ejemplo, uno de los facilitadores es un experto en ciencias de la
computacién, normalmente un miembro del cuerpo profesoral del Departamento de
Ciencias de la Computacién. Este es el facilitador principal y es el responsable de
apoyar el avance del grupo en las competencias técnicas de algin area de las ciencias
de la computacién. El otro facilitador es el encargado de la contextualizacién del
contenido técnico pertinente y cumple un papel importante en apoyar a los estu-
diantes en la escritura de un proyecto que cierra la brecha entre formalismo y uso,
ya que ésta es su principal tarea en relacion con el trabajo del grupo. Esta persona
es normalmente miembro del personal académico de otra area afin. En el presente
caso, Ole Ravn Christensen ha sido el facilitador contextual de los proyectos que se

ejemplificaran.

Ademas de la escritura del reporte del proyecto, los estudiantes también asisten
a diversos cursos magistrales. Algunos cursos ayudan a construir las competencias
de trabajo colaborativo requeridas para funcionar en un entorno propio para el
modelo ABP, cuyo foco esta en los procesos de aprendizaje en los grupos, tal como la
cooperacién en equipos, compartir conocimiento, etc. Otros cursos apoyan los perfiles
disciplinares de los estudiantes. Todos los ingenieros reciben cursos matematicos
extensos en los temas tradicionales tipicos del primer ciclo universitario y, ademas,
cada rama de ingenieria tiene cursos de apoyo en sus disciplinas particulares. El
balance entre las actividades de los cursos y el trabajo de grupo para el proyecto se
inclina, sin embargo, hacia este tltimo. De los 30 puntos ECTS (FEuropean Credit
Transfer System) que definen un semestre completo de estudios, al menos la mitad se
adquieren por razon del trabajo en el proyecto, pero este niimero puede ser bastante

mas alto en algunos programas de ingenieria y ciencia.

Un ingrediente fundamental en el sistema educativo del modelo ABP es el entorno
fisico. Los grupos de trabajo requieren salones adecuados y, por tanto, la universidad
ha invertido una extension considerable de su planta fisica en construir espacio
de oficina para asegurar que cada grupo de estudiantes tenga un salén propio a
su disposicién. Esto proporciona a los estudiantes la oportunidad de encontrarse
cada dia en su propia “oficina” con su propio refrigerador, tableros, computadores
portatiles y demas elementos, para crear un ambiente y un espacio de trabajo que
supla bien sus necesidades. Esta parte del sistema educativo no se implementa de
igual manera en todos los campos universitarios, pero en las facultades de ingenieria,
ciencia y medicina este sistema esta totalmente desarrollado, mientras que en la

facultad de humanidades el espacio fisico se administra en forma diferente.

Hasta ahora no hemos analizado lo que significa que los estudiantes aprendan de
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una manera basada en problemas. Abordaremos este asunto dando tres ejemplos.
En lo que sigue, describiremos las condiciones para los estudiantes de primer ano
de matemadticas y ciencia de la computacién en la Universidad de Aalborg. Con
esto tenemos la intencion de senalar como es posible ensenar matematicas nuevas a
través del empleo de un modelo ABP en todas las posibles ramas de la ingenieria.
Mostrando cémo se puede cerrar la brecha entre formalismo y usos en la educa-
cién en matematicas o en ciencia de la computacién, esperamos también destacar
perspectivas claves de la utilizacion del modelo ABP para la educacién matemati-
ca en ingenieria. Antes de centrarnos en los ejemplos, abordemos primero algunos
de los ambitos més especificos que los estudiantes de matematicas y ciencia de la

computacién encuentran en el primer semestre de universidad.

1.2.3. El modelo ABP en accién

Los estudiantes cuyos proyectos describiremos a continuacién deben trabajar en un
tema general que han de elegir de un abanico de temas formulados por el grupo
de facilitadores. Por ejemplo, en anos recientes los estudiantes han podido elegir
de un conjunto de temas como “Técnicas de microarreglos de ADN para apoyar
el diagnostico de enfermedades”, el “Sistema Pagerank de Google”, “Gripe aviar:
medicion de los escenarios de propagacion”, etc. Para cada uno -a menudo, aproxima-
damente diez temas para un semestre dado-, el grupo de facilitadores ha desarrollado
una descripcién de una pagina de extension, donde se plantean aspectos importantes
de posible problematizacién con respecto a esos asuntos. Este marco de referencia
sirve a los estudiantes para poderse imaginar un posible proyecto, pues cuando los
estudiantes eligen un tema dado, comienzan a negociar la definicién de un problema
abierto de indagacién en ese tema, sobre el cual han de escribir un reporte. En al-
gunos pocos casos, los estudiantes aportan ideas con respecto a temas nuevos sobre
los cuales escribir, y éstos son bien recibidos por los facilitadores si el area de interés
presenta problemas matematicos o técnicos potencialmente fructiferos.

Después de que un grupo de estudiantes elige un tema, sigue un proceso arduo
de exploracién con el objetivo de definir un problema que guiara el proceso de
aprendizaje. En este contexto, no es un ejercicio ni una situacion problematica en
el sentido de un problema tipico matematico o de las ciencias. Un problema se
refiere a una situacion abierta que genera un reto de conocimiento y que demanda
una solucién tedrica o practica que permita abordarla. El problema puede tener
un anclaje en la realidad social o tecnolégica, o en un ambito tedrico. Ademas,
el abordaje del problema requiere un proceso de investigacion largo. No estamos
hablando de un asunto que se resuelve en unas pocas horas o en una semana. A
continuacion, el grupo debe elegir una estrategia para su reporte del proyecto, de
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manera que en ella se combinen la teoria matematica y su uso en un contexto dado.
Esto se lleva a cabo en cooperacién estrecha con ambos facilitadores. Con frecuencia
el proceso de investigaciéon y aprendizaje es no lineal, frustrante y gira en torno de
asuntos interdisciplinarios: ;qué clase de matemaéticas formaran parte central de este
reporte del proyecto? ;Cudl es el problema general que se quiere abordar? ;Cémo se
puede formular claramente este problema? ; Deberiamos buscar informacién empirica
para trabajar sobre ella? ;Necesitaremos crear un algoritmo o incluso implementar
un uso de la teoria desarrollada por nosotros mismos para resolver nuestro problema?
. Qué tan detallado deberia ser un recuento de las diferentes partes de la teoria usada?
Y la lista de preguntas continta.

Antes de entrar a discutir sobre este sistema educativo, veamos tres ejemplos de
proyectos de grupos ABP reales que se ubican en el periodo 2005-2007 en la Uni-
versidad de Aalborg (para més informacién sobre el sistema educativo del primer
ano de estudios en ciencia, ingenieria y matematicas en la Universidad de Aalborg,
se puede visitar el sitio www.tnb.aau.dk). Cada ejemplo ilustra diferentes logros que
han tenido estudiantes de matematicas y ciencia de la computacion a través del
modelo ABP. Adicionalmente, los tres ejemplos muestran como los estudiantes, de-
pendiendo de la asignatura especifica, son guiados por los facilitadores e impulsados
por la dindmica de su propio grupo para comprometerse en el cierre de la brecha

entre el formalismo y el uso en un escenario dado que involucra matematicas.

Ejemplo 1. Escenarios de propagacion de la gripe aviar

Hace unos pocos anos, la aterradora gripe aviar estaba en todas las noticias, y hubo
varios reportes alarmantes de la amenaza de propagacion de la enfermedad en el te-
rritorio danés. En cuestion de unos pocos y angustiosos dias se vendieron cantidades
grandes de pildoras de tamifli como resultado de un amplio cubrimiento, por parte
de la prensa, de la propagacion de la gripe aviar en todo el mundo, y se tomaron
medidas politicas tanto a escala nacional como global para contener el problema. Un
grupo de estudiantes eligié como proyecto examinar el uso de las matematicas en el
calculo de los escenarios de propagacion de tal enfermedad. El grupo, conformado
por siete estudiantes de matematicas, tenia un facilitador para los aspectos contex-
tuales y un facilitador para las matemdticas, como se mencion6 antes. El primero
dedicaba un tercio del total de sus horas de supervisiéon a este grupo en particular.
Los estudiantes decidieron enfocarse en un escenario danés de propagacién para su
enunciado inicial del problema. Si la enfermedad alcanzaba a Dinamarca, jcuantas

personas se enfermarian, y cuantas de ellas moririan?

Modelar la propagacion de la gripe aviar se podria enfocar de muchas maneras y
saber como elegir el modelo correcto para configurar una situacién dada es natu-
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ralmente parte de lo que significa tener competencias en recontextualizar las ma-
temaéticas a través de la generacion de un modelo. Pero jcémo hacer las matematicas
sin el conocimiento de la situacion real del fenémeno en cuestién? Para responder el
problema inicial, el grupo decidié buscar conocimiento biolégico sobre la gripe aviar:
,qué es y qué tan contagiosa es?, jcomo se transmite entre los seres humanos?, jcual

es la tasa esperada de éxito del antidoto tamifli contra una pandemia?, etc.

Estas investigaciones acerca del escenario de uso cambiaron el conocimiento del
grupo y, por tanto, su perspectiva sobre las matematicas que se utilizarian en el re-
porte del proyecto. Después de varias reformulaciones, finalmente el grupo enuncio el
problema de un modo muy diferente; presentaron un problema altamente contex-
tualizado que debia examinarse en detalle mediante el uso de métodos matematicos
para calculos de propagacién en un escenario dado. Ahora el punto focal estaba en
la posible reaccién extrema del piiblico con respecto a la amenaza de la gripe aviar.
Amenazas tales como la enfermedad de las vacas locas y el virus del Sars causa-
ron tanto revuelo en el mundo como la gripe aviar. Esas enfermedades ya estaban
olvidadas en el momento en que se llevé a cabo este proyecto.

Por medio de ecuaciones diferenciales de las matematicas clasicas, los estudiantes
tabularon lo que denominaron escenarios “realistas” y el “peor de los casos”, sobre
la base del conocimiento que habian recogido. Mediante un analisis interdiscipli-
nario del problema contextual en relacién con las ecuaciones que usaron, el grupo
aprendié mas que la mera solucién exacta (o numérica) a una ecuacién diferencial.
Aprendieron sobre asuntos de confiabilidad con respecto al contenido matematico, y
sobre como las constantes en las ecuaciones matematicas afectan considerablemente
los resultados de investigacion en un ambito complejo de uso. Por otra parte, es-
tos estudiantes de matematicas abordaron un fenémeno, la propagacién de la gripe
aviar, que no se puede interpretar en términos matematicos sin las consideraciones
de otras perspectivas cientificas; de ahi el enfoque interdisciplinario que le dieron al
asunto. La mayoria de los problemas de la vida real se parecen al que ellos estu-
diaron en que su complejidad involucra una cantidad de dimensiones que requieren
conocer enfoques de resolucién de problemas en varias ramas de la ciencia. Saber
algo de los tipos de conocimiento que otras ciencias son capaces de manejar también
hace posible que los estudiantes de matematicas lleguen a ser conscientes de cémo
las competencias matematicas especificas marcan particularmente el trabajo de los
cientificos.

Ejemplo 2. Técnicas de microarreglos de ADN

En el primer semestre de 2006, un grupo de cuatro estudiantes de segundo semestre
se ocup6 de la nueva técnica de microarreglos de ADN. El propdsito primario de esta
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técnica es medir qué tanto cierto gen se expresa en un individuo dado. Empleando
la nueva técnica, esto se puede llevar a cabo para miles de expresiones genéticas a
la vez, lo que involucra el uso de matematicas de andlisis de cluster, diferentes tipos
de medidas, etc.

Inicialmente, el grupo formulé el problema asi: “;Se puede usar la técnica de mi-
croarreglo de ADN en la clasificacion de ciertas enfermedades?”. Los estudiantes
hicieron investigaciones en biologia para aclarar qué es realmente un gen, y para
comprender la idea errénea de referirse a los genes como si estuvieran “prendidos”
o “apagados”. Ellos investigaron cémo los microarreglos de ADN funcionan en la
practica y visitaron un hospital donde se esta utilizando la técnica en su etapa ini-
cial. Asi que establecieron una base para trabajar con el tratamiento matematico de
los datos en relacién con la clasificacion de enfermedades.

Al usar material de caso, que incluye informacién sobre la expresion genética de
ADN en un grupo grande de pacientes, de algunos de los cuales se sabia que tenian
cierta enfermedad, los estudiantes emplearon diferentes tipos de mediciones y andli-
sis de cluster para confirmar o rechazar que la nueva técnica se podia utilizar para
clasificar a los individuos como enfermos o saludables. En colaboracién con sus faci-
litadores, y a través de su trabajo y de discusiones, los estudiantes encontraron que
usar diferentes mediciones de las relaciones entre diversos segmentos de la informa-
cion daba resultados disimiles, y que diferentes tipos de analisis de cluster también
producian resultados divergentes sobre el mismo conjunto de datos. Concluyeron
que, a pesar de la propaganda que rodea a esta nueva tecnologia, ésta no funcionaba
todavia adecuadamente.

El caso de este proyecto muestra el establecimiento de un anélisis metateorico espe-
cial del método matematico de analisis de cluster, que no habria sido alcanzable para
los estudiantes sin un enfoque basado en problemas. Ademas, los estudiantes experi-
mentaron de primera mano cuan desordenado es el mundo realmente: los resultados,
a partir del conjunto de datos, podrian ser fallidos en alguna medida; la técnica de
ADN era posiblemente algo imprecisa; los médicos que tienen que ver con la in-
vestigacion en este campo con frecuencia dependen en alguna medida de cientificos,
tales como matematicos o ingenieros, que tienen conocimientos del aspecto bioldgico
del tema, y finalmente, el matematico en su propio terreno debe elegir entre varias
opciones metodolégicas, dependiendo del problema que tiene entre manos.

Ejemplo 3. El sistema Pagerank de Google

En el primer semestre de 2007, un grupo de siete estudiantes de segundo semestre
eligio trabajar con el tema del sistema Pagerank de Google. Posteriormente, deci-
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di6 trabajar sobre el asunto de las mediciones cualitativas empleadas para hacer
un escalafén de las paginas de internet cuando alguien utiliza motores de busqueda

tales como Google.

Después de estudiar estos asuntos del contexto, el grupo exploré las matematicas
involucradas en el uso del sistema Pagerank de Google. Esto incluyé teoria basica
y avanzada de grafos, lo mismo que el conocimiento sobre el uso de algebra lineal
bésica, vectores y matrices (jen especial la enorme matriz Google!). Ademads, en el
reporte del proyecto se tratd tangencialmente el empleo de matrices estocasticas y

cadenas de Markov.

Como el grupo estaba conformado por futuros matematicos y futuros cientificos de
la computacion, se dedicé mucho tiempo a ganar conocimiento sobre la estructura
de internet cuando se la considera un grafo. Finalmente, se analizo el aparato ma-
tematico que sustenta el motor de buisqueda de Google con referencia a las medicio-
nes cualitativas desarrolladas al comienzo del reporte. Surgieron diversas preguntas
éticas sobre los criterios menos obvios utilizados por el sistema Pagerank y se ana-
lizé de qué manera la organizacién matematica del sistema tenia algunos beneficios,

pero también algunas deficiencias, desde el punto de vista de los usuarios.

El grupo en cuestién mostré como un proyecto ABP podria integrar algo tan con-
temporaneo como el motor de busqueda de Google con un tema matematico, la
teoria de grafos, que a menudo es dificil de ejemplificar a través de sus usos. En el
trabajo también se senala el hecho de que una inmensa e impresionante cantidad de
teoria -proveniente en parte de articulos y libros de investigacién sobre el tema- se
puede poner en juego en el modelo ABP, pues los estudiantes tuvieron que recurrir
a estas fuentes de informacion para poder abordar su problema. Asi, el modelo ABP
ofrece la oportunidad de diferenciar entre los resultados de aprendizaje de diferentes

grupos de estudiantes con respecto a sus ambiciones, destrezas especiales, etc.

1.2.4. El modelo ABP de Aalborg y las competencias ma-

tematicas

Después de presentar los tres ejemplos anteriores, vamos a hacer una consideracion
mas general del uso del modelo ABP de Aalborg en relacion con el aprendizaje de
las matematicas de estos grupos de estudiantes. Es evidente que el modelo contrasta
con la manera como se ensenan las matematicas en muchos otros ambitos educati-
vos, y difiere, por ejemplo, de un curso tradicional, en el que el profesor presenta
a los estudiantes la teoria de alguna porcién de las matematicas y, luego, ellos tra-
bajan sobre ejercicios o demostraciones de teoremas importantes. Esta forma de

ensenanza de las matematicas entrena a los estudiantes en la sintaxis matemaética
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pero, como se dijo al principio de este articulo, no garantiza una comprensién sig-
nificativa que sea la base para relacionar estas matematicas con las caracteristicas
y procesos de un ambito temdatico complejo en otro campo de conocimiento. Alu-
diendo a los tres ejemplos, muchos de estos estudiantes se convertiran méas tarde en
profesores de matematicas en diferentes niveles de educacion, o trabajaran en areas
donde se requiera cierto tipo de indagacién matematica en interacciéon amplia con
otros profesionales de diferentes campos de estudio. En todas estas situaciones se
requiere poder navegar en distintos ambitos de practica matematica dentro de una
situacion concreta y no sélo manejar matematicas abstractas. Para los estudiantes
de ingenieria, la posibilidad de manejar la brecha entre el formalismo y el uso se
podria considerar incluso mas urgente, y esto podria sugerir la conveniencia de tra-
bajar siguiendo alguna clase de modelo ABP al ensenar matematicas a un grupo
especifico de estudiantes de ingenieria.

A partir de los tres ejemplos se pueden destacar varios puntos acerca del modelo
ABP. En el ejemplo 1, un grupo de estudiantes trabajé en un escenario de aplica-
cion bastante complicado de ecuaciones diferenciales. El problema que tenian entre
manos no se podria haber resuelto sin involucrarse profundamente en conocer la si-
tuacién donde se iban a usar las ecuaciones diferenciales. Este enfoque significé que
los estudiantes aprendieran no solo por qué una ecuacion diferencial dada tiene esta
solucién exacta, sino que también aprendieran como se deberian interpretar las dife-
rentes constantes en un escenario dado de aplicaciéon y qué las habria hecho cambiar
de valor, etc. Esto les brind6 de nuevo la oportunidad de reflexionar sobre la validez
del modelo matematico porque, por ejemplo, si algiin conocimiento sobre el cual
el modelo estaba construido era impreciso, ello podria significar una gran inexac-
titud para el modelo entero. Este tipo de inexactitud podria tener consecuencias

catastréficas en cuanto a la expansion de una enfermedad como la gripe aviar.

Los siguientes dos ejemplos de trabajo en proyectos ABP muestran variaciones de las
mismas caracteristicas para este ambito educativo. En el ejemplo 2 se presenté como
se hicieron consideraciones metatedricas muy pertinentes cuando se tuvo que elegir,
entre muchas posibilidades, un modelo matematico dado para el andlisis de ADN.
Cada eleccion diferente del enfoque matematico realmente alteraria lo que se podria
concluir a partir de los datos empiricos. Ademas, los estudiantes aprendieron cémo
la situacion de aplicaciéon de un formalismo matematico estaba influida por mu-
chos factores. Los datos empiricos eran erréneos, los médicos que utilizaban esta
tecnologia sabian poco sobre las matematicas involucradas, etc., y por tanto, los
rasgos importantes de una persona competente en usar las matematicas llegaron a
ser muy claros para los estudiantes durante la escritura del reporte. El trabajo en
el proyecto mostré claramente a los estudiantes que los nimeros no son sélo entida-
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des abstractas, sino que tras esos nimeros y tecnologias basadas en ellos hay una
gran posibilidad de variacién, dependiendo de los andlisis y el conocimiento tanto de
quienes construyen los modelos que hay detras de las tecnologias, como de quienes
los usan e interpretan. El didlogo de los estudiantes con los médicos en el hospi-
tal les permitié ver una dimensién del trabajo matematico que normalmente queda

escondida en la ensenanza que privilegia sélo el formalismo.

Por medio del ejemplo 3 teniamos la intencién de mostrar cuan impresionantes pue-
den ser algunas de las metas logradas por los estudiantes en el entorno de aprendizaje
del modelo ABP. Incluso en grupos muy grandes, la capacidad de recoger informa-
cién sobre una aplicacion técnica, como el motor de bisqueda de Google y el aparato
conceptual y matematico que soporta esta aplicacion técnica, se puede desarrollar
y aprender exitosamente. No es extrano, entonces, que los grupos de estudiantes de
primer ano lean articulos de investigacion en los que se aborda especificamente el
problema que ellos pretenden resolver. Con frecuencia, no tienen todas las herra-
mientas para comprender los detalles de tales articulos, pero con la ayuda de sus
facilitadores y de libros béasicos pueden organizar todos los elementos y crear un
proyecto de su propia autoria, con explicaciones que se ajustan a su propio nivel
de conocimiento de las matematicas o de la ciencia de computacién, etc. El mito
de la incompetencia de los estudiantes primiparos se puede revaluar fuertemente al
ver a estos alumnos producir analisis tan sofisticados como los de este grupo. En el
modelo ABP, los estudiantes trabajan con usos reales de las matematicas y no sélo
con sus teorias abstractas; ellos aprenden teoria matematica en un escenario mas
tradicional, basado en un curso, pero muy a menudo solo utilizan estas herramientas
indirectamente en los reportes de proyecto. Los cursos les presentan técnicas y herra-
mientas que apoyan su aprendizaje en los proyectos. En este sentido, el formalismo
matematico no se posiciona como la finalidad misma del aprendizaje, sino como un
medio, lo cual no significa, sin embargo, que los estudiantes de hecho no manejen
los detalles del formalismo y que no sean diestros en ello, sino méas bien que lo se-
gundo sucede porque lo primero genera las razones fuertes para poder enfrentar las
exigencias tradicionales del aprendizaje de las matematicas universitarias. Ademas,
es importante tener en cuenta que los ambitos de uso definidos por un problema que
contextualiza las herramientas matemaéticas simplemente no podria encajar dentro
de un curso de matematicas que considere las necesidades de todos los grupos de
estudiantes. En el modelo mixto de cursos clasicos de matematicas y aprendizaje
de las matematicas a través de ABP, se atiende tanto el entrenamiento sintactico
como la competencia de usar y recontextualizar las matematicas. Sin embargo, si los
estudiantes de ingenieria no necesitan una comprensiéon profunda de alguna teoria
matematica como tal -que podria argumentarse como muy importante en el caso de

estudiantes de matematicas- se podria argumentar que el modelo ABP es realmente
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suficiente para cumplir la mayoria de las metas de aprendizaje matematico para in-
genieria. Para muchos estudiantes de ingenieria, el aprendizaje de las matematicas
se puede comparar con los procesos que tienen lugar al aprender un nuevo idioma.
Al trabajar con escenarios de aplicacion, los estudiantes aprenden el uso del lengua-
je de las matematicas en la practica cotidiana, es decir, donde se inician todas las
complicaciones; la teoria gramatical de las matematicas solo los distanciara de la

competencia para aprender el lenguaje en uso.

Los tres ejemplos que hemos discutido son, por supuesto, apenas tres ejemplos elegi-
dos entre muchos otros de los proyectos que cada semestre producen los estudiantes
del primer ciclo de ciencias e ingenieria en nuestra universidad. El andlisis de otros
proyectos podria abrirnos el espacio para descubrir muchas mas caracteristicas del
uso del modelo ABP. En los ejemplos presentados nos hemos enfocado en los resul-
tados de aprendizaje relacionados con la brecha entre el formalismo y el empleo de
las herramientas matematicas. A continuacién nos gustaria considerar brevemente
otra perspectiva de estos hallazgos sobre el modelo ABP de Aalborg que hemos to-
cado solo de manera indirecta hasta ahora: el hecho de que este modelo promueve

el aprendizaje activo como un principio conductor.

1.2.5. El modelo ABP de Aalborg y el aprendizaje activo

., Cémo podemos entender el enfoque de aprendizaje basado en problemas y organi-
zado por proyectos con respecto al aprendizaje activo en la educacién universitaria?
Es claro que el marco del ABP para el trabajo de los estudiantes toma en serio la
forma como realmente se viven en la préctica la investigacién, el desarrollo cientifico
y la innovacién (Christensen y Henriksen, en prensa). El significado de los datos,
la teoria y el método en el modelo del aprendizaje basado en problemas entra en
una mezcla compleja de procesos iterativos de conceptualizaciones que implican re-
formulaciones de problemas de investigacion y nuevas conexiones entre diferentes
campos de estudio, incluso conexiones transdisciplinarias. De este modo, el modelo
ABP ofrece un espacio de aprendizaje activo y participativo en el sentido de que
deben hacerse conexiones y recontextualizaciones entre un ntimero de teorias, posi-
blemente a partir de una variedad de disciplinas, y deben ajustarse al abordar un
problema concreto y un reporte de proyecto con una justificacién propia, y con una

clara conclusién para su audiencia.

Este aspecto del aprendizaje activo inherente al modelo ABP se relaciona con el tra-
bajo de los estudiantes frente a un contenido especifico que se debe aprender. Con
todo, hay otro aspecto clave del aprendizaje activo inherente al modelo ABP que de-
be mencionarse. Queremos hacer hincapié en los procesos de aprendizaje que tienen
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lugar en los grupos que trabajan en proyectos. En una situacién de ABP, los facilita-
dores -profesores e investigadores de la universidad que tienen a su cargo los cursos
magistrales que reciben estos estudiantes- se relinen con el grupo de estudiantes para
conversar sobre qué hacer y como proceder. Su funcién es orientar y facilitar; su fun-
cién no es dirigir y decidir lo que los estudiantes deben hacer. Asi que la mayor parte
de los procesos de aprendizaje real tiene lugar cuando los estudiantes estan solos en
su grupo, sin el apoyo de los facilitadores. La mayoria de los grupos trabajan duran-
te muchas horas en sus proyectos y algunos experimentan con distintas técnicas y
procesos para optimizar su aprendizaje, ayudados también por sus facilitadores en
este aspecto. En cada grupo deben considerarse muchos procesos de cooperacion y
aprendizaje, propios de ambientes de trabajo reales. ; Cé6mo deberiamos compartir la
informacion que encontramos? ;Quién deberia escribir qué y cuando? ; Cémo pode-
mos usar mejor un horario de trabajo? ; Necesitamos alternar el liderazgo del grupo?
A los estudiantes no se les dice categéricamente qué hacer en este aspecto, a pesar
de que se les ofrece un curso donde se discuten diversas técnicas de colaboracion, de
manejo de proyectos y de reflexiéon sobre los procesos de elaboracion de los proyec-
tos. Todos los grupos tienen ambitos y necesidades muy diferentes: algunos luchan
con el trabajo ético de algunos miembros, otros luchan con el contenido que ha de
incluirse en el reporte -los cientificos de la computacion, por ejemplo, quieren pro-
gramar algoritmos de los resultados matematicos que desarrollan- y otros prefieren
invertir su energia en experimentar con varios sistemas para compartir conocimien-
to, diversos tipos de procesos de escritura, desarrollo de agendas para encuentros de

grupo; incluso algunos crean un wiki para su propio espacio de aprendizaje.

Todo esto significa que los estudiantes pasan por una experiencia de aprendizaje
activo y participativo, no sélo en relacion con el contenido disciplinar e interdisci-
plinar que requieren aprender, sino también en relaciéon con el proceso mismo de
trabajar en equipo en una tarea dada. El aprendizaje activo en este aspecto ofrece
a los estudiantes un entorno en el que se les invita a reflexionar y experimentar con
su cooperacion y comunicacién de grupo de una manera que les ayuda a desarrollar
competencias generales, valiosas en muchos otros contextos de su vida profesional y

personal.

1.2.6. Conclusiones

En lo que sigue destacamos, por una parte, algunas de las conclusiones que se pueden
sacar con respecto al modelo ABP de Aalborg en la forma en que se ha esbozado a
través de los estudios de caso, y por otra, consideramos los procesos de aprendizaje
activo. Algunas de las conclusiones son generales en su alcance, en tanto que otras

tratan directamente con el aprendizaje de las matemaéticas en la educacién univer-
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sitaria. Primero destaquemos algunas de las caracteristicas esenciales del modelo
ABP.

= El aprendizaje activo se logra permitiendo que los estudiantes trabajen so-
bre problemas que no estan estrictamente determinados de antemano por sus
profesores. Este tipo de autoria es el combustible principal que alimenta las
reflexiones sobre cémo resolver un problema particular, lo cual incluye invo-
lucrarse en la formulacion de una problematizacién de un area que se desea
abordar, identificar un problema delimitado que se quiere trabajar, lo mismo
que reflexionar sobre la metodologia cientifica y el enfoque desarrollado para
presentar el reporte del proyecto. La experiencia muestra que estos aspectos
de la generacién de un producto cientifico son muy complejos, por lo que se
requiere la ayuda de facilitadores que tienen experiencia en la investigacién
como parte de su trabajo cotidiano.

= En un entorno de aprendizaje que siga el modelo ABP, se posibilita que los
estudiantes desarrollen muchas competencias de trabajo en equipo y de co-
municacién. Asegurar un espacio de aprendizaje en el que surgen discusiones,
reflexiones, diferencias de opinién, etc., implica perfeccionar la capacidad de
los estudiantes para cooperar efectivamente, organizarse en equipos, reunirse

y adquirir conocimientos.

Estos aspectos del modelo ABP son generales en su alcance, pero constituyen un
ingrediente muy importante cuando se organiza el aprendizaje de las matematicas.
El sistema general ABP apoya la cooperacién estrecha entre estudiantes, la inter-
accion enfocada con facilitadores y moldea los procesos de aprendizaje que tendran
lugar. Ademas de los rasgos generales, también hemos tocado algunos que tienen
una influencia directa con respecto a la brecha entre el formalismo y los usos y

recontextualizaciones de las matemaéticas en otros campos del conocimiento.

= El contenido matematico en el que los estudiantes llegan a ser competentes
es el que realmente tiene un valor de uso especifico directo para un programa

educativo.

» Diversos grupos de estudiantes pueden finalmente aprender diferentes porcio-
nes de las matematicas, dependiendo del proyecto que escriban, pero a su vez,
se les ofrece la oportunidad de poder cerrar la brecha entre el formalismo y

Sus usos.

= A los estudiantes se les da la oportunidad de aprender que el uso de las ma-
temdticas en otros campos del conocimiento no es un simple proceso de apli-
cacion o de transferencia, sino que se trata de un proceso complejo de recon-
textualizacién dentro de un escenario especifico de practica.
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= El modelo ABP puede integrar matematicas en un estudio interdisciplinario

de un problema del mundo real.

= El modelo también abre la posibilidad de hacer metarreflexiones y metateo-
rizaciones que iluminan el papel de las matematicas en la construccién de
soluciones tecnolégicas. Aqui la dimensién ética y social de las matematicas
se hace evidente. Este tipo de reflexiones forman parte de las competencias de
un profesional en el mundo actual (Skovsmose, 2008).

Estas cuatro conclusiones definen lo que podrian considerarse algunos de los bene-
ficios producidos al utilizar el modelo ABP para el aprendizaje de las matematicas
universitarias. Son variaciones de respuestas del modelo ABP al problema de cerrar
la brecha entre el formalismo y los usos de las matematicas: la relevancia de las
matematicas aprendidas, las matematicas al servicio de resolver un problema deter-
minado, el modelaje mateméatico en un escenario de practica dado y la posibilidad

de usar matematicas en estudios interdisciplinarios.

Después de establecer estas conclusiones, es desde luego importante abordar el hecho
de que hay muchas discusiones educativas retadoras e interesantes que involucran el
uso del modelo ABP, como se ha esbozado. Durante los tltimos afnos, el asunto de
la evaluacion individual de los estudiantes universitarios ha sido la prioridad de la
agenda de las politicas educativas danesas. Debido al temor de que se colaran en el
sistema de evaluacién grupal algunos estudiantes que no se habian comprometido del
todo en el proyecto -y que por tanto no habian alcanzado el nivel de competencia
requerido en cada nivel-, el gobierno decidié prohibir la realizacién de exdmenes
grupales, como ha sido la tradicion en la Universidad de Aalborg. ;Cémo se puede
decir cudles estudiantes han contribuido realmente a la investigaciéon y a escribir
el reporte del proyecto? La idea de evaluar a los estudiantes inscritos en el mismo
semestre en la misma universidad, pero sobre la base de reportes de proyectos muy
diferentes -ellos rara vez comparten el mismo contenido matematico, aun si son
estudiantes de matematicas-, sugiere que se requieren muchas consideraciones para
garantizar una evaluaciéon ajustada a los logros de cada estudiante.

Otro desafio interesante para el modelo ABP de Aalborg es la pregunta sobre el
nivel de libertad que los estudiantes deberian tener para escoger el tema de trabajo.
Evidentemente, los temas estan limitados por la educacién en cuestion, pero algunos
programas de estudio tienen definiciones muy estrictas de lo que ha de aprenderse
a partir de la escritura de un reporte de proyecto dado en un cierto semestre de
educacion. De esta manera, los planeadores educativos tienen mucho que pensar
con respecto al modelo ABP. En la practica, puede funcionar simplemente como

un marco para escribir de un modo especial un contenido casi predeterminado o
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puede ser un marco para procesos extremadamente abiertos desde el principio, que
dejan espacio para que los estudiantes trabajen a través de un enfoque basado en
problemas.

Otros retos interesantes incluyen problemas que conciernen a la diversidad en cuanto
a los antecedentes culturales de los estudiantes, lo mismo que a las diferencias de
edad e identidad entre miembros de grupos, etc., lo que abre el debate sobre los
limites para la implementacién del modelo ABP en distintos modelos educativos y
para diferentes tipos de programas. La Universidad de Aalborg aborda de maneras
complejas todos estos asuntos y el modelo ABP se redefine constantemente, tanto a
través de la practica educativa como de la influencia de la investigacién educativa,
sobre los diversos aspectos de la utilizacion del modelo ABP. Aqui hemos tratado de
mostrar cémo el modelo es un marco benéfico para el aprendizaje de matematicas
relevantes en un escenario de uso especifico y como los procesos de aprendizaje que
ocurren a través del modelo ABP son activos en alto grado.
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1.3. Matematica para ingenieros. Una mirada desde la

didactica de la matematica

Carlos Caamano Espinoza®

1.3.1. Introduccién

La preocupacion por la ensenanza y el aprendizaje de la matematica ha estado
presente en la comunidad matemética mundial desde comienzos del siglo XX. Esta
situacién se concreta en Roma (1908), durante la realizacién del Primer Congreso In-
ternacional de Matematica, cuando se crea la Comision Internacional de Instruccién

Matemética (Icmi, por su sigla en inglés).

Su primer presidente fue Félix Klein y su primer secretario general, Henri Fehr.
Para comenzar su trabajo, esta comisién adopté como el 6rgano oficial el diario
internacional L’Enseignement Mathématique, fundado en 1899 por el propio Henri
Fehr y Charles Laisant, que se mantiene en esa condicién hasta hoy. La Icmi también
publica, con la direccion editorial de la secretaria, un boletin que aparece dos veces
al ano y al que se puede acceder en internet, a partir del boletin N° 39, de diciembre
de 1995 (www.unige.ch/math/EnsMath/).

Posteriormente, en el Congreso Internacional de Matematica, realizado en Estras-
burgo en 1920, se crea la Unién Matemédtica Internacional (IMU, por su sigla en
inglés), como una organizacion cientifica internacional, no gubernamental, que hace
suya la Iemi como comision oficial y cuyo propédsito es promover la cooperacion inter-
nacional en matematica. Esto define la posicién normal de la comisién hasta hoy, de
modo tal que sus destinos son establecidos por la Asamblea General de la IMU, que
es también responsable de la eleccién del comité ejecutivo y de su financiamiento.

La IMU es miembro del Consejo Internacional de Unién Cientifica (Icsu, por su sigla
en inglés), lo que implica que tanto la Iemi como la IMU deben respetar los estatutos
del Icsu, donde se establece, por ejemplo, el principio de la no discriminacién. Este
principio afirma el derecho y la libertad de los cientificos de asociarse en actividades
cientificas internacionales, sin importar la ciudadania, la religion, la postura politica,

el origen étnico o el sexo.

Asi, la Unién Matemaética Internacional ha establecido como sus objetivos funda-
mentales promover la cooperacién internacional en matematica, y animar y apo-
yar otras actividades matematicas internacionales, para contribuir al desarrollo de

5ccaamano@ucm.cl. Magister en educacién matematica, Universidad de Santiago de Chile. Doc-

tor en didactica de la matematica, Universidad de Barcelona.
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la ciencia matematica en cualquiera de sus aspectos: puro, aplicado o educativo
(http://www.mathunion.org).

Por otra parte, queremos destacar uno de los acontecimientos mas importantes en la
vida de la comunidad matematica internacional, preocupada por la ensenanza de la
matematica. Este hecho, ocurrido a fines de los anos sesenta, que permitié el inicio
del desarrollo de la investigacion en educacion matematica y que acerco posiciones
entre los matemaéticos y los educadores matematicos, fue la decision de la IMU de
crear el Congreso Internacional de Educacién Matematica (Icme, por su sigla en
inglés), sostenido con los auspicios de la Iemi y que se realiza cada cuatro anos.

El programa cientifico de cada Icme es planeado por el Comité de Programa In-
ternacional (IPC, por su sigla en inglés), que trabaja independientemente del Iemi.
Sin embargo, para asegurar continuidad y conformidad con principios generales del
Icmi, esta comision tiene normalmente representantes en el IPC (el presidente y la
secretaria del Iemi son miembros de oficio del IPC) y uno de ellos actia como oficial
del enlace con el comité de la organizacion local del congreso.

La organizacién préactica y financiera del Icme es de responsabilidad independiente (o
nacional) del comité de organizacién local, de acuerdo con los principios generales
del Iecmi. Es decir, a pesar de que la Icmi no es la que organiza un Icme, ni en
los términos cientificos ni en los aspectos practicos del congreso, todos los Icme se
sostienen gracias a los auspicios del Icmi.

Los Icme realizados hasta ahora son los siguientes:
Icme-1, 1969, Lyon (Francia)

Icme-2, 1972, Exeter (Reino Unido)

Icme-3, 1976, Karlsruhe (Alemania)

Icme-4, 1980, Berkeley (Estados Unidos)

Icme-5, 1984, Adelaida (Australia)

Icme-6, 1988, Budapest (Hungria)

Icme-7, 1992, Quebec (Canad4)

Icme-8, 1996, Sevilla (Espana)

Ieme-9, 2000, Tokio/Makuhari (Japén)

Icme-10, 2004, Copenhague (Dinamarca, www.icme-10.dk/)
Icme-11, 2008, Monterrey (México, http://icmell.org/)

Algunos temas sobre ensenanza de la matematica para carreras no matemaéticas, en
particular para ingenieria, trabajados en los tltimos eventos de la IMU, aparte de
los desarrollados por la propia comunidad de educadores matematicos, son:
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1. “Mateméticas como tema de servicio” (Icmi, 1987).
2. “Matematicas para no especialistas” (Icme-6, Hungria, 1988).

3. “Matematicas de pregrado para diferentes grupos de estudiantes”, con dos
subgrupos: “Matematicas para no especialistas en las areas de ciencias” y

“Cursos de servicio para no cientificos” (Icme-7, Canadd, 1992).

4. “La transicién de las matemadticas escolares a las universitarias”, “Anélisis
de las responsabilidades de los departamentos de matematicas” y “Sistemas
matemaéticos tecnosimbdlicos” (Ieme-8, Espana, 1996).

5. “Matematicas en el nivel universitario”, tratdndose el problema concreto de

“La formacién matemética en carreras técnicas” (Iemi, Singapur, 1999).

6. En Ieme-9 (Japén, 2000), Ieme-10 (Dinamarca, 2004) e Ieme-11 (Monterrey,
2008), estos temas se han seguido presentando, con un aumento significativo
y creciente, tanto en la calidad como en la cantidad de investigaciones que se

estan trabajando en esta linea.

Una de las lineas de investigacién méas trabajadas hasta ahora esta relacionada con la
ensenanza y el aprendizaje de la matematica. Esta se ha focalizado en la busqueda de
las formas mas adecuadas para enfrentar los desafios que se presentan en los distintos
niveles del sistema educativo. En particular, diversas investigaciones han demostrado
las notorias deficiencias de la “ensenanza tradicional” o “ensenanza centrada en la
accion del profesor en el aula”. Ademas, en la educacién universitaria estd presente
el hecho de que la ensenanza es generalmente axiomatica, con pocas aplicaciones,
con un marcado predominio de los procedimientos algoritmico-algebraicos por sobre

lo conceptual, con significado, aunque éste sea intuitivo.

También se confirma la fortaleza de las teorias constructivistas, en todos los niveles
de la ensenanza, aunque con distintos matices. Y se propone que estas teorias deben
traducirse, en la préactica, en técnicas concretas centradas en aprendizajes basados
en la resolucion de problemas de situaciones reales y en pequenos grupos de trabajo.

Sin embargo, el problema clave de una formacién matematica adecuada para los
ingenieros sigue aun sin respuesta completa. Varias de las experiencias innovadoras
conocidas, desarrolladas hasta ahora en este ambito, se centran en estudios modeliza-
dores en el drea de andlisis y estadistica, lo que aun es insuficiente. Falta profundizar
mas en el sentido que debe otorgarse al algebra y al algebra lineal en unos nuevos

programas de formacién en ingenieria.
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Por nuestra parte, en una investigacién reciente (Fondecyt N°1030117, 2005), abor-
damos el estudio de una propuesta para la ensenanza de algunos contenidos especifi-
cos de algebra lineal en ingenieria. En este estudio se utilizan las “bases didacticas
para una formacion integrada de algebra lineal y geometria en ingenieria”, que ela-
boramos en nuestra tesis doctoral (2001).

Nuestra idea principal es que el dlgebra lineal no se desarrollo para resolver nuevos
tipos de problemas relacionados con la tecnologia, sino para simplificar numerosas

soluctones en forma unificada.

Asi, proponemos profundizar en el contacto y la relacion entre el elemento algebraico
con el elemento geométrico necesario para que los estudiantes puedan comprender
la dimension practica y modelizadora del algebra lineal, sin olvidar el tema de la

forma, asociado por lo general sélo al dibujo.

1.3.2. Algunas caracteristicas curriculares

En la investigacién ya mencionada, a partir de una reflexién contextual de los pro-
gramas de estudio de las asignaturas de dlgebra y algebra lineal, para carreras de
ingenieria de diferentes universidades chilenas y de los textos més usados en ellas, lo-
gramos identificar algunas caracteristicas curriculares que se han institucionalizado

en su formaciéon matematica. En general, confirmamos que:

1. Las asignaturas tienen un enfoque tradicionalista, que privilegia el desarrollo
del pensamiento algoritmico-estructural.

2. No se considera explicitamente el uso de la representacién gréafica de algunos

conceptos que la requieren, asi como su necesaria interpretaciéon geométrica.

3. No se aprecia una orientaciéon clara de las aplicaciones de ciertos contenidos a

problemas del ambito de la ingenieria.

Un anélisis mas detallado nos permitié establecer una serie de deficiencias para el
logro de los objetivos de los aprendizajes matematicos, entre las que destacamos las

siguientes:

1. Se tiende fundamentalmente a la abstraccién, con ausencia casi absoluta de

una visién intuitiva y de consideraciones bésicas de visualizacién.

2. Existe una desconexién temaética, aunque aparentemente hay relacién logica

entre los contenidos.

3. Se mezclan algunos contenidos con los de andlisis funcional y no se observan

elementos constructivos.
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4. No se aprecia una secuencia bien organizada, de tal manera que se produzca

alguna integracion del algebra con la geometria.

5. Los problemas se reducen a aquellos de tipo puramente matematico, que in-
volucran sélo la realizacion de determinados calculos y el uso de ciertos algo-

ritmos.

6. En los instrumentos de evaluacién aplicados, se mide fundamentalmente la
utilizacion de procesos algebraicos.

Esto nos permitié establecer los elementos preliminares, que permiten justificar la
conveniencia de que los estudiantes relacionen contenidos algebraicos con contextos
reales del ambito profesional y con contextos matematicos e interdisciplinarios de
estas carreras. Por consiguiente, fue posible planificar las actividades, de tal modo
que los estudiantes pudieran vivir el contenido matematico a partir de diversas
situaciones del mundo real y de sus propios conocimientos previos.

Ademas, a partir de la objetivacion de los contenidos, realizamos un analisis histérico
epistemoldgico de los respectivos contenidos matematicos considerados en el estudio,
determinando asi el valor que le otorgariamos a cada uno de ellos. Para tal efecto,

tuvimos en cuenta:
1. Nuestra concepcién de la geometria.
2. La explicacion de habilidades y procesos relevantes que se debian aprender.

3. Los tipos principales de problemas que se abordarian y las estrategias generales
para el trabajo de campo.

De este modo, utilizamos la geometria como método para visualizar conceptos y pro-
cesos matematicos, ya que uno de los procesos que han caracterizado el conocimiento
geométrico es la visualizacion. Este proceso lo entendemos, en general, como aquel
que permite dar “forma” mental o fisica a determinados conceptos y procedimientos
matematicos, no necesariamente “figurados”. Por tanto, consideramos que la geo-
metria es un método que permite visualizar no sélo formas y figuras, sino también,
y lo que es aiin més relevante en la ensenanza universitaria, como un método para

visualizar conceptos y procesos sistematicos.

Tal como lo senalara Miguel de Guzman (1994): “La visualizacién aparece como algo
profundamente natural, tanto en el nacimiento del pensamiento matematico como
en el descubrimiento de nuevas relaciones entre los objetos matemaéticos, y también,

naturalmente, en la transmisién y comunicacion propias del quehacer mateméatico”.
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En esta forma, los estudiantes lograron reconocer los aprendizajes de los contenidos
de la asignatura de algebra lineal y apropiarse de ellos, considerados en las unidades
de aprendizaje de este estudio, a partir de una perspectiva geométrica, apoyados en

la visualizacion grafica.

1.3.3. Construccién, reconstruccion y situacion del conoci-

miento matematico

Aqui, los objetos geométricos se interpretan como conocimiento situado, en la medi-
da en que permiten visualizar contenidos algebraicos y, al mismo tiempo, reconocer
el valor de la interpretacion de ciertos fenémenos reales. Para tal efecto, conside-
ramos las conocidas categorias de objetivos de visualizacion del objeto matematico
trabajado por Zimmerman (1991), esto es: a) bésicos; b) funcionales; c) generales,

y d) relacionados especificamente con el calculo.

En este proceso de construccién del conocimiento, se debe considerar su forma de
institucionalizacién, reconociendo los elementos que se han de superar. Nuestro tra-
bajo permitié optimizar las relaciones entre el contenido algebraico y geométrico,
partiendo del reconocimiento de elementos desconocidos u olvidados, necesarios para
la construccién, reconstruccién y situacién del conocimiento matematico requerido.
Al mismo tiempo, verificamos que los contextos y la vida cotidiana desempenan un
papel fundamental en cada una de las fases del aprendizaje y la ensenanza de la
matematica.

Existe consenso hoy dia en que la ensenanza y el aprendizaje de la matematica de-
ben ser contextuales, es decir, han de partir de contextos que revistan interés y que
tengan pertinencia con el mundo real. En particular, planteamos que en la ensenan-
za superior la matemdtica para no matematicos (por ejemplo, en ingenieria) debe
basarse en la introduccién del objeto matematico aplicado, pero sin “desperfilar” la

propia matematica.

1.3.4. Elementos curriculares

Para planificar el desarrollo del contenido, consideramos los siguientes principios:

1. Seguir la ensenanza investigativa de Dubinsky (1996). Esto es, promover pro-
ducciones que permitan reconocer como estan pensando los estudiantes y el

esfuerzo realizado para dar sentido a una situaciéon matematica, a través de:

a) La ensenanza ciclica: trabajo en clases, relacionado con las actividades y
discusion de estos problemas y sus soluciones.
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Las

actividades se disenaron de tal manera que, como resultado de rea-

lizarlas, o aun de intentarlas, el estudiante lograra hacer abstracciones

reflexivas para llegar a las construcciones mentales de acciones, procesos

y objetos matemaéticos apropiados.

b) El aprendizaje cooperativo: creacién de un ambiente de interaccién so-

cial en pequenos grupos de trabajo, que conduce al desarrollo conceptual,

considerando métodos alternativos de resolucion de problemas plantea-

dos.

Mantener la conciencia de las estructuras que estan construyendo.

2. Usar las bases para la seleccién de contenidos y actividades de Presmeg (1999).

En la elaboracion de las actividades, tuvimos en cuenta las posibilidades y

elementos facilitadores del pensamiento basado en imagenes en la resolucion

de problemas y otros aspectos que permiten facilitar el pensamiento visual,

que detallamos a continuacién:

a) Las

posibilidades del pensamiento basado en imagenes:
Las imégenes intensas de cualquier tipo tienen ventajas nemotécni-
cas.

Las imégenes concretas son efectivas en alternancia con modos no

visuales, tales como el analisis 16gico o uso facil no visual de féormulas.
La imaginacion dinamica es potencialmente efectiva.

La imaginacion que estd al servicio de una funcién abstracta es po-
tencialmente efectiva.

aspectos que pueden facilitar el pensamiento visual:

Un ambiente de clase controlado, pero relajado y sin apresuramientos.
El uso de dibujos por parte del profesor donde no aparezcan diagra-
mas que no sean indispensables.

Uso de la imagineria del profesor, es decir, que muestre mediante
gestos u otra forma de llamar la atenciéon que estd utilizando una
imagen.

Uso de la imagineria de los alumnos: el profesor les pide a los alumnos
que se hagan una imagen o que piensen en figuras en movimiento.
Uso de un componente mévil: se emplea el brazo, dedo o el cuerpo en
movimiento de los alumnos; la utilizacion de modelos manipulativos
y concretos.

Uso del color (con el Maple).

Ensenanza sin barreras metodoldgicas: el profesor apela a la intuicién

de los alumnos; usa métodos de busqueda de patrones; retrasa el
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empleo del simbolismo; utiliza deliberadamente conflictos cognitivos,

y muestra y acepta métodos alternativos.

c¢) Los peligros potenciales que tratamos de evitar en el desarrollo del proceso

fueron los siguientes:

» Lo concreto de una sola imagen puede ir asociada a detalles irrele-
vantes o puede introducir detalles falsos.

» Una imagen estandar de una figura puede inducir un pensamiento
poco flexible, que impida reconocer un concepto en un diagrama no
estandar.

= Una imagen incontrolable puede ser persistente y de esa manera im-
pedir la apertura de caminos mas provechosos.

= Especialmente si es vaga, la imagineria que no esta asociada a un

proceso de pensamiento analitico riguroso puede ser de poca ayuda.

1.3.5. Elementos semidticos-comunicativos

Para la elaboracion de las actividades que permitieran reconocer el objeto matemati-

co, partimos de las siguientes bases, aceptadas cominmente en la actualidad:

1. La matematica es una actividad humana implicada en la solucion de cierta

clase de situaciones problematicas, de la cual emergen y evolucionan progresi-

vamente los objetos matematicos.

De acuerdo con las teorias constructivistas, los actos de las personas son la

fuente genética de las conceptualizaciones matemaéticas.

Los problemas matemaéticos y sus soluciones se comparten en instituciones o

grupos de trabajo implicados en su estudio.

Por tanto, los objetos matematicos son entidades culturales socialmente com-

partidas.

Las matematicas son un lenguaje simbélico, en el que las situaciones-problema
y sus soluciones se expresan. Los sistemas simbdélicos mateméaticos tienen tanto

una funcién comunicativa como instrumental.

Las matematicas constituyen un sistema conceptual logicamente organizado.
Una vez que un objeto matematico se ha aceptado como parte de dicho sistema,
se puede considerar una realidad textual y un componente de la estructura
global.
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Puede concebirse y tratarse como una totalidad para crear nuevos objetos
matematicos e introducir nuevas restricciones en el lenguaje y el trabajo ma-

temaético.

El siguiente componente adicional, y no menos importante, estd focalizado en la
necesidad de utilizar multiplicidad de representaciones para la comprension de un
concepto matematico. Las clases de representaciones que utilizamos fueron las si-
guientes:

1. Lingiiisticas

a) Verbales (nombres, definiciones y otras).

b) Simbdlicas (algebraicas y computacionales).
2. Figurativas

a) Modelos a escala (objetos del mundo real e imdgenes en perspectiva).

b) Gréficos (convencionales y computacionales).

De esta manera se establecio la relacion entre los objetos matematicos seleccionados

y sus significados para la investigacion, de acuerdo con los siguientes aspectos:

1. Pedagdégico-contextual, que explica las caracteristicas que sustentan el pro-
ceso de planificacién de tareas para producir la construccién de significados

requerida.

2. Semiotico, que orienta el reconocimiento de los elementos que facilitan la pues-

ta en relacién de los significados personales sobre los contenidos matemaéticos.
3. Historico-epistemoldgico, que se focaliza en los procesos de construccién del

objeto matematico.

1.3.6. Comentarios finales

Lo primero es que hemos conseguido reproducir algunos resultados importantes,
como los obtenidos por Alsina (1998), ya que este tipo de introduccién del objeto

matematico nos ha permitido:
1. Facilitar una aproximacion a la educacién matemaética realista.
2. Combinar el conocimiento matemaético con el sentido comun.
3. Desarrollar la intuicién como instrumento.

4. Incrementar la ingenuidad matematica y la creatividad.
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10.

11.

12.

13.

Enriquecer los recursos para la resolucion de problemas.
Promover el uso de algunas herramientas tecnologicas.

Visualizar el binomio matemaética-realidad como una importante componente

epistemoldgica.
Desarrollar un andlisis critico de la informacién.

Apreciar la potencia del modelaje como herramienta de ensenanza y aprendi-

zaje.
Desarrollar la curiosidad matemética en descubrimientos.

Propiciar una aproximacion investigativa en la ensenanza y aprendizaje de la

matematica.
Promover el interés emocional en el aprendizaje de las matematicas.

Mirar matematicamente nuestro entorno y la sociedad.

Por ultimo, demostramos una vez mas la potencia del trabajo colaborativo, realizado

con pequenos grupos de estudiantes (tres o cuatro). Esto se fortalecié con la utiliza-

cion de guias de aprendizaje adecuadas, las que, junto con el contacto e integracion

geométrico-algebraico, permitieron que:

... los estudiantes no solo valoraran la preocupacion y el compromiso docente de su

profesor, tanto en el aula como fuera de ella, sino que, mds importante aun...

. reconocieran que pueden aprender matemadtica.
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1.4. Construccion de conocimiento matematico e inclusion.

Experiencia con indigenas y afrocolombianos en la
Universidad del Valle

César A. Delgado Garcia®

Maria Cristina Tenorio’

“Mi trabajo sobre la educacion y clase social en los pri-
meros anos, por ejemplo, me ha convencido de que el
sistema escolar es, en efecto, nuestra forma de mante-
ner un sistema clasista (...); por lo que a los nifios de la
parte mas baja de los niveles socioeconémicos se refiere,
es un sistema que mutila su capacidad de participar con
plenos derechos en la sociedad, mutilacion que lleva a
cabo de manera efectiva y a una edad muy temprana”.

Jerome Bruner

Resumen

El aumento de cobertura en la educacion superior hace visible el problema del alto
porcentaje de fracaso académico en la universidad colombiana, de manera especial
en la publica, a donde llegan los jovenes de estratos populares; este problema se
estda contabilizando y analizando como desercion estudiantil, pero ain no se ha
diagnosticado bien. Las matematicas, y en particular el modelo pedagdgico que
orienta su ensenanza, son parte de esta indeseable situacion. En la busqueda de una
solucion, la Vicerrectoria Académica de la Universidad del Valle aprobé un proyecto
de investigacién (2006), el cual incluia el desarrollo de cursos piloto de calculo para
una poblacion multiétnica que generalmente abandona sus estudios universitarios
en las carreras de ingenieria, en los dos primeros anos. Se deseaba comprobar que,
en ciertas condiciones educativas, en un ano era posible transformar la formacion

matemdtica que, en general, resulta insuficiente para responder a las demandas del

6Departamento de Mateméticas, Universidad del Valle, Cali, Colombia, cedel@univalle.edu.co;
cedelg@gmail.com. Licenciado en matematica y fisica, Universidad del Valle, Colombia. Master
en matematicas, Universidad del Valle, Colombia. Master en didactica de las mateméticas y las
ciencias experimentales, Universidad Auténoma de Barcelona, Espana. Doctor en didéactica de las
matematicas y las ciencias experimentales, Universidad Auténoma de Barcelona, Espana.

"Instituto de Psicologia. Proyecto Universidad y Culturas - Vicerrectoria Académica, Univer-
sidad del Valle. uniculturas@univalle.edu.co, cristenorio@cable.net.co. Psicéloga, Universidad del
Valle, Colombia. Méster en psicoandlisis, Universidad de Paris, Francia. Doctor en psicologia de la
comunicacién, Universidad de Barcelona, Espana.
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curriculo de estas carreras. Para este objetivo, se propuso una estrategia didactica
socioconstructivista, destinada a afectar las actividades de ensenanza y de estudio
del calculo. Tal estrategia se implementé en el marco de un proceso de investigacion-
intervencion. Se buscaba explicitar algunas acciones que pueden servir para disenar
estrategias educativas que brinden, una oportunidad real de asimilar conocimientos
cientificos y tecnologicos, y responder a las exigencias académicas, que demanda la
formacion profesional en ingenierias. El resultado més destacado consistié en revertir
la desercién. Hoy, después de seis semestres, permanecen en los planes de ingenieria
el 65 % de los estudiantes del curso y varios han obtenido estimulos académicos.

1.4.1. Introduccion

El aumento de la cobertura educativa -accién necesaria de la sociedad contem-
poranea, para posibilitar bienestar y oportunidades reales de inclusién a poblaciones
cuya trayectoria de vida esta limitada por su origen social- hace visible la lentitud
de respuesta de un sistema educativo que tradicionalmente ha trabajado en funciéon
de los mas preparados y mas dotados, pero que, en la actualidad, no logra responder
al reto de atender a aquellos que, por su origen, tienen una ezperiencia diferente de
la que se desarrolla en los ambientes mas afines con el modelo pedagdgico tradicional.

Segun los expertos,

La expectativa social de que la escuela revierta los procesos de desigual-
dad social es empiricamente falsa...; en ningtin caso se observa una dis-
minucién espectacular de la herencia social en las trayectorias sociales y
laborales de las nuevas generaciones respecto de las de sus padres (Pérez,
2001, p. 8).

Los documentos politicos sobre ampliacién de acceso a la educacién superior gene-
ralmente nos plantean que ésta posibilita el ascenso social y econémico. Con todo,
no explican cuales son los mecanismos que lo hacen posible. Poco a poco empieza a
ser claro que si bien el diploma profesional mejora las condiciones de contratacion,
realmente su mayor poder no es éste sino el hecho de comprender y aprender a

manejar las reglas del juego socioeconémico en las sociedades contemporaneas:

[...] aumenta las oportunidades de comprender el entorno cada dia mas
ensanchado por los avances tecnoldgicos; permite participar en la vida
social, politica y econdémica de manera més operativa (...) incorpora a
sectores sociales antes excluidos a procesos culturales y a significados

simbdlicos propios de los modos de vida contempordneos (Ibid.).

Por esta razon, hay que leer las altas tasas de desercién en la educacion supe-
rior en todos los paises de América que han ampliado masivamente la cobertura
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-incrementando el ingreso pero sin transformar el modelo pedagdgico-, como el fra-
caso del sistema educativo en crear las condiciones académicas que harian posible la
permanencia y graduacién de los jovenes. Un sistema educativo que no transforma
las experiencias de jovenes procedentes de familias antes excluidas de la educacion
media y superior, que no logra desarrollarles nuevas habilidades -necesarias en el
mundo académico-, ni les ayuda a dominar las préacticas que la universidad exige
para apropiarse del conocimiento formal, es un sistema que fracasa en su funcién so-
cial. En el nivel universitario colombiano la desercién es actualmente del 45 % (segin
informes del Observatorio Nacional del Ministerio de Educacién). Sin embargo, si la
midiéramos por estratos socioeconémicos, encontrariamos que el mayor porcentaje
de fracaso se presenta en los estratos populares, rurales y de poblaciones minorita-
rias. Es evidente que en Colombia los pobres no han tenido el tipo de experiencias
que permite desarrollar la mente que la universidad exige.

Pérez (2001) denuncia las consecuencias de no analizar cémo funciona el sistema

educativo y de suponer que todo es resultado de los talentos individuales:

Pareceria que el papel de la escuela es estrictamente académico y admi-
nistrativo: fija objetivos cognitivos, planifica tareas, disena estrategias
pedagogicas orientadas por la eficacia, el cumplimiento y el éxito, con
independencia de los usuarios de tales modelos educativos. ;Serd po-
sible hacer el bien educativo sin saber a quién? Evidentemente, no se
tienen suficientes datos de desercién, rezago e ineficiencia terminal en
todos los niveles educativos, como para poner en cuestién esta visién. Si
se mantiene como incuestionable esta perspectiva, el saldo negativo se
transfiere directamente al individuo y a su familia. Son ellos responsa-
bles del fracaso escolar por no contar con las condiciones necesarias para
cumplir con las expectativas institucionales, como si éstas dependieran
de ellos (Pérez, 2001, p. 3).

El estudio de la calidad de la educacién que estan recibiendo los ninos y adolescentes
revela que los factores estructurales se ubican en dos planos: el de la poblacion

estudiantil y el del sistema educativo.

Respecto al primer plano, se senalan factores socioecondmicos y socioculturales, y
en el segundo se hace referencia a los modelos pedagogicos y a las estrategias cu-
rriculares que éstos definen®. Si bien con el Spadies (Sistema para la Prevencién y
Anélisis de la Desercién en las Instituciones de Educacién Superior), el Cede (Centro

8Compartimos la concepcién de George Posner (1998), segiin la cual “El curriculo no es mas que
la concrecién especifica de una teoria pedagogica para volverla efectiva y asegurar el aprendizaje
y el desarrollo de un grupo particular de alumnos para la cultura, la época y comunidad de la
que hacen parte” (Posner, 1998, p. XXVI). Sin embargo, como Posner mismo reconoce, no es una
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de Estudios sobre Desarrollo Econémico de Uniandes) y el Ministerio de Educacién
Nacional se ha medido la incidencia en la desercion de las condiciones socioeconémi-
cas, académicas e institucionales (MEN, 2008), los factores que ellos llaman ins-
titucionales no se estudian como factores determinantes de buena o mala calidad
educativa, sino como clases de instituciones: publica o privada, técnica, tecnolégica
o universitaria. No se estudia ni analiza qué tipo de educacion se esta ofreciendo,
ni mucho menos se toma en cuenta cémo la masificacion de todo el sistema educa-
tivo ha estado acompanada de un descenso notorio en los resultados de las pruebas
de Estado. Para nosotros este punto es vital por cuanto reconocemos, como lo hace
Jerome Bruner (2000), que el fracaso escolar “(...) es, posiblemente, menos una cues-
tién de habilidades por parte del estudiante que nuestro fracaso para comprender
cémo ensenar...”. En resumen, el problema de la permanencia comprende diferentes

aspectos que hay que analizar en el momento de buscar estrategias para su solucion.

En este ultimo sentido se relaciona el problema citado con el que ya hace mas de 20
anos denominamos “Problema del empalme entre las matematicas de la secundaria
y las de la universidad” (Delgado et al., ERM, 1990), el cual se manifiesta en altas
tasas de fracaso en los primeros cursos de matematicas, de los alumnos que ingresan
a los planes de ingenierfa y ciencias. Incluso es frecuente que los cursos basicos
de célculo I, céalculo IT y algebra lineal se repitan dos y tres veces. Uno de los
factores que en los tltimos anos hacen mas visible la ruptura con las matematicas
del bachillerato es el aumento de cobertura de la universidad; en parte porque los
grupos son cada vez mas numerosos, y en parte porque no se toman en consideracion
las diferentes rupturas y contradicciones que se presentan entre los tres elementos
del proceso: el modelo pedagogico, la formacion matemdtica previa de los estudiantes
y las condiciones objetivas de la actividad de estudio del alumno. En particular,
resulta preocupante que esfuerzos por ampliar la inclusiéon de grupos étnicos como

9

los indigenas y afrocolombianos en la educacion superior” se pierdan porque al cabo

de dos anos la desercién de éstos en los programas de ingenierfa sea casi del 63 %.

Esta preocupacion condujo a que la Universidad del Valle incluyera en su Plan
Estratégico 2005-2015 una acciéon de acompanamiento a los estudiantes que ingre-
san por cuota de excepcion étnica, a cargo del proyecto Universidad y Culturas.
La gravedad de las deficiencias en la formacién escolar de estos jévenes dificulté el

buen resultado de los acompanamientos con tutores, por lo cual en el 2006 se im-

propuesta hegemonica sino que es necesario reconocer la coexistencia de curriculos diferentes en una
misma institucién. Para nosotros, el curriculo se expresa en distintos niveles: curriculo propuesto,

ensenado y logrado.
9La Universidad del Valle establecié una “cuota de excepcién étnica” que reserva el 4 % de todos

los cupos de pregrado para la poblacién indigena desde 1993 y afrodescendientes a partir de 2004.
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plementé un Plan Nivelatorio Piloto en Espanol y en Matematicas, con el apoyo
de profesores, asistentes de investigacion, practicantes, tutores y monitores de cinco

facultades. La experiencia la financi6 la Vicerrectoria Académica.

Dos cursos piloto de calculo I y célculo II, que contaron con el apoyo del Depar-
tamento de Matematicas, formaron parte del plan nivelatorio. Se tomé la decisién
de matricular a los primiparos de la poblacién indigena y afrodescendientes de las
carreras de ingenieria en un mismo grupo de céalculo I. El trabajo duré un ano. Los
cursos se plantearon como un proceso de investigacion-intervencién, disenado e im-
plementado con el objetivo de proporcionar una oportunidad real a los estudiantes
que ingresan por condicion de excepcion étnica a los programas de ingenieria, de
acceder a los conocimientos cientificos y tecnolégicos, y de responder a las exigen-
cias académicas, de alto nivel, que demanda la formacion profesional en ingenierias.

Estas condiciones estan relacionadas, principalmente, con:
» La transformacion de las préacticas de ensenanza tradicionales.
= La transformacion de las practicas de estudio de los alumnos.
= El respeto por los ritmos de aprendizaje del estudiante.

Nuestro principal interés era experimentar una posible estrategia para resolver la
ruptura entre el modelo pedagdgico universitario y la formacién matematica previa
de esta poblacién.

Nuestra hipétesis de trabajo fue, tal como en el pasado, que el problema no se resuel-
ve pensando en la introduccién de nuevos contenidos, sino que su solucion depende
de qué tanto se logre transformar la cultura dominante que guia la actividad en el
aula de matemdticas: centrada, por un lado, en la explicacién del profesor y en la
simplificacién de las dificultades inherentes al aprendizaje de conceptos matemati-
cos; y, por el otro, en la imitaciéon de modelos y sus aplicaciones a problemas de
“disenio”19.

El principal resultado, cuantitativo, de este proyecto consistié en revertir la deser-

cion, que para la poblacion de indigenas y afrocolombianos que ingreso en el 2005 a

0Este término se acuiia (Rusbult, 2000) para significar los problemas que para su solucién
s6lo demandan conocimientos ya instalados en el repertorio del solucionador. Se contrasta con
problemas de solucién “creativa”, en los que el solucionador no dispone de cierto conocimiento
necesario para la solucién y debe, por tanto, imaginarlos. Se dice que un problema es creativo si
demanda la construccién de conocimientos inéditos para el estudiante, ya sea por recombinaciones
novedosas de sus actuales conocimientos o por abstraccién de nuevos conocimientos a partir de
las coordinaciones generales de sus acciones cuando actia sobre una situaciéon que requiere un
conocimiento especifico.
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ingenierias fue del 62,5 %, al cabo de cuatro semestres, a una permanencia del 65 %

de la poblacion objeto de nuestra experiencia, al cabo de cinco semestres.

El resultado cualitativo mas destacable fue la transformacion sensiblemente positiva
de la formacion matemdtica de la poblacion objeto, pero la conclusion mas importan-
te es que es posible incluir en el proceso educativo de nivel superior a poblaciones que
ingresan a la universidad con bajos y muy bajos niveles de formacion matemdtica,
con la condicion de disponer de una estrategia diddactica mediante la cual se aborde
con seriedad y responsabilidad social la educacion matemdtica. Pero sobre todo, si tal
estrategia es un compromiso institucional y responsabilidad de un equipo de profe-
sores sensibilizados y preparados para enfrentar el reto de educar mateméaticamente
a los futuros profesionales.

1.4.2. Estrategia didactica socioconstructiva

En Colombia, en los tdltimos 50 anos, se ha pasado de una escolaridad para mi-
norias a una escolaridad masiva. De pocos bachilleres que se formaron con la ayuda
de “maestros” comprometidos con la ensenanza, que exigian el compromiso de sus
alumnos y creaban héabitos de estudio, se ha pasado a graduar a jovenes que, en
su mayoria, no lograron ser motivados por el aprendizaje y menos por desarrollar
estrategias que optimizaran su actividad de estudio. Los cambios en el sistema de
evaluacién de las escolaridades basica y media en 1994, y el afan de retener en el
sistema escolar al mayor nimero posible de alumnos, para mostrar altas tasas de
cobertura (Decreto 230 del 2002, bien llamado “de promocién automdtica”), nos
hicieron pasar de un bachillerato para los mejores (meritocratico) a un diploma de
bachiller para cualquiera que asista al colegio, aunque no aprenda sino a responder

al tipo de preguntas del nuevo examen de Estado (Icfes).
Respecto a las prdcticas de ensenanza

A medida que se comenzé a incrementar el nimero de jévenes que ingresa a las
universidades, se masificaron los estilos de ensenianza, con la consecuencia de volver,
por fuerza de las nuevas circunstancias canodnicas, a las maneras de ensenar tradi-
cionales!!. El maestro recibié el impacto del aumento de cobertura; varias razones
contribuyen a desmotivar a los profesores que intentan sostener el compromiso con

la docencia y promover en los jovenes un interés por el conocimiento:

1. Las condiciones de asignacion de cursos impiden la interaccion: hasta mediados

HEnsefanza vertical, transmisionista, centrada en la explicacién y la imitacién de modelos. Esta
manera de ensenar permite el control sobre los contenidos a cubrir en el tiempo que se asigna
oficialmente, pero descuida el control sobre lo que el estudiante realmente aprende y la calidad de
su aprendizaje.



1.4. CESAR A. DELGADO G. & MARIA C. TENORIO. CONSTRUCCION DE CONOCIMIENTO MATEMATICO 37

de los anos noventa los cursos de matematicas tenian un cupo de 30 alumnos,
el cual ahora se duplicd, cuando no se trata de magistrales para el doble o
triple de esta poblacién. Buscar participacion y actividad de los jévenes con
estos grandes grupos se vuelve cada vez mas dificil.

2. Los jévenes que ahora ingresan estan muy distantes del conocimiento requerido
por los cursos universitarios iniciales; aun con la mejor voluntad, el profesor
no tiene como afianzar los temas universitarios de los cursos sobre el vacio en

la mente de sus alumnos.

3. Con frecuencia los profesores comprometidos se sienten derrotados por jovenes
que no atienden y que fracasan sistematicamente en sus esfuerzos por entender;
como tampoco tienen habitos de lectura y estudio, no consultan los textos que
los profesores les proponen.

4. Con los cambios administrativos de las universidades, los profesores tienen que
dictar cada vez mas cursos, investigar mas, publicar, organizar y participar en
eventos académicos. Asi, en este modelo la ensenanza se ve afectada cuando

las otras actividades se ponderan en términos salariales.

La misién del profesor actual es transmitir lo mas eficientemente posible los conte-
nidos de un programa fijo, con fechas calculadas para cada tema, lo cual lo obliga a
sostener un flujo expositivo de gran velocidad para alcanzar a cubrir todos los temas
del programa; es decir, que los expone ante una masa a la que no conoce y con la

que no interactia, y al final de cada periodo comprueba cudnto retuvieron.

Es necesario transformar las practicas de ensenanza tradicionales. El profesor que
ensenia matematicas, en el marco del modelo pedagogico tradicional, es un portador
de informacion especializada, cuya funcién principal consiste en exponer y explicar
los conceptos y modelos matematicos propios de los cursos de céalculo, proponer

712 v evaluar las apropiaciones de contenidos

buenos ejercicios y problemas de “diseno
de la informacién. Este profesor demanda de sus alumnos un esfuerzo por evocar y

coordinar los elementos y procesos de la teoria que él previamente les ha presentado.
Fundamentos tedricos de nuestra estrategia de ensenanza

Siguiendo la teoria de situaciones de Guy Brousseau (1986), nos propusimos trans-
formar este papel tradicional del profesor de matematicas y reorientar su actividad
hacia el diserio de situaciones' que son verdaderas recontextualizaciones del cono-

cimiento que se desea ensenar y cuya solucion solo es posible mediante un proceso

12fdem, nota 10.
134Una situacién modela lo que esta en juego y las posibilidades de decisién de un actuante en
un determinado medio. Se elige de tal manera que la estrategia de resoluciéon no pueda aplicarse
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constructivo de tal conocimiento a cargo del alumno, apoyado por la “mediacion
didactica” del profesor. Tal mediacién se constituye en torno a las “devoluciones de

714 3 los alumnos que el profesor va construyendo en la “interactividad”!s,

problemas
con el objetivo de provocar el compromiso del repertorio de conocimientos de los

alumnos en concordancia con la tarea.

De la interaccién alumno-medio y de la mediacion del profesor, se espera que surja el
conflicto cognitivo entre aquel conocimiento que el alumno cree necesario y suficiente
para resolver el problema y las resistencias que opone la situacion, que obligan a
construir y discutir nuevos posibles, o un conflicto entre conocimientos ya estableci-
dos en la mente del alumno que resultan contradictorios entre si. Para superar este
conflicto se requiere alcanzar lo que en el progreso de la interactividad se ve como
conocimiento necesario, y luego, una vez establecido, ponerlo a prueba y validarlo:
sea en acto (prueba en acto), o recurriendo a validaciones icénicas (pruebas visua-
les) o conceptuales (por manipulacién o pruebas euclideas) o, si es el caso, producir
una prueba formal (Tall, 1995). El estudiante construye nuevo conocimiento para
él, pues ya existe como conocimiento institucional. Este conocimiento “nuevo” es
reconocido como véalido y 1til en el marco de la institucion escolar que representa el

profesor, en un proceso denominado institucionalizacién.

Pero [la institucionalizacién] estd, obviamente, fundamentalmente vin-
culada al proceso didactico y resulta de una intervencién especifica. Es
ella la que permite al profesor y al alumno reconocer y legitimar “el
objeto de la ensenanza”, si lo ven de maneras diferentes. Puede consistir
en el reconocimiento por el profesor del valor de una produccién de los

alumnos.

sino gracias a un determinado conocimiento matemaético; la aparicion de esta decision, sin el uso
por el actuante del conocimiento contemplado, es altamente improbable” (Brousseau, 2003, p. 2).
1Siguiendo a Brousseau (2003), es el proceso que realiza el profesor para provocar que “la accién
del alumno sea producida y justificada sélo por las necesidades del medio y por sus conocimientos,
y no por la interpretacién de los procedimientos didécticos del profesor” (p. 5).
15Este término es importante en nuestro modelo didactico y se refiere a: “(...) la articulacién de

las actuaciones de los profesores y los alumnos” (o del adulto y del nifio, en el caso de situaciones
educativas no escolares) en torno a una tarea o un contenido de aprendizaje determinado, supone
pues una llamada de atencién sobre la importancia de analizar actuaciones de los alumnos en
estrecha vinculacién con las actuaciones del profesor, y reciprocamente (C. Coll y otros, 1995, p.
204).
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Afirma entonces: (1) que la propuesta del alumno es vilida y reconocida
como tal fuera del contexto particular de la situacién presente; (2) que
servird en otras ocasiones, ain no conocidas; (3) que serd entonces mas
ventajoso reconocerla y utilizarla bajo su forma esquematizada que es-
tablecerla de nuevo; (4) que serd aceptada directamente por todos o al

menos por los iniciados (Brousseau, 2003, p. 5).

En esta estrategia de ensenanza, la evaluacion es ahora sistémica-formativa y perma-
nente: se evaluan los resultados de la interactividad en el marco del funcionamiento
de los subsistemas (alumno)-(situacién adidéctica), (profesor)-(situaciéon didactica),
que son constitutivos del sistema didactico que los engloba.

Respecto a las prdcticas de estudio

Quienes llegan a los cursos de matematicas en los primeros semestres de carrera
-matematica basica o fundamental, cdlculos I y II, etc.- son jévenes que ya vienen
modelados por su escolaridad previa, en lo relativo a su papel de estudiantes. En
el colegio aprendieron que ser estudiantes es asistir a clases, simular que atienden
y entienden las explicaciones, entregar los trabajos (asi no los hayan hecho ellos) y
memorizar a ultima hora lo que el profesor pidié aprender; sin embargo, entre sus
obligaciones estudiantiles no figura aprender seriamente los conocimientos propues-
tos en el programa escolar. De alli que cada vez sea mayor el desnivel entre lo que los
cursos universitarios requieren como base necesaria de informacién en las areas de
conocimiento del curriculo, y lo que los estudiantes traen como capital académico,
problema potenciado por el hecho de que los estudiantes son los 1ltimos en reconocer
que no estaban listos para los cursos que matricularon. Pero, ademas, este entrena-
miento de anos para “aprender sin esforzarse”, sin asumir como su tarea personal el
aprendizaje, les hace creer que en las aulas universitarias pueden asumir la misma

postura.

Respecto a las diversas actividades que componen el aprendizaje en la universidad y
a la manera como las nuevas generaciones las cumplen o no, se han hecho hallazgos

muy preocupantes.

Adrian de Garay, en su investigacién del 2004 sobre las practicas sociales, académicas
y de consumo cultural de los estudiantes de tres sedes de la Universidad Auténoma
Metropolitana de México [Estudio etnografico y cuantitativo para una poblacién
de 35.000 estudiantes|, al analizar las préacticas académicas, agrupandolas en seis
dimensiones, encontré que el cumplimiento mas alto se presenta en las actividades

meramente formales. El unié la frecuencia de asistencia a clase y la puntualidad para
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asistir a clase en una dimensién llamada Responsabilidad formal, y encontré que en
las tres sedes de la UAM ésta es la dimension que obtiene un cumplimiento mas alto
[lo que corrobora nuestros hallazgos: para la mayoria de los estudiantes, hoy en dia su
responsabilidad fundamental consiste en asistir a clases|. Sélo que aquellos factores
que dan sentido a la asistencia a clases no puntian alto en la investigacién de Garay;
en la dimension Presencia activa en clases incluyo la frecuencia con que pregunta
en clase, frecuencia con que prepara la clase y frecuencia con que discute los puntos
de vista del profesor; como era de esperarse, es mucho mas frecuente preguntar
en clase que preparar la clase y menos aun discutir. La dimension Inversion de
tiempo en el estudio incluye tiempo semanal de lectura y tiempo semanal de trabajos
para la universidad (que incluye tareas); s6lo 10,3 % de los alumnos dedican tiempo
alto; inversién media, 22,5 %; inversién baja, 37 %; inversién muy baja, 30,3 %. Es
decir, que 67,3% de los estudiantes dedican un minimo de tiempo, pues lo gastan
por fuera de clases en transportarse de la casa a la universidad y viceversa (dos a
tres horas diarias), en cumplir con responsabilidades laborales, en labores caseras
y en actividades de consumo cultural; la mayoria no tiene un tiempo fijo y amplio
dedicado a leer, a escribir sobre lo que leen, ni para elaborar trabajos. Para otra
dimensioén, Produccion sistemdtica (Elaboracion de resumenes y fichas), la mayor
frecuencia se ubica en media: 60 %. De alli que otros puntajes muy dicientes sean
los de la ultima dimensién: Produccion analitica (elaboracién de diagramas y de
esquemas), que puntué asi: alta, 13,9 %; media, 34,1 %; nula, 52 %. Estos hallazgos
dan cuenta del inmenso cambio en la cotidianidad del estudiante universitario.

Sobre tales hallazgos, concluye Garay:

El sistema educativo mexicano, desde la educacion bésica hasta el nivel
superior, no ha propiciado entre amplios sectores la incorporacién de los
hébitos del arte de organizar su trabajo y su tiempo de estudio, de pro-
porcionarles los instrumentos y las técnicas de trabajo suficientes para
el desarrollo de las habilidades y capacidades intelectuales propias de la
vida académica, en particular de aquellas conducentes a la realizacién
de préacticas escolares con una mayor exigencia cognitiva (Garay, 2004,
pp. 117-118).

Por nuestra parte, hemos hecho tres investigaciones sobre la manera como asumen la
escolaridad los adolescentes en los colegios de educacion secundaria (en dos institu-
ciones educativas de Cali y en dos resguardos indigenas del Cauca), y tres més en la
universidad, de las cuales dos se han realizado con estudiantes de ingenieria, hacien-
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do entrevistas con profundidad a estudiantes y profesores, observaciones etnograficas
en clase, talleres, encuestas cualitativas amplias y seguimientos académicos, ademéas
de todo el trabajo de acompanamiento a los estudiantes indigenas y afrodescen-
dientes entre 2005 y 2008, y el analisis de los logros y dificultades en los cursos del
plan nivelatorio. Estas son las bases de nuestras afirmaciones, mas nuestros pro-
pios aprendizajes al ejercer la docencia a lo largo de tres décadas y al analizar los
cambios en la poblacién estudiantil y en las condiciones para ejercer la ensenanza

universitaria.

= Los estudiantes consideran que su principal responsabilidad, una vez que ingre-
san a la universidad, consiste en asistir a las clases y talleres, llegar a tiempo,
escuchar lo que el profesor expone y copiar lo que escribe en el tablero o expone
en el retroproyector. Es decir, se sumergen en actividades en las que su papel
es pasivo, de receptores acriticos, sin que los profesores mas comprometidos
con la ensenanza logren moverlos de esta pasividad. Asi, cuando el profesor
deja ejercicios para resolver en casa, los resuelven a medias, sin consultar el
libro guia para tratar de comprender por su cuenta, pues para ellos todo el
aprendizaje se debe dar en el aula. De vuelta a clase, cuando el profesor busca
que participen con preguntas, sélo piden que él resuelva el ejercicio N° X o el
N° Y, sin siquiera nombrar el concepto que no saben aplicar, ni pensar. Los
estudiantes estan seguros de que el trabajo que ellos deberian realizar por fuera
del aula de matemaéticas lo pueden sustituir por el trabajo que hace el profesor
cuando les explica los problemas que ellos no lograron hacer. Y el profesor no
se resiste a hacerlo, porque implicitamente cree que un buen docente debe dar

las explicaciones pedidas.

= Los estudiantes saben que si no entienden lo que el profesor esta explicando
esto no detendra la clase, asi todo el grupo no logre entender; que es problema
de cada uno aprender lo ensenado, aunque no se haya comprendido, pues
todos aceptan que “calculo es muy dificil”. Por supuesto, este “aprender”
cada uno lo entiende como le conviene (porque lo tranquiliza): el profesor
espera que sepan resolver los problemas que les propondra en los exdmenes;
no se pregunta qué tipo de aprendizaje estan haciendo, ni para qué les sirve
esta mecanizacion; tampoco se pregunta si éste es un aprendizaje superficial
de corta duracién (que se olvidard en pocos dias), o si es un aprendizaje que
transforma lo que el estudiante pensaba, puesto que le exige cuestionar lo que

sabia para avanzar a otro nivel de formalizacion del conocimiento matemdtico.

= Suponen que las clases de matematicas no son para discutir sobre los temas
explicados, ni les interesa hacerlo. No se preocupan por sostener discusiones
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teodricas y las rechazan, porque las consideran innecesarias; para ellos, lo con-
ceptual “es carreta” que hace perder el tiempo, pues lo que importa son las
aplicaciones, un saber hacer sin teoria, o sin razones, como diria Piaget. Con-
sideran que lo importante es poseer “verdades”, ya empaquetadas en férmulas
y con manual de uso. Esta posicién es consecuencia del modelo pedagogico

tradicional que hemos caracterizado.

Transformacion de las prdcticas de estudio

En nuestra estrategia proponemos otro papel para el alumno; éste no serd un receptor
de soluciones ya elaboradas -para los problemas que en algin momento de la his-
toria se plantearon los matematicos, y luego formalizaron en axiomas, definiciones,
teoremas y algoritmos-, que él debe memorizar y cuyo funcionamiento él imita del
modelo que proporcionan las presentaciones y explicaciones del profesor, sino que
pasa a ser un constructor de su propio conocimiento matemdtico, resolviendo proble-
mas creativos cuyas restricciones, en relacién con los conocimientos que libremente
pone en juego el alumno, hacen que se requiera cierto conocimiento para alcanzar el

éxito.

Esta empresa, de ser constructor de su propio conocimiento, le demanda invertir
tiempo en lo que se llama periodo de familiarizacion con los elementos relevantes
de la situacién, que lleva a reconocer y plantear la existencia de un problema; luego
se requiere realizar un duro trabajo en el que el alumno utiliza su repertorio de
conocimientos y fracasa, por no disponer del conocimiento necesario para la situa-
cién. Segun los expertos y los testimonios de los mismos matematicos, se sigue un
periodo de incubacion en el cual trabaja el inconsciente y termina cuando, como
dice Poincaré (1913)'6 este trabajo se manifiesta en un “momento repentino” de
“iluminacion”, en el cual la soluciéon aparece “como si surgiera de la nada”, y final-
mente un tiltimo periodo de verificacion, en el cual los resultados, que la iluminaciéon
presenta sélo grosso modo, se enuncian con precisiéon: “(...) los calculos efectivos, que
requieren disciplina, atencién, voluntad y, por tanto, conciencia, dependen del se-
gundo periodo de trabajo consciente que sigue a la inspiracién (...) inseparable de

la primera, la verificacién” (Hadamard, 1947, pp. 103-104)'7,

En consecuencia con lo dicho, la estrategia que orienta las acciones del alumno

6Henri Poincaré (1854-1912). Importante matemdtico francés que escribié numerosas obras de
matematicas y fisica. Fue premiado por sus trabajos sobre el problema de los tres cuerpos. Ademas,
fue profesor de matematicas y fisica en la Universidad de la Sorbona y se preocupé por la ensenanza
de las matematicas. Escribié la obra Mathematical creation (1913), que es muy citada.

17 Jacques Hadamard (1865-1963). Notable matemadtico francés (1945) cuyo libro Psychology of
invention in the mathematical field (1945) es un referente cuando se estudian los procesos de

pensamiento matemaético.
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y del profesor en torno de la construccion de conocimiento hace necesaria cierta
flexibilidad en el manejo de los tiempos oficiales asignados para cubrir las tematicas
de los programas, de tal manera que sea posible acompasar los contenidos a los ritmos
de aprendizaje de los estudiantes, a la vez que se operan ciertas transformaciones
en su formacién matematica y sus concepciones sobre el aprendizaje y sobre las
matematicas, concepciones que, en la mayoria de los estudiantes, son negativas y muy

arraigadas por la cultura que se desarrolla en las aulas de matematicas tradicionales.

Nuestro reto consistié en integrar al aula de matematicas aspectos como la invencion
y el asombro, la intuicion y la validacion, el razonamiento y la ldgica, la predica-
cion y los conceptos, los juicios y los lenguajes matematicos, en el supuesto de que
estos aspectos son constitutivos de la actividad de estudio que realiza tanto el ma-
tematico cuando construye matematicas nuevas como los estudiantes que aprenden
matematicas. Tales aspectos son necesarios para la creacién de nueva matemadtica,
y surgen de nuestra profunda conviccién, que encontramos también en Hadamard
(1947), respecto a que para ellos la diferencia entre la actividad que permite crear
nueva matemdtica a los matematicos, y la actividad de los alumnos que construyen

conocimiento matematico nuevo, no es mds que de grado.

1.4.3. Conformacién de los equipos de trabajo

El docente a cargo de los cursos piloto en calculos I y II contod, en calculo I, con
el apoyo de tres asistentes de docencia, estudiantes de la maestria en matematicas
de la Universidad del Valle, con quienes se conformé el equipo para desarrollar el
curso, dirigido a 61 estudiantes matriculados, de los cuales 23 eran repitentes (13
por primera vez y 10 por segunda vez); se formaron tres subgrupos para los talleres
con los tres asistentes. De los 61 estudiantes que empezaron, aprobaron 29 (47,5 %)
y reprobaron 32 (52,5 %).

El equipo docente que tuvo a su cargo el curso piloto de célculo II, durante el
semestre febrero-junio de 2007, estuvo conformado por el profesor titular y una
asistente de docencia, estudiante de la maestria en matematicas. El curso de célculo
IT se extendi6 hasta incluir el periodo de verano (cuatro semanas con seis horas
diarias: cuatro de teoria y dos de taller). En la seccién de verano el equipo docente
lo integraron el profesor titular del curso y una asistente, graduada en matematicas,
encargada de la seccion de talleres durante las cuatro semanas que duraba el curso.

Para el curso piloto de calculo II, de los 29 que aprobaron céalculo I, se matricularon
26 en el grupo piloto de calculo II; dos no matricularon calculo II y uno matri-
cul6 calculo II en un grupo genérico y lo aprobé con una nota de cuatro coma
cuatro (4,4); posteriormente matriculé célculo II1 y también lo aprobé (4,1). Al gru-
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po de calculo IT piloto ingresé una estudiante que no tomo el curso piloto de calculo
[ y aprobé célculo II piloto (3,5). Finalmente, el grupo se conformé con 27 alumnos.
El curso piloto de cdlculo II lo aprobaron 20 estudiantes (74,1 %) y lo perdieron
siete (25,9%). De estos alumnos, ocho matricularon el curso normal de calculo III,
pasandolo el 100 % con una nota promedio de 4,0.

1.4.4. Desarrollo de los cursos y expectativas del equipo do-

cente

En el curso de célculo I (cinco horas semanales, cuatro créditos) se cubrieron los
siguientes temas: loégica; conjuntos y operaciones con conjuntos; conjuntos numéri-
cos; estructura algebraica y orden de los ntimeros reales; resolucion de ecuaciones
e inecuaciones; método de las coordenadas; introducciéon a funciones. El programa
oficial no contempla los tres primeros temas y los otros solo corresponden a su ter-
cera parte. Faltaban por cubrir los temas de funciones polinémicas, trigonométricas,
limite, continuidad, derivada y sus aplicaciones. Ademas, habria de cumplirse con el
programa de célculo II (cinco horas semanales, cuatro créditos): integracién en una

variable, funcion exponencial y logaritmica, sucesiones y series.
Guias de Apoyo Teorico y Guias de Trabajo

Los dos cursos se desarrollaron en torno a dos tipos de guias: de Apoyo Teorico y
de Trabajo, y del texto de Tom Apostol, Calculus, tomo 1. Desde una perspecti-
va constructivista, se piensa en torno a situaciones practicas y tedricas que hacen
necesario un saber matemético especifico (C'), que no poseen los estudiantes, pero
que es posible alcanzar cuando el alumno trabaja sobre un conjunto fundamental
de situaciones mateméticas S(C) = {S1, 52, Ss, ..., S, } en las que se ha recontex-
tualizado C. El estudiante debera aplicar sus conocimientos actuales (6), que en
primera instancia son insuficientes para resolver cada situacién o algunas de éstas:
S;, para ¢ = 1,2,...,n. Esta limitaciéon de C plantea un problema (P) al alumno
como consecuencia de la diferencia entre el saber C' necesario y los conocimientos C
disponibles en el momento de iniciar la secuencia didéctica (P = C —6); el problema
se resuelve cuando C iguala a C.

La afirmacién, a priori, que acabamos de hacer respecto a que a los estudiantes les es
“posible alcanzar” el conocimiento C' es relativa al estado de los conocimientos, 6,
que en el momento ellos tengan y a la mediacion del profesor y de los orientadores
del taller. Se trata, en la terminologia de Lev Vigotsky (1996, pp. 181-186), de
construir una Zona de Desarrollo Proximo -distancia cognitiva entre lo que el sujeto
puede hacer a solas y lo que realiza con la ayuda de un experto-, en la que “(...)

los conceptos espontaneos, faltos de control consciente y volitivo, encuentran dicho
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control (...) con la cooperacién entre el nifio y los adultos” (idem, p. 185); en nuestro

caso, el alumno y los profesores, en torno a S(C').

En el escenario que acabamos de describir, la Guia de Trabajo define la estructu-
ra de la secuencia didactica para ensenar C' en torno al conjunto S(C'). El papel
de la guia consiste en ser un instrumento que puede mediar las acciones diddcti-
cas del profesor en el proceso de ensenanza y las acciones de los estudiantes en su
aprendizaje, cuando en torno al saber que implicitamente aparece como necesario
para el éxito de la tarea se articulan las acciones del profesor con las acciones de
los estudiantes alrededor de los objetos del conocimiento - interactividad (C. Coll,
1995), buscando influir en los procesos cognitivos del otro para construir dominios de
significados socialmente compartidos - aprendizaje. Complementariamente, dado el
caracter potencial de la mediacion, la Guia de Apoyo Teorico cumple dos funciones.
La primera es poner a disposicion del usuario saberes matemdticos de acuerdo con
las necesidades técnicas que demanda la construccion de C, y la segunda, ofrecer
una variedad de situaciones adiddcticas'® que se ajusten més al estado de conoci-
mientos del alumno -ligeramente por encima de los conocimientos actuales-, cuando
las situaciones propuestas en la Guia de Trabajo superan el desarrollo potencial del
alumno. En resumen, el profesor ajusta sus acciones -elaborando Guias de Apoyo-
de acuerdo con los andlisis de los resultados que producen los alumnos al responder
por la Guia de Trabajo, en contraste con los resultados esperados de acuerdo con
ciertos supuestos a prior: que definieron el tipo de situaciones.

Mediante esta estrategia se busca hacer operativa la ley fundamental del aprendizaje
de Vigotsky, segin la cual, todo lo que se ensene por encima del desarrollo potencial
del alumno -determinado por lo que puede realizar con la ayuda del experto- no se
aprende, y todo lo que se ensena en su nivel actual de desarrollo -determinado por
lo que el aprendiz puede hacer por si mismo- ya lo sabe. La Guia de Trabajo es el
instrumento que puede ser mediador de las acciones, pero para que realmente lo sea,
se complementa con las Guias de Apoyo Teorico, con el fin de ajustar las acciones
segun el estado real de conocimientos de los estudiantes.

18Situacion matematica especifica del conocimiento C' “(...) tal que, por si misma, sin apelar a
razones didacticas y en ausencia de toda indicacién intencional, permita o provoque un cambio
de estrategia en el jugador. Este cambio debe ser (relativamente) estable en el tiempo y estable
respecto a las variables de la situacién” (Y. Chevallard, M. Bosh y J. Gascén, 1997. p. 214).
El término se opone a situacion diddctica, que se refiere a “las relaciones establecidas explicita
e implicitamente entre los alumnos, un cierto medio (que incluye instrumentos y objetos) y el
profesor, con el objetivo de que los alumnos aprendan el conocimiento matemdatico C” (idem, p.
217). Sin embargo, las situaciones adiddcticas artificiales que se plantean en el aula son parte
del medio en el que se desarrollan las situaciones didacticas que le dan sentido y significado a la
situacién matematica especifica del conocimiento C'.
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Nuestra estrategia socioconstructivista (Delgado, 1998) se diferencia del modelo tra-
dicional -que fundamenta la ensenianza en la logica de la explicacién- en dos aspectos

béasicos:

1. La teoria y las técnicas matemdticas no son un producto acabado u obra muer-
ta que se expone al estudiante para que las aprenda y en algin momento las
aplique a la solucion de situaciones fuera del aula. Por el contrario, al igual
que el saber que elaboran los matematicos, son el producto de la solucién de
situaciones problema que, en este caso, enfrenta el estudiante con la ayuda
de la mediacién del profesor. Por consiguiente, esta teoria y aquellas técnicas
que se seleccionan para ensenarse a las nuevas generaciones son una obra vi-
va y siempre inacabada para responder a los problemas susceptibles de una

matematizacion.

2. Se obliga a un cambio de las actividades tradicionales del profesor y del estu-
diante: el primero no es mas el poseedor del saber que centra su actividad de
enseniar en la administracion de “buenas explicaciones”, sino que, en el marco
socioconstructivista, es mas un disenador y gestor de situaciones adidacticas
relacionadas con el conocimiento objeto de la ensenanza, que media los pro-
cesos de aprendizaje, y el segundo pasa de ser un receptor del conocimiento
acabado, transformado y modelado por la explicacién del profesor, a ser un
sujeto que desarrolla una actividad de estudio en la que construye activamente

su propio conocimiento con el objetivo de aprender matematicas.

El primer aspecto se relaciona fundamentalmente con la actividad del profesor y en
particular con el diseno de la Guia de Trabajo y la Guia de Apoyo Teorico. Como
ya se dijo, la primera expresa el conjunto fundamental de situaciones S(C) que se
construye considerando las variables didacticas -valores de la situacion que obligan
a un cambio de estrategia en una situacion adiddctica S;-, que obligan a modificar

un estado de conocimiento hacia otro mejor, adaptado a la situacion.
Estas variables didacticas se determinan a partir de:

» Un estudio de la naturaleza del conocimiento matemdtico (dimension episte-

moldgica).
» El estado de conocimiento actual de los estudiantes (dimension cognitiva).

» La gestion de los medios y procesos de ensenanza y aprendizaje (dimension
didactica).

El sequndo aspecto se refiere tanto a la actividad de gestién del profesor como a la
actividad constructiva del estudiante. Decimos que “se obliga a un cambio de las
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actividades tradicionales...” porque cuando el profesor evita proporcionar, directa-
mente, el conocimiento necesario para resolver la situacién adidactica, el alumno
tendra que actuar usando su propio repertorio de conocimientos para alcanzar el
éxito en la tarea -situacién adidactica de accién (S A)-; y luego, cuando se ve obligado
a compartir con los otros y comunicar el producto de su accion, verbaliza y simboliza
sus acciones -situacién adidactica de formulacién (SF)-, y dado que son inevitables
las demandas de explicaciones o cuestionamientos de sus pares, debera tratar de con-
vencer sobre la validez de sus resultados -situacién adidactica de validacién (SV)-.
En este conjunto de momentos o situaciones adidédcticas de la ensenanza, el profe-
sor toma cierta distancia, pero esta atento a hacer que las situaciones adidacticas

evolucionen de acuerdo con el aprendizaje del saber matemético C' propuesto.

El funcionamiento adidéactico es posible si el profesor genera un marco didactico que
tiene como funcién la regulacién de la situacién adidactica. El profesor en situa-
cion diddctica observa las acciones de los estudiantes y en concordancia con ellas
actia, produciendo retroalimentaciones (positivas o negativas) para llenar lagunas
-carencia de ciertos conocimientos auxiliares necesarios para alcanzar C' (pero nun-
ca el conocimiento C, que es el objeto de aprendizaje)- o para generar conflictos
cognitivos con respecto a los conocimientos obstdculo!® que estén presentes en el
estudiante -situaciéon didactica de devoluciéon de problema (SD)-. Asi mismo, el
profesor actiia para reconocer que el conocimiento construido por el estudiante es
un saber matematico de pleno derecho -situacién de institucionalizacién (ST)-. Estas
acciones del profesor siempre estan articuladas con las acciones del aprendiz sobre
la situacién adidactica y son una respuesta a ellas para provocar el cubrimiento de
una laguna o la superaciéon de un conocimiento obstaculo.

En resumen, se espera que como producto de la operacionalizacién de los dos aspec-
tos del modelo, el conocimiento C' sea el resultado de satisfacer las variables de la

siguiente funcién de conocimiento:
C=SA+SF+SV+SD+S5I

Y, en consecuencia, cada guia define la estructura de la secuencia diddctica y cumple
la funcién de instrumento mediador, tanto de las acciones didacticas del profesor en
el proceso de ensenanza como de las acciones de los estudiantes en su proceso de

aprendizaje.

19Conocimiento que funciona con éxito en ciertas situaciones, pero que en otras resulta inade-
cuado, genera errores o es ineficiente. Es dificil de modificar y no es idiosincrasico, pero si necesario

para construir el conocimiento nuevo.
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Como se usaban las guias

En la primera semana del curso de calculo I, tomamos conciencia de la magnitud de
la brecha entre las demandas que planteaba el programa del curso y el estado de la
formacion matematica de los estudiantes; esto nos obligd a elaborar nuevas guias,
adicionales a las siete inicialmente elaboradas, teniendo presente que mas que tra-
bajar sobre contenidos, buscdbamos incidir en el desarrollo de ciertas competencias

para:
= Utilizar lenguaje matemaético.
= Razonar matematicamente.
= Imaginar mundos posibles.

De esta manera, nuestro objetivo de fondo en la gestiéon de cada una de las guias
consistié en transformar -mediante el desarrollo de la actividad conjunta en torno
al objeto de aprendizaje- la tendencia a pensar la actividad de estudio de las ma-

tematicas como aprendizaje de formulas y algoritmos.
Funcion del texto de cdlculo

En concordancia con nuestra estrategia socioconstructivista, el texto no constituye
el centro de gravedad de la ensenianza ni del aprendizaje, sino que més bien cumple la
funcién de ser una voz autorizada, invitada para acompanar la actividad de estudio

de la obra matematica que profesor-estudiante desarrollan en el aula.

En nuestro caso, elegimos el texto de Tom Apostol por la manera como alli se escribe
la matematica, el rigor con que se presentan y validan las proposiciones matemati-
cas y la forma como se introducen y relacionan los temas en torno a los conceptos
fundamentales del cédlculo. Pero, en especial, el texto nos apoyd en la busqueda del
equilibrio entre la técnica, la teoria y la justificacion de ésta, tan necesario para
alcanzar no s6lo una “comprensién practica” (plano del conocimiento en la accién),
sino evolucionar hacia la “comprensién conceptual” (plano del conocimiento concep-

tual), hasta lograr la “comprensién reflexiva” (plano del conocimiento reflexivo).

Nuestra metodologia pretende que el alumno aprenda a leer y a escribir matemdticas
para reflexionar y aprender de lo que se lee y se escribe. En consecuencia, se incita
desde el comienzo, en las guias de trabajo y de apoyo tedrico, a escribir, discutir
lo que se escribe -consigo mismo y con otros-, corregir y volver a escribir. En este
marco, el texto es un referente autorizado al cual se accede por la lectura, aparte de
que se constituye en un instrumento que ayuda al profesor a alimentar la reflexion
y a orientar a los estudiantes en la escritura de sus ideas.
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Metodologia y contrato diddctico

La metodologia obligaba a los estudiantes a trabajar antes de clase las situaciones
de la gufa y a usar el encuentro con los asistentes de docencia en el taller (dos horas
semanales) para aclarar dudas y recibir retroalimentaciones con el fin de realizar su
obra matemaética. En las clases (dos, espaciadas por un dia, de 1,5 horas semanales
cada una), el profesor también trabajaba con los estudiantes a partir de sus preguntas
sobre el tema asignado en la guia, y trataba de desarrollar una interactividad para
afectar los procesos cognitivos que orientan las acciones de los alumnos. Buscaba
que se produjeran los aprendizajes, pero sin dar respuestas directas que resolvieran

la situacidn.

Con estas ayudas, el estudiante desarrollaba una produccion escrita sobre situacio-
nes de la guia previamente asignadas y la entregaba cada semana a los asistentes
de docencia para su correcciéon. Sin embargo, es conviene subrayar que mediando el
aprendizaje con la ldgica de la construccion y no con la logica de la explicacion, ne-
cesariamente se avanza en forma mas lenta: la comprension es un proceso demorado
en el que se siembra la semilla del entendimiento, y para que se convierta en fruto

hay que hacer un cuidadoso seguimiento e invertir tiempo.

El profesor disenaba una prueba corta semanal sobre los puntos de la tarea, y se
aplicaba el mismo dia en que los estudiantes entregaban la tarea. En el encuen-
tro siguiente a la entrega de las tareas, los asistentes de docencia devolvian a los
estudiantes las tareas corregidas y comentadas, asi como los resultados de la prue-
ba corta. En ese momento, los asistentes de docencia, tomando en consideracion
los resultados, y las retroalimentaciones escritas por ellos en cada tarea o prueba,
discutian con los alumnos los puntos en los que se habian detectado aprendizajes
deficientes. Luego, los asistentes de docencia informaban al profesor, en un formato
especial, cuales habian sido los resultados en lo concerniente a lagunas y obstaculos
mas frecuentes presentes en los estudiantes. Esta informacion era la base con la cual

el profesor planificaba el trabajo de la semana siguiente.

Es evidente que la metodologia que sirvié de base para todo el curso rompia el con-
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20 gobre el cual se habia fundado toda su escolaridad: la manera de

trato diddctico
concebir las clases, centrada en la interactividad entre el profesor y los estudiantes
en torno a los objetos de aprendizaje; los talleres basados en lo que, segun las tareas
y pruebas cortas, velamos que atin no se habia comprendido; la retroalimentacién es-
crita como comentarios referidos a sus procesos de razonamiento matematico, empleo
del lenguaje matematico en los procesos de construccion, formulacion y validacion
de los conocimientos matematicos que se observaba en las tareas, y la exigencia de
toma de conciencia del error que este modo de proceder les plantea a los alumnos

como fuente y condicién necesaria para el aprendizaje.

El equipo de asistentes y el profesor eran conscientes de las rupturas del contrato
didéactico, necesarias para avanzar en el objetivo central del curso piloto de dismi-
nuir la desercion de los programas de ingenieria y, al mismo tiempo, plantear altos
niveles de comprension de las matematicas. De esta manera, parte del trabajo del
equipo docente era resolver las crisis con el didlogo razonado y superar las rupturas

actualizando las obligaciones implicitas del contrato.
Contrato diddctico

El contrato que pusimos en practica se fundamenta en cinco principios, propios de

un proceso de ensenanza-aprendizaje de un curso basico:

1. Sélo interesa aquello que es fundamental y bésico.
2. La necesidad es generadora de conocimiento.

3. La reflexion sobre el error es importante.

4. Interesa la superacién del error.

5. Se aprende haciendo.

20“Es el conjunto de las obligaciones reciprocas y de las ‘sanciones’ que cada socio de la situacion
diddctica:

= impone o cree imponer, explicita o implicitamente, a los otros;

= y de aquellas que se le imponen o que cree que se le imponen, con respecto al conocimiento
en cuestion. El contrato didactico es el resultado de una ‘negociacién’ a menudo implicita de
las modalidades de establecimiento de las relaciones entre un alumno o un grupo de alumnos,
un determinado medio y un sistema educativo. Se puede considerar que las obligaciones del
profesor frente a la sociedad que le delega su legitimidad didactica son también una parte
determinante del ‘contrato diddctico’ ” (Brousseau, 2003, pp. 5-6).
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El objeto del contrato, cuyas clausulas en su mayor parte son implicitas, es la en-
senanza y el aprendizaje del saber matemaético; ademas este contrato, que obliga
al profesor a ensenar y al alumno a aprender, regula el funcionamiento del curso
- sistema diddctico: definido por las relaciones entre el profesor, los alumnos y el
saber objeto de la ensenanza. Las rupturas del contrato generan crisis que se toman
como verdaderas oportunidades de progresar y superar estados de funcionamiento
del sistema diddctico que impiden o limitan el acceso al nuevo conocimiento. En el
curso de célculo II, alrededor de la sexta semana se viven estas rupturas: cuando
los estudiantes exigen “clases magistrales...”; “ir un poquito mas rapido...” y re-
claman al profesor por su flexibilidad para volver a discutir aquello que no se ha
comprendido, o cuando exigen que “se les ensenen las matematicas sin fisica...”.
Estas rupturas, cuyas manifestaciones se sefialan entre comillas?!, se encuentran

registradas en videos.
FExpectativas del equipo docente

Existe una brecha entre las matemdticas formales, que se ensenan en la escuela, y
las matematicas idiosincrdsicas, que las personas aplican para resolver los problemas
de la vida cotidiana. Esta brecha se puede caracterizar en cuanto a las diferencias
entre tres planos de representacién del conocimiento humano (Piaget, 1985, pp. 268-
271): conocimiento préctico, conceptual y reflexivo. En el primero, la comprensién
queda limitada al funcionamiento aislado de esquemas de accion con acomodacion
momentanea a datos particulares muy limitados, como por ejemplo el calculo de
antiderivadas por la aplicaciéon de una regla. El segundo implica una comprension
conceptual que resulta de acciones sobre representaciones semiotizadas e imagenes
mentales y, por tanto, entrana asimilaciones y acomodaciones -reciprocas- entre es-
quemas; es decir, opera sobre los mismos esquemas de acciéon, mas que sobre los
objetos externos. Por ejemplo, la regla que permite el cdlculo de una antiderivada
ahora se explica en lo referente a la operacién de paso al limite, aplicada a una
funcién de pendientes de rectas secantes ancladas en un punto. Por ultimo, la com-
prension reflexiva, propia del tercer plano del conocimiento, se obtiene operando

sobre esquemas conceptuales constituidos anteriormente.

Su mecanismo formador, consistente en operaciones de segunda potencia
-esto es, en operaciones nuevas, pero efectuadas sobre las anteriores-
demuestra que se trata, una vez mas, de abstracciones que parten del
plano precedente, pero compuestas y enriquecidas segiin combinaciones

hasta entonces no realizadas (Piaget, 1985, p. 270).

2ILas expresiones entre comillas corresponden a estudiantes del curso piloto de célculo II y se
pueden consultar en el video Cruce de miradas, minutos 10 a 13. Disponible en el Instituto de
Psicologia, proyecto “Universidad y culturas” (uniculturas univalle.edu).



52 CAPITULO 1. CONFERENCIAS MAGISTRALES

Por ejemplo, la comprension de la definicién (e—¢) del concepto de limite es reflexiva.
Implica operar sobre esquemas conceptuales como funcién, nimero real, vecindad
abierta, entre otros, y usar légicas de segundo orden donde los cuantificadores operan
sobre proposiciones cuantificadas para abstraer la definicién:

(Ve > 0)(30 > 0)(Va € Df)(|lz —p| <0 = [f(x) = f(p)] <€)

Rupturas, reconstrucciones y pensamiento formal

En la comunidad de didactas de las matematicas se comparte la idea de que el apren-
dizaje de las matematicas no es un proceso continuo. Por el contrario, el aprendizaje
y la comprensién exigen que se tomen en cuenta rupturas y reconstruccién de cono-
cimientos ya adquiridos para asimilar nuevos objetos a una estructura conceptual
ya establecida, ampliar el dominio de un campo conceptual, coordinar campos con-
ceptuales que permanecian aislados o para abstraer lo que existe en un plano de
comprensién (practica, conceptual o reflexiva) y proyectarlo sobre otro mas abs-
tracto. Este trabajo estd a cargo del profesor, en tanto que el conocimiento de tales
rupturas se obtiene del conocimiento historico de la evolucién de las ideas matemati-

cas y de los informes de los estados de conocimiento de los alumnos.

Respecto al tltimo tipo de reconstrucciones necesarias para el aprendizaje, gene-
ralmente la escuela secundaria trabaja el conocimiento en los dos primeros planos
y quizés mas en el primero. La ruptura entre la formacién matematica que resulta
de estas practicas de ensenanza y la demanda cognitiva que plantea el trabajo para

alcanzar una comprensiéon reflexiva es evidente.

Ademas, esta brecha genera actitudes y creencias negativas respecto de las ma-
tematicas escolares. Tales actitudes y creencias ofrecen una gran resistencia a los
procesos de formulacién, generalizacién, esquematizacion, validacién y elaboracién
de conjeturas, los cuales permiten superar la mera comprension prdctica -limitada a
la asimilacién de los objetos a esquemas de accién aislados, con acomodaciones mo-
mentdneas a un conjunto restringido de situaciones- y estimular el progreso hacia una
comprension conceptual que enriquece los esquemas de accidon con representaciones
semiotizadas, haciéndolos mas flexibles al acceder a un mayor niimero de asimilacio-
nes reciprocas, y amplia sus poderes en extension y comprension hasta alcanzar la
comprension refleriva, que permite construir un conocimiento mas estructural y, por
tanto, mas equilibrado. Este conocimiento reflexivo posee la flexibilidad necesaria

para adaptarse a nuevas situaciones en ausencia de la influencia de la escuela.

Nuestras expectativas, respecto al cierre de esta brecha, se centraron en la modifi-
cacion de las actividades de ensenanza y de estudio de las matematicas, seguros de
que aquellos estudiantes que en el modelo de ensenanza tradicional estan destina-
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dos al fracaso -65% de la poblacién de ingenierias-, tienen, sin embargo, excelentes
desempenos cuando aplican sus conocimientos no formalizados (idiosincrasicos) pa-
ra resolver problemas complejos que surgen en situaciones de la vida cotidiana.
Esperabamos poder cerrar esta brecha ofreciendo un espacio real, en el aula de ma-
tematicas, al conocimiento idiosincrdsico, al libre discernimiento y a la imaginacion,
para construir conocimiento matematico, y luego, una vez esquematizado y formali-
zado, reconocer su generalidad y eficacia para resolver toda una clase de situaciones
(proceso de descontextualizacién y despersonalizacién).

Consideramos que para ofrecer una oportunidad efectiva a los estudiantes que ingre-
san por “régimen de excepcién” y permitir su continuidad en el sistema educativo,
ademas de exigir la transformacion de las practicas de ensenanza tradicionales y de
las prdcticas de estudio de los alumnos, era necesario respetar celosamente sus ritmos
de aprendizaje, lo cual generaria un “atraso inicial” en el desarrollo de los contenidos
del curso, de acuerdo con el programa oficial. A este respecto, esperabamos que en un
momento dado, cuando los alumnos dispusieran de ciertos “instrumentos” de cono-
cimiento basicos para acceder a una comprension reflexiva, los ritmos se acelerarian
y se podrian cubrir los temas que faltaran. Con todo, la realidad nos mostré que
para la mayoria de los alumnos el crecimiento de su curva de aprendizaje era lento y
no alcanzaron, durante el primer semestre, el punto de inflexion que cambiara esta

tendencia.

En el segundo semestre, esperabamos que esta estrategia socioconstructivista per-
mitiera cubrir los temas que quedaron pendientes de calculo I y los programados
para calculo II. No obstante, habia reservas relacionadas con el cumplimiento de la
meta propuesta, por tres razones: 1) las ezpectativas fueron demasiado optimistas
respecto al nivel de formacion matemética de esta poblacion que ingresa por régimen
de excepcion, pese a que preveiamos que el nivel era bajo; 2) el atraso significativo
en los temas de cédlculo I; 3) la lentitud en que se modificaban los métodos de estudio

de los alumnos y la resistencia al cambio.

El equipo siempre fue consciente del atraso en los contenidos y los problemas cu-
rriculares que esto ocasionaba. Sin embargo, se estaba seguro de que la experiencia
estaba transformando -de modo lento pero seguro- la manera como los alumnos se
relacionan con las matematicas y con otros saberes, lo que podria subsanar en parte
los desfases curriculares a corto plazo, si se contaba con ayudas concretas del profe-
sor y los asistentes de docencia, para cubrir la parte algoritmica de la matematica,

necesaria para las demandas mas inmediatas de cursos como el de fisica.

Otro aspecto preocupante al momento de iniciar el curso de calculo II fue la gran
cantidad de tema por cubrir en el semestre. No obstante, anotamos lo siguiente en
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el informe final de célculo I:

Nuestra hipotesis es que a medida que los estudiantes maduren en estos
conocimientos y formas de hacer matematicas podran gradualmente al-
canzar ritmos mas acelerados de aprendizaje y ser més independientes

de las explicaciones del profesor (Informe de célculo I, 2006).
En el mismo informe afirmamos premonitoriamente:

Se espera que en el curso de calculo II se pueda cubrir el programa y en
su defecto proponer la continuacién del curso en el verano (intensivo)
para cubrir los temas pendientes de calculos I y II (Informe de calculo
I, 2006).

Y, en efecto, tuvimos que extender el curso en el verano para cumplir con nuestro
compromiso inicial de cubrir los contenidos de célculos I y II en un ano, pero si-
guiendo los ritmos de aprendizaje de los estudiantes y no los ritmos de la explicacién
del profesor.

1.4.5. Resultados de los cursos piloto

Caracteristicas del “quehacer” matemadtico en cdlculo 1

Un propésito central del nivel I era lograr que los estudiantes tomaran conciencia
de sus errores y de sus dificultades, como condicién necesaria para poderlos superar.
El curso estaba basado en las practicas de aprendizaje o, en otros términos, en la
interactividad que se despliega en la clase entre el profesor, los asistentes de docencia
y los alumnos, en torno a un saber matematico contextualizado en situaciones pro-
puestas y en un medio en el que se construyen significados matematicos socialmente

compartidos.

Dificultades iniciales (cdlculo I)

Logros (final de cdlculo II)

Para los estudiantes no resulté facil
cambiar sus habitos en la forma de
aprender los conceptos. Estaban acos-
tumbrados a que el profesor les diera
la teoria -por ejemplo, una definicién-
y luego les pusiera ejercicios de aplica-

cion.

Entendieron que los errores debian ser
la base de un nuevo aprendizaje. Acep-
taron que el ritmo de avance dependia
de su posibilidad de reconocer el error
en su conceptualizacién y razonamien-

tos, para asi lograr superarlo.
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Ni el profesor ni los asistentes antici-
paron los niveles tan bajos de conoci-
miento matematico de sus alumnos. A
pesar de experiencias previas de forma-
cién, crefan que podrian dedicar unas
pocas semanas a fortalecer matemati-
cas fundamentales y luego si pasar a los
temas de céalculo I. Cuando el semestre
termind, solo habian visto uno de los

ocho temas de este curso.

Aceptaron que para aprender calculo
debian comprender las matematicas y
apropiarse de ellas como un lenguaje, y
aprender a utilizarlo rigurosamente pa-

ra poder razonar.

Crefan que estudiar calculo era memo-
rizar los procedimientos y formulas, ha-
ciendo ejercicios que exigen aplicar eso
que ya se grabd en la memoria. Por tan-
to, para ellos ganar los examenes signi-
ficaba que si habian entendido y apren-
dido.

Aceptaron que el profesor les propo-
ne problemas y son ellos quienes de-
ben pensar para buscar, razonando ma-
tematicamente, la solucién. Al final de
calculo II, procuraban que el nuevo mo-
nitor no les ayudara a resolver los pro-
blemas.

Pedian teoria, pero que “la explicaran
facil”. Esperaban que el profesor diera
la clase para ellos anotar lo que él escri-
bié y demostrd, convirtiendo asi lo en-
senado en una verdad que no requiere

ser pensada sino solamente aceptada.

Comprendian que si razonaban ma-
tematicamente podian solucionar pro-
blemas en las ciencias; que fisica y alge-
bra se volvian manejables gracias a su
nueva manera de razonar y a los con-
ceptos entendidos.

Crisis. A las pocas clases los alumnos
comenzaron a desmotivarse, ya que en
éstas no se avanzaba mucho y les resul-
taban monodtonas, pues siempre se reto-
maban los mismos temas debido a que

aun no comprendian los conceptos.

Querian aprender y ser protagonistas
de su proceso: conocer previamente
los temas para prepararlos, dedicar el
tiempo que fuera necesario (sus vaca-
ciones de verano) para dominar los te-

mas que les faltaban.

Querian avanzar en los temas, no en
las formas de razonar ni en reconocer
los errores en que se fundaban sus sa-
beres matematicos previos. Pedian que
el profesor fuera mas rapido y se an-
gustiaban porque en los otros cursos de
calculo ya habian visto muchos temas.

Se transformaron sus practicas de estu-
dio. Tomaron conciencia respecto a los
medios intelectuales de los que se sirve

la accién exitosa.
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Para el equipo de asistentes en docencia
igualmente resultaba dificil aceptar el
ritmo lento de avance y las crisis del

grupo.

Comprendieron que se aprende hacien-
do. Es en situaciones de aplicaciéon cla-
ras y bien definidas donde el saber co-

bra interés, y aparece como necesario

para dar significado y sentido a la si-

tuacion.

2 como los estudian-

Tanto el profesor?
tes de calculo II aceptaron sacrificar sus
vacaciones de verano y hacer clases dia-
rias de cuatro horas para completar los

temas de calculo II, con lo cual, en un

semestre vieron calculo I y calculo II.

Al curso de célculo I se matricularon 61 alumnos y lo aprobaron 29 (47,5%). Al
calculo II piloto ingresaron 28 estudiantes -no se incluye un estudiante, quien cursé y
aprobé el curso piloto de calculo I y realizé célculo II en la modalidad normal,
obteniendo una nota de 4,4-. De los matriculados en célculo II piloto aprobaron 21
(75%). De éstos, al siguiente semestre, ocho estudiantes matricularon calculo 111 y
el 100 % lo aprobd con una nota final promedio de 4,0. Dos han ganado estimulos
académicos: uno de ellos ha obtenido en tres ocasiones estimulos en ingenieria civil
y otro, en ingenieria de alimentos. Todos los que aprobaron calculo II, transcurridos
cinco semestres, terminaron con éxito la componente matematica de sus planes de

estudio.

Debe destacarse, ademés, que quienes tomaron los cursos piloto de calculos I y II han
logrado una permanencia del 65 % en el ciclo basico de ingenierfas?3. En el informe
se comparan estas cifras con los estudiantes de excepcion étnica que matricularon
calculo I regular en el periodo febrero a junio de 2005, quienes tuvieron una desercion

del 62,5 %.

1.4.6. Conclusiones

a) Respecto al objetivo principal

22F] curso de célculo II estuvo igualmente a cargo de César Delgado como profesor y Liliana
Posada como asistente de docencia; en el verano, el asistente fue Carlos Ernesto Rengifo.

23La tasa de desercién para ingenierfas en el afio 2000, en el ciclo bésico, fue del 58,02 %, con
tendencia al alza en la medida en que la universidad ha aumentado su cobertura, sin variar su
actual estrategia de recepcién. En promedio, la desercién en el ciclo bésico representa el 64,7 % de
la desercion total.
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Proporcionar una oportunidad real a los estudiantes que ingresan por condicion de
excepcion étnica a los programas de ingenieria, para acceder a los conocimientos

cientificos y tecnologicos de que se ocupa la Universidad del Valle.

El objetivo se logré. Sin embargo, es posible obtener mejores resultados si la
estrategia didactica de los cursos piloto se adopta como una practica institucional
que no sélo comprometa a un grupo de manera aislada, sino que sea aplicable
a los cursos basicos de matematicas y, en lo posible, extenderla a los cursos de

ciencias del ciclo bésico.

Se demostrod, con el caso de los estudiantes que aprobaron calculo II y matricu-
laron al siguiente cdlculo III -con una aprobacién de 100 % y una nota promedio
de 4,0-, que si se enfrentan las dificultades en los dos primeros semestres se evita
que en los semestres avanzados se presenten pérdidas de materias y se mejoren
los rendimientos en los cursos avanzados, con la ganancia que ello significa para
el aprendizaje de los contenidos de la componente profesional de los diferentes
planes de estudios.

Es una estrategia equivocada tratar de eliminar cursos, o incluso agregar cursos,
sin estar sequro de que con ello se afecta positivamente la fundamentacion basica

para el desarrollo de la componente profesional.

Respecto a la estrategia didactica

Obliga a un cambio de las actividades tradicionales del profesor y del estudiante:
el primero no es mds el poseedor del saber que centra su actividad de ensenar en
la administracién de “buenas explicaciones”, sino que, en el marco socioconstruc-
tivista, es mds un disenador y gestor de situaciones adiddcticas relacionadas con
el conocimiento objeto de la ensenanza, que media los procesos de aprendizaje,
y el segundo, pasa de ser un receptor del conocimiento acabado, transformado
y modelado por la explicacién del profesor, a ser un sujeto que desarrolla una
actividad de estudio en la que construye activamente su propio conocimiento con

el objetivo de aprender matemaéticas.

Si bien esta estrategia es costosa por el tiempo que demanda y por la resistencia
que presentan los alumnos a modificar los viejos hdbitos de estudio, también es
cierto que las ganancias que se obtienen a mediano y largo plazos: a) retribu-
yven a la universidad, pues los alumnos llegan mejor dotados matematicamente
a la componente profesional, se evitan costos por pérdidas en las materias de
los semestres superiores y seguramente se mejora la calidad de los egresados;
b) benefician a los alumnos, quienes aprovechan mejor los cursos y desarrollan
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modos criticos para actuar en el medio, poniendo en practica, ademas del saber
matematico, un conjunto de valores como el reconocimiento de los propios erro-
res, para aprender de ellos, pero sobre todo para aprender de los errores de otros,
superar los propios y ayudar a superar los ajenos. Esto es algo que se aprende
cuando el modelo didactico obliga a valorar el error y aprender de él.

En resumen, esta estrategia didactica socioconstructivista mostrd que es posible
crear ambientes de aprendizaje colaborativos en los que se desarrolla pensamiento
matematico y al mismo tiempo se logra que el estudiante aprenda a aprender, al
igual que a valorar las ayudas del otro.

Respecto a la evaluacion

Esta experiencia demostrd la importancia que tiene desarrollar un sistema de
evaluacion que sea al mismo tiempo formativo y sumativo, para poder hacer el

seguimiento semanal de la calidad de las realizaciones de los alumnos.

Dado que los estudiantes vienen de un sistema escolar que los acostumbro a que la
evaluacion no tiene rigor ni aporta consecuencias, puesto que al final todos pasan
la materia y el ano, resulta fundamental implementar una estrategia que los
vuelva responsables de su aprendizaje semanal, en la que la revision y correccion
de la tarea les demuestre que si importa lo que escriben o dejan de escribir en
sus trabajos semanales.

En resumen, la metodologia utilizada en los cursos piloto de calculos I y II im-
plementa una innovadora herramienta para prevenir y hacerle seguimiento a la

deserciéon en la educaciéon superior.

Respecto a la transferencia de la experiencia

El fracaso en céalculos I y II en todas las universidades es cada vez mayor. Los
bachilleres no logran seguir el nivel ni el ritmo expositivo de los docentes, y es-
to es particularmente cierto con jovenes procedentes de colegios publicos y de
privados de sectores populares. No se trata de que les falten contenidos sino fun-
damentalmente de que no han rebasado el nivel practico de las matematicas como
representacion enactiva; por eso exigen que todo se les ensenie magistralmente,
para ellos repetirlo, hacer ejercicios y tranquilizarse suponiendo que “ya dominan
el tema”. Esto implica que, dada la masificacién de la educacién superior, deben
cambiarse las estrategias de ensenanza y de aprendizaje para que los bachilleres

accedan a niveles de representacion simbélica que les posibilitan un conocimiento
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matematico formalizado, en lugar de informacién que repiten sin poder pensar

desde ella.

Esta experiencia proporciona elementos importantes para reflexionar sobre el pro-
blema del empalme bachillerato-universidad y la posibilidad de adoptar politicas
e instrumentos que complementen los ya existentes, con el fin de que en los depar-
tamentos de servicio, como lo es el de matematicas en la Universidad del Valle,
se estimule la formacién de grupos que reflexionen permanentemente sobre los
problemas que se presentan en la comunicacion del saber y sus relaciones con las
demandas de las componentes profesionales.
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1.5. Tres ideas fuertes del calculo: variacion, tasa y

acumulacion

Carlos E. Vasco U.**

Los cursos de célculo diferencial e integral escolar de grado once y primer ano de la
universidad se suelen ensenar como ejercicios de manejo simbélico de expresiones,
lo que en la jerga docente colombiana llamamos “boleo de simbolos”, sin necesidad
de entender ninguna idea fuerte de las matematicas conceptuales. Lo mismo sucede
en el algebra escolar de grados octavo y noveno: sélo se suele “bolear Baldor” y,
como consecuencia, para sacar una “E” en matematicas de octavo a once, no hay

necesidad de entender ninguna idea fuerte del algebra ni del calculo.

Lejos de mi menospreciar la potencia del algebra y el calculo. Mi tesis doctoral fue
una de las primeras en el mundo en hacer dlgebra abstracta con ayuda del enorme
computador de la Universidad de San Luis, que no tenia 64 gigas ni 64 megas de
memoria RAM, sino 64 K de memoria. Lo que no puedo ocultar es que con las
sucesivas generaciones de chips cada vez mas rapidos, mi tesis pronto quedo obso-
leta. ;Serd que esos “boleos de simbolos”, que todavia pasan por algebra y calculo,
también quedaron obsoletos?

Algebra, segun la etimologia arabe, es el arte de pasar simbolos para acd y para
alld por el puente de la igualdad hasta resolver la cdbala (“Al’gebr w’al mu-qabala”).
Calculo, segtn la etimologia latina ( “calculus-calculi”), era una piedrita para pasarla
de aqui para alld en una mesa con rayas para obtener resultados aritméticos. La clave
es la propiedad operatoria de los simbolos escritos o de las fichas para hacer cuentas.
Hasta finales del siglo XVI, la mayoria de los libros con las palabras “algebra” o
“calculo” en el titulo son mas bien de aritmética que de algebra, y hasta finales del
siglo XVII no se distingue el calculo diferencial e integral del calculo aritmético y

algebraico, porque apenas se estaba inventando el primero.

Defino un algebra o un calculo como un registro semiético operatorio que permite
encontrar simbolos de resultados tnicamente a través del tratamiento de las repre-
sentaciones semioticas de ese registro, sin necesidad de pensar en la interpretacion

de las representaciones intermedias.

Asi pues, tanto el algebra como el calculo se refieren al manejo de sistemas simbdli-
cos en representaciones semiodticas correspondientes a distintos registros semioticos

operatorios. Para manejar un registro operatorio del algebra escolar o del célculo

24Filésofo, Pontificia Universidad Javeriana de Bogotd, Colombia. Master en fisica, Saint Louis
University, Estados Unidos. Doctor en matematicas, Saint Louis University, Estados Unidos.
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escolar se requiere mucha habilidad y largo entrenamiento, pero no hace falta pensar

en ninguna idea fuerte del algebra ni del cédlculo.

Pero ;ja qué sistemas matematicos conceptuales se refieren esas representaciones se-
miodticas operatorias que llamé “dlgebra escolar” y “cédlculo escolar”? En una primera
aproximacion, no se ve discontinuidad entre las escrituras simbdlicas de un libro de
algebra y las de un libro de calculo. Fuera de la aparicién repetida de unas “eses”
muy alargadas “[” y del uso muy frecuente de la letra “d mindscula”, un lector
ingenuo no percibe gran diferencia entre los dos tipos de libros. Quizd, de vez en
cuando, note unas pequenas flechas que senalan un “ocho dormido”: “z — o0” y
dos palabras raras que no se encuentran en el diccionario: “gof” y “fog”.

Conozco centenares, tal vez miles de estudiantes (y no digo cudntos profesores),
que después de un ano de boleo de cédlculo en grado 11 y otro mas en los dos
primeros semestres de universidad, todavia no han entendido ni siquiera las ideas
fuertes suficientes para comprender que los tres simbolos “z — oo” son totalmente
superfluos, y que la “o pequena” de “gof” y “fog” no es una “o0” sino una abreviatura
de la preposicion “de”; o de las expresiones “del” o “de la”, y que representa sélo una
i mposicion radores unari n un sistem n u
de las dos posibles composiciones de operadores unarios e sistema conceptual
analitico.

Esos detalles tipograficos, aparentemente triviales en las representaciones semiéti-
cas, senalan una diferencia profunda en los sistemas conceptuales, representados
por los sistemas simbodlicos del algebra escolar y del cédlculo escolar. La diferencia
histérica entre aritmética, algebra y cédlculo se ha ido acentuando porque el dlgebra
escolar se distancié de la aritmética con niimeros particulares y se perfeccioné du-
rante los siglos XVI al XVIII para operar con un registro semiético muy potente
para manejar los sistemas conceptuales de la aritmética generalizada, que tienen
distintos tipos de nimeros como componentes; a su vez, el calculo escolar se per-
feccioné durante los siglos XVIII y XIX para operar con otro registro semiético,
muy parecido superficialmente al anterior, pero mucho maés potente para manejar
los sistemas conceptuales analiticos, que tenian al comienzo distintos tipos de “can-
tidades variables” como componentes. Desde el punto de vista actual, las cantidades
variables eran funciones del tiempo, aunque no siempre explicitamente formuladas.
El célculo se distancié del dlgebra por su poder para modelar y tratar las cantidades
variables y sus covariaciones, aunque ya con la geometria analitica de Descartes era

tedricamente posible reducir todas las demas cantidades a longitudes de segmentos.

Antes de la invencion del cédlculo, por medio del analisis de las cantidades variables,
Roberval, Fermat, Pascal, Cavalieri, Wallis y Barrow resolvieron, desde 1630 hasta
1680, muchos problemas que hoy se tratan en calculo, como los maximos y minimos,
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las normales a las curvas, las tangentes y las subtangentes, las areas bajo muchas
curvas y los volimenes encerrados por varios tipos de superficies. Hacia el final del
siglo XVII, entre 1665 y 1700, Newton y Leibniz inventaron independientemente dos
calculos diferentes, con cantidades variables para modelar fenémenos de la fisica y
resolver problemas internos de las matematicas: el calculo con fluxiones, que llevé a
la derivada con respecto al tiempo y a la integral como antiderivada, y el calculo
con diferenciales, que condujo al calculo diferencial e integral clasico y al calculo no
estandar.

Durante el siglo XVIII se desarrollaron rapidamente los calculos diferencial e integral
de Newton y Leibniz, los cuales se confundieron en uno solo y se difundieron por
toda Europa con textos y cursos escolares, comenzando con el texto de L’Hopital y
siguiendo con la Introductio de Euler y el Curso de Cauchy a principios del XIX.
Durante los tltimos decenios del siglo XIX, con el refinamiento de la teoria de
los nimeros reales y de las funciones definidas sobre ellos, se fueron precisando
y abstrayendo los sistemas analiticos sobre los nimeros reales, que tienen ahora
distintos tipos de funciones reales de valor real como componentes. Para el manejo
de estos sistemas conceptuales analiticos se estabilizé en el siglo XX lo que hoy se

ensena en colegios y universidades como calculo diferencial e integral.

Esa ensenanza se masificé a casi todas las universidades del mundo después de la
segunda guerra mundial, y la industria de textos de calculo cada vez més voluminosos
y costosos ha prosperado durante més de 60 anos.

Tal masificacién de la ensenanza del cédlculo llevé a unificarlo como un profuso
inventario de ingeniosas maneras de calcular resultados de ciertos tratamientos de
expresiones simbdlicas dentro de un registro semiético operatorio muy parecido al
algebra de bachillerato. Pero esa masificacién llevé a la penosa situacién actual de
que ni siquiera se piensa en qué sistemas conceptuales representa ese registro, de
tal modo que para ensenar bien las técnicas de célculo escritas en esa algebra rara
no hace falta ninguna idea, ni fuerte ni débil. Para aprender esa algebra rara, basta
la destreza en el tratamiento simbdlico de ciertas expresiones, y mientras menos se
piense en los sistemas conceptuales subyacentes, mejor. El lema del buen estudiante
de célculo parece ser: “No me hagan pensar, porque me equivoco”.

Infortunadamente, para los profesores de cédlculo del siglo XXI, desde fines del siglo
XX todos esos tratamientos simbélicos los puede hacer cada vez mejor cualquier buen
programa de algebra computacional, como el Derive y el Maple, y mejor todavia
el programa Mathematica. Los profesores de calculo encontramos cada vez més
dificil mantener la ilusion de que estamos haciendo algo importante al entrenar a
nuestros estudiantes para llegar a ser apenas tan “brutos” como un computador con
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un buen programa de procesamiento simbolico. A pesar de la creciente evidencia en
contrario, a los jovenes que se logran acercar a las “habilidades brutas” del programa

Mathematica los seguimos considerando los més “inteligentes”.

Poco a poco, los profesores de calculo nos parecemos cada vez mas a aquellos ilustres
catedraticos de algunas facultades de ingenieria que, pese a la disponibilidad de
calculadoras de mano con teclas funcionales, siguieron insistiendo hasta su jubilacion
en ensenar a sus estudiantes primiparos a manejar las tablas de logaritmos, las tablas

de funciones trigonométricas y la regla de calculo.

Por eso, cuando fui asesor del Ministerio de Educacién Nacional (de 1978 a 1993),
propuse no incluir explicitamente el calculo en los programas para la educacion
media de la renovaciéon curricular que se prepard desde 1976 hasta 1984.

Me interesaba en ese entonces que todos los estudiantes de la educacion basica secun-
daria desarrollaran habilidades de manejo de los sistemas conceptuales numéricos
por medio de sistemas simbodlicos operatorios que tuvieran simbolos para niimeros
genéricos o todavia no definidos, o sea, que dominaran la aritmética generalizada,
y que todos los estudiantes de la educacion media entendieran al menos las ideas
fuertes para el manejo de los sistemas conceptuales analiticos por medio de sistemas
simbolicos operatorios con simbolos para funciones genéricas para la modelacion de
procesos y fenémenos de la vida cotidiana y de las ciencias naturales y sociales.

Habia cinco columnas principales en los programas del drea de matematicas para la
secundaria y media: una columna de sistemas numéricos, otra de sistemas geométri-
cos, otra de sistemas métricos, otra de sistemas de datos y otra de sistemas analiticos.
Se trataba, por supuesto, de los sistemas conceptuales respectivos, para los cuales
se trabajaba con distintos sistemas simbdlicos como medios para el refinamiento,
control y comunicacién del trabajo conceptual.

No inclui explicitamente el dlgebra escolar en la educaciéon basica, pues para mi,
como se ensena ahora el algebra, no es de por si una disciplina matematica concep-
tual ni tiene ideas fuertes. Tampoco queria incluir explicitamente el calculo escolar
en la educaciéon media, pues pensaba que como se ensena ahora no es tampoco de
por si una disciplina matematica conceptual ni tiene ideas fuertes. Propuse, pues,
eliminar el cédlculo de grado once y dejar el manejo de los sistemas analiticos por
medio del célculo diferencial e integral para la universidad. Podria quedar, a lo mas,
como asignatura electiva de tltimo ano de la ensenanza media, pensando en el siste-
ma norteamericano de cursos de advanced placement o “emplazamiento avanzado”

ofrecidos por las universidades en los dos ultimos grados de los colegios.

Tenia para ello varias razones. Una era que, fuera de Colombia, en ningtin pais del



66 CAPITULO 1. CONFERENCIAS MAGISTRALES

mundo es obligatorio el cdlculo en el dltimo ano de secundaria o media. Otra, que los
profesores de calculo de la universidad decian que los bachilleres no sabian nada de
calculo y que lo poco que creian saber era mejor que no lo hubieran aprendido, pues
asi se ahorrarian el tiempo necesario para desaprenderlo. De todas maneras habia
que repetir toda el algebra, la geometria analitica, la trigonometria y el calculo en
el primer ano de la universidad, luego era mejor emplear esos dos anos de media en
algo mas 1til. Esa razén sigue siendo vélida, y cada vez oigo més esa queja entre los
profesores de célculo de los primeros anos de universidad.

Efectivamente, los estudiantes de grado once terminan el cédlculo sin entender ni
siquiera la idea fuerte mas importante del calculo diferencial: la de tasa o rata de
cambio. No entienden qué es una tasa variable o una rata de cambio variable, pues
-como tampoco saben ortografia- parecen creer que una “tasa’ es para tomar tinto

y que una ‘“rata” es un animal danino.

La razén mas fuerte que me llevaba en esos tiempos a no incluir el calculo en grado
once era que los bachilleres no sélo no aprendian ni siquiera esa idea fuerte del
calculo, sino que aprendian todavia menos las otras dos ideas fuertes del calculo:
ni la variacion y la covariacién funcional, ni la acumulacién y las integrales. Un
bachiller con “E” en calculo ni siquiera podria negociar una tasa de interés o discutir
un aumento de salario por inflacion. Los bachilleres y sus profesores estaban, pues,
perdiendo su tiempo en ese ano de calculo. Por eso era mejor quitarlo del programa
de grado once.

Lamentablemente para mi y para los estudiantes de grado once, fracasé en mi intento
de quitar el calculo de ese grado. Afortunadamente para los profesores de cédlculo de
secundaria y media, esos nuevos programas de secundaria colapsaron con la expedi-
cién de la Ley General de Educacion en 1994, que establecié la autonomia curricular
con base en el PEI de cada institucién, y los programas de media nunca salieron.

A pesar de que los programas de matematicas para la secundaria y media expedidos
en 1974 dejaron de ser obligatorios hace quince anos, todavia siguen vigentes en
la mente de los maestros y en los libros de texto. Como dice Juan Carlos Negret,
“los programas de 1974 no existen, pero si insisten”. Las tradiciones escolares tienen
mucha inercia; hay demasiados intereses gremialistas entre los docentes y hay to-
davia mas intereses comerciales entre las editoriales. El calculo de grado once sigue

ahi después de 35 anos.

El calculo diferencial e integral suele ensenarse en grado once y en primer ano de
universidad como el manejo de un sistema simbodlico que permite tratamientos multi-

ples, ingeniosos y potentes de ciertas expresiones analiticas. Lamentablemente, como
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tratamiento de ciertas representaciones semiéticas sin referencia a un sistema con-
ceptual analitico, ese tipo de célculo no es importante por si mismo. Por fortuna, el
calculo también puede ensenarse para desarrollar y ejercitar el pensamiento numéri-
co, espacial y métrico, asi como el pensamiento variacional que los cruza a todos,
por medio de la utilizacién de sistemas conceptuales analiticos, con sus distintos
registros simbdlicos para la modelacion de procesos y para resolver problemas. El
pensamiento variacional es el mds importante en las matematicas, en tanto que la
modelacién y la resolucién de problemas son los procesos mas valiosos en las ma-

tematicas escolares en colegios y universidades.

Para mi, la modelacion es la formacion de modelos tedricos de los procesos reales,
y considero que los modelos tedricos incluyen un modelo mental intuitivo analégico
y una teoria digitalizada en un lenguaje articulado que permita la comunicacion y
el tratamiento simbdlico por medio de distintos registros semidticos. Si el célculo
diferencial e integral va a dejar de ser ese ejercicio de destrezas simbdlicas que
se hacen mejor por computador y va a convertirse en promotor del pensamiento
variacional, la modelacién y la solucion de problemas han de concentrarse en el
manejo de los sistemas conceptuales analiticos, y enfatizar en las ideas fuertes del

calculo.

A mi juicio, no hay otra manera de resolver problemas que la modelacion, aunque se
necesita también, por supuesto, el tratamiento de los algoritmos para echar a andar
o a “correr” los modelos, de acuerdo con sus teorias formuladas en distintos registros

semidticos, pero esa segunda parte es la que hacen mejor los computadores.

Propongo, pues, que entendamos el calculo diferencial e integral no como un mero
ejercicio de destrezas de manejo simbdlico, sino como el mejor ejercicio mental para
el desarrollo del pensamiento variacional, con la utilizacién de los sistemas concep-
tuales analiticos para modelar y resolver problemas de la vida cotidiana y de las
ciencias naturales y sociales. Para ello hay que empezar mas aca de las destrezas
simbdlicas, comenzando con el cultivo de las ideas fuertes del cédlculo, y pasar mas
alld de las destrezas simbdlicas, hasta construir los sistemas conceptuales analiticos
y saber manejarlos con diversos tipos de registros semidticos orales, gestuales, escri-
tos en lenguas naturales, y en lenguas formales y con distintos registros graficos y

computacionales.

En mi opinién, las tres ideas fuertes del calculo diferencial e integral son, en primer
lugar, la variacién y la covariacién de las cantidades de distintas magnitudes (en la
que incluyo, por supuesto, la covariacion funcional, la covariacion lineal y el estu-
dio local de las maneras como las funciones no lineales transmiten la variacion del

dominio al codominio); en segunda instancia, las razones, tasas o ratas de cambio
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que llevan a las derivadas, y en tercer término, la acumulacién que conduce a las
integrales. Ya explicaré por qué no cuento entre esas tres ideas fuertes del calculo
otras posibles candidatas, como el limite y la continuidad. Si podria considerar una
cuarta idea fuerte: las diferencias orientadas que llevan a los diferenciales y a los
integrales leibnizianos. Pero de todos modos seria menos fuerte que las tres ideas
que he seleccionado como las mas fuertes del calculo y, ademés, me obligaria a decir

que las tres ideas fuertes del calculo son cuatro.

Otra forma de decir lo mismo de manera mas provocativa y provocadora seria senalar
que las tres o cuatro ideas fuertes del calculo son cinco: la covariacién y “las cuatro
operaciones” de suma, resta, multiplicacion y divisién. En efecto, las integrales son
sumas; los diferenciales son diferencias y actian sobre diferencias, o sea, son restas;
las derivadas son tasas, ratas o razones, es decir, son divisiones, y la multiplicacion es
la aplicacién de las tnicas funciones lineales que hay en una variable real, que a veces
llamamos “escalares”, o sea, que las funciones lineales son operadores multiplicadores
y la aplicacion de éstos a sus argumentos o multiplicandos son precisamente las

multiplicaciones.

Para que se vea mas clara la relacién entre la multiplicacion y la linealidad, obser-
vemos que la multiplicacién de a por b, que escribimos “a x b”, se interpreta por los
que preferimos escribir los operadores unarios a la izquierda, como “a veces b”, con

a como multiplicador y b como multiplicando:
axb=L,(b) = ab.

Los que prefieren los operadores escritos a la derecha, como “a, b veces”, con a como

multiplicando y b como multiplicador, escriben mas bien:
axb=(a)L, = ab.

De ambos modos resulta una familia de operadores lineales o escalares indexada por
el multiplicador. Esas dos maneras de entender la multiplicacién como una familia de
operadores unarios producen precisamente los inicos operadores lineales que hay en
los sistemas analiticos de funciones reales de una sola variable real. Esos operadores

lineales son los més importantes para la primera idea fuerte del cédlculo.

1.5.1. Primera idea fuerte del calculo: la variacion y la co-

variacion funcional

No me detengo a explicitar la naturaleza y a destacar la trascendencia del pensamien-
to variacional, que es ahora la meta principal de los lineamientos y los estandares
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de competencias del area de matematicas para la secundaria y media en Colom-
bia. A algunos investigadores del Cinvestav de México, como Ricardo Cantoral y
sus colaboradores, les debemos los estimulos iniciales para enfatizar el pensamiento
variacional en unas matematicas escolares que en general habian estado dominadas
por el pensamiento estatico. A Celia Castiblanco y su equipo de trabajo para los
lineamientos del area de matematicas, y a Gloria Garcia y Gilberto Obando para los

estandares de competencias, les debemos su reformulacion y expansion en el pais.

Para ejercitar ese pensamiento variacional en lo numérico, lo espacial y lo numérico,
es necesario volver a trabajar con magnitudes fisicas y cantidades variables en el

tiempo y en el espacio-tiempo, y distinguir las cantidades de sus medidas numéricas.

La primera idea fuerte es, entonces, la variaciéon de cantidades variables dependientes
del tiempo y la covariacién de dos o méas cantidades variables relacionadas entre si, o
dependientes una de otra. Los dos principales tipos de covariacién corresponden a la
suma y a la multiplicacién, o para decirlo en forma mas técnica, al campo conceptual

aditivo y al multiplicativo.

La covariacién aditiva se refleja en la adiciéon de vectores y funciones, no sélo de
numeros, y lleva a las diferencias orientadas, a los vectores de los espacios tangentes,
a los diferenciales y a las integrales. La covariaciéon multiplicativa se refleja en los
operadores lineales y conduce a las razones, a las derivadas y a los operadores lineales
sobre espacios vectoriales y funcionales.

El estudio de la variacion y la covariacion por medio del calculo tiene como meta la
modelacién de procesos y fenémenos de la vida real con modelos mentales analégicos
y teorias digitalizadas y formuladas en registros semiéticos diferentes, para facilitar
la resolucién de problemas de la vida real.

Funciones como tipos de covariaciéon

Los modelos mentales més apropiados para el pensamiento variacional no son sis-
temas numéricos o geométricos compuestos de numeros y figuras, sino sistemas
analiticos compuestos de las funciones reales como tipos de cambio, de variacion
y covariacion.

En las funciones no son las parejas ordenadas del grafo las que importan, sino la
situacién de covariacién. La funcién como relacién entre esas cantidades covariantes
codifica las restricciones a la variacion de una cantidad variable, considerada ma-
nipulable o independiente, y otra dependiente en su variaciéon de la variacion de la

independiente.

Una cosa es una cantidad que permanece constante (en un contexto espacio-temporal
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dado, o dentro de un juego lingiiistico especifico, por ejemplo, dentro de la resolucion
de este problema); otra cosa es una cantidad variable en el tiempo; otra cosa es una
cantidad que varia si varia otra (serfa mejor llamarlas “covariables”, o mejor todavia,
“variables covariantes”); otra cosa es una medicién de una cantidad variable (como
un proceso, como un resultado anumérico, como un resultado numérico); otra cosa
es el simbolo de una cantidad potencialmente variable, y otra es el simbolo del valor
de una medicién de una cantidad. Las mediciones dan ntmeros reales (en caso de
magnitudes escalares) pero dependen del origen elegido, de la unidad que se utilice,
del método de medicion, del aparato que se use, etc. Piense en el tiempo como
duraciéon y como medida de la cuandicacién o “ubicacién temporal”, o en la de la

temperatura, o en la amplitud de un dngulo de giro (en grados, radianes, vueltas...)

Desde Vieta y Descartes hasta Euler, las cantidades eran variables o constantes,
infinitesimales o finitas. Sin pensar en la situacion de covariacién no se sale de ahi. Es
necesario pensar en cual cantidad puedo hacer variar a voluntad y cudl esta amarrada
o ligada a esa variacién y como. Es; pues, importante en el calculo de una variable
decir que hay al menos dos variables, una cantidad variable independiente y otra
dependiente, y que la segunda variable, la dependiente, es la que se dice que es una
funcion o es funciéon de la otra. No es, entonces, propiamente “el calculo en una
variable” sino el calculo de funciones de una sola variable real (y de un solo valor
real). Pero desde este punto de vista, tales funciones no son sino codificaciones de
modelos de covariacion de cantidades variables, ya consideremos que las funciones
son relaciones que restringen la variacion de la dependiente segtin los cambios de la
independiente, o que son operaciones que transforman el valor de la independiente

en el de la dependiente.

Esas funciones pueden entenderse de dos maneras: como operaciones sobre canti-
dades variables y sus medidas numéricas, y como relaciones entre cantidades cova-
riantes y sus medidas numéricas. En la ensenanza del calculo por ideas fuertes se
trata de estimular a los estudiantes hasta que lleguen a objetivar las funciones como
elementos, componentes u objetos de otros sistemas de orden superior, los sistemas
conceptuales analiticos. Como lo propone la teoria Apos o Apoe de Dubinsky, se
trata de pasar de acciones y procesos a objetos y esquemas.

1. Funciones como relaciones. Podemos llamarlas funciones relacionales o re-
laciones funcionales. Solemos entenderlas con un modelo de amarre o restric-
cion: el modelo relacional. Este modelo induce el pensamiento estatico, a menos
que se consideren las relaciones funcionales como amarres condicionales que

regulan y restringen la variacién de la imagen cuando se varia la preimagen.

2. Funciones como operaciones. Podemos denominarlas funciones operacio-
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nales u operaciones funcionales, y es posible entenderlas mejor por medio de
modelos de transformacién o de méquina: los modelos transformacionales u
operacionales. Estos modelos son mucho mas cercanos al pensamiento varia-
cional si se considera la variacién de la imagen que la operacion transforma en
preimagen. Muy relacionado con los modelos operacionales es la idea compu-
tacional de que una funcién es un procedimiento de calculo que produce un
solo valor (output), siempre el mismo para el mismo insumo o sistema orde-
nado de insumos (inputs). Comparese con la idea de Lagrange: una funcién
de una o mas variables es cualquier expresion del calculo donde figuren esas
variables. Esa es la manera que mas me gusta para comprender la sintaxis del
algebra de bachillerato: interpretar los términos algebraicos como instrucciones

en taquigrafia.

Ampliar una diapositiva es una transformacién o funciéon operacional con respecto
a la imagen. Después el observador puede relacionar la imagen proyectada con su

preimagen en la diapositiva, y aparece un modelo de funcién relacional.

Mover el apuntador laser contra un espejo es mas cercana a una relacién o funcion
relacional con respecto al punto imagen. Mover directamente el punto rojo del laser
en la pared también es relacional. Asi sale la tangente si se mide con la distancia
del apuntador a la pared. Ponga la punta del apuntador a un metro de la pared y

mida la sombra en metros.

Una cosa es la variacion que la operacion le hace a la preimagen, como correrla hacia
adelante si la funcién corresponde a la ecuacién f(x) =z + 1, o como agrandar un
intervalo (a,b) globalmente si se mira la funcién inducida f[(a,b)] con f(z) = 2=z,
pues da lo mismo si se toma como una funcién duplicadora puntual de los valo-
res numéricos correspondientes a los puntos del intervalo (a,b) o como duplicadora
global de los intervalos. Otra cosa es la variacién de la imagen que corresponda a
la variacion de la preimagen, pues esa puede estudiarse también en el caso de que
la variacién se dé cerca de una preimagen que es un punto fijo de la funcion. Tal
caso es muy util para maximos y minimos que coincidan con el punto fijo, como el
cero para las funciones lineales. Precisamente se trata de reducir todo el andlisis al
estudio de las transformaciones lineales locales.

Funciones como modelos dindmicos de covariacién

La grafica cartesiana es estatica. Como lo explica muy apropiadamente el Dr. Crisélo-
go Dolores Flores, las graficas usuales de las funciones que modelan la covariacién
no sélo no sirven para ejercitar el pensamiento variacional, sino que lo obstaculizan.

Pero hay maneras de superar ese obstaculo.
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Recordemos que una cosa es el grafo de una funcion, que como conjunto de parejas
es estatico; otra cosa es la grafica cartesiana, que como locus de puntos también
es estdtica; otra cosa es la curva como imagen estéatica de una trayectoria (huella,
memoria, estatica); otra es la curva como trayectoria de un punto mévil que se va
describiendo a su paso, y otra es la manera de interpretar activamente la grafica
cartesiana con la idea de los espacios tangentes, el laser y el espejo de 135° que

explicaré a continuacién.

Si se quiere ejercitar el pensamiento variacional, se puede pensar que R como con-
junto de salida queda representado por el eje horizontal desplegado por el vector
unitario e; y el conjunto de llegada queda representado por el eje vertical desplega-
do por e5. En la visién dindmica, el punto (z, f(x)) del grafo es apenas un punto de
quiebre de la “trayectoria de un rayo de luz” que empieza de x hacia arriba, se refleja
en un espejito a 135 grados situado en el punto (z, f(x)), sigue horizontalmente y
pega en el eje y, donde senala la imagen de x por f, f(z).

Pero también se puede considerar que el conjunto de llegada R esta repetido inde-
finidamente, una vez “encima” de cada punto x del eje horizontal. Es mejor decir
“encima”, pues el cero de la fibra “tapa” el punto x. No es pues “lo mismo” el punto
2 como punto del conjunto de salida R y el punto cero del conjunto de llegada, re-
petido o no. El punto (z, f(z)) es ahora el seleccionado por la seccién del haz trivial
R x R sobre x, al cual vuelve a “caer” si se usa la proyeccién canénica w (nétese que
no cae sobre (z,0)). Esto se parece més a la idea de Descartes de que el argumento
de la funcién es la longitud del segmento del eje de las abscisas, y el valor de la
funcién es la longitud del segmento de alli para arriba, no en el eje y. Volvemos a
las cantidades variables consideradas mentalmente antes de las medidas numéricas.

Un ejemplo de la fisica newtoniana

Para ver como trabajar con cantidades variables especificas, tomo un ejemplo de la
mecanica newtoniana. Vuelvo a la fisica del impetu o del impulso de los siglos XIV

a XVII y a la manera como la reformularon Galileo y Newton.

Primero preciso conceptualmente dos magnitudes fisicas con sus distintas cantidades
constantes o variables, que considero en mi modelo mental del movimiento de un

objeto masivo cuando lo impulso o lo freno: el impetu y el impulso.

El impetu o fuerza, viva o momento de un objeto en movimiento, es directamente

proporcional a la masa y a la velocidad del objeto.

El impulso o la accion de un agente sobre un objeto en reposo o movimiento es
directamente proporcional a la fuerza impresa aplicada al objeto y a la duracién de
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la aplicacién de esa fuerza sobre el objeto.

Defino, pues, el valor numérico del momento p como el impulso o fuerza viva que
no tenga en cuenta otros posibles componentes, sino tnicamente el producto de
los valores numéricos de la masa y la velocidad, p = kmuv, y utilizo las unidades

apropiadas para eliminar la constante k:
p=mu

Defino el valor numérico de la accién A como el impetu que le da el agente al objeto
sin tener en cuenta otros posibles componentes, sino inicamente el producto de los
valores numéricos de la fuerza impresa y de la duracién del impulso, A = kft, y uso

las unidades apropiadas para eliminar la constante k:
A= ft
Para una duracion pequena At, el incremento del impulso o la accién es
AA = fAt

Ley del impulso: la aplicacion de un impulso o acciéon incremental a un objeto en
reposo o movimiento produce un incremento proporcional en el impetu o momento
del objeto:

AA=EkAp

Si utilizo las unidades apropiadas para eliminar la constante k, los valores numéricos
satisfacen la igualdad:

AA=Ap fAt = Ap = A(mw)

Si la masa es constante,

fAt =mAv f=m (%) = ma.

Por tanto, el modelo newtoniano con una teoria que incluya la ley “f = ma” sélo
sirve cuando la masa es constante, y por consiguiente no sirve para modelar la subida
de un cohete ni el vuelo de un avién de fumigacion u otros procesos en los que vaya

cambiando la masa del objeto en movimiento.

Tampoco serviria el modelo si el momento incluye otros factores, como por ejemplo la
velocidad de giro de una pelota de béisbol, o la resistencia del aire, o la temperatura
del objeto, o si el impetu o accién incluye el sudor, la sensacion de esfuerzo, el dolor
o el ritmo cardiaco del agente, o la temperatura del ambiente. Esto no es una broma,



74 CAPITULO 1. CONFERENCIAS MAGISTRALES

pues si se define paralelamente el trabajo W como el producto de la fuerza impresa
f por la longitud s del recorrido,

W =fs,

esto implica que el modelo del trabajo fisico posnewtoniano con una teoria que

incluya la igualdad
AW = fAx,

sea cual sea el sudor, esfuerzo, dolor y aceleracién cardiaca del trabajador que lleva
a la espalda un bulto de cemento de 50 kilos del camién al depdsito a una cuadra
de distancia por un camino plano, con una temperatura ambiente de 40 grados, el
hombre no hace ningiin trabajo. Mas atn, si al final tira el bulto al suelo del depdsito,
hace trabajo negativo y, segtin este modelo del trabajo, le debian descontar algo del
sueldo. Las cantidades variables son, pues, muchisimas: la masa del objeto, el impetu
que lleva el objeto, la fuerza que le hago, el tiempo que dura mi esfuerzo, el impulso
que le imprimo al objeto, el peso del objeto en este sitio, la temperatura ambiente
aqui y ahora, el trabajo neto que hago, la energia que consumo, el sueldo que gano,

etc.

Por desgracia, las matematicas no consideran esenciales las magnitudes y sus can-
tidades; sin embargo, por fuera de los problemas puramente matematicos lo mas
importante del calculo seria la posibilidad de modelar procesos y fenémenos de la
vida real, y manejar valores numéricos de esas cantidades variables por medio de
los sistemas conceptuales analiticos y los registros semioticos respectivos. Propongo
entonces, en primer lugar, volver a las magnitudes y cantidades variables y a sus
modos de covariacién, para modelarlas y tratarlas por medio de las funciones de
los sistemas conceptuales analiticos, y ahora si tratar las funciones con el calculo
diferencial e integral como registro semiético potente.

1.5.2. Segunda idea fuerte: las razones, tasas o ratas

En el Congreso Nacional de Matematicas celebrado en Cali presenté un tratamiento
detallado de las diferencias y las razones en la historia de las matematicas, hasta lle-
gar a la consideracién de éstas como parejas de operadores aditivos y multiplicativos

mutuamente inversos.

Las diferencias como operadores aditivos orientados llevan a la consideracion de los
vectores localizados en cada punto, y a la construccion del haz tangente a la recta real
R, al plano R? o al espacio tridimensional R®. En cada punto p se sitia un espacio
vectorial de la dimension respectiva, que se llama “el espacio tangente al punto p”,
T(p). El haz tangente es la unién disyunta de todos esos espacios tangentes, con
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una funcion de proyeccién que los identifica por el punto de amarre donde se situa
la “cola” del vector respectivo. Este punto de amarre puede verse también como el

vector cero del espacio vectorial respectivo.

Ya senalé que las diferencias como operadores orientados llevan a los diferenciales de
Leibniz, y producen un célculo diferencial de un sabor muy distinto del de Newton.
El célculo diferencial de Newton no se deberia llamar “diferencial” sino “fluxional”,
ya que se basaba en las fluxiones de las cantidades fluyentes. Hoy identificamos las
cantidades fluyentes con las variables numéricas escritas con una sola letra, y las
fluxiones con las derivadas de esas variables con respecto al tiempo, escritas con un
punto encima. Como no hace falta pensar en ideas fuertes para aprender calculo,
pocos profesores y estudiantes caen en cuenta de que hay un célculo que comienza
con el énfasis en las diferencias, lo que lleva al calculo diferencial de Leibniz y al
calculo no estandar de Robinson y Keisler, y otro calculo que comienza con el énfasis
en las razones, lo que lleva a las fluxiones con respecto al tiempo en Newton, luego
a las derivadas més generales y a los operadores lineales?.

Son calculos conceptualmente diferentes, basados en diversos énfasis en dos ideas
fuertes distintas, que llevan a un teorema que las liga precisamente para mostrar
que la extensién de las fluxiones con respecto al tiempo a derivadas més generales
de cualquier variable dependiente en relacion con la independiente es equivalente a
la razon entre diferenciales. Como las ideas fuertes no se enfatizan, ese teorema no

aparece demostrado en ninguno de los enormes libros de célculo estandar:

a_
dx
A veces aparece como definicién del simbolo “%” y en ocasiones aparece al revés,

como definicién del simbolo “ye prima”, sin que se vea rastro de la relacion concep-
tual entre ellas ni de la necesidad de comenzar el calculo con distintos énfasis en las

diferencias y en las razones. Volveremos pronto sobre este teorema.

Las razones, como parejas de operadores ampliadores y reductores mutuamente in-
versos, llevan a la consideracion de las transformaciones lineales entre espacios tan-
gentes al dominio y al codominio o recorrido de las funciones reales, y a la conside-
racion de la derivada de una funcién como una coleccién de operadores lineales que
aproximan localmente la funcién en cada punto del dominio. Esa es la caracteriza-
cién de Carathéodory que estudié César Delgado y que es la tnica que se generaliza

a variedades de otras dimensiones y permite la extension a las teorias de haces.

Para pensar en la derivada como tasa generalizada variable, es bueno, por ejemplo,

ZVer la compilacién de I. Grattan-Guinness (1980-1984) sobre el tema, Del cdlculo a la teoria
de conjuntos 1630-1910. Una introduccion historica. Madrid: Alianza Universidad.
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empezar por modelar la situaciéon de un préstamo con una tasa de interés del 36 %
anual, al 9 % trimestral, al 3 % mensual, al 7 por mil semanal y al uno por mil diario.
Se toman las convenciones comerciales del ano de 12 meses de 30 dias. Si es interés
simple, la tasa es fija y el monto inicial también, de modo que la acumulacién es
lineal con coeficiente fijo o constante: la tasa fija. Para estudiarla no hace falta el
calculo. Pero si el interés es compuesto, se va cambiando el monto inicial y, visto de
otra manera, es como si subiera la tasa. Ese modelo permite ver cuando vale la pena
usar la aproximacién exponencial y cuando no, pero para entender las funciones
exponenciales y sus distintas tasas de cambio absolutas y relativas si es necesario el
calculo.

Lo mismo pasa con la tasa anual de inflacién frente a la tasa mensual y la diaria. Si la
tasa de inflacién fuera del 2 % mensual, jcudl seria la tasa anual? Los que crean que
es el 24 % perdieron su tiempo en los cursos de cdlculo. Sélo manejan las cantidades
constantes y las tasas fijas, y se descuadraron casi en el 3%. No aprendieron nada
de la segunda idea fuerte del célculo.

Para la modelacién y el estudio de las tasas fijas basta la aritmética generalizada,
pero para la modelacién y el estudio de las tasas variables y las tasas instantaneas
se requiere el calculo como registro semiotico para los sistemas analiticos. Pero no
como “boleo de simbolos”, sino como registro semiético privilegiado para el estudio
de los sistemas conceptuales analiticos y para la refinaciéon y expresion de las ideas
fuertes de ese célculo.

Se puede aprovechar una comparacion entre las cantidades fijas o constantes y las
cantidades variables. En los modelos mentales de los procesos y fenémenos reales
es claro que si la funcién de t que mide la cantidad seleccionada es una funcién
constante, puede decirse que esa cantidad variable o esa funcién “no tiene tasa”,
0 que “tiene tasa cero”. Si la funcién aumenta o disminuye linealmente, la tasa es

constante en cualquier forma en que se calcule y en cualquier instante ¢.

Cada tasa constante va con una funcion lineal. Pero si la tasa no es constante, como
la velocidad en la caida libre, no es facil ver qué pasa. Los fisicos tuvieron que refinar
sus herramientas conceptuales y sus notaciones durante 20 siglos, desde Aristoteles
hasta Newton, para poder calcular lo que hoy se ve claro con las derivadas y las
integrales: si g es constante, la velocidad de caida es una cantidad variable que es

una acumulacion integral. Esa funcién tiene grafica lineal:
v = gt + v,,

Si la velocidad inicial era nula, se ve que v cambia linealmente con el tiempo. Ahora,
el total de la distancia recorrida es una acumulacion integral, que se modela con una
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funcion de variacion en el tiempo que es no lineal:

L
y:§gt + Vot 4 Yo.

Pero ;qué pasa si la aceleracion de la gravedad ¢ no es constante? ;Y qué sucede si
la masa del objeto cambia, como en el caso de un cohete? Ahora si empieza a ser

potente el calculo para resolver esos problemas de mecanica.

Pero las derivadas e integrales necesarias se pueden calcular muy bien y muy rapido
con cualquier programa de tratamiento simbdlico. El asunto es plantearlo apropia-

damente, y eso no puede hacerse sin pensar en las ideas fuertes del calculo.

1.5.3. Algunas observaciones sobre la notacién del calculo

En el calculo de o en una variable, escriba

y=f(z)+c
Yo veo cuatro variables, no una.

Sea z un numero real.

y = kx.

.k es una constante, o una constante que es variable? k' = 0 y 2’ = 1, o también
' = 0. Al menos deberia serlo si es un nimero real. Sea f la funcién constante cero

Co.

Ya f es una constante, no una variable. Ademas, f es una funcién constante de la

variable z.

Estudie la férmula:
y = co(x).
.Es y una variable?

No, es constante: siempre es cero. Sea f la funcion constante ck.

vari 1 jos). ¢ vari

La k es ahora una variable para nuimeros reales (o complejos). ¢, es una variable

para las funciones constantes. ;Por qué decir “la” funcién constante? Hay infinitas.
ri ir ino “una”. En analisis r uncion nstan n

No se deberia decir “la” sino “una”. En analisis real, las funciones constantes so

una familia indexada por elementos de R. Analice la férmula:
20 +1=05.

., Cudl es la variable? Ninguna, pues x siempre es 2.
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Ya lo decia Grattan-Guinness: es una constante desconocida (“incégnita”, “unknown

constant”).

Ahora analice la férmula:

La z tampoco es variable, pues siempre es cero.

Mire con cuidado la ecuacion siguiente:
ar +b=0.

Yo veo tres variables, no una. Otras personas podrian ver cuatro constantes, pues el
b

cero es constante, y si a y b son constantes, x también lo es: siempre es igual a — .
No aclara nada hablar de variables como letras. Es necesario volver a pensar en
variables como cantidades variables en el tiempo. Descartes permite pensar tinica-
mente en cantidades de longitud, pero no es cierto que haya pensado en hablar s6lo
de ntumeros reales, entre otras cosas porque no sabia cudles eran nimeros reales ni

cuales eran complejos o imaginarios.

Es claro en el analisis, desde Descartes y Roberval en 1630 hasta Fuler y al menos en
algunos pasajes de Cauchy, que se crefa que el limite era de las cantidades variables,
no de las letras ni de las funciones. Euler y Lagrange pensaban que las funciones
eran expresiones algebraicas. Lagrange dice que “una funcién de una o mas varia-
bles es cualquier expresion del calculo en la que figuren esas variables de cualquier
manera’2%. Ni Euler ni Lagrange distinguian entre expresiones bien formadas o no,
ni entre expresiones y férmulas, ni entre las expresiones que sirven para el calculo
y las que no, ni entre las expresiones que sirven para el célculo y producen siem-
pre el mismo resultado numérico para los mismos remplazos de niimeros en vez de
variables. Para ello hay que esperar a Dirichlet y Weierstrass.

Lo que pasa es que las mediciones sucesivas en el tiempo de cualquier cantidad
definen una funcién de R (tomando a R como conjunto ordenado de ubicadores o
cuandicadores de un modelo del flujo continuo y homogéneo del tiempo, representado
por un segmento de recta marcado con una flecha a la derecha y una “t” en vez de
una “z”). Si el modelo del flujo es discreto, por pasos equidurantes, las mediciones
sucesivas forman una sucesion, y se pueden considerar una funcién de los niimeros de
contar, tomandolos como ubicadores o cuandicadores. De aqui facilmente se desliza
la atencién a las funciones crecientes y decrecientes, y no se cae en cuenta de que la

mayoria de las funciones no lineales usuales no lo son.

26Ibid., cap. 3, p. 133.
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La definicion de limite de la Enciclopedia de D’ Alembert en 1765 es sélo una cantidad
constante como tope superior de una cantidad variable ascendente (mondtona cre-
ciente), que no puede pasar mas alla de esa cantidad constante. Eso nos muestra un
posible obstaculo para la comprension del limite por parte de nuestros estudiantes,

pero también nos puede sugerir una via para su ensenanza.

Es interesante saber que 60 anos maés tarde, todavia Cauchy piensa que “tender a
cero” o “ser infinitesimal” es propio de las variables positivas que decrecen hacia

cero?’.

Se ve que tanto D’Alembert como Cauchy querian utilizar las diferencias y diferen-
ciales como diferencias infinitesimales a la manera de Leibniz, pero no se atrevian a
decirlo expresamente, y después de muchas disquisiciones la explican como el limi-
te de diferencias finitas. Pero ya se ve en esos textos de los siglos XVIII y XIX,
y comienzos del XIX, que la diferencial de f en cada punto xg podia considerarse
la funcién afin cuya gréafica “sigue por la tangente” a la grafica original de f en el

punto (o, f(xg)) si se incrementa x més alld de x.

Algo parecido pasa con el incremento de x, llamado “Az”, que no es un infinitesimal.
Se trata de un incremento vectorial a partir de x, modelado como una flecha con

la cola en xg, y por eso se puede escribir
Ar = x — x9.

Pero eso nos lleva a fijarnos en la “z” que no es: en realidad, deberia escribirse

Ax[z0], pues si se usa la notaciéon “h”, quedaria més bien
r+h=x+Ar =2+ (v —x0) =22 — x,
que es absurdo.

Hay que tener cuidado con cudl “x” es el parametro y cuél es el argumento variable.
Por no atender a las diferencias y las razones nos olvidamos de que las diferencias
tienen sentido: no es lo mismo zqg — z que x — xy, puesto que viven en espacios
tangentes diferentes. No gastamos tiempo en asegurarnos de que el estudiante vea
que |z — x| es el radio de la vecindad bésica alrededor de zg, en este caso un intervalo
el doble de largo de ese radio. Si acaso lo hacemos, no caemos en cuenta de que la
palabra “radio” estd bien para bolas en R* y discos en R? (que, dicho de paso, no
son esferas), pero que “radio” suena raro para intervalos de la recta real R.

2TPara la diferencial en la Enciclopedia, ver Grattan-Guinness, Del cdlculo a la teoria de conjuntos
1630-1910, cap. 2, p. 122. Ibid., cap. 2, p. 121. Ver la p. 144 para limite e infinitesimal en Cauchy,
en su Curso de 1821. La continuidad de una funcién “entre dos limites”, o sea en un intervalo, la
presenta globalmente, no punto por punto, como puede verse en la p. 145.
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En general, se confunden los dos sentidos de la “z”: la “x” fija, que nosotros escribi-
mos “zy”, y la “z” mdvil, que se mueve hacia atras y hacia adelante a partir de x,
lo que lleva a h = x—x. Solo se aclarara el absurdo de que “x+h = 2z —zy” cuando
se piense en espacios tangentes al dominio y al recorrido, y cuando no se enfaticen
los triangulitos que parecen vivir en los espacios tangentes a la grafica cartesiana.
Fijar la atencién en ello puede hacerse rigurosamente, pero eso nos llevaria a tener

que sumar f(xg) a df (zg, ), perdiendo la linealidad.

Es mejor pensar de una vez en las secciones del haz de transformaciones lineales
que seleccionan para cada xy del dominio dado la mejor aproximacion lineal a f
entre los espacios tangentes a zo y a f(zg). Ya “x” no puede remplazarse por el
mismo nimero que antes, pues ahora indica un vector de T'(zg), que corresponde
al antiguo x — x¢, que ahora mas bien debe expresarse como «a da:\mo, para cierto a
como coeficiente que amplia o reduce la base dz|, de T'(x), que en este caso es un

espacio unidimensional.

Una cosa es que la cantidad constante a y la cantidad constante b estén en la razon
r, donde r es un nimero real adimensional constante; otra cosa es que la cantidad
variable z y la cantidad variable y estén en la razén r(x,y), donde r es una funcién
de dos variables (mientras z y y sean “razonables”), y otra tercera es que la cantidad
variable x y la cantidad variable y estén siempre en la misma razon, sea que la llame
r 0 no. Esa si es una relacion entre x y y, que permite recobrar el valor de una de
ellas si se sabe la otra y se sabe cudl es la razén constante r. Si no se sabe, pero se
conocen dos valores de una y uno de la otra (y se sabe a cudl de los dos corresponde),
es posible averiguar la razon y el cuarto valor que corresponde a la otra. Ese es el

método del precio unitario generalizado a un coeficiente de variacién unitaria.

La extension siguiente en el calculo es de las razones constantes a las razones va-
riables, y a las razones entre diferenciales. Las diferenciales de y (y = f(z)) vy la
de x estén en la razén %v (lamada ¢ o %), donde esa razén es variable, igual a
f'(x), que es una funcién de una variable, y otra cosa es que esas diferenciales estén
siempre en la misma razén, sea que se llame r o no. Eso significa que la derivada es

constante, de donde se deduce que f es lineal o afin.

Pero ya indicamos que nunca se dice si % = f'(z) es una definicién del simbolo
[13

wd»
dx

de diferenciales basada en una definicién de derivada por otra via. Esa igualdad

, 0 si leido al revés define el simbolo “f’(x)”, o si es un teorema sobre razones

tiene un problema, y es que la x de la izquierda en dz es distinta de la de la derecha

daf

en f'(x), pues falta evaluar $-

en un cierto x que no tiene nada que ver con dzr y
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luego poner la raya vertical con el punto de evaluacion. Deberia ser

d
é = f'(z0).

xo
En las clases de economia se suele empezar con microeconomia antes del calculo y
se utilizan derivadas parciales cuando los estudiantes ni siquiera saben cuales son
las derivadas totales, utilizando razones heterogéneas como coeficientes por peso
invertido, o por peso aumentado en el precio, etc. Cerca de un punto de equilibrio
se supone que las derivadas parciales son constantes y se evalta la variacién de la
cantidad producida o de la cantidad comprada. Otra cosa es la variacién de las

derivadas parciales: razones constantes y razones variables.

En el libro de Grattan-Guinness citado se ve que para Roberval los puntos trazaban
trayectorias y para resolver problemas de tangentes se analizaban las velocidades
que componian el movimiento con la regla del paralelogramo, que es la idea que
sigue Barrow y, al comienzo, seguia Newton. Para éste, las diferenciales no son sino
medios para calcular el objeto que le interesaba, que era la velocidad (fluxién) como
tasa de cambio en el tiempo. Por eso tiene sentido el punto encima para notar
la fluxion de una cantidad fluyente. En cambio, en Leibniz las diferenciales son
objetos infinitesimales, aunque en el caso del triangulo rectangulo formado por la
subtangente como base y la ordenada como altura, es posible ver que Leibniz podia
considerarlas también cantidades finitas de longitud.

En Leibniz y en D’Alembert se ve otra definicién de derivada: la razén de la ordenada
como segmento vertical desde x en R (o desde (z,0)) hasta (z, f(x)) con respecto a
la subtangente como segmento horizontal desde = hasta el z-intercepto de la recta
tangente a la gréfica en (x, f(z)). Esa podria llamarse “derivada trigonométrica” o
“de razén trigonométrica”, a diferencia de la derivada geométrico-trigonométrica (o
“de funcién trigonométrica”) que da el valor de la funcién tangente del dngulo que
forma la tangente con la horizontal.

Aqui también aparece la ambigiiedad entre la subtangente como segmento horizon-
tal y la subtangente como valor numérico de la longitud de ese segmento. Eso es
muy distinto de lo que pasa con la ambigiiedad de la tangente como recta, como
funcién trigonométrica, como razén entre dos segmentos o como valor numérico

correspondiente a otro valor numérico dado en radianes, grados, etc.

Como lo sugiere el profesor César Delgado, es pues aconsejable introducir primero
la nocion de derivada puntual de Carathéodory, como la mejor aproximacion lineal
a la funcion primitiva alrededor de un punto fijo, y mejor todavia, presentar la
derivada general como la seccién del espacio cotangente que selecciona la coleccién

de operadores lineales que mejor aproximan a la funcién primitiva en cada punto.
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Por supuesto que no es facil, y es necesario tener cuidado con este enfoque de la

derivada:

1. La mejor aproximacién a una funcién lineal es ella misma. Luego lo que da
la derivada es la matriz de una aproximacion local. Lo que pasa es que en
dimensiones 1 X 1 la matriz se ve como un solo niimero, y puede tratarse como
una nueva funcion de una sola variable que a su vez puede tener derivada,
pero esa es una excepcion propia de la unidimensionalidad de los dominios y
codominios o recorridos. En cohomologia, el operador de cofrontera d en torres
de cocadenas siempre cumple d(df) = 0.

2. La recta tangente a la recta tampoco suele corresponder a una funcion lineal,
pues si no pasa por el origen, es una funciéon afin pero no lineal. Creer que

toda funcion de grafica lineal es lineal es un error tipico.

3. La mejor aproximacién global a una curva por una recta en general no es la
tangente, ya que puede haber una recta de minimos cuadrados que se ajuste
mejor globalmente. Suele ser una secante. Debe ser, pues, la mejor “localmen-

te??

4. Pero “local” no significa “en el punto”, sino “cerca del punto”, en el espa-
cio tangente pegado al punto preimagen, y también hacia el espacio tangente
pegado a la imagen (de lo contrario, habria que restar f(x,)), pues una apro-

ximacién lineal manda siempre el cero al cero.

5. Desde el punto de vista de las razones, tasas o ratas variables, la derivada es

entonces una familia de funciones

Df ={f'|P:P dom(f)},

que es una familia de un solo parametro P, que esta indexada por P, que es
el punto del dominio D de f donde se pega el espacio tangente Tp. Alli f'|p
es la transformacién lineal que mejor aproxima localmente a f al transformar
vectores del espacio tangente Tp hacia el espacio tangente Ty que estd pegado
en el punto @ = f(P) del codominio de f que corresponde al valor de la
funcion f en P.

Asi se puede reformular también rigurosamente la diferencial de f, df
df : D xT(D) —T(Y)

como una funcién de dos variables: una, que es el indice o parametro, tomada del
dominio D de la funcién, y otra del haz tangente T'(D). Entendemos el haz tangente
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como union disyunta de los espacios tangentes Tp para los puntos P de D. La funcién
de dos variables df proyecta sus imagenes en el haz tangente del conjunto de llegada
T(Y), entendido como unién disyunta de los espacios tangentes Ty para los puntos
Q = f(P) de f[D], la imagen del dominio D por la funcién inducida en las partes
de R.

La funcién df le hace corresponder a la pareja (P,vp), con el vector vp = vdzp,
expresado en la base usual de Tp, es decir, a la pareja (P, vp) = (P, vdxp), un vector
wq de Ty con Q = f(P):

wo = wypy = df ((P,vp) = df (P,vdrp) = wdyg en Tg = Ty(p).

Rigurosamente, df (P,vdxp) = Df|P(vdxp) = f'|p(vdxp).

Para un vector de la base de Tp, dzp, como la derivada en una dimensién se reduce
a un coeficiente multiplicativo, y D f|p es sélo un nimero; esta expresién se puede
reescribir asi:

df(P, ’Ud]?p) = Df|pdl’p = f/’deP;

de donde se deduce formalmente que la razén entre vectores, o sea la transformacion

lineal que envia el uno al otro es, en una dimensién,

df (P, dzp)

=Dflp=f|p.
o =Dfle =

Si se utiliza el punto x donde termina el vector dxp como variable:

df(Px) {df(:r)}

= D = ! .
drp dx fle=Flp

P

Este es el teorema ya mencionado que liga los diferenciales con las derivadas, que
solo vale en una dimensién, y que no es ni una definicién de df, ni de %, ni de “efe
prima”, pues se defini6 Df = f’' por otro lado como una coleccién de limites de
funciones, una para cada P del dominio de f.

El resultado es un vector wg = wyp) = wdyg expresado en la base usual de Ty =
Ty(p). En el caso usual de una sola dimension, se suele dar s6lo la magnitud o tamano
v de vp en la base usual de Tp, {dxp}, el coeficiente a de la matriz de f'|p en las
bases respectivas y el tamano w de wg = wypy en la base usual de Ty = Typ),
{dyg} : w = av en R. Asi, df(P,_) actia como un funcional lineal sobre Tp y la

diferencial df es una seccién del haz cotangente T*(D)?.

28R. Lépez-Gay, J. Martinez-Torregrosa, A. Gras-Marti, G. Torregrosa. On how to
best introduce the concept of differential in physics. Disponible en internet en el URL
http://www fisica.uniud.it/girepseminar2001/CS07/MARTI_02_FINAL.pdf. M. Artigue & L.
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1.5.4. Tercera idea fuerte: la suma, la acumulacién y la in-

tegral

Leibniz introdujo la suma de diferenciales como un operador de acumulacion, y
tomé la inicial de “summa’”, la “S”, y la alargé como “ f ” para indicar una suma
extendida, sin precisar lo que hoy llamariamos las condiciones de existencia del
limite. La idea fuerte es la acumulacion de diferencias, no la del limite.

La integral definida puede considerarse una suma de masas my = f(zx)Apug sobre
una descomposiciéon del complejo simplicial C en simplejos pequenos oy respecto a

la medida p, con cualquier z € oy :
Zf(xk)A,uk . k recorre los k de C.

La medida g puede ser de longitud, de area, de volumen o de hipervolumen, y
tr = |ok| es la medida respectiva del hipervolumen del simplejo oy en el que f se
puede considerar una densidad constante. Bastan, pues, las funciones escalonadas,
nos olvidamos de las discontinuidades y obtenemos funciones poligonales, que por
supuesto también son integrables.

Puede modelarse el espacio métrico de salida con una resolucién suficientemente
fina como complejo simplicial, y calcular la suma. Esa es la idea de la integral de
Riemann (y de la de Daniell), pero porque la medida como contenido parece obvia
sobre intervalos o sobre cuadraditos, o sobre cubitos, etc. En general, la genialidad
de Lebesgue fue caer en cuenta de que se necesitaba una medida aditiva y sigma-
aditiva para poder definir el contenido como medible con respecto a la medida Ay,
y hacer explicita la necesidad de multiplicar esa medida Ay, en el limite du, por la
funcién f integrable tomada como densidad.

La integral definida de una funcién real es un producto exterior (o “apareamiento”,
llamado “evaluacién”)|., ] de valor real entre cadenas simpliciales p-medibles de
dimension n, con el operador de frontera 0, y cocadenas de n-formas, con el operador
de diferenciacién d, que es aditivo [Z-lineal] a izquierda y R-lineal a derecha, y que
es dual con respecto a los operadores de frontera 0 y de cofrontera d (o que cumple
la adyuncién):

(C,dF] = [C,0F).

Notese que el lado izquierdo es una evaluacion en el piso n + 1: se trata de evaluar

una (n+1)-forma sobre una (n+1)-cadena, y el operador d sube la funcién o n-forma

Viennot (1987). Some aspects of students’ conceptions and difficulties about differentials. Mis-
conceptions and Educational Strategies in Science & Mathematics. Ithaca, NY: Cornell University
Press. M. Artigue (1989). Le passage de la différentielle totale & la notion d’application linéaire
tangente. En Procedures différentielles... (Annexe I). Université Paris 7, Irem et LDPES.
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F ala (n+ 1)-forma dF'. El del lado derecho vive en el piso n, pues el operador 0

baja la (n 4 1)-cadena a la frontera de C, que es una n-cadena.

En una dimensién, esta idea se puede comparar con el modelo mental de la densidad
lineal de un alambre vs. la masa marcada en el alambre desde la punta del rollo.
La 0-forma es una funcién de la masa segun la longitud del alambre (esto sirve al
menos para pensar en funciones crecientes monétonas, pues no habria densidad cero
ni densidades negativas). La densidad no tiene que ser uniforme. La F' generaliza
la densidad uniforme a densidades variables pero continuas; ni siquiera hace falta
que sean minimamente suaves (basta que “suban” por el operador d a funciones
continuas o O-formas). Para evaluar la integral, ni siquiera es necesario que sean
continuas, si los puntos de quiebre son aislados. Piense en una poligonal arriba en
la grafica de la integral y en una densidad como funcién escalonada. Piénsese en
esta relacién entre poligonales y funciones escalonadas como una generalizacién de
la derivada para funciones continuas pero no suaves, ni siquiera minimamente suaves

(para no entender “suave” como C-infinito, ni siquiera C).

Por eso dF' es una 1-forma, una coleccién de transformaciones lineales con el mismo
parametro que los espacios tangentes, y por eso parece una funciéon de x. Pero x
apenas es un indice que identifica a dF' en la seccién o familia, pero los argumentos
que toma dF' son vectores del espacio tangente T'(z). En el caso de funciones y formas
de valor real (extendible a los complejos), el grupo GL(n,m) se reduce a GL(n, 1)
y por tanto dF' es una secciéon del haz cotangente: en cada punto = selecciona un

funcional lineal de T*(z) que acttia sobre vectores de T'(z) y produce niimeros reales.

Si C se reduce a un intervalo cerrado [P, Q)] de la recta real:

olp, Q] ={Q,~P},

y si F' es una funcién sobre puntos (una 0-forma) tal que f = dF, la evaluacién de
F en {Q,—P} es ficil:

En la adyuncién [C, dF] = [0C, F] se encuentra resumido:

» El teorema fundamental del célculo en los niveles 1 y 0 [para l-regiones o
segmentos o intervalos o 1-complejos de intervalos o 1-simplejos, no para sus
longitudes];

» El teorema de Green para 2-regiones en los niveles 2 y 1 [para 2-regiones o
2-intervalos o 2-complejos de 2-intervalos o 2-simplejos, no para sus areas, que

son los 2-volimenes;
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» El teorema de Stokes para 3-regiones en los niveles 3 y 2 [para 3-regiones o 3-
intervalos o 3-complejos de 3-intervalos o 3-simplejos, no para sus volimenes,

que son los 3-volumenes|; y

» El teorema generalizado de Stokes en los niveles n y n — 1 [para n-regiones
o n-intervalos o n-complejos de n-intervalos o n-simplejos, no para sus n-

volimenes].

Pero no voy a introducir esas ideas en el primer ano de universidad, aunque si puedo
recomendar que se introduzcan al comienzo del calculo diferencial las ideas fuertes de
que las diferencias orientadas dz son vectores del espacio tangente a un punto p del
dominio y las diferenciales orientadas df son vectores del espacio tangente al punto
f(p), y larazén % ’p es el coeficiente de la transformacion lineal que mejor aproxima
la covariacién modelada por f cerca de p. En el calculo integral, la idea fuerte es
que se trata de evaluar la acumulacién de areas de rectangulos como suma de los
diferenciales sobre cadenas de intervalos [P, )] del dominio como bases, multiplicados
por la altura f(x), y por tanto basta saber la antiderivada en los puntos superior
e inferior de cada intervalo y evaluar la integral sobre cada eslabén de la cadena
Cp=[P,Q):
[Cp, f] = [Cp,dF] = [0Cp, F] = F(Q) — F(P).

1.5.5. ;Y el limite?

Parece que la mayoria de los profesores de célculo que conozco piensan que el limite es
la idea més importante del célculo. Se sorprenden de que en mi lista de tres, cuatro o
cinco ideas fuertes del calculo no figuren el limite ni la continuidad. Es que para mi el
limite no es la idea fuerte central, sino que es una manera de analizar la covariacion
al nivel micro, o sea, de pensarla como la transmision de la variaciéon del dominio
al codominio o rango por las funciones como relaciones o condiciones relacionales
de restriccion de la covariacion, o como operadores o maquinas transmisoras de la

variacion.

Los estudiantes tienen razoén en no tratar de pensar en ninguna idea fuerte en el
trabajo con limites en el calculo. Veamos algunos usos de la palabra limite que ellos

si conocen:
» El limite de la finca por el norte es el rio Bogota (lindero).

» No estan claros los limites entre Colombia y Venezuela (linderos, fronteras,

bordes o borders).

» El limite de un circulo es la circunferencia (frontera).
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» El limite de velocidad en la autopista Norte es 80 km/h (tope, pero se lo
saltan).

» La codicia no tiene limites.

Hay por lo menos dos casos de limite utilizados en primaria. Ya los ninos de cuarto
y quinto grado trabajaron los limites de muchas series infinitas con los decimales
periédicos. 1/3 = 0,333...

También trabajaron el area del circulo como limite de la suma de las areas de
los triangulitos, con base muy cerca de la circunferencia y altura muy cercana al
radio. Supongamos que sabemos qué es m como razén ampliadora del diametro a la
circunferencia, un poco mas de tres veces, como 3+(1/7); como el radio es la mitad
del didmetro, la razon ampliadora del radio a la circunferencia es 27, un poco mas de
seis veces, como 6+1/4. El drea del disco es la suma de las dreas de los triangulitos
isésceles A(T) = %, donde h se acerca al radio r y la base se acerca a un arquito de
la circunferencia C":

A(D) =Y A(T) = % =Y b=5C=z(2m) =m>.

Con la notacién de Leibniz, esto es simplemente:

A(D) = /dA(T) = b?h = g/dC’ = gC’ = 3(27?)7“ = mr?,

Si usted quiere ponerle subindices, hégalo: escriba T, Ts, Ts, ... T),. Pero fijese que
) Y 7 ?

asf como subir el dos en 7? es una manera de decir “eleve r al cuadrado”, de pronto

alguien cree que T, es otra manera de decir “saquele a T la raiz cuadrada”.

Recuerde que por el primer subindice que escriba, pierde la comunicacién con la
mitad de los estudiantes de su salén; con el segundo subindice, pierde la comunica-
cién con la mitad de los restantes, y asi sucesivamente. Sin necesidad de tomar el
limite, muy pronto no le va a quedar ni medio estudiante que comprenda las ideas
fuertes del calculo. El trabajo conceptual con ese tipo de limite intuitivo es suficien-
te para el calculo escolar, pues los refinamientos usuales no sélo son inutiles, sino
contraproducentes. Vedmoslo por casos:

Las funciones constantes aniquilan la variacién que ocurre alrededor de un punto
cualquiera del dominio y, por tanto, en este caso el limite no sirve para nada. Por
supuesto, se puede probar formalmente que el limite existe y es la constante k de
cr. Para encontrar la derivada tampoco hace falta el limite, pues la derivada como
mejor aproximacion lineal a la variacién local constante -o falta de ella- siempre es la
funcion lineal cero. Aqui no hay problema de maximos y minimos, ni de tangentes,

ni de subtangentes, ni de normales. Tampoco hay problema en integrar el drea bajo



88 CAPITULO 1. CONFERENCIAS MAGISTRALES

la curva (que en este caso es recta); es obvio, sin necesidad de limites, que el drea del
rectangulo a partir del cero es base por altura, que la base es x y que la altura es c.
Esa integral como acumulacién lineal del drea es pues A(cy) = ¢, y si se mira el
area de la dltima banda vertical de altura c; al moverse en el eje de las abscisas de x
hacia adelante o hacia atras, el diferencial de area en el punto z es claramente c¢,dzx,
donde dz es un vector del espacio tangente en x,T'(z). Con software interactivo,

esta variacion es inmediata.

Las funciones lineales transmiten fielmente la variacién que ocurre alrededor de un
punto del dominio de la misma manera en todas partes, a lo mas con un coeficiente
fijo de ampliacién o reduccion, que suele confundirse precisamente con la derivada.
Por eso la derivada de una funcion lineal parece constante. Por lo tanto, en este caso
de los modelos que sélo requieren una funcion lineal, el limite tampoco sirve para
nada. Por supuesto que se puede probar formalmente que el limite existe en cada
punto y que es el mismo valor de la funcién lineal en ese punto: el limite L = [p en
p de la funcién lineal L, que cumple L,(z) = ax es

L =1p=1limL,|p = ap.

Pero ahi no figuran la z, ni la flecha, ni el ocho dormido. Seria mejor escribir limL, =
L,, donde L,(x) = ax.

En este caso de las funciones lineales, para encontrar la derivada tampoco hace falta
el limite, pues la derivada de una funcién lineal como mejor aproximacion lineal a la
variacién local siempre es la misma funcién lineal, y por eso parece que la derivada
fuera siempre el mismo coeficiente a. Parece, pues, que fuera una funcién constante,

pero el que es constante es el coeficiente, no la funcién lineal.

En el caso de la funcién idéntica, f(x) = =, la gréfica es la diagonal principal del
plano cartesiano, y es claro que la derivada es 1 y que el area bajo la curva a partir
del cero en cualquier punto x es la mitad del area del cuadrado de lado z. No
hacen falta particiones, ni sumas de Riemann, ni limites. La extension a las demés

funciones lineales es obvia.

Aqui es bueno aprovechar los resultados de integraciéon que ya se saben, para re-
describirlos como resultados de acumulacion de areas de barritas o rectangulitos de
altura f(z) y que tienen como base un vectorcito del espacio tangente 7'(x): en el
caso del rectangulo para las funciones constantes no hacen falta limites; en el caso
del cuadrado se ve el tridngulo rectangulo isésceles claro y se sabe cuanto tiene que

dar el 4rea como suma acumulada.

Las demas funciones, que ni son constantes ni son lineales, transmiten bastante

enrevesadamente la variacién que ocurre alrededor de un punto del dominio. Como



1.5. CARLOS E. VASCO U. TRES IDEAS FUERTES DEL CALCULO 89

sabemos algo sobre funciones constantes y funciones lineales, pero muy poco sobre las
no lineales, por eso el objeto del calculo diferencial e integral es linealizar localmente
los modelos no lineales. Para sistematizar y formalizar rigurosamente ese trabajo de
linealizacion si hace falta el limite, pero no para ensenar las ideas fuertes del calculo.

Por ejemplo, cerca de los maximos, minimos y puntos de inflexién, parece que to-
das las funciones no lineales usuales fueran funciones localmente constantes. Si la
grafica es “minimamente suave”, tiene tangente en cada punto y no hay problema
en entender la derivada. Cuando se puede encontrar una tangente horizontal, hay
un maximo, un minimo o un punto de inflexién. No hacen falta limites ni derivadas
ni diferenciales. Si la grafica de esa funcién no lineal es continua, no hay problema
en entender la integral sin necesidad de limites, al menos mas alla de los limites de
primaria: entender 1/3 = 0,333... y entender cémo se calcula el area del circulo por

triangulitos, o la del tridngulo por barritas.

Arquimedes hizo ese trabajo mucho antes de Cristo, y Galileo y Cavalieri hicieron eso
en 1650, mucho antes de Newton y Leibniz. Eso basta para la modelacion de muchos
procesos fendmenos. Si usted cree que se necesita mas rigor, use los infinitesimales
de Abraham Robinson, como lo hizo Sergio Fajardo cuando ensené célculo con el
texto de Keisler.

Otra alternativa es usar los limites al estilo de Weierstrass, pero después de asegu-
rarse de que los estudiantes estan pensando en vecindades basicas y en sus radios;
en que se imaginen que pueden aproximarse todo lo que quieran (épsilon mayor que
cero: € > 0) al valor del codominio y en subir todo lo necesario (n > M) en el
dominio o bajar todo lo necesario en el dominio (radio menor que delta, r < §) para

que la covariacién se transmita sin problemas.

Podriamos decir que la transmision de la variacién lleva facilmente a dos tipos de
limites sobre espacios ordenados: el limite hacia adelante o hacia arriba, cuando la
variacion tiende a infinito, o aumenta sin limite, y el limite hacia atras o hacia abajo,
cuando la variacion tiende a cero. Eso sirve para las sucesiones, las asintotas y otros
casos interesantes, y luego se puede pasar a los topes inferior y superior de munditos
pequenos o vecindades bésicas. Por ejemplo, el mundo del intervalo (1, 00) ordenado
hacia adelante se pasa por la transformacién reciproco al mundito (0, 1) ordenado al
revés. Alli se puede trabajar el limite cero con Cauchy, con infinitesimales o sin éstos.
Pero todavia no se esta trabajando con la covariacién de dos cantidades arbitrarias
modelables por las longitudes. Sélo por la covariacién de una sola cantidad variable
en el tiempo, que seria una covariacién entre duraciones y cantidades, que también
se pueden medir como las longitudes, pero entendiendo el flujo del tiempo hacia la
derecha en el eje de las abscisas.
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Descartes estudio el problema de las normales a las curvas como ajustes de arcos
de circunferencia a las curvas, y pudo haber obtenido el radio de la mejor circunfe-
rencia osculante como medida de la curvatura local y como reciproco de la segunda
derivada. Pero no le interesaba sino la normal a la curva en un punto, y la tangen-
te se definia como la normal a la normal en ese punto, lo cual le permitia definir
tangente a la curva sin necesitar ninguna nocién de limite (se ocultaba en los movi-
mientos de los arcos de circunferencia). Le pasaba la nocién intuitiva de limite a la

determinacion de la normal por variacion y ajuste de arcos de circunferencia.

El problema de las tangentes era méas bien el de las subtangentes, que eran longi-
tudes de segmentos en el eje de las abscisas, no rectas osculantes, y que ahora ni
se mencionan. Lastima que no se mencionen, puesto que es muy ilustrativo ver la
semejanza del triangulo rectangulo grande de base, la subtangente y altura la orde-
nada, con el tridngulo de variacién preferido por Leibniz en el punto (x, f(z)). Como
esa semejanza se mantiene para cualquier ampliacion o reducciéon del triangulito de
variacion, se ve por qué los diferenciales no tienen que ser “infinitesimales” y por
qué la derivada parece ser simplemente la razén de la altura f(z) a la subtangente, o
sea la tangente trigonométrica del angulo que forma la tangente, en este caso puede

identificarse con la hipotenusa del triangulo grande, con el eje de las abscisas.

El problema de las tangentes como rectas se resolvia si se sabia solucionar el de
las normales a las curvas, con la definicién de tangente como la recta normal a la
normal a la curva. Ahi no aparece el limite en la definicién de la tangente, como
si aparece si se define tangente como limite de las secantes. Por eso en las tangentes

a un circulo no aparece el limite.

Podemos suponer que el circulo es una curva rectificable como poligono de suficientes
lados, como para no distinguir ningtn ladito recto a simple vista. Asi, el radio es
perpendicular al punto central del lado pequeno y la tangente es su prolongacion.
Podemos suponer las curvas ttiles para la modelacion de procesos y fenémenos como
rectificables, asumir que localmente la rectificacién es un ladito recto, y asi podemos
describir las normales como perpendiculares al punto medio de la rectificacién y
las tangentes como prolongaciones de la rectificacion. Ahi hay una nocién intuitiva
de limite que es suficiente. Eso hicieron Roberval, Fermat, Pascal, Wallis y Barrow
antes de Newton y Leibniz, y después L’Hopital, Euler y hasta Cauchy. Sélo Dirichlet
y Weierstrass avanzaron mas en la formalizacion y la vigorizacién légica de los
argumentos. Pero jpara qué exigir rigor en la argumentacion si no se entiende qué es

lo que se estd argumentando?

La definicién actual de limite es estatica. No se permite a los estudiantes que hablen
de “tender a”, de leer el ocho dormido co como “infinito”, etc. Pero si se supone
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un modelo ordenado linealmente, se puede hablar del limite hacia adelante o del
limite hacia atras, y distinguir con claridad los casos en que el limite esta dentro del

sistema sobre el que se toma el limite o no.

El limite de los nimeros de contar como ubicadores ordenados (primero, segundo,
etc.) hacia atrds es el 1, que es el primero y estd adentro. Hacia adelante es el ocho
dormido, oo, que estd afuera, en la complecion de un solo punto del sistema anterior.

El limite de los nimeros naturales tomados como cardinales finitos hacia atras es
el cero, que es el cardinal de los conjuntos vacios, y estda adentro. Hacia adelante
los cardinales finitos también tienen limite: alef cero, Ny, el primer cardinal limite
infinito, que esta fuera de los cardinales finitos, pero dentro de los cardinales. Si se
toman los nimeros naturales como ordinales finitos, el cero es un ordinal, porque
todos sus subsistemas no vacios tienen primer elemento (no hay ninguno, luego...).
Por tanto, el limite hacia atras es el ordinal 0, y hacia adelante es el ordinal omega,
w, el primer ordinal limite infinito, que esta fuera de los ordinales finitos, pero dentro

de los ordinales.

En los reales, con el modelo de la complecién de dos puntos, el limite hacia atras
es el ocho dormido negativo, —oo, y hacia adelante es el ocho dormido positivo,
+00. Ambos estan fuera del sistema de los reales. Si consideramos los reales como
insertados en el eje de los reales en el plano complejo C, podemos ver que con el
modelo de la esfera de Riemann C' U oo (que es holomorfa al plano complejo por
proyeccion estereografica), el limite hacia adelante y hacia atras (y hacia adelante
en cualquier semirrecta r - exp(if)) es el ocho infinito co como Polo Sur de la esfera

de Riemann.

La funcion reciproca en la esfera de Riemann es una rotacion rigida de media vuelta
sobre los puntos +1 y —1, con lo que se ve inmediatamente que es homotdpica con
la identidad. Sin esa vision dinamica es dificil hacer un andlisis complejo. Sin el ocho
dormido interpretado como Polo Sur, es dificil hacer el trabajo de polos, residuos y
divisores. No habria analisis complejo sin ese trabajo de Riemann con el modelo de
la esfera con el Polo Sur sellado.

La dualidad de la definicién generalizada de integral indefinida como una forma que
produzca otra forma exacta y por tanto cerrada cambia el sentido de la direccién
vertical en que uno suele modelar la derivacion, que se suele pensar “hacia abajo”

y la integracién como “hacia arriba”.

El limite es importante en la sistematizacion y en la fundamentacién rigurosa del
analisis, pero en el cdlculo no. Descartes, Roberval, Fermat, Wallis, Newton, Leibniz,
D’Alembert, Euler, Lagrange, Fourier y con frecuencia el mismo Cauchy no tenian
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claro qué era el limite y lo utilizaban a su manera en forma oportuna en cada caso.
D’Alembert explicitamente habla de cantidades ascendentes y de no poder pasarse
mas alla del limite. Ya vimos que el mismo Cauchy no sabia bien qué era tener limite
cero y creia que era sélo algo dinamico para funciones positivas descendentes. Su
definicion de limite cero no se aplicaria a la funcién constante cero, ni su definicién
general a las funciones constantes. Ademads, para mayor confusién, en su definicion
de continuidad usa la palabra “limite”, pero para las fronteras de un intervalo del
eje de las abscisas.

El limite empieza a sistematizarse con la convergencia de las sucesiones y las series,
no con las funciones reales. Las sucesiones y las series empezaron a considerarse en
el siglo XX no como funciones sobre los niimeros naturales, sino como una extensién
obvia de las parejas, las triplas, las cuaternas ordenadas. Son apenas ejemplos de
sistemas bien ordenados. Se consideraban también variables que cambiaban no con-
tinuamente sino por saltos en el tiempo, y para acelerarlo se podia ir disminuyendo
la duracion de cada lapso, como en el caso de la paradoja de Zendn.

Esta dice si uno recorre la mitad del camino en una unidad de tiempo, la cuarta
parte siguiente en otra unidad de tiempo, etc., uno nunca llega al otro extremo del
camino. Pero si uno recorre la mitad del camino en una unidad de tiempo, la cuarta
parte siguiente en media unidad de tiempo, etc., en dos unidades de tiempo llega al
otro extremo del camino. Para lograr ese concepto no se necesitan épsilons ni deltas,
sino manejar el modelo mental de las cantidades variables de longitud y duracion,
formularlo con cuidado en los casos de ascender desde el primer paso hacia el infinito

y descender hacia el cero.

Pasemos ahora al limite mas general, ya no aplicado a una cantidad variable sino
a la covariacion de dos cantidades variables: la independiente, con valores indicados
por z, v la dependiente, con valores indicados por y, regulada por una funcién f,

cuyos valores f(x) son precisamente los valores y : y = f(x).

Es mejor pensar primero en mover la x cuando es menor que un cierto punto fijo p
hacia la derecha (o hacia arriba) para acercarse al punto fijo p desde la izquierda (o
por debajo y hacia arriba). Se puede comenzar con funciones monétonas crecientes o
decrecientes y luego se estudian otras mas complicadas, pero que tienen oscilaciones

con porciones crecientes y decrecientes.

Asi se va viendo como transmite la funciéon f la variacién del movimiento de x
cerca del punto p al movimiento de f(x), sin necesidad de pensar en p ni en f(p).
El movimiento de x hacia p puede subir el valor de f(x), bajarlo, dejarlo quieto u
oscilar, y uno se fija si f(z) tiende a algo: jse acerca todo lo que uno quiera a un
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valor L?
“El limite de f cuando x tiende a p desde la izquierda es L”.

Luego se piensa en mover la z cuando es mayor que p hacia la izquierda (o hacia
abajo) para acercarse a p desde la derecha (o por encima y hacia abajo), y uno se
fija si f(x) tiende a algo: jse acerca todo lo que uno quiera a un valor M?

“El limite de f cuando x tiende a p desde la derecha es M.

Luego se mueve la x en ambos lados de la p y se ve si f(z) tiende a lo mismo por
los dos lados. Si ese es el caso, L = M y podemos escribir

“El limite de f cuando x tiende a p es L”.

Veamos algunas preguntas capciosas para mostrar que el limite, como se ensena en

calculo, no es una idea fuerte de los sistemas conceptuales analiticos:

» No es claro cudntas variables tiene la expresion “El limite de f(x) cuando x
tiende a p es L”.

» ;Puede escribirse “El limite de f(z) cuando y tiende a z es L?”.
= ;Para qué es cada una de esas variables y por qué puede remplazarse en déonde?
= ;Tiene que aparecer dos veces la z7

» Si aparece dos veces, jfigura o no figura la x en la expresiéon? (si z es una

variable ligada “no figura en una expresién”). Si no figura, ;para qué escribir
“f(x)”? Basta escribir “f7”.

= A veces se ve un ocho dormido en vez de la p o en vez de la L. jPuede estar

en vez de la f o de la 7

= Sea x un numero real. ;Qué significa lim de x cuando x — p es p?

Nada. Si z es un niimero real, no es una funciéon y no podria aparecer en el lugar de
las funciones. En la expresion “lim de x cuando x — p es p” parece que falta una
variable para la funcién o para el valor que se mueve (lo que pasa es que aqui la
es una notacién muy enganosa: es una variable para la funcién idéntica y para el

argumento de la funcién idéntica).

La L depende de f y de p. {Depende de x7 Si no depende de z, deberia escribirse
“L(]['7 p)77 , “Lf(p)” .

Esa es la clave: el limite de una funcién f, si existe, es otra funcion Ly:

lsz = Lf. (lsz)‘p = Lf(p).
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1.5.6. ;Y la continuidad?

La continuidad tampoco es una idea fuerte del calculo, pues para el calculo diferencial
todas las funciones tienen que ser diferenciables, y toda funcién diferenciable es
continua. Lo que interesa no es la continuidad sino una minima “suavidad” (pero
sin entender “suave” como C' infinito, ni siquiera como C9). Se trata de que las
curvas correspondientes a funciones no lineales sean continuas y rectificables para

tener normales y tangentes.

Ademas, todas las funciones que aparecen para modelar procesos reales son continuas
y diferenciables: las constantes, las lineales, las polinémicas, las multilineales, las
trigonométricas, las exponenciales, las logaritmicas y las logisticas. ; Cuales mas sabe
usted que sean ttiles para la modelacién? Yo pensaria en las funciones escalonadas y
en las poligonales, pero esas son constantes por piezas o afines por piezas, y en cada
una de tales piezas la derivada es obvia y la integral se puede calcular facilmente.
Si se piensa en la idea fuerte de integral como acumulacién o suma, se ve que las
sumas de Riemann no son sino integrales de funciones escalonadas, que el punto
intermedio puede escogerse en cualquier parte del intervalo y que la integral es una
funcién poligonal continua y PL o lineal por piezas.

Por otra parte, en la definicién de continuidad en topologia no se utiliza el limite.
Basta mirar la funcién inversa inducida en las partes, y ver si esa funcién transporta
abiertos en abiertos. Equivalentemente, se puede usar el test de la banda horizontal,
parecido al test de la banda vertical para la funcionalidad. Si la proyeccién de toda
interseccién de la gréfica cartesiana con una banda horizontal es un abierto en el
eje x, la funcion es continua. Otro problema es que sélo sea continua en su dominio,
como f(z) = % Si le molesta una discontinuidad, reparela, y si no la puede reparar,

quitela del dominio. Luego la continuidad no es ninguna idea fuerte del calculo.

Mas atin, con el trabajo virtual en pantalla, la continuidad se reduce a la contigiiidad
de los pixeles. Si se considera vecindad basica de un pixel un cuadrito de nueve
pixeles, la vecindad basica de cada punto no puede tener sino tres posiciones para
el punto anterior y tres para el siguiente, y todo el trabajo de la representacién
semidtica cartesiana en pantalla se reduce a trabajar con parejas de enteros. Ni

siquiera harfan falta los nimeros racionales, mucho menos los reales.

1.5.7. Conclusiones

La primera conclusion la formulé al explicar la primera idea fuerte del calculo, la
de la variacion y covariacién de las cantidades. Propongo, pues, que la ensenanza
del calculo por ideas fuertes nos exige volver a las magnitudes y a las cantidades
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variables y a sus modos de covariacion, para modelarlas mentalmente, comunicar
esos modelos y sus teorias verbal, gestual y gréficamente, y tratar las cantidades
variables y sus covariaciones por medio de las funciones de los sistemas conceptuales
analiticos. Cuando se llegue a cierta agilidad mental de modelacion de la covariacion,
se podran tratar las funciones con el célculo diferencial e integral como registro

semidtico potente.

Como sequnda conclusion podemos decir que al comenzar la ensenanza del calculo
por ideas fuertes debemos atender cuidadosamente a las diferencias y, sobre todo, a
las razones de diferencias y a las razones de diferenciales. Las diferencias orientadas
nos permiten introducir de una vez los espacios tangentes a cada punto y el haz
tangente a la recta real, tanto sobre el dominio como sobre el codominio. Alli en-
contraremos, sin necesidad del limite, los diferenciales de la variable independiente
y de la dependiente como vectores del espacio tangente respectivo, y las razones
como operadores activos nos permitiran introducir la derivada como la coleccién
de las mejores aproximaciones lineales en cada punto del dominio. Esas aproxima-
ciones lineales son transformaciones de un espacio vectorial anclado en un punto
x del dominio a otro espacio vectorial anclado en el punto f(z) del codominio o
recorrido. El profesor puede pensar productivamente que se trata de una seccion del
haz cotangente correspondiente al haz tangente, que es precisamente la 1-forma que
selecciona la transformacién lineal que mejor aproxima localmente la funcién primi-
tiva, pero la terminologia todavia no es apropiada para los estudiantes de primer
ano de universidad.

Otra conclusion de este enfoque es que las derivadas de las funciones constantes no
sirven para nada, y que las derivadas de las funciones lineales son ellas mismas. Por
consiguiente, el calculo por ideas fuertes empieza sélo cuando queremos linealizar
las funciones no lineales que codifican covariaciones de cantidades variables o sus
medidas numéricas para utilizar sus aproximaciones lineales como herramientas de

calculo.

La idea fuerte de las razones entre diferencias nos lleva a otra conclusion: a considerar
que la derivada es una familia de funciones, una para cada punto del dominio, y que
la manera como la consideramos -como otra funcién derivada de la funcién primitiva-
se debe a una afortunada casualidad: en una dimensién, las funciones lineales tienen
matrices que se pueden confundir con un tinico coeficiente de ampliaciéon o reduccion,
y si nos olvidamos de la transformacion lineal y pensamos solo en el coeficiente, la
derivada nos parece una funciéon de una sola variable. Por tanto, si no es lineal, se le
puede volver a aplicar el tratamiento de linealizacién y obtener la segunda derivada.
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Recordemos también la conclusién que vimos al final del tratamiento del limite:

Como la L del limite no depende de z, sino de f y de p, deberia escribirse
LLL(f, p)W’ “Lf(p) 2 .

Esa es la clave: el limite de una funcién f, si existe, es otra funcién Ly:

limf = Ly. (tim )]y = Ly

La conclusion es, pues, que el limite es un operador de orden superior sobre el sistema
conceptual analitico de las funciones, en el que no figuran ni la z, ni la flechita, ni el
ocho dormido. Las funciones continuas son simplemente el subconjunto estable bajo
el operador lim, pues f es continua si y sélo si limf = f. El limite y la continuidad
no son, entonces, ideas fuertes del cédlculo, sino consideraciones finas y potentes para
analizar los modos de covariacién de las cantidades variables covariantes, de gran
importancia en la sistematizacion y formalizacién rigurosa del anélisis, pero no en

la modelacién de procesos y fenémenos de la realidad por medio del calculo.

Esa misma conclusion podria reaparecer al final de las tres, cuatro o cinco ideas
fuertes del célculo, teniendo cuidado de que para las derivadas y antiderivadas es
necesaria una reduccién para lograr que las imagenes de los operadores no se vayan

muy lejos sino que vuelvan a casa:

La derivada de una funcién f, si existe, es otra funcién f’ (con el operador () por
la derecha) o Df (con el operador D(_) por la izquierda), pero es una funcién de
dos variables: un parametro p para un punto del dominio de f y un argumento x
en una bola, esfera o intervalo alrededor de p. El operador de derivacién produce,
pues, una familia de funciones lineales. Esta familia puede considerarse la imagen
de un operador de orden superior der o D sobre el sistema conceptual analitico de

las funciones reales:

der f=[f=DF. (der f)lp(x) = f'(p)(x) = Df(p)(x)-

En esta conceptualizacion, el conjunto estable del operador der o D son las funciones

lineales, pues f es lineal si y sélo si der f = Df = f.

Pero si se olvida que f’(p) = Df(p) es una transformacién lineal con una matriz en
la base usual, que en una dimension se puede pensar sélo como un nimero, se puede
decir que la derivada de una funcién f, si existe, es otra funcién de una variable p
para un punto del dominio de f. Por tanto, se le puede volver a aplicar el operador
de derivacién, pero ahora sobre otra interpretacion de la variable p, que antes era el
parametro, no el argumento: der f = f' = Df. S6lo para una dimension:

der der f=f"=DDf = D/. (der f)|, = f'(p) = DDf(p) = D*f(p).
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En esta conceptualizacion, no generalizable a dimensiones superiores, el conjunto
estable del operador der o D es muy distinto: contiene sélo la familia de las tras-
laciones de la funcién exponencial usual por funciones constantes: Si der [ = f,
existe una constante k € R tal que f = exp. + ¢, que se acostumbra escribir si
der f(z) = f(z), existe una constante k € R tal que f(x) = exp.(x)+ci(v) = e*+k.

Paralelamente, la diferencial de f, si existe, es otra funcién df, pero es una funcion
de dos variables: un parametro p para un punto del dominio de f y un argumento

dx, para un vector de T'(p):

dif f=df. (dif  f)lp(dxy) = df (p)(dxy).

La integral indefinida o antiderivada de f, si existe, puede considerarse otra funcion,
pero es una funcion de dos variables: un argumento z, x € dom f, para una primitiva
F fijatal que F' = f, que puede ser cualquiera de ellas o escogerse para que F'(x) = 0,
y una constante k, k € R:

int f=D"'f=1I. (int f)(z, k) = F(z) + k.

Otra forma de entender la integral indefinida o antiderivada de f, si existe, es pues
como una familia de funciones de un solo argumento x, pero indexada por una

constante k:
intf ={G|3F, F' = f A3k € R,Vx dom f,G(z) = F(z) + k}.

Tenemos entonces otro operador de orden superior sobre el sistema analitico de las

funciones reales que produce familias de funciones reales.

La integral definida de f, intdef f, si existe, puede considerarse también otro tipo
de funcién sobre un intervalo [a, z]|, o una funcién de dos variables: un argumento
a, que indica el punto a la izquierda del intervalo de integracién, y otro argumento
x, que indica el punto a la derecha del intervalo de integracién, que van a ser los
argumentos para evaluar el resultado con cualquier primitiva F tal que F’ = f:

[intdef f]([a,z]) = F(z) — F(a).

Otra manera de entender la integral definida de f sobre un intervalo [a, x], si existe,
es como un operador de evaluaciéon que evalia el valor de f sobre ese intervalo
[a, z], apareamiento que cumple la dualidad o adyuncién ya mencionada, y que es

calculable por cualquier primitiva F' tal que f = dF":

intdef ([a, x], ) = [a, 2], f] = [[a, x],dF]| = [0]a, x], F| = F(z) — F(a).
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Notese finalmente que la derivada y el diferencial son familias de funciones, y la
integral como antiderivada también lo es. El diferencial generaliza la nocién de di-
ferencia orientada variable. La derivada generaliza la nocion de tasa o rata variable,
y la integral definida generaliza la nocién de acumulacién.

Todo ello sélo tiene sentido en el estudio de la modelacion de la covariacién de
cantidades variables por medio del sistema conceptual analitico formado por las
funciones reales. Esas son las ideas fuertes del cédlculo.
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2.1.1. Marco conceptual

A continuacién describiremos el marco conceptual de la covariacién, realizaremos una
caracterizacién de la graficacion covariacional -en la que expondremos su significado-
y concluiremos con un ejemplo de dicha graficacién. Esta forma de graficacién, ob-
jeto principal de nuestra atencién en este texto, esta apoyada sobre dos elementos
basicos: las ideas derivadas del pensamiento y lenguaje variacional, y las derivadas
del razonamiento covariacional. Carlson et &l. (2002) desarrollan la nocién de razo-
namiento covariacional y lo definen como las actividades cognitivas involucradas en
la coordinacion de dos cantidades variables, atendiendo las formas en que cambian
una con respecto a la otra. En la tabla 1 se proporciona una descripcion de las cinco
acciones mentales del razonamiento covariacional y de los comportamientos asocia-
dos. Las acciones mentales del marco conceptual de la covariacion proporcionan un
medio para clasificar los comportamientos que se pueden ver cuando los estudian-
tes se involucran en tareas de covariacién; con todo, la habilidad de razonamiento
covariacional de un individuo, relativa a una tarea particular, sélo se puede deter-
minar examinando el conjunto de comportamientos y acciones mentales exhibido en

la ejecucién de esa tarea.

Tabla 1. Acciones mentales del marco conceptual para la covariacién

Accion mental | Descripcion de la accion | Comportamientos

mental

Acciéon mental 1 | Coordinando el valor de una | Etiquetando los ejes, coordi-

variable con los cambios en la | nando las dos variables (e.g., y

otra. cambia con cambios en ).

Accién mental 2

Coordinando la direccion de
los cambios de una variable con

los cambios en la otra variable.

Construyendo rectas crecien-
tes. Verbalizacién consciente
de la direccién de cambio de la
salida, a la vez que se conside-

ran los cambios de entrada.

Accién mental 3

Coordinando la cantidad de
cambio de una variable con los

cambios en la otra variable.

Trazando puntos/ Construyen-
do lineas secantes. Verbaliza-
cién consciente de la cantidad
de cambio en la salida, consi-
derando los cambios en la en-

trada.
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Accion mental 4

Coordinando la razén de cam-
bio promedio de la funcién con
incrementos uniformes de cam-

bio en la variable de entrada.

Construyendo lineas secantes
contiguas para el dominio.
Verbalizacién consciente de la
razén de cambio de salida (con
respecto a la entrada) conside-
rando incrementos uniformes

en la entrada.

Accion mental 5

Coordinando la razdén de cam-
bio instantdneo de la funcién

con cambios continuos en la

Construyendo una curva conti-
nua con indicaciones claras de

cambios de concavidad. Verba-

variable independiente para el | lizacién consciente de los cam-

dominio entero de la funciéon. | bios instantdneos en la razon
de cambio para el dominio en-
tero de la funcién (la direccién
de concavidad y los puntos de

inflexién son correctos).

2.1.2. Niveles de razonamiento covariacional

En el marco tedrico covariacional se describen cinco niveles de desarrollo de las
iméagenes de covariacion. Estas imagenes se presentan en relacién con las acciones

mentales soportadas por cada imagen.

Nivel 1 (L1). Coordinacion. En este nivel, las imdgenes de la covariacién pueden
soportar la accién mental de coordinacién del cambio de una variable con los cambios
en la otra variable (MA1).

Nivel 2 (L2). Direccion. En el nivel de direccion, las imagenes de la covariacién
pueden soportar las acciones mentales de coordinacién de la direccién del cambio de
una variable con los cambios en la otra variable. Las acciones mentales identificadas
como MA1 y MA2 estan soportadas por las imagenes de L2.

Nivel 3 (L3). Coordinacion cuantitativa. En el presente nivel las imdgenes de la
covariacion pueden soportar las acciones mentales de coordinacion de la cantidad de
cambio en una variable con los cambios en la otra variable. Las acciones mentales
identificadas como MA1, MA2 y MA3 estan soportadas por las imdgenes de L3.

Nivel 4 (L4). Razdn promedio. En el nivel de la razén promedio, las imédgenes de
la covariacién pueden soportar las acciones mentales de coordinacién de la razon de

cambio promedio de la funcién, con cambios uniformes en la variable de entrada. La



102 CAPITULO 2. TALLERES Y CURSILLOS

razon de cambio promedio puede utilizarse para coordinar la cantidad de cambio de
la variable de salida con los cambios en la variable de entrada. Las acciones mentales

identificadas como M A1 hasta M A4 son soportadas por las imagenes de 1.4.

Nivel 5 (L5). Razdn instantdnea. Nivel en el cual las imagenes de la covariacion
pueden soportar las acciones mentales de coordinacion de razén instantanea de cam-
bio de la funcién, con cambios continuos en la variable de entrada. Este nivel incluye
una conciencia de que la razon instantanea de cambio resulté de refinamientos mas
y méas pequenos de la razén de cambio promedio, asi como también la conciencia de
que el punto de inflexién esta donde la razén de cambio pasa de creciente a decre-
ciente y viceversa. Las acciones mentales identificadas como MA1 hasta MA5 estdn
soportadas por las imagenes de L5.

2.1.3. El pensamiento y lenguaje variacional

Cantoral (2000) caracteriza el pensamiento y lenguaje variacional como el campo
en el que se estudian los fenémenos de ensenanza, aprendizaje y comunicacion de
saberes matematicos propios de la variacion y el cambio, en el sistema educativo
y en el medio social que le da cabida. Le presta particular atencion sl estudio de
los procesos cognitivos y culturales con que las personas asignan y comparten sen-
tidos y significados, utilizando diferentes estructuras y lenguajes variacionales. En
cuanto vertiente investigativa posee una triple orientacién: en primera instancia, se
ocupa de estructuras variacionales especificas desde un punto de vista matematico
y fenomenolégico; en segundo término, estudia las funciones cognitivas que los seres
humanos desarrollan mediante el uso de conceptos y propiedades de la matemati-
ca del cambio; en tercer lugar, tiene en cuenta los problemas y situaciones que se
abordan y resuelven en el terreno de lo social, mediante las estructuras variacionales

consideradas en la escuela y el laboratorio

Uno de los trabajos en los que se discuten aspectos esenciales del pensamiento y
lenguaje variacional es el libro Una introduccion a la derivada a través de la varia-
cion, de Dolores (1999), en el cual se sefiala que las variables son un elemento bésico
de la matematica que se utilizan para estudiar los procesos de variacién, procesos
en los que se involucran al menos dos variables que necesariamente se relacionan
entre si. Si esas relaciones se expresan mediante formulas matematicas, entonces el
estudio de los procesos de variacion se facilita bastante; por medio de las férmu-
las las variables se pueden manipular convenientemente, pues con ellas se pueden
realizar operaciones matematicas comunes; las féormulas tienen la gran ventaja de
indicar con precisiéon cémo se relacionan las variables y las relaciones entre variables

se pueden expresar mediante féormulas algebraicas, para cuya obtenciéon primero hay
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que identificar lo que cambia y lo que no cambia, asignar una letra a lo que cambia,
buscar la relacién entre las variables y expresarla mediante una férmula. Esta es
muy importante, pues nos permite saber cuanto vale una variable cuando la otra
tiene un cierto valor. Lo anterior a su turno es posible gracias a que una variable
depende de otra, y a su vez la férmula es la expresion algebraica de una relacion
funcional, es decir, es la formula de la funcién. Las imagenes de las funciones pueden
cambiar de maneras muy distintas: unas pueden ser crecientes, otras decrecientes;
unas no crecen ni decrecen, otras crecen uniformemente, otras mas lo hacen en for-
ma variada, etc. Para comprender el comportamiento de una funcién, o sea, para
entender cémo cambia, es necesario determinar cuanto cambia; esto es de enorme
utilidad si se pretende saber cuanto crece una funcién creciente o cuanto decrece si
es decreciente. En realidad, el término variacién esta estrechamente ligado al proceso
de medicién del cambio. El cambio se produce cuando se pasa de un estado inicial a
un estado final; por tanto, para medir el cambio de una variable basta restar de su
valor adquirido en el estado final, su valor adquirido en el estado inicial; entonces el

cambio se mide por la diferencia: z; — z; = Az.

En términos generales, si y es una funcién de z, es decir: y = f(z), para medir lo
que cambia f(z), se requiere primero considerar un estado inicial z;; a este valor de
x le corresponde f(x;). Después de un cambio que experimente z;, de x; a x; + Ax
(un estado final), f(z) experimentara también un cambio a un estado final, y éste
quedard como f(x; + Ax).

A un cambio de la variable independiente corresponde un cambio de la variable
dependiente. Estos cambios se obtienen por medio de diferencias, como se resume a

continuacion:

= Loty arnnhio v 3
Estado infcial Estado final Ll iy

(anmente o dismiinucidn)
- . = |(xi+Ar)—x,.=Ax|
Vriafile
independicnte

Variable
Dependiente

Flx) St Ax) Slxi+Ax) — i) = AF

SRS

Cuadro N® |, Diferencias que cuantifican cambios, fanto en la varigble independiente
como en la vanable dependisntes.

Lo anterior se puede representar en el plano, para observar mejor como cambian las
variables relacionadas por medio de la férmula f(x) (figura 1).
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Cabe senalar que la diferencia es el modelo fundamental para medir la variacion y el
cambio. Con las diferencias se puede predecir una enorme variedad de las cualidades

del comportamiento variacional de las funciones. Por ejemplo:

» Si f(x+ Ax)— f(z) > 0 (para todo = perteneciente al intervalo (z,z + Az) y
Az > 0 preferentemente pequeno), entonces f(x) es creciente.

» Si f(zx+ Azx)— f(z) <0 (en las mismas condiciones anteriores), entonces f(x)
es decreciente en el intervalo (z, x + Ax).

» Si f(x+ Az) — f(x) = 0 (con las condiciones anteriores), entonces f(z) no
crece ni decrece en el intervalo (z,z + Az), es decir, se mantiene constante, no

cambia.

Estas desigualdades, que en el fondo representan las comparaciones entre las orde-
nadas, nos permiten determinar cémo cambia f(x). La respuesta es més evidente si

se utilizan representaciones geométricas:

b e . S e
.-v"‘”:'ﬁ
1
. i
] // |
i
i

l'I| ' -+ Ax i

Jlot+ Ay =7} '
N

T+ Ax 0 k| T+ A

b
i
i
-y
"
i
[
i
L
W

Fle+ A -Flx1=0; fix)erece Fir=Axy-Ffix ) =0 fix)decrece Fir+Av-fixi=0 fx ) es constanme

Tal vez se ha notado que cuando se habla de cambios, necesariamente se les relaciona
con otros cambios, pero en realidad no puede hablarse de cambios sin relacionarlos
con otros; por ejemplo, cuando se estudian los cambios de las distancias en la caida
libre de los cuerpos, siempre se hace referencia al cambio de la distancia recorrida en
un intervalo de tiempo. Cuando se estudian procesos de variacién no sélo interesan

los cambios por si mismos sino también su direccion y sentido; cuando se trata de
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magnitudes vectoriales, interesan su rapidez o la velocidad con que se comportan.
La rapidez es el moédulo de la razén del cambio de distancia entre el cambio del

tiempo.

Asi las cosas, se puede concluir que los cambios relativos se miden por medio de
razones o cocientes entre cambios. Esta es una de las ideas mas importantes del
calculo diferencial, pues siempre que se estudia un fenémeno de variaciéon lo im-
portante no es sélo determinar los cambios, sino determinar qué tan rapido cambia
eso que cambia y la mejor forma de averiguarlo es por medio de las razones entre
los cambios. Este tipo de razones son llamadas razones de cambio promedio y me-
diante ellas se comparan cambios grandes. No miden con precision la rapidez o la
velocidad, iinicamente dan una especie de promedio. Proporcionan una informacion

gruesa acerca de los procesos de variacién.

La obtencién de la velocidad precisa del cambio en un instante o en un punto sélo fue
posible introduciendo en la matematica los cambios infinitamente pequenos. Y esto
no fue fortuito, puesto que los cambios en los movimientos continuos que ocurren en
la naturaleza tienen esta propiedad. Estos cambios se modelan con los diferenciales.
Las razones entre los diferenciales permiten medir con precision la velocidad o la ra-
pidez del cambio en un punto o en un instante en un proceso de variacién continua.
Existen muchas razones de cambio que toman nombres especificos, como la acelera-
citon, que es la razén de cambio de la velocidad respecto del tiempo; la intensidad
de la corriente eléctrica, que es la razén de cambio entre la cantidad de electricidad
que pasa por una seccién transversal de un conductor respecto del tiempo; el gasto,
que es la razon entre el volumen de un liquido que fluye en un conducto en relacién
con el tiempo, etc. En todos estos casos, subyace una idea general: las razones o
cocientes entre cambios. Aqui aparece un nuevo concepto mateméatico: razones de
cambio, creado de la abstraccion de otros més simples: las diferenciales. Una abs-
traccién mas compleja creada de otras abstracciones simples. A esta abstraccién se
la conoce con el nombre de velocidad instantanea, caso particular de la derivada.
Este es, por tanto, un concepto matematico creado para medir la variacion relati-
va; en concreto, mide lo que cambia una variable respecto de otra en un instante.
Dada la trayectoria de un cuerpo o si se quiere la relacién funcional que lo rige, la
determinacién de su velocidad en cualquier punto es posible por medio de las ra-
zones de cambio instantaneas; por el contrario, el otro problema, dada la velocidad
del cuerpo, obtener su trayectoria o la formula de su relacién funcional, originé la
integral. La derivacién y la integracion, por tanto, son procesos inversos y ambos
describen aspectos esenciales de la variacién. Finalmente, la velocidad instantédnea
se obtiene del limite del cociente ﬁ—j cuando At tiende a cero (As es la cantidad de
cambio en la distancia y At es la cantidad de cambio en el tiempo). De este modo,
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la velocidad instantanea se obtiene dividiendo cambios infinitamente pequenos. Los
aspectos del pensamiento y lenguaje variacional descritos seran fundamentales para
comprender la caracterizacién que mostraré de la graficacién covariacional, dado que
forman parte de ella.

2.1.4. Caracterizacion de la graficaciéon covariacional

En Salgado (2007) se define la graficacion covariacional como las actividades de
representacion grafica en las que se involucra la coordinacién de dos cantidades va-
riables, atendiendo las formas en que cambia una con respecto a la otra. El elemento
central de esta graficacién es el cambio y no sélo la ubicacién de los puntos como en
las formas tradicionales. El cambio se calcula mediante diferencias y éstas son re-
presentadas graficamente mediante segmentos de recta. Asi, las curvas o graficas en
principio son poligonales, cuyos segmentos son “grandes”; a medida que los cambios
van disminuyendo de tamafo, se alcanza mayor fineza. En términos programaticos,

para la graficacion covariacional es necesario realizar las acciones siguientes:

1. ;Qué cambia? Identificar, establecer o definir qué variables se representaran y

su relacion entre ellas.

2. jCuanto cambia? Calcular y coordinar la cantidad de cambio de una varia-
ble con los cambios en la otra variable y representarlos en el plano mediante
segmentos de recta.

3. ;Como cambia? Coordinar graficamente la direcciéon de los cambios de una

variable con los cambios en la otra variable.

4. ;Qué tan rapido cambia? Calcular las razones de cambio promedio con incre-
mentos uniformes de cambio en la variable de entrada y representarlas grafi-

camente.

5. ;Cémo se comporta puntual y globalmente la grafica? Calcular razones de

cambio instantdneas y representarlas graficamente.
Para ilustrar la graficacién covariacional, graficaremos la expresion: s(t) = 2.

1. ;Qué cambia? En este caso, s cambia si cambia ¢, ya que t es la variable

independiente y s es la variable dependiente.

2. ;Cuanto y como cambia? Calcularemos y coordinaremos la cantidad de cambio
de una variable con los cambios en la otra variable y los representaremos en el
plano mediante segmentos; también coordinaremos la direccién de los cambios

de una variable con los cambios en la otra.



2.1. CRISOLOGO DOLORES FLORES. GRAFICACION COVARIACIONAL 107

Tabla Z. Obtencion de los cambios
i | A fr=t+ Af Cantidad de cambio Sit cambia ;Cudnto y cémeo
As=s(t, + Ar)—s(t,) cambia s?
-3 1 -2 -5 Sitcrecede-3agl.sdecrece 5
-2 -1 -3 Sitcrecede -2a-1,5decrece 3
-1 | 0 -1 Sitcrece-1 a0, sdecrece 1
0 i ] ] SitcrecedeQal.screce ]
] ] 2 3 Sitcrecede 1 a2 crece 3
i | 3 5 Sitcrece 2 a 3,5 crece S unidades
3 1 4 7 Sitcrecede 3a 4 5 crece

Mostraremos graficamente cuanto cambia s con respecto a t.

= Cuando x cambia 1 unidad de —3 = Cuando x cambia 1 unidad de 1 a
a —2, y cambia 5 unidades de 9 a 2, y cambia 3 unidades de 1 a 4.
4.

s Cuando z cambia 1 unidad de —2 S R

a —1, y cambia 3 unidades de 4 a
1.

» Cuando z cambia 1 unidad de —1

a 0, y cambia 1 unidad de 1 a 0. . .

» Cuando z cambia 1 unidad de 0 a -

1, y cambia 1 unidad de 0 a 1. 1 1

s Cuando z cambia 1 unidad de 1 a 4

2, y cambia 3 unidades de 1 a 4.

Gréficamente, ;como cambia s con respecto a t?

» Cuando ¢ cambia de —3 a —2, s(t) decrece 5 unidades (de 9 a 4).

Cuando t cambia de —2 a —1, s(t) decrece 3 unidades (de 4 a 1).

Cuando ¢ cambia de —1 a 0, s(t) decrece 1 unidad (de 1 a 0).

Cuando t cambia de 0 a 1, s(t) crece 1 (de 0 a 1).

Cuando t cambia de 1 a 2, s(t) crece 3 (de 1 a 4).

Cuando t cambia de 2 a 3, s(t) crece 5 unidades (de 4 a 9).
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Tabla 3. Obtencicn de los cambios v razones enfre cambios

t; Ar Valor final Razén de cambio | Sit cambia jqué tan rdpido cambia s?
h=t+ Ar promedio:As/At
-3 ] 2 -5 Sitcambia de -3 a -2, la rapidez
promedio es de 5.

-2 1 -1 -3 Sitcambia de -2 o -1, lo rapidez
promedio &5 3.

=] 1 0 =1 Sitcambiade -1 g 0. larapidez es 1.

D ] ] ] Sifcambia de 0 a 1, la rapidez
promedio &s 1.

] 1 2 3 Sitcambiade 1 a2 larapidezes 3

2 ] 3 5 Sit cambia de 2 a 3, la rapidez es 5.

3 ] 4 7 S5i t cambia de 3 a 4, la rapidez

promedio es 7

3. /Qué tan rapido cambia? Calcularemos la razén de cambio promedio con in-
crementos uniformes de cambio en la variable de entrada y los representaremos
graficamente:

Figura 5
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4. ;Coémo se comporta puntual y globalmente la grafica? Calcularemos razones
de cambio instantaneas y las representaremos graficamente. Para saber cémo
se comporta puntual y globalmente la grafica se requiere reducir “suficiente-

mente” los intervalos de variacién. Comenzaremos con incrementos At = 1.

Tabla 4. Gbtencicn de los cambios v razones enfre cambios

. Af =t + Rozon promedio de cambio:
fl ff fr Ar As/Al

i
]
i
i

i
I
= | Cax | |]

2 =]

b | Cad | B2 | — |2
i

[ FEE el

A renglon seguido mostraremos graficamente los calculos de la tabla anterior:

Figura & +

Para lograr mayor fineza, ahora haremos los cambios méas chicos At = 0,5:
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Tabla 5. Obtencion de los cambios con

A=05

ti Ar t=H+ Af As=s(t, + Ar)—s(t,) Razdn promedio de cambio:
As [Af
275 _
2 0.5 25 ~275 " —-%%
05
B
- | os -2 _225 S0 A
25 0.5
175
-2 0.5 -1:5 —1.75 =—3.5
05
7o 0.5 = —1.25 —125_ 85
1.5 B.5
—0.75
¥ 0.5 05 —0.75 LA 1
0.5
| B ) —0.25 05 s
i 0.5
3 05 05 025 LT
05
15 0.5 075 0 15
05
=
: 0.5 125 128 5
05
1.5 05 2 175 175 a5
05
2 0.5 25 325 L S
05
25 | o5 3 175 2B gy
05

A continuaciéon mostraremos graficamente los calculos de la tabla anterior:

s} ; i
Figura 7
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Ahora lo haremos con incrementos de At = 0,25:

Tablg 4. Obfencion de los cambios con AI=0.25
ti Al tr=t+ Af As =s(t, + At — s(t,) Rczéni&:;umblo
. 5
-1.5 025 -1.25 —0.6875 ﬂ=—3.75
0.25
_0.5625
4125 025 : —~0.5625 =i B
0.25
i 5
- 0.25 075 —0.4375 ﬂ=—l.?5
0.25
_ 03125
075 0.25 0.5 —0.3125 a1 1.25
0.25
45 025 025 —0.1875 =00 g
0.25
= 25
0,25 0,25 1] —0.0625 D —0.25
025
o
] 25 825 0.0625 0.0625 _ .25
0.25
0.1875
0.25 025 Qs 0.1875 =0.75
0.25
—0.3125
0.5 025 075 03125 =1.25
0.25
75
375 0.25 04375 04375 5 45
0.25
5625
0.25 125 0.5625 98z =275
0.25
0.6875
125 025 5 0.6875 = 28
0:25

Wi}

i
'

i)

Figura 10
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Como puede verse, luego de refinamientos en la variable de entrada, la grafica es cada
vez mas fina. A renglén seguido mostraremos una serie de ejemplos para calcular
razones de cambio instantaneas en puntos especificos, mediante refinamientos en la

variable de entrada.

2.1.5. Conclusion

Las formas de graficacion tradicionales consideran secundario lo variacional y privi-
legian el trazado del dibujo de la grafica de la funcién a partir de ubicar un conjunto
discreto de puntos. Otras centran su atencion en el célculo de los maximos, minimos
o puntos de inflexién para bosquejar la grafica de la funcién; otras mas determinan el
comportamiento de la grafica de la funcion a partir de los pardametros de la férmula;
algunas, a través de las operaciones béasicas como la suma, resta, multiplicacion y
division, obtienen el bosquejo de la funcién producto, etc., mientras que la grafica-
cién covariacional es una forma de graficacion integradora, ya que permite construir
a la par la grafica de la funcién y establecer el comportamiento variacional de ésta.

La graficacién por tabulacién es la que mas se utiliza en el nivel basico (secundaria)
y en el nivel medio superior, cuando se trabaja la graficacion de funciones. En
este articulo se propone una nueva técnica para graficar funciones continuas en el
plano, propuesta dirigida al estudio de la graficacion en el nivel medio superior. Por
tanto, una pregunta importante por responder es la siguiente: ;cual es la diferencia
que existe entre la graficacion por tabulacion y la graficacién covariacional? Para
responder este interrogante, enlistaremos las diferencias esenciales entre cada una

de las técnicas de graficacion.

TABLA 6. Graficacién por tabulacién vs. graficacién covariacional

Graficacién por tabulacion

Graficacién covariacional

En este tipo de graficacién se relega a
un segundo plano la correlacién causal
entre las variables.

En todo el proceso de graficacion pre-
domina la conciencia de la correlacion

causal entre eso que cambia.

Se considera que los estudiantes tienen
ya formada una idea de curva no nece-

sariamente como poligonal.

Se considera que una curva esta forma-
da por “segmentos” de recta. Cuanto
mas pequeno sean esos segmentos, ma-

yor fineza ganara la grafica.

No se enfatiza sobre la naturaleza de lo
que cambia o de lo que se quiere repre-
sentar, simplemente se representan las

x y las y o las funciones.

Se parte de identificar qué cambia y la

correlacion entre eso que cambia.
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Se representan las z y las y como en-
tes abstractos y los valores que adquie-
ren dependen del arbitrio del profesor.
Aqui se dice “asignemos los valores: —2,
—1,0,1,2,ax”, “si x vale tanto y vale
tanto”.

Se hace explicito el proceso de cambio
que le confiere razén de ser a eso que
cambia, utilizando variables concretas.
“Si el tiempo t cambia de 1 a 1,5, ave-
rigiiemos qué sucede con la distancia

2

S

Se usa fundamentalmente la formula de
f(z) para calcular las coordenadas de
los puntos.

Para gréficas se usan esencialmente Ax,
Ay para calcular los cambios, estable-
ciendo la relaciéon causal entre los cam-
bios de x y los cambos de y; la férmula

de f(z) se utiliza para calcular Ay.

Los cambios no interesan, por lo que
no se representan graficamente; solo se
unen puntos consecutivos, sin cuestio-

narse sobre su significado variacional.

Se representan graficamente los cam-
bios y no sélo los puntos. Importa esen-
cialmente lo que sucede “entre” los
puntos y no sélo el valor de las coor-

denadas de los puntos.

Se pasa de un punto a otro, sin cues-
tionarse lo que sucede en el interme-
dio; tampoco se cuestiona sobre cuanto

cambian las variables.

Para graficar interesa cuanto y cémo
cambia la variable independiente, al
igual que este cambio qué efectos tiene
sobre los cambios de la variable depen-
diente. “Si el tiempo ¢ cambia de 1 a 2,
la distancia s aumenta 4 unidades”.

No son motivo de analisis la rapidez de
la variacién ni su representacion grafi-
ca. La pendiente se asocia con la de-
rivada hasta cuando ésta es motivo de
estudio y no cuando se grafica una fun-
cién.

Se enfatiza sobre la razén de cambio
promedio. Esta se asocia con la incli-
nacién de los segmentos de recta que

forman la “curva”.

No es motivo de discusion la fineza o

precisiéon de la curva.

La poligonal, o sea la grafica buscada,
serd mas precisa si se reducen suficien-

temente los cambios de la variable in-

dependiente.

2.1.6. Actividades que se plantean

1. De acuerdo con los datos de la Red Automatica de Monitoreo Atmosférico, en el
Distrito Federal el dia 13 de agosto de 1997 se registraron los siguientes indices
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de radiacién ultravioleta (UV) emitida por el Sol (se recomienda exponerse al
Sol con cautela cuando el indice de radicaciéon UV es mayor que 7) (grafico 2).

INDICE DE UV

-k i

INDICE -UV
SANW RSN @O AN

s
L

ra

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
HORASDEL DA

a

b

., Cuanto cambié el indice UV en cada hora?
JEn qué horas el indice UV ascendié mas rapidamente?

C

d

JEn qué intervalos el indice UV descendié més velozmente?

)

)

)

) ¢En qué intervalo el indice UV no cambi6?

2. A continuacién se dan algunas férmulas que describen la posicién s = f(t), de
ciertas particulas que se mueven a lo largo del eje de coordenadas. Obtenga

para cada una la férmula que permite calcular los cambios As, y haga las

graficas correspondientes.

a) s=t+2

b) s = 1,86t

c) s=t3—-2t>+1
d) s =10

e) s:t%

3. Obtenga la expresion que permite cuantificar los cambios a partir de la infor-
macion dada.

a) Para la funcién: f(r) = 772, cuando r cambia de r =1 ar =2
b) Para A(l) = [?, cuando [ cambia de [ a [ + Al

¢) Para y = f(x), cuando x cambia de x; a x; + h

4. Las féormulas que describen la caida libre de los cuerpos sobre la superficie de
algunos planetas son:
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a) s(t) = 1,86t*, Marte

b) s(t) = 4,9t%, Tierra

c¢) s(t) = 11,44¢%, Jupiter
Supoéngase que s es la distancia recorrida en metros y t el tiempo en segundos.
LEn qué planeta los cuerpos caen més rapidamente? ;En cual lo hacen con

mayor lentitud? Justifique sus respuestas y grafique mediante la graficacién

covariacional.

. Supongamos que una particula se mueve en linea recta en el plano cartesiano,
parte del punto A(1,2) y después se ubica en el punto B(3,5). ;Cudnto cam-
bid su posicion respecto a x y respecto a y?

. Una recta que pasa por el origen se genera de modo que Ax = Ay = 1. Trace

la gréafica de la recta y obtenga su ecuacion.

. {Coémo se comportan Az y Ay en la recta que tiene por ecuaciéon y = —%x+ 1?7
Represente los Az y Ay y dibuje la grafica de la recta.

. Cae agua dentro de un tanque ctbico de 2,5 m de arista, a razén de 1 litro
por segundo:

a) Obtenga una férmula para el volumen V' en funcién de la altura h.

b) Deduzca la féormula para la altura h en funcién del tiempo t.

¢) Encuentre la férmula que mida los cambios de volumen (AV) si Ah =1

CIm.

. Si Ay =0 [y = f(2)], icudl o cudles de las siguientes opciones se satisface?

Justifique sus respuestas.

a) f(x;+Azx) > f(x;)
b) flx;+ Azx) = f(x;)
¢) Az =0 para todo z
d) La variable dependiente no cambia, pero la variable independiente es

posible que si.

10. Si Ay >0 [y = f(x)], {cudl o cudles de las siguientes alternativas es cierta?

a) flz+ Az) > f(x)
b) flz+ Azx) < f(z)
¢) Az =0 para todo x
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d) f(z+Az) = f(z)
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2.2. Estudio epistemoldgico del desarrollo del algebra

lineal

2.2.1. Génesis

Aportadores en el siglo XVII

Gottfried Wilhelm Leibniz
(1646 - 1716). Aleman

James Stirling
(1692 - 1770). Escocés

Colin Maclauring
(1698 - 1746). Escocés

Aportadores en el siglo XVIII

Gabriel Cramer
(1704 - 1752). Suizo

Leonhard Euler
(1707 - 1783). Suizo

Jean Le Rond D’Alembert
(1717 - 1783). Francés

Alexandre Théophile
Vandermonde
(1735 - 1796). Francés

Alberto Campos?

Sistema lineal.

Determinante.

n curva algebraica por %n(n + 3) puntos.
Cubicas de Newton. Conicas.

Sistemas 2 x 2, 3 x 3, 4 x 4 (1729) (1748).

Interseccion de curvas.

Sistemas lineales n x n, sin pruebas (1750).
n curva algebraica por %n(n + 3) puntos.
Paradoja de Cramer.

Condiciones para unicidad de sistemas lineales.

Interaccién de dlgebra y geometria en dimensién
3.
Ejes de cuddrica real.

n soluciones lineales para una ecuacién diferen-

cial lineal homogénea de orden n.

Determinantes como teoria.

2Doctor de la Universidad de Paris. Profesor honorario de la Universidad Nacional de Colombia.

Bogota.
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Joseph Louis Lagrange
(1736 - 1813). Francés

Caspar Wessel
(1745 - 1818). Noruego

Pierre Simon, marqués de
Laplace
(1749 - 1827). Francés

Jean Robert Argand
(1768 - 1822). Suizo

Carl Friedrich Gauss

(1777 - 1855). Alemén

Augustin Louis Cauchy
(1789 - 1857). Francés

Aportadores en el siglo XIX

Carl Gustav Jacob Jacobi
(1804 - 1851). Aleman

William Rowan Hamilton
(1805 - 1865). Irlandés

Hermann Ginther
Grassmann
(1809 - 1877). Alemén

Para resolver sistemas de ecuaciones diferencia-
les se vale de procedimientos que actualmente

pertenecen a teoria espectral.

C = R x R (iniciacién).

Desarrollo de un determinante.

C =2 R x R (iniciacién).

Moédulo de un nimero complejo.

1811. Eliminacién en sistema lineal m x n.
Vocablo determinante en 1801.

1801. Disquisitiones arithmeticae.

Teoria de determinantes. 1815.

Teoria de matrices.

Teoria de determinantes.

n = 4. Teorema de Hamilton-Cayley
C=R xR (1834).

Cuaterniones (1843).

Algebra dentro de cuaterniones.

Dimensiones superiores.

Dimensiones superiores (1844).

Lecciones de extensién lineal (1844): espacio vec-
torial, subespacio, conjunto generador, indepen-
dencia, base, dimensién, transformacién lineal,

dimV 4+ dim W = dim(V + W) + dim(V N W).
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Benjamin Peirce
(1809 - 1880). Estadounidense

James Joseph, con seudénimo
Sylvester
(1814 - 1895). Britanico

Karl Theodor Wilhelm
Weierstrass
(1815 - 1897). Alemén.

Arthur Cayley
(1821 - 1895). Briténico

Charles Hermite
(1822 - 1901). Francés

Ferdinand Gotthold Max
Eisenstein
(1823 - 1852). Alemédn

Leopold Kronecker
(1823 - 1891). Aleméan

Henry John Stephen Smith
(1826 - 1883). Irlandés

Algebra asociativa lineal (1870).

Adopté el vocablo matriz.

Teoria de invariantes.

Teoria axiomatica para determinantes.
(1903). On determinant theory.

Teoria axiomatica de matrices.

Forma canédnica llamada de Jordan.
Formas bilineales y cuadraticas.
Teoria espectral.

1843. Geometria analitica n-dimensional.
1850. 1858. Matrices m x n. Teoria.
1858. Teorema de Cayley-Hamilton.
Problema de Cayley-Hamilton.

Las matrices forman un algebra.
Matrices y cuaterniones.

1844. Octoniones.

Dimensiones superiores.

n formas lineales de cualquier grado.
Una letra para una aplicacién lineal.
Operacién sobre aplicaciones lineales.
Problema de Cayley-Hermite.

Teoria aritmética de formas n lineales.
Un signo para una aplicacion lineal.
Operaciones sobre aplicaciones lineales.

Teoria de invariantes.

Tratamiento axiomético de determinantes.
(1903). Lectures on determinant theory.
Formas bilineales y cuadraticas.

Teoria espectral.

Solucion de sistemas de ecuaciones lineales.
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Julius Wilhelm Richard
Dedekind
(1831 - 1916). Alemén

Marie Ennemond Camille
Jordan
(1838 - 1922). Francés

Josiah Willard Gibbs
(1839 - 1900). Estadounidense

Charles Sanders Peirce
(1839 - 1914). Estadounidense

Heinrich Weber
(1842 - 1913). Aleman

Ferdinand Georg Frobenius
(1849 - 1917). Alemén

Oliver Heaviside
(1850 - 1925). Britanico

Giuseppe Peano
(1858 - 1932). 1888. Italiano

Erhard Schmidt
(1876 - 1959). Alemén
(de origen estonio)

Hans Hahn
(1877 - 1934). Austriaco

1870. Sumas y productos de enteros algebraicos.
Suplemento X, 1871, en edicién de obra de Di-
richlet.

Investigacién con H. Weber sobre extensiones.

Teoria de matrices.
Teoria espectral.

Forma canodnica de Jordan.

Parte real y parte vectorial de producto de cua-

terniones.

Ntumeros reales, nimeros complejos, cuaternio-
nes son las dnicas n-uplas que son algebra de

divisién.

Definicion axiomatica de grupo y de campo.

1878. On linear substitutions and bilinear forms.
Teoria espectral: Cauchy, Jacobi, Weierstrass,
Kronecker.

Parte real y parte vectorial en producto de cua-
terniones.

1880. Producto escalar. Producto vectorial.

Calculo geométrico.

Espacio vectorial sobre los reales (sistema li-
neal).

Dimensién de un espacio vectorial.

Base de un espacio vectorial.

Espacio vectorial de polinomios de una variable.

1908. Sistemas lineales en infinitas ecuaciones

con infinitas incognitas.

1922. Uber Folgen linearer Operationen.
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Otto Toplitz 1909. Sistemas lineales en infinitas ecuaciones
(1881 - 1940). Aleman con infinitas incognitas.
Amalie Emmy Noether 1921. Ideal theory in rings. Mdodulo.

(1882 - 1935). Alemana

Hermann Weyl 1918. Axiomas para espacio vectorial real.
(1885 - 1955). Aleméan

Stefan Banach 1932. Théorie des opérations linéaires.
(1892 - 1945). Polonés

Norbert Wiener 1922. The group of the linear continuum.
(1894 - 1964). Estadounidense

Emil Artin Anos veinte. Linealizacién de la teoria de Galois.
(1898 - 1962). Austriaco

2.2.2. Estructuracion

Bartel Leenert van der Waerden 1930 - 1931. Moderne algebra.
(1903 - 1996). Holandés

Temas en el capitulo XV (edicién 1937). Algebra lineal.

El algebra lineal trata de formas lineales, médulos de tales formas lineales, homo-

morfismos o transformaciones lineales entre ellos.

106.
107.
108.
109.
110.
111.
112.
113.

Modulos. Formas lineales. Vectores. Matrices.

Moédulos respecto a un campo. Ecuaciones lineales.

Modulos respecto a anillos euclidianos. Divisores elementales.
El teorema fundamental de grupos abelianos.
Representaciones y médulos de representacion.

Forma normal de una matriz en un campo conmutativo.
Divisores elementales y funcion caracteristica.

Formas cuadraticas. Formas hermiticas.
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Son ocho temas expuestos en una perspectiva completamente axiomatizada. La ex-
posicién avanza sin que, por ejemplo, los teoremas estén enumerados, todo esta argu-
mentado. El lenguaje es conciso y no hay motivaciones para los diversos desarrollos.
Se proponen unos cuantos ejercicios al final de cada seccién, no tan complejos ni tan
numerosos como en Bourbaki. Todo el desarrollo cubre 36 paginas. No es un texto

para introducir el algebra lineal en el primer nivel universitario.
Enunciados que llevan el titulo de teorema:

Teorema de solubilidad.

Teorema de divisores elementales.

Teorema fundamental de grupos abelianos.

Teorema de unicidad en una descomposicion de modulo.

Teorema de los vectores propios de una transformacion.

Tampoco el capitulo IT de Algébre, de Bourbaki (1970), dedicado al algebra lineal, es
un texto elemental. Abarca 210 paginas. El lenguaje es igualmente abstracto. Cada
paragrafo tiene un buen nimero de ejercicios, nada triviales, muchos de los cuales
estan precedidos del signo de dificultad. En los ejercicios del capitulo II aparecen el
teorema de Desargues, un teorema de Erdos-Kaplansky, otro teorema de Kaplansky,
el teorema de Papo, el teorema del cuadrilatero completo y el llamado teorema

fundamental de la geometria proyectiva.
1970. Bourbaki. Algébre.

Temas del capitulo II de Algebra lineal (210 pp.):

§ 1. Modulos.

§ 2. Moédulos de aplicaciones lineales. Dualidad.

§ 3. Productos tensoriales.

§ 4. Relaciones entre productos tensoriales y médulos de homomorfismos.
§ 5. Extension del anillo de los escalares.

§ 6. Limites proyectivos y limites inductivos de médulos.

§ 7. Espacios vectoriales.

§ 8. Restriccion del campo de los escalares en los espacios vectoriales.

§ 9. Espacios afines y espacios proyectivos.

§ 10. Matrices.

§ 11. Médulos y anillos graduados.
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Bourbaki llama grupo de operadores a la situacién en la que se tiene un conjunto
C' y un grupo G junto con una accién de C' hacia G, a la cual se dota, mediante
axiomas, con algunas propiedades.

Un mddulo es un tipo particular de grupo de operadores en el que el conjunto
estda dotado con la estructura de grupo aditivo y los operadores son los elementos

de un anillo.

Espacio vectorial es un caso especial de médulo en el que el anillo es remplazado

Por un campao.

Método

., Cémo pudo llegarse a la estructuracién que aparece en Van der Waerden o en
Bourbaki?

Al tomar en cuenta los diversos aportes, pueden advertirse como cauces en una
cuenca hidrogréfica. Al intentar seguir sus cursos, es factible decantar grandes temas
que han de conducir a la estructura aludida.

Moore trata de mostrar diversas fuentes que confluyen en la axiomatizacién del alge-
bra lineal: geometria euclidiana, sistemas lineales, ecuaciones diferenciales lineales,

Grassmann, Dedekind, Peano, Weyl.

Todavia no se tiene, segun Moore, el impulso que en verdad suministra el analisis
funcional con nombres como los de Banach, Hahn, Wiener, secundados por las in-
vestigaciones de John von Neumann al axiomatizar los espacios de Hilbert (1927).
Se logra un amplio espectro tedrico, utilizable igualmente para las necesidades de

expresion de la fisica.

En la matematica china de los “Nueve capitulos” se expone “un método sistematico
para resolver conjuntos de ecuaciones lineales con cualquier nimero de incognitas”
seguin el comentario acompanante de Van der Waerden.

En el problema citado por Van der Waerden se trata de comparar rendimientos en
la cultura comparada de tres granos diferentes, para lo cual se aducen tres conjuntos
de datos.

Se exhibe la situacién en el sistema lineal siguiente:

3+ 2y + 2z =39
2v4+3y+z2=34
x + 2y + 3z = 26.

Se trata de saber el valor de x, y, z.
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Segtn la fuente aludida, los matematicos chinos disponen los coeficientes del sistema

asi:
1 2 3
2 3
3 1 1
26 34 39

En la columna de la derecha estan los coeficientes de la primera ecuacion.
En la columna del medio estan los coeficientes de la segunda ecuacion.
En la columna de la izquierda estan los coeficientes de la tercera ecuacién.

El texto del problema asigna un papel especial al nimero 3, que es el nimero de
gavillas del grano superior en la columna derecha.

Resolver el sistema va a consistir en transformar el arreglo ya obtenido de los coefi-

cientes del sistema en otro arreglo con coeficientes nulos.

De tres veces la columna del centro se resta dos veces la columna derecha:

2 3 6 6 0
3 2 9 4 5
Sla =211 ]=s3 |- [2]=]1
34 39 102 78 24

De tres veces la columna izquierda se resta la columna derecha:

1 3 3 3 0
2 2 6 2 4
Sl [=1o-|1]|=]s3
26 39 78 39 39
Ahora el arreglo es asi:
0o 0 3
4 5 2
8§ 1 1
39 24 39

Ya hay dos elementos nulos, se busca uno méas a partir del iltimo arreglo.

De cinco veces la columna izquierda se resta cuatro veces la columna central.

0 0 0 0 0
4 5 20 20 0
Slg =411 |=1a |- |4a]|7]36

39 24 195 96 99
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Ahora el arreglo de los coeficientes es el siguiente:

0 0 3
0 5 2
36 1
99 24 39

El sistema lineal inicial se ha transformado en el siguiente:

3r+2y+ 2z =239

oYy + 2z =24
36z = 99.
De donde la solucion:
99 11 17 37
“T36 4 Y= S

En Mesopotamia se resolvian problemas de la misma laya, tal vez mas sistemati-
camente. Por ejemplo, para un problema con tres incégnitas suponian una relacién
cuadratica en las tres variables, sin anadirle dificultades. Para dos de las variables
planteaban relaciones que se transcriben linealmente en ecuaciones cartesianas de

primer grado, lo cual indica por lo menos buenos tanteos de tipo lineal.

Bourbaki menciona dos reglas primitivamente bien conocidas: la de tres y la de
falsa posicion. En diversos problemas, Diofanto echa mano de la solucién por falsa
posicion, a veces doble, lo que hace mas intrincada todavia el algebra retérica, la
utilizada generalmente por Diofanto.

Pensar linealmente puede esquematizarse en la capacidad de resolver ecuaciones
reducibles a la forma ax = b, sea con el lenguaje del algebra retorica, sea con el del
algebra sincopada introducida por Diofanto, sea mediante el simbolismo cartesiano.

Hay un problema reproducido en libros de divulgacion de historia de la matematica,
particularmente indicado. Aparece una versién en [p. 1020. Cientificos griegos. Tomo
II. Recopilacién, estudio preliminar, preambulos y notas por Francisco Vera. 1970.
Aguilar. 1190 pp.]. Otra versién, més entendible, aparece en [p. 156. Jean-Paul
Collette. Historia de las matemdticas. 1. (1973). 2003. Siglo XXI Editores. = + 347

pp.], tomada de historiadores franceses. Dice as:

“Transeinte, esta es la tumba de Diofanto: es él quien con esta sorprendente dis-
tribucion te dice el nimero de anos que vivid. Su juventud ocupé la sexta parte;
después, durante la doceava parte su mejilla se cubrié con el primer bozo. Pasé atin
una séptima parte de su vida antes de tomar esposa y, cinco anos después, tuvo un
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precioso nino que, una vez alcanzada la mitad de la edad de su padre, perecié de
una muerte desgraciada. Su padre tuvo que sobrevivirle, llorandole, durante cuatro
anos. De todo esto, deduce su edad”.

Con notacién cartesiana, se transcribe:

245+
— _ —_ — =
6 127 2

de donde x = 84 anos. Asi que fue nino hasta los 14 anos, adolescente hasta los 21,
se caso a los 33, tuvo un hijo a los 38, el cual murié cuando su padre tenia 80 anos.

Algunos de los 189 problemas que constituyen parte de la herencia de Diofanto dan
ya procedimientos lineales que, desde luego, hay que leer entre lineas en la redaccién
retorica de los problemas que resuelve.

Segun Bourbaki, Apolonio de Perga inspira a Fermat algunas de las ideas claves para
el desarrollo del algebra lineal. Por ejemplo, clasificar las curvas planas segiin el grado
de la ecuacion que la describe. Una ecuacion de primer grado es una recta y una de
segundo grado es una cénica. Ideas que, obviamente, aparecieron en Géométrie, de
Descartes (1637).

Otra observacién igualmente clave es la del caracter lineal de las férmulas de trans-
formacion de coordenadas presente en Fermat y que de algin modo han de estar en
el fondo de la clasificacién de las conicas.

Euler llamoé afinidad a la relacion entre curvas que permite pasar de la una a la otra

por la transformacién =’ = ax, y' = by.

Segun Cajori [A History of Mathematical Notations. Two Volumes Bound As One.
xvi 4+ 451. xii 4+ 367. Dover. (1928). 1993. § 459], la més temprana notacién para
determinante proviene de Leibniz, quien origina los determinantes en Europa. En

carta [28 IV 1693] al marqués de L’Hopital, escribe tres ecuaciones as:

10+ 11z +12y =0
20421z + 22y = 0
30 + 31z + 32y = 0.

Explica Cajori que la notacion es topografica, es decir, Leibniz denota 10, 11, 12 lo

que actualmente se denota aqg, a1, ais.

Leibniz escribid, pues, por primera vez, un sistema lineal mediante una notacién con
doble indice, bastante comoda para el caso. La carta va mas adelante con el procedi-

miento de solucién. Es asi como surge el papel capital de ese niimero intrinsecamente
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asociado a todo sistema lineal, cuyo conocimiento es indispensable para resolver el

sistema. Leibniz se ocup6 varias veces del concepto que surgia.
Una secuencia interesante es la relativa a la solucién de sistemas lineales.

Habia la experiencia en la antigua matematica china, luego en la de Mesopotamia,
posteriormente la de Alejandria con Diofanto; también se puede anotar la de Bagdad,

cuando Joarizmi, por ejemplo, se ocupaba de problemas lineales.

Después, préacticamente hay que llegar hasta Maclaurin, quien en 1729 (Hauchecorne
y Suratteau) publicé férmulas resolutivas para 2, 3, 4 ecuaciones con igual nimero
de incognitas. Cuando el par de niimeros no coincidia, generalmente se atribuia a que
el problema estaba mal puesto. Las férmulas, segiin la misma fuente, se publicaron
en 1748, péstumamente.

n(n+ 3)

Stirling habia probado que una curva de grado n es determinada por 5

puntos.

Cramer formulé la paradoja que lleva su nombre y a la que se llega con los resultados
de Maclaurin y de Stirling. Segtn el primero, dos curvas de grados m, n se intersecan
en m - n puntos.

n(n+3
Segun Stirling % puntos determinan una curva de grado n. Pero (ahi estd la
. s . , , n(n + 3)
paradoja), dos cibicas se intersecan en 9 puntos (Maclaurin), asi que —s

puntos (Stirling), para n = 3, no determinan una tnica cubica.

Cramer planteé el problema mediante ecuaciones lineales, lo cual lo obligd a ocuparse
a fondo de las féormulas resolutivas.

Cramer indujo féormulas generales sin deducirlas. La paradoja, se dice a veces de
Cramer - Euler, la explicé Pliicker posteriormente.

Bézout (1779, Théorie générale des équations algébriques) se ocupd también a fondo

en la solucidén de sistemas lineales.

Es de recalcar el papel de Joseph Fourier, en su tratado Théorie analytique de la cha-

leur (1822). A Fourier le resulté planteado un sistema lineal en infinitas ecuaciones
oo

con infinitas incognitas, Z a;jr; = b;, 1 € N,

j=0
Fourier resolvié (Bourbaki pone el verbo entre comillas) una parte finita del sistema
resultante, suprimiendo previamente los términos donde los subindices ¢, j superaran
un numero n fijado y empleando luego férmulas como las de Cramer; obtenida asi una
solucion parcial, pasé al limite haciendo tender n a infinito.

Los atrevidos enunciados de Fourier eran los de un técnico, no los de un matematico;

dado que el sistema procedia de problemas reales, habia que buscarle solucién. Fue
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una excelente circunstancia para los matematicos el tener que tomar frase por frase
para darle a cada una un sentido matematico porque la indagacion resulté altamente
enriquecida. Los matematicos se familiarizaron con el estudio de sistemas infinitos

de ecuaciones lineales; por este camino llegaran al concepto de médulo.

Segin Bourbaki, el problema de la solucion en nimeros enteros de sistemas de ecua-
ciones lineales con coeficientes enteros es resuelto en parte por Hermite y con toda
generalidad por H. J. Smith, quien introdujo en 1861 (Hauchecorne y Suratteau) el
estudio de la matriz aumentada en la soluciéon de un sistema lineal. Dorier cita On

systems of linear indeterminates equations, and congruences (Smith, 1861).

También segin Bourbaki, es Kronecker quien da forma definitiva a los teoremas

acerca de sistemas lineales con coeficientes reales o complejos.

Para completar la informacion sobre quiénes mas aportaron a la solucion de sistemas
lineales infinitos, conviene anotar lo referente a sistemas que brotaron en el andlisis

funcional.

Erika Luciano, en At the origins of functional analysis: G. Peano and M. Gramegna
on ordinary differential equations (Revue d’histoire des mathématiques, 12 (2006),
pp. 35-79. Société Mathématique de France) hace una resena completa de la indaga-
cién guiada por Peano en Turin, particularmente la de la tesis de Maria Gramegna.
Sin embargo, ningtn titulo de articulo de Peano menciona expresamente la infinitud

de los sistemas lineales considerados.

Por otra parte, ninguno de los autores que sustentan el presente trabajo acerca del

algebra lineal destaca a Peano.

Se alude, pues, a cuatro articulos destacados en la bibliografia, aunque no en el texto

por Bourbaki, asi como por Dorier y por H. Moore.

Los cuatro articulos se referencian segtin el orden de publicacion.

1908. E. Schmidt. Ueber die Auflosung linearer Gleichungen mit unendlich vie-
len UnbeKannten (Acerca de la solucion de ecuaciones lineales con infinitas
incdgnitas). Rend. Palermo. XXV (1908), pp. 53-77.

1909. O. Toeplitz. Ueber die Auflosung unendlichvieler Linearer Gleichungen mit
unendlich vielen UnbeKannten (Acerca de la solucion de una infinidad de
ecuaciones lineales con una infinidad de incognitas). Rend. Palermo. XXVIII
(1909), pp. 88-96.

1913. F. Riesz. Les systémes d’équations linéaires a une infinité d’inconnues. Paris.
Gauthier-Villars.
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1921. E. Helly. Ueber Systeme linearer Gleichungen mit unendlich vielen UnbeKann-
ten (Acerca de sistemas de ecuaciones lineales con una infinidad de incdogni-
tas) Monatsh. fur Math und Phys XXXI (1921), pp. 60-91.

Hay una especie de ascenso y de descenso para el concepto de determinante.

Es Leibniz quien se da cuenta de la importancia del ntimero que se presenta al
intentar resolver cualquier sistema lineal, asi sea el mas sencillo, ax = b, dado que

ha de ser a # 0.

Maclaurin y Cramer avanzan en la disposicién de la solucién asiendo firmemente el

determinante del sistema.

Euler esboza la discusién acerca de la unicidad de la solucion con base en el deter-

minante.
La notacién ideada por Cramer era tan clara que se impuso enseguida.

Laplace (1772) introdujo la férmula conocida para el desarrollo de un determinante

por cofactores.

Vandermonde (1772) pensé en una teoria para los determinantes por si mismos, es
decir, con independencia de su empleo en los calculos.

Bézout (1779) continué el estudio de la solucién de sistemas lineales y, para ello, el

de los determinantes.
El nombre del concepto aparece por primera vez, segiin Cajori, en Gauss:

“Las funciones de dos indeterminadas az? + 2bxy + y?, donde a, b, ¢ son enteros
dados, es una forma de segundo grado. El nimero b* — ac, de cuya indole dependen
las propiedades de la funcién, es el determinante de la forma de segundo grado” [p.
121, p. 123, en Disquisitiones Arithmeticae (1801). 1995. Academia Colombiana de
Ciencias Exactas Fisicas y Naturales. Bogotd. zii + 492 pp].

Gauss introdujo la siguiente relacion:

Dos formas cuadrdticas binarias f(z,y) = ax® + bry + cy?, 'y,
F(X,Y) = AX? + BXY + CY?, donde a, b, ¢, A, B, C' son nimeros enteros,
son equivalentes si existe una aplicacién lineal (z,y) — (X,Y), con determinante
igual a uno, que transforme f(z,y) en F(X,Y).

Asi mismo y alli mismo, para el estudio de formas binarias y ternarias, Gauss in-
troduce la que luego serd la formula para el producto de dos aplicaciones lineales
(sustituciones), en lo cual anticipa el calculo de matrices, todavia no formulado.

En libros de historia de la matematica se dice que fue Cauchy quien impuso el vocablo
determinante. Es cierto que en 1815 public6 un articulo en cuyo titulo parece querer

resumir lo que significa:
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“Memoria acerca de las funciones que no pueden obtener sino dos valores iguales y
de signos contrarios consecuentemente a transposiciones operadas entre las variables

que aquéllos contienen”.

Kronecker y Weierstrass, en sendos ensayos de axiomatizaciéon, ambos publicados
poéstumamente, describieron al determinante como funcién multilineal alternada de

n vectores en un espacio de n dimensiones.

Puede afirmarse que la importancia alcanzada por la nocién de determinante en las
investigaciones a lo largo del siglo XIX es la que todavia conserva en los textos de

algebra lineal para los primeros cursos universitarios.

Un dato revelador es la informacion bibliografica de Dorier, segiin la cual Thomas
Muir publicé cuatro volimenes titulados The theory of determinants in the historical
order of development (1890-1923; Dover, 1960).

Cabe subrayar que los determinantes aparecieron mucho antes de las matrices, a
pesar de lo que sugieren los textos corrientes que tratan los dos temas a la par,

como puede convenir en multiples aplicaciones.

Historicamente las matrices irrumpen a mediados del siglo XIX. Segin Hawkins
(Moore, p. 269), diversos matematicos sugirieron el dlgebra de matrices casi al mismo

tiempo, independientemente: Cayley, Laguerre, Eisenstein y Sylvester.

Para Laguerre, segiin la misma fuente, una matriz es una representacion para ima-

ginarios de Galois, para nimeros complejos, para cuaterniones.

Todavia hay textos en los que se introducen las matrices como arreglos de niimeros en
lineas y columnas cuando, en teoria, una matriz es sencillamente una representacion

de una aplicacién lineal.

Fue Cayley, en los anos cincuenta del siglo XIX, quien desarroll6 gran parte de la
teoria de matrices, a la cual Sylvester habia dado el nombre. Una de las grandes me-
morias acerca de la teoria de matrices es de Cayley (1858), que compendia resultados
de dos décadas de activas investigaciones.

Por supuesto, muchos otros matematicos continuaban desarrollando la teoria. Bro-
taban, desde luego, cantidad de cuestiones por la relacién alcanzada entre determi-

nantes y matrices.
Por lo visto anteriormente, interesa anotar los dos siguientes:

Henri Poincaré (1886). Sur les déterminants d’ordre infini. Bulletin de la Société mathéma-
tique de France, XIV, pp. 77-90.

Helge von Koch (1891). Sur une application des déterminants infinis a la théorie des
équations différentielles. Acta Mathematica, XV, pp. 53-63.
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Uno de los grandes cultivadores de las nuevas creaciones fue Frobenius. En un amplio
programa de investigacion inspirado por Kronecker y en el que también participaba
Weierstrass, la obra de Frobenius consistié en decantar los resultados anteriores.
Introdujo, por ejemplo, el concepto axiomatizado de formas lineales linealmente
dependientes o independientes; igualmente, introdujo la nocién de rango, que va a
convertirse en la idea clave para expresar, por ejemplo, la solubilidad de un sistema

lineal.

Ahi comienza el descenso para el lenguaje tedrico de los determinantes, que sigue

siendo omnipresente en las aplicaciones.

Conviene recordar otros vertederos de ideas para el algebra lineal. Un sistema de
ecuaciones diferenciales homogéneas admite como solucién una combinacién lineal

de formas lineales.
Un teorema de D’Alembert es el siguiente:

La solucién general de una ecuacion no homogénea es la suma de una solucion

particular y de la solucién general de la ecuacién homogénea correspondiente.

Euler y Lagrange destacaron de manera similar el papel de las ecuaciones diferen-
ciales lineales.

Grassmann cre6 un camino directo hacia la concepcion del algebra lineal en su

tratado de vanguardia Teoria de la extension.

El construyé un vasto edificio algebraico geométrico, que se apoyd sobre una concep-
cién intrinseca casi axiomatizada de espacio vectorial con n dimensiones (Bourbaki),

anticipando asi los grandes conceptos del algebra lineal.

La obra, de una gran complejidad, habia que estudiarla a fondo para que comenzara
a fructificar, lo que hizo primordialmente Peano, quien alli pudo forjar la axiomati-
zacion para los espacios vectoriales, como se los conoce en la actualidad. Los axiomas
para la aritmética de Peano provienen de Dedekind, en el espiritu de Grassmann.

Asi pues, refinando los procedimientos para resolver sistemas lineales, no sélo los
sistemas finitos, sino también los originados por cuestiones en el analisis funcional,
en infinitas ecuaciones con infinitas incégnitas; haciendo luego un alto en ecuaciones
diferenciales lineales homogéneas, y reflexionando finalmente en las lucubraciones
de Grassmann, asi se recorre el largo camino que culmina a mediados del siglo XX

en el algebra lineal.

Con todo, resulta indispensable pensar en el ambiente donde se han depurado todos
esos pensamientos, es decir, en la geometria euclidiana. Practicamente visible por
todas partes en los planes de estudio hasta los anos cincuenta del siglo XX, retrocede
y deja el lugar a la recién llegada algebra lineal.
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Bourbaki alude particularmente a la teoria de magnitudes expuesta por Euclides en

el libro V de Elementos y a la versién geométrica de los niimeros expuesta en el

libro VII.

La algebraizacién cartesiana de la geometria obligara poco a poco a olvidar el con-
tenido para dedicarse exclusivamente al estudio de la forma. Gran parte de los con-
ceptos del algebra son refinamientos de los de la geometria. Ahora, la mejor manera
de estudiar geometria es pasando por el algebra lineal.

2.2.3. Funcion

Si atisbos de procedimientos en algebra lineal aparecen incluso cuando la matemati-
ca cultivada proveia unicamente a las necesidades del comercio, es porque resolvia

problemas urgentes de manera bastante comprensible.

Conviene comparar el desenvolvimiento del algebra lineal, por ejemplo, con el del
calculo diferencial e integral. Este requerfa un algoritmo para calcular areas y voliime-
nes y no fue facil dar con él; sin embargo, se perfila antes del algebra lineal. Esta
comienza a manifestarse antes, pero practicamente solo llega al publico matemati-
co a mediados del siglo XX, a pesar de que no se queda atras respecto del calculo
diferencial e integral, en cuanto a las aplicaciones.

Es curioso que el algebra, incluso la més abstracta, conserve algo del caracter que le
atribuia Viete cuando distinguia la logistica numerosa, o aritmética, de la logistica
speciosa, o algebra. El algebra toda parece estar mas del lado de la aritmética que

de la geometria.
Es muy dificil caracterizar conceptos altamente subordinantes como el de dlgebra.

No obstante, desde el punto de vista genético, algebra ha sido el estudio de ope-
raciones algebraicas, término por precisar; para concebirlo con mas nitidez, ha de
tenerse en cuenta que tales operaciones son independientes de la naturaleza de los

elementos sobre los cuales se efectiian las operaciones.

Una operacion algebraica es una funciéon que hace corresponder a dos elementos
dados un tercer elemento bien determinado.

Hay fundamentalmente dos clases de operaciones algebraicas.

Una en que el conjunto de definicion de la funcion es el producto cartesiano de dos
conjuntos idénticos al conjunto donde la funcién toma valores. Bourbaki la llama
ley de composicion. Operacién interna puede también denominarse, aunque se siga
estando alejado de lo que quiere indicarse.
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Un segundo tipo de operacion es aquel en el que se considera un conjunto no vacio
cualquiera y un segundo conjunto cuyos elementos son llamados operadores. Enton-
ces la operacion hace corresponder a una pareja de elementos, uno de cada uno de
los conjuntos, un elemento bien determinado del primer conjunto. Se dice entonces
que se opera sobre este primer conjunto con elementos del segundo conjunto. A esta

operacién se la puede llamar externa, o accién de uno de los conjuntos sobre el otro.

Ahora, Bourbaki recuerda que segtn el capitulo IV de su teoria de conjuntos, dado
un conjunto no vacio y una o varias operaciones internas o externas, con algunos
axiomas, se obtiene una estructura. A estas estructuras Bourbaki las llama algebrai-

cas. Entonces, algebra es el estudio de las estructuras algebraicas.

Asi, segiin el mismo capitulo IV de Bourbaki, hay diversas especies de estructuras

determinadas por los axiomas.

En el capitulo primero de su tratado de algebra, Bourbaki desarrolla la teoria de las
estructuras algebraicas.

En el capitulo segundo se desarrolla la teoria relativa al dlgebra lineal.
En el capitulo tercero se desarrolla el algebra multilineal.

Esta es la presentacién de Bourbaki en la nueva ediciéon de 1970.

Van der Waerden, en la ediciéon de 1937, concebia tres términos:

e Formas lineales con coeficientes en un anillo.

e Modédulos de formas lineales.

e Homomorfismos o transformaciones lineales entre los médulos.

La teoria se desarrolla segun las hipotesis que se hagan acerca del anillo.

2.2.4. Problemas

Desde el punto de vista de la ensenanza para cualquier asignatura, surge la cuestion
de cual ha de ser el contenido de un curso en caso de introducirla en un plan de
estudios. No hay materia, por elemental que sea, para la que no haya que formular
preguntas paralizantes acerca de la intensidad, de la finalidad, del acervo tedrico,
del acervo practico, de la evaluacion finalmente. Dado el auge de la computacién,
este es, desde luego, un punto mas de examen.

El algebra lineal no escapa a tales urgencias. {Cémo se puede presentar el cuestio-
namiento?

Los temas obligados de un curso de algebra lineal en el primer nivel universitario
son los siguientes: Sistemas lineales. Matrices. Determinantes. Regla de Cramer.
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Vectores. Espacios vectoriales. Combinacion lineal. Dependencia e independencia
lineal. Base. Dimension. Rango. Cambio de base. Base ortonormal. Transformacion
lineal. Proyeccién. Isomorfismo. Valores propios. Vectores propios. Formas candnicas.
Formas cuadraticas. Secciones conicas. Ecuacion diferencial matricial. Teorema de
Cayley-Hamilton.

Indudablemente, la nocion de determinante tiene un papel clave en cuanto diversos
conceptos de algebra lineal suponen el de determinante; puede aseverarse que es
capital en las aplicaciones.

Ahora bien, en Van der Waerden, ediciéon de 1937, los determinantes son aludidos
en diversos contextos pero no son introducidos axiomaticamente, es decir, no son

tratados como seria de suponerse.

Desde luego que para una completa satisfaccion tedrica, la nocion de determinante
hay que ubicarla con el dlgebra multilineal. Es lo que hace Bourbaki al desarrollar
en el paragrafo 8 del capitulo III, “Algebra multilineal”, los siguientes temas: Deter-
minante de un endomorfismo. Caracterizacién de los automorfismos de un médulo
libre de dimensién finita. Determinante de una matriz cuadrada. Calculo de un de-
terminante. Menores de una matriz. Desarrollo de un determinante. Aplicaciéon a las
ecuaciones lineales. Caso de un campo conmutativo. El grupo unimodular. Médulo
asociado a un endomorfismo de A-mdédulo. Polinomio caracteristico de un endomor-

fismo.

Alli aparecen, entonces, los temas que hacian falta para el curso elemental de algebra
lineal.

Sin embargo, es inocultable el desfase que hace adaptar al dlgebra lineal lo que en
realidad queda explicado satisfactoriamente sélo en el dlgebra multilineal. Y, claro,

no hay manera de presentar este algebra de modo elemental.

Que no es unicamente cuestién de reparos lo atestigua el pasaje siguiente de [p.
14. Gian-Carlo Rota (1997). Indiscrete thoughts. Birkhduser zzii + 280 pp.] donde
figuran tres eminencias en la matematica del siglo XX: Emil Artin en teoria de
numeros algebraicos; Claude Chevalley en teoria de grupos; André Weil en geometria

algebraica.

“Incluso la ensenanza del dlgebra lineal en el primer nivel universitario lleva la im-
pronta muy visible de la mano de Emil Artin: habia que estar lejos de cualquier
mencién de bases y determinantes (entredicho extrano, si se considera cémo le gus-
taba calcular). La alianza de Emil Artin, Claude Chevalley y André Weil habia sido
formada para suprimir toda traza de determinantes y de resultantes en algebra. Dos
de ellos (André Weil no habia fallecido) probablemente estén ahora revolcdndose en
su tumba”.
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Algun historiador puede anotar que se trata simplemente de un episodio mas, como

el de la pugna en el siglo XIX de gedémetras analiticos y sintéticos.

Puede considerarse planteado en estos términos el problema de la orientacién para
los cursos de algebra lineal: aplicaciones como las requieren los técnicos o enfoque
tedrico a la altura de Artin, Chevalley o Weil.

La eleccion no es facil; tampoco lo es una mixtura. La decisién, finalmente, no
la tomard en general quien imparte el curso sino la institucion donde el curso se
desarrolla.
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2.3. Las densidades de rotacién y expansion de un campo

vectorial

Ernesto Acosta Gempeler®

Bernarda Aldana Gémez*

2.3.1. Introduccion

Este trabajo se escribié como material para el cursillo “Otro enfoque de la ensenanza
del curso de calculo vectorial”, para el Seminario de Matematica Educativa realizado
en la Escuela Colombiana de Ingenieria del 22 al 24 de octubre de 2009. Es el
resultado de muchas reflexiones acerca del curso impartido por los profesores en la

Escuela durante varios semestres.

Presentamos a continuacién las curvas, las superficies y los solidos como imagenes
de funciones vectoriales, siendo estas iltimas un instrumento fundamental para el
estudio de la geometria de estos objetos geométricos, que en ultimas serviran para
modelar objetos fisicos, por ejemplo. Definimos la integral de funciones definidas en
estos objetos geométricos presentando los elementos de longitud de arco, area de
superficie y volumen de sélido en términos de sus parametrizaciones. Introducimos
los conceptos de densidad de circulacién y densidad de flujo en una curva, mediante
las cuales definimos las densidades de expansiéon y rotacién de un campo. Estos
ultimos conceptos permiten una formulacién y demostracién mas amable de los

teoremas de la divergencia y la rotacién (Stokes).

2.3.2. Curvas y superficies

Consideraremos primero funciones vectoriales definidas en algiin intervalo I de ntime-
ros reales y que toman valores en el espacio de vectores bidimensionales o tridimen-

sionales. Mas precisamente, funciones de la forma:
Pl R () = (e(t),y(t), 2()

Por ser esta tltima una funcién que toma valores en R3, tiene tres componentes
escalares: z(t), y(t), z(t). Cada una de estas componentes escalares esta determinada

por una funcion definida en I y que toma valores en R. El intervalo I es el dominio de

3Matemaético de la Universidad Nacional, magister en mateméticas de la Universidad del Valle
y doctor en matematicas de la Universidad de Cornell. Profesor de la Escuela Colombiana de
Ingenieria Julio Garavito.

4Licenciada en mateméticas de la Universidad Pedagdgica Nacional y magister en matematicas
de la Universidad Nacional. Profesora de la Escuela Colombiana de Ingenierfa Julio Garavito.
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la funcién vectorial puede ser de cualquiera de las siguientes formas: [a, b], [a, +00),
(—00,b], (—o00,4+00) (0 sin que los extremos reales sean parte del dominio). Siendo
x,y,z : I — R funciones definidas en un intervalo real y que toman valores en
R, se puede extender lo aprendido en los cursos de calculo diferencial e integral a
funciones vectoriales. Por ejemplo, si los Imites lim; ., (), lim;_, y(t) y lim;_, z(¢)
existen, se tiene que

ymr(t) = <11'mx(t),%1’my( ), lim z(t)>

t—a

la funcién vectorial r=r (¢) ser diferenciable en I si cada una de sus componentes

escalares lo es. Ademas, la derivada de la funcién vectorial r=r (¢) en ¢ = a viene

dr dx dy dz

o= (G 20, 5w)

dx dy dz .
dt( a), 7 —(a) y %(a) existan.

dada por

siempre y cuando las derivadas

Por otro lado, si cada una de las componentes escalares, x(t), y(t), z(t), de la funcién

vectorial r=r (¢) se puede integrar sobre [a, b, entonces la integral de rentre a y b

/ab r(t)dt = </abat(t)dt, /aby(t)dt, /ab z(t)dt>

En fin, podemos hacer célculo diferencial y calculo integral de funciones vectoriales

viene dada por

recurriendo al calculo de sus componentes escalares.

Curvas

El vector (x(t),y(t), z(t)) se puede interpretar como el vector posiciéon de un punto
P de coordenadas (z(t), y(t), z(t)). Asi, cuando t recorre el intervalo I, el punto P

describe una curva en el espacio, cuyas ecuaciones paramétricas vienen dadas por

En otras palabras, el conjunto de puntos

{(x,y,z);x:x(t), y:y(t)v Z:Z(t),tGI},

que no es otra cosa que el recorrido de la funcién vectorial, es una curva en el
espacio®. Por definicién, una curva sera el recorrido de una funcién vectorial. Un

subconjunto C' de R™ es una curva si existe una funcién vectorial cuyo recorrido es

5En este contexto supondremos que las funciones vectoriales que parametrizan las curvas tienen

derivadas continuas.
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precisamente C'. Una parametrizacion de C' es una funcion vectorial cuyo recorrido

es C.

Por ejemplo, consideremos una recta en el espacio que pasa por el punto P(a, b, c) y
que es paralela al vector v =(vy,vs,v3). La condicién para que un punto Q(zx,y, 2)
esté en la recta es que los vectores P() y vsean paralelos o, en otras palabras, que
para algin nimero real ¢, se tenga P(Q) = tv. Esta tltima condicion se puede escribir
en términos de las componentes escalares de los vectores, dando como resultado

r—a=tv, y—b=tu(t), z-—c=tvust),
que es la parametrizacion de la recta
I'(t) = <CL + tUl, b+ tUQ, c+ tU3> s

r parametriza a la recta que pasa por P(a, b, ¢) y que tiene vector director v (v, ve, v3).
En otras palabras, esta recta es una curva. Considere la curva en el espacio, cuyas

ecuaciones paramétricas vienen dadas por
x = x(t), y=y(t), z = z(t), tel.
Es decir, la curva parametrizada por la funciéon vectorial

ril R r(t) = (e(t),y(t), 2(1)

r
Como res derivable en t y %(t) =r1'(t) #0, para todo t € I. Entonces, el vector

(0 = (G0, 50.50) = @ 0./0.70)

es un vector tangente a la curva en el punto P(x(t), y(t), z(t)). Una curva es regular
si tiene una parametrizacion r, para la cual ||r’|| # 0. Para curvas regulares podemos
/
t
T(t) = r/(_)’
e @)

que es el vector tangente unitario a la curva en el punto P(xz(t),y(t),2(t)). La geo-

definir el vector unitario

metria de las curvas se hace estudiando el comportamiento del vector tangente uni-

tario.

Superficies

Tenemos también funciones vectoriales de dos variables. Son funciones definidas en
alguna celda [a,b] X [¢,d] y que toman valores en el espacio de vectores bidimensio-
nales o tridimensionales. Mds precisamente, una funcién vectorial (tridimensional)
de dos variables es una funcién de la forma:

r :[a,b] x [c,d] — R?, r(t,s) = (x(t,s),y(t,s), z(t, s))
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Por ser una funcién que toma valores en R?, ésta tiene tres componentes escalares:
x(t,s), y(t,s), z(t,s). Cada una de estas componentes escalares estd determinada
por una funcién definida en [a, b] X [¢, d] y que toma valores en R. La celda [a, b] X [¢, d]
es el dominio de la funcién vectorial. Obsérvese que para cada valor fijo sg en [c, d],
r(-,50) : [a,b] — R? es una funcién vectorial de una variable y que para cada
valor fijo tg en [a,b], T (tg,*) : [c,d] — R?® es una funcién vectorial de una sola
variable. Si estas tultimas son derivables, escribiremos sus derivadas como r; y r,

respectivamente.

El recorrido de una funcion vectorial de dos variables es una superficie cuyas ecua-

ciones paramétricas vienen dadas por

x=xz(t,s), y=1y(t,s), z = z(t, s).

En otras palabras, el conjunto de puntos

{("L‘:ya 2);1: = :E(t,S), Yy = y(ta 3)7 &= Z(t,S), (t75) S [a> b] X [Ca d]}a

que no es otra cosa que el recorrido de la funcién vectorial, es una superficie en el
espacio®. Un subconjunto S de R" es una superficie si existe una funcién vectorial
de dos variables cuyo recorrido es precisamente S. Una parametrizacién de S es una

funcién vectorial cuyo recorrido es S.

Obsérvese que las curvas r(-,S,) y r(to, ) estdn contenidas en la superficie y, por
consiguiente, los vectores tangentes r; y r s a cada una de estas curvas, en ese orden,
son, por ende, tangentes a la superficie. Diremos que una superficie es regular si
r; X T4 es no nulo en cada uno de sus puntos. La variacién de los vectores tangentes
unitarios sobre la superficie da informacién sobre la geometria de las superficies.

El conjunto S de puntos (z,y, z) tales que azx + by + ¢z = 0 es una superficie. En
efecto, S es un plano y los vectores u = (0, —¢,b) y v = (—c, 0, a) son paralelos a S.
Por consiguiente, el punto de coordenadas (z,y, z) esta en el plano si, y solamente si,
el vector (z,y, z) es combinacién lineal de u 'y v: (z,y, 2) = t(0, —c, b) + s(—c, 0, a).

Esta tltima no es otra cosa que una parametrizacion del plano.
También tenemos superficies en R?. Por ejemplo, el disco
D ={(z,y): 2" +y* <4}

es una superficie. En efecto, r : [0,2] x [0,27] — R? definida por r(u,v) =

(ucosv,usenv) es una parametrizacién de D. Es claro que

D = {(ucosv,usenv) : (u,v) € [0,2] x [0,27]}.

6 Asi como lo hemos supuesto en el caso de curvas, supondremos aqui que r; y r , son continuas.
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2.3.3. Integrales multiples

En cursos de calculo anteriores se estudié el concepto de integral de una funcién f de
una sola variable, definida en un intervalo cerrado [a, b]. Los conceptos relacionados
son los de particién de un intervalo, suma de Riemann y limite de una suma de
Riemann, los que vamos a extender a funciones de varias variables. Dos resultados
importantes que se usan frecuentemente son que el limite de una suma de Riemann
de una funcion continua, cuando la norma de la particion tiende a cero, siempre existe
(es decir, toda funcién continua definida en un intervalo cerrado es integrable) y el
teorema fundamental del cdlculo que dice que el valor de la integral de una funcion
continua sobre un intervalo cerrado es la diferencia de los valores de una primitiva
en los extremos del intervalo (jddndole vuelta al problema de calcular sumas de

Riemann de la funcién!).

Sea f : [a,b] — R una funcién continua. Una particién del intervalo [a, b] se obtiene
escogiendo un nimero finito de puntos ro = a < 1 < 23 < ... < x, = b. Podemos
suponer que estos puntos son equidistantes, es decir, que x4 —z = (b—a)/n = Ax.
Una suma de Riemann estd definida por una particién (o sea, por la escogencia de
un numero natural n) y por la escogencia de un punto de muestra =} en cada uno

de los subintervalos [z, x11] de [a, b] definidos por la particién, asi:
R(fn, %) = fla))(xr — o) + f(23) (w2 — 1) + - + f(27) (0 — Zna)

= feDAz + f(z5)Ax + f(a5)Az- - + f(27) Az

= D o flap)Az

La integral de f sobre [a, b] es el limite de estas sumas de Riemann cuando n tiende
a infinito (que existe para funciones continuas e independientemente de los puntos

de muestra escogidos):

n—oo n—oo

/bf(x)cm = lim R(f,n,*) = lim if(x}’;)Ax
a k=1

Nuevamente en este caso, para extender el concepto de integral debemos tener en
cuenta funciones con dominios mas complejos que en el caso de una sola variable.
Lo que haremos es extender el concepto a funciones f cuyos dominios son 2-celdas
(rectangulos con lados paralelos a los ejes coordenados):

R = {(z,y):a<z<b, c¢<y<d}

= [a,b] X [c,d],
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La extension a funciones f cuyos dominios son 3-celdas (paralelepipedos rectangu-

lares con caras paralelas a los planos coordenados):

P = {(z,y,2):a<z<b c¢<y<d e<z<h}

= [a,b] X [c,d] X [e, h].
es natural y no involucra ideas muy diferentes de las consideradas en dos variables.

En el caso de dos variables, una particion de R se obtiene escogiendo particiones
de los intervalos [a,b] v [c,d]: g = a < 21 < 23 < ... < 2, = by y = ¢ <
n < Y2 < ... < Y, = d, respectivamente. Asi, la 2-celda R queda dividida en
m x n subceldas de la forma [z, zx11] X [y;, yj+1]. La escogencia puede hacerse de
tal modo que zy41 — 2 = (b—a)/n = Az y que yj11 —y; = (c —d)/m = Ay, en
cuyo caso todas las subceldas tendran la misma drea AA = (2411 — %) (Yj41 —Y;) =
((b—a)/n)((c—d)/m) = ArAy. Escogemos un punto de muestra (z};,y;) en cada
subcelda [z, Tr+1] X [Y;, Yj+1] v definimos la suma de Riemann de f correspondiente

a esta particion y esta escogencia de punto de muestra asi:

R(f,n,,m,x) =
= [, Ui AA+ f(25, y51) AA + -+ [, yn)AA
b I i) AA+ (@i ) AA + -+ [(eh vi)AA
b F (@ Yi)AA+ F(@ v AA 4 F( i) AA

= ZL Z;nﬂ f(ﬂUZj, ij)AA
La integral de f sobre R es el limite de estas sumas de Riemann cuando n y m

tienden a infinito (que existe para funciones continuas e independientemente de los
puntos de muestra escogidos):

[ flz,y)dA = limy s R(f,1,m, %)

= limy;meo Zzzl E;n:1 f(x;;j? ij)AA

Evidentemente, el calculo de una integral doble o triple es una tarea muy dispendio-
sa a través de las sumas de Riemann. Sin embargo, tales sumas son un instrumento
de aproximacién muy 1til de estas integrales. Veremos ahora un método para calcu-
larlas sin necesidad de recurrir a las sumas de Riemann. Este consiste en escribir la
integral (multiple) como una integral iterada, es decir, una secuencia de integrales

unidimensionales parciales que se calcularan recurriendo al teorema fundamental del
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calculo. Definamos primero lo que es una integral iterada. Lo haremos en el caso de

funciones de dos variables; el caso de tres variables es similar.

Sea f: R — R, R = [a,b] X [¢,d], una funcién continua. Para cada = € |a, b
definimos A(z) = fcd f(z,y)dy. Resulta que la funcién A : [a,b] — R es continua,

y por consiguiente se puede calcular su integral:

/ Al = / b ( / e, y)dy) iz,

que se conoce como integral iterada. El teorema de Fubini, que es una generalizacion
del principio de Cavalieri para calcular volimenes de sélidos, establece que la integral
doble de f sobre R es igual a esta integral iterada. Explicitamente, si f es continua

en R se tiene que

nf@myad = f7(J f,y)dy) do
= () flwyyde) dy

Para dar cuenta de las integrales de funciones definidas en regiones mas genera-
les que las 2-celdas y las 3-celdas, como por ejemplo curvas, superficies y sélidos,

recurriremos a la parametrizacion que portan estos objetos geométricos.

Sea f : D — R una funcién continua, definida en una superficie regular D del
plano y r una parametrizacién de D

r:fa,b] x [c,d — R* r(u,0) = (x(u,v),y(u,v)),

(e inyectiva)”.

Una particiéon de la superficie D en subregiones D;; se obtiene a partir de una
particion de [a,b] X [c,d] en subceldas R;; = [u;—1,u;] X [vj_1, vj]:

Dij = {(x(u,v),y(u,v)) : (u7v) S [ui—lvui] X ['Uj—hvj]}'

Escogemos en cada subregion D;; el punto Pij(x(w;—1,v;-1), y(ui—1,v;-1)). Una suma
de Riemann de f sobre D con respecto a la parametrizacion r y a una particién de

D en m x n subregiones, estd definida por

R(f7m7n7 I') = ZZI Z;-lzl f(Pz]) HAU r, X Av I'UH ,

= Yot 2 f(Bij) [[ru X 1 || AuA,

"Hemos puesto inyectiva entre paréntesis porque en realidad la inyectividad se exige a la res-

triccién de r en el interior (a,b) X (¢, d) de la 2-celda.
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donde r, y r, son las derivadas de r con respecto a u y a v, respectivamente, en Pj;.
La integral de f sobre D con respecto a r ® es el limite de R(f, m,n,r) cuando m y

n tienden a infinito:

[[p fdA = limp, 00> iy > iy f(Pig) llrw X 1y || AulAv

ff[a,b]x[c,d} fz(u,v),y(u,v)) [|ry X r,| dudv

La aparicién de ||[Aur, X Avr,|| en la suma de Riemann se debe a que ésta es el
area del paralelogramo formado por Aur, y Avr,, que es una aproximacién del
area de la subregion D;;.

Obsérvese que si f : [a,b] X [c,d] — R es continua y r : [a,b] x [c,d] — R?
estd definida por r(u,v) = (u,v), entonces ||r, x r,|| = 1, y por consiguiente

// fdA = // f(u,v)dudv.
[a,b] X [e,d] [a,b] x[c,d]

Es decir, las integrales sobre 2-celdas es un caso particular de integrales sobre su-

perficies (jpor supuesto!, las 2-celdas son superficies).

Como ejemplo calculemos la integral de f(z,y) = z? + y* sobre el disco D =
{(z,y) : 22 + y* < 4} con respecto a la parametrizacién de D que dimos anterior-

mente. Tenemos que
||lr., X 1| = ||[{cosv,senv) X (—usenv,ucosv)| = u,

y por tanto,

2 2w
// fdA = // wududv = / (/ u3dv> du = 87
D [0,2]x[0,27] 0 0

Sea f : C' — R una funcién continua, definida en una curva regular D del plano y

r una parametrizacion de C'
r:lab] — R’ r(u) = (w(u), y(u), 2(u))
(e inyectiva)?.

Una particién de la curva C en subarcos C; se obtiene a partir de una particién de

[a, b] en subintervalos R; = [u;—1, u;]:

Ci = {(x(u),y(u), 2(u)) : v € [uiy, wil} .

8El teorema de cambio de variable garantiza que el valor de la integral es independiente de la

parametrizacion.
9Hemos puesto inyectiva entre paréntesis porque en realidad la inyectividad se exige a la res-
triccién de r en el interior (a,b) de la 1-celda.
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Escogemos en cada subarco C; el punto P;(z(u;—1),y(ui—1), 2(u;—1)). Una suma de
Riemann de f sobre C' con respecto a la parametrizacion r y a una particiéon de C

en m subarcos, esta definida por

R(fym,x) = 355 [(B) [|Aur (B,

= 2 f(R) Y (P)]| Au.

La integral de f sobre C' con respecto a r 1% es el limite de R(f,m,r) cuando m
tiende a infinito:

Jo FdL = 1imp, o0 352, f(F) [IF'(F)]| Au

= Juawy (@) y(w), z(w)) [ (u)]| du

La aparicién de ||Aur’|| en la suma de Riemann se debe a que ésta es la longitud

del vector Aur’, que es una aproximacién de la longitud del subarco C;.

Como ejemplo calculemos la integral de f(z,y) = 2% + y* sobre la curva C =
{(z,y) : * + y*> = 4} con respecto a la parametrizacion de C' que dimos anterior-
mente. Tenemos que

]l = [[{(~2senu, 2 cos | = 2,

2
/de:/ 8du:/ 8du = 167
c [0,27] 0

En resumen, para definir el concepto de integral multiple de funciones definidas

y por tanto,

sobre curvas, superficies y solidos, recurrimos a sus parametrizaciones mediante fun-
ciones vectoriales r de una, dos y tres variables, respectivamente. Para diferenciar

la dimensién de la integral introducimos los siguientes elementos de integracion:

1. Elemento de longitud de arco:

dL = [['(2)]] dt

2. Elemento de rea de superficie:

dA = ||r, X r,|| dudv

3. Elemento de volumen de sélido:

dV = |(ry X 1) - 1| dudvdw

10F] teorema de cambio de variable garantiza que el valor de la integral es independiente de la

parametrizacion.
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Con esta terminologia podemos escribir:

L[ fdL = [ f(x(t) |v'(6)] dt.
2. ffsuperﬁme fdA f f f ”ru X I'UHdudU

3. S giao fAV = ff f f(r(u,v,w))|(ry X 1) - Ty|dudvdw.

2.3.4. Rotacion y expansion de campos vectoriales

Los campos vectoriales son un tipo de funcién que se usa para modelar fenémenos
de asignacion vectorial, como por ejemplo el campo de velocidades de un fluido, el
campo eléctrico, el campo magnético y el campo gravitacional. Desde el punto de
vista matematico, un campo vectorial es una funcién definida en algin conjunto y
que toma valores en un espacio vectorial. Nos ocuparemos aqui del estudio de campos
vectoriales bidimensionales y tridimensionales. Un campo vectorial bidimensional es

una funcién F : D — R? definida en un subconjunto D de R?:

F(z,y) = (P(z,y),Q(z,y)); (x,y) € D.

Un campo vectorial tridimensional es una funcién F : D — R?® definida en un
subconjunto D de R3:

F(z,y,2) = (P(z,y,2),Q(x,y,2), R(z,y,2)); (v,y,2) €D.

La mejor forma de representar un campo vectorial es dibujando a partir de unos
cuantos puntos (x,y) € D los vectores F(z,y) correspondientes.

Circulacion y flujo

Los dos conceptos mas importantes relacionados con campos vectoriales son el flujo
y la circulacién, que se hacen evidentes al estudiar la interaccion de los campos con
curvas y superficies. Analizaremos primero estos dos conceptos en campos vectoria-
les bidimensionales, para los cuales nos interesa estudiar su interaccién con curvas

contenidas en sus dominios.

Consideremos un campo vectorial bidimensional F : D — R? definida en un sub-
conjunto D de R? y una curva C' en D parametrizada por una funcién vectorial
r : [a,b] — R? Definimos la densidad de circulacién del campo F en el punto
(z(t),y(t)) de la curva por
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donde T(t) es el vector tangente unitario a la curva en el punto (x(t),y(t)). En otras
palabras, la densidad de circulacién de F en el punto (z(t), y(t)), d.(x(t),y(t)), es la
componente tangencial del campo en ese punto.

Definimos la densidad de flujo del campo F en el punto (z(t),y(t)) de la curva por

donde N(t) es el vector normal unitario a la curva en el punto (z(t),y(t)), que se
obtiene al girar T(t) 90 grados hacia la derecha (o hacia la izquierda, dependiendo
de la orientacién que quiera darse a la curva). En otras palabras, la densidad de flujo
de F en el punto (z(t),y(t)), 0(x(t),y(t)) es la componente normal del campo en
ese punto. Obsérvese que las densidades de circulacién 4. y flujo 65 de un campo son
funciones escalares con dominio C, la curva parametrizada por la funcién vectorial

r. Por ser N el vector que se obtiene al rotar T 90 grados hacia la derecha, se tiene

T:< 7'(1) y(1) >
VR +y (02 a0 +y/ (1

:<_ y (0 #(1) >
VIR IR + 0

Asi como al integrar la densidad de masa se obtiene la masa, en este caso al integrar

que como

entonces

la densidad de circulacién del campo sobre la curva se obtiene la circulacién del

campo a lo largo de la curva:

Circulacién de F a lo largo de la curva =

— [.6.dL

= JJF@@®) - T@) (0] dt

r'(t)
[/ ()]

= [PF(x(t)-r(t)dt

= [IF(x(t))-

[ @)1] dt

— [P P(e()a () + Q(r(t))y (t)dt
= [, Pdz+ Qdy

= fCF'dL
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Asi mismo, al integrar la densidad de flujo del campo sobre la curva se obtiene el

flujo del campo a través de la curva:

Flujo de F a través de la curva =

— [.6dL

= [PF(x(t)) - N(t) |['(1)]| dt

a

_ b r . o y,(t) l’/(t) I,/ d
Je £ < Vfav+ywv’¢fuﬁ+yuﬂ>”(””t

= [P(PE(), Qx(t)) - (~y/(t), ' (t)) dt
= [PQx(t)a'(t) — P(x(t))y/(t)dt

= fC Qdx — Pdy

— [.F-dL,

donde F = (@, —P) es el campo dual del campo F. Lo que se muestra en la cadena de
igualdades es que el flujo de un campo a través de una curva es igual a la circulacién

del campo dual a lo largo de la misma curva.

Densidad de rotacién y densidad de expansion

Los conceptos de densidad de rotacion y de densidad de expansion son claves para
entender los conceptos de rotacional y divergencia de un campo vectorial y los teo-
remas fundamentales: el teorema de Stokes y el teorema de la divergencia. La idea
es calcular la circulacién y el flujo por unidad de area en cada uno de los puntos
del dominio del campo vectorial. Haremos esto en el punto (0,0) que supondremos
en el dominio de un campo vectorial bidimensionales F = (P, Q). Supondremos
ademas que las componentes escalares del campo, P y @), tienen derivadas parciales

continuas en (0,0).

Aproximemos la circulacién del campo F a lo largo del borde del cuadrado de vértices
(Az, Ay), (—Az,Ay), (—Az,—Ay) y (Az,—Ay), orientado con el movimiento de
las manecillas del reloj, en la siguiente forma:
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Circulacién de F a lo largo de C' =

Q

Suma de circulaciones de F a lo largo de cada lado de C
2AyF(Ax,0) - j+ 2AzF(0, Ay) - (—i)

+2AyF(—Az,0) - (—j) + 2A2F (0, —Ay) - i

208y(Q(Az,0)) — Q(=Ax,0)) — 2Ax(P(0, Ay) — P(0, -Ay))
AAzAYQ,(,0)) — 4AzAyP,(0, B)

4A$AZJ(Q$<O" O)) - Py(07 ﬁ))7

donde o € (—Az,Azx) y donde 3 € (—Ay, Ay). En el tltimo paso se hizo uso del

teorema del valor medio para derivadas. Si utilizamos la continuidad de las derivadas

parciales de P y (), obtenemos:

Densidad de rotacién de F en (0,0)
:= Circulacién por unidad de drea de F en (0,0)

Circulacién de F a lo largo de C'

= lim(Am,Ay)—*(OvO) area de C'

11 4AzAy(Qa(ev, 0)) — F(0, 5))
= lm(Ax,Ay)A’(Ozo) 4A$Ay

= (.(0,0) — P,(0,0)

Aproximemos el flujo del campo Fa través del borde del cuadrado de vértices
(Az, Ay), (—Azx, Ay), (—Az,—Ay) v (Az,—Ay) en la siguiente forma:

Flujo de F a través de C' =

Q

Suma de flujos de F a través de cada cara

2AyF(Az,0) -i+ 2AzF(0,Ay) - j

+2AyF(—Az,0) - (—i) + 2AzF (0, —Ay) - (—j)
2Ay(P(Az,0)) — P(—Az,0)) + 2Az(Q(0, Ay) — Q(0, —Ay))
41AzAyP,(a,0)) + 4AzAyQ,(0, B)

40z AY(Py(a, 0)) + Q,(0, ),
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donde a € (—Az,Az) y donde § € (—Ay, Ay). En el ultimo paso se hizo uso del
teorema del valor medio para derivadas. Si utilizamos la continuidad de las derivadas

parciales de P y (), obtenemos:

Densidad de expansién de F en (0, 0)
:= Flujo por unidad de area de F en (0,0)

Flujo de F a través de C'
area de C'

= limaz,ay)—(0,0)

’ AT AP (0.0) + Q,(0.5)
= lm(Ax,Ay)H(O’O) 4A:CAy

= P,(0,0) + Q,(0,0)

Las densidades de rotaciéon y de expansiéon se pueden calcular en todos los puntos
del dominio del campo F, de la misma manera en que se calculé en el punto (0,0).

En resumen, tenemos:
Densidad de rotacién de F en (z,y) = Q.(z,y) — Py(x,y)

Densidad de expansién de F en (z,y) = P.(z,y) + Q,(z,v).

Circulacion de campos gradiente

Un ejemplo de campo vectorial es el que proviene del gradiente de una funcién (de
dos o de tres variables). El argumento que presentamos a continuacién, vélido para
funciones de dos o de tres variables, es para mostrar que la circulacién de un campo
gradiente no depende de la curva que se considere sino del punto de partida y del
punto de llegada. Considere una funcién f de varias variables con dominio D y C'
una curva en D parametrizada por una funcién vectorial r : [a,b] — D continua.

Calculemos la circulacion del campo vectorial V f a lo largo de C:

Circulacion de V f a lo largo de C' =
= [/VIE®) -

=/ d(for) (t)dt

@ dt

= f(x(b) = f(r(a))

Reciprocamente, si la circulacion de un campo F a lo largo de cualquier curva dentro
del dominio s6lo depende de los extremos de la curva, entonces el campo vectorial
es un campo gradiente. En efecto, debido a la suposicién hecha, esta bien definida
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la funcién f(z,y,z) = [, 0.dL, donde la integral se calcula sobre cualquier
[(a;bse),(2,y,2)]
curva que parta del punto (a, b, ¢) y termine en el punto (z,y, z). Se puede demostrar

que F(z,y,2) = Vf(x,y, z) (ejercicio).

2.3.5. Divergencia y rotacional

La idea ahora es extender los conceptos de densidad de rotacién y de densidad de
expansion a campos vectoriales tridimensionales. Para esto, tenemos que extender
el concepto de flujo de un campo a través de una curva al de flujo de un campo
a través de una superficie. Supongamos que S es una superficie contenida en el
dominio D de un campo vectorial F, y que ésta es orientable, es decir, que podemos
parametrizarla de manera inyectiva mediante una funciéon vectorial r : R — D,y
tal que ||r, x r,|| no se anule. Sea N(u,v) = (r, X r,)/||ry, X r,||. La densidad de
flujo del campo en cada punto de la superficie se define como la componente del
campo en la direccién del vector normal: d¢(z,y, 2) = F(z,yz) - N(u,v). El flujo de

F a través de la superficie es la integral de d; sobre la superficie:

fS(Sde = ffSF-Ndr

r, XTI,

— ffR F(x(u,v),y(u,v), z(u,v))

C T XM or || dudo
[Ty X 1|

- ffn F(z(u,v),y(u,v), 2(u,v)) - (ry X r,)dudv

Con este concepto de flujo de un campo a través de una superficie podemos generali-
zar el concepto de densidad de expansién de un campo tridimensional en los puntos
de su dominio. En efecto, consideremos una 3-celda centrada en (0,0, 0); calculamos
el flujo de F = (P,Q, R) a través de la 3-celda, dividimos por el volumen de la
3-celda y hacemos tender sus lados a cero. Obtenemos asi la densidad de expansion
del campo F en el punto (0,0,0). Al hacer explicitamente los célculos, tal como
en campos bidimensionales, se obtiene que la densidad de expansiéon en un punto
(2,9, 2) es Py(z,y,2) + Qy(x,y,2) + R.(z,y, 2). Es frecuente en la literatura sobre
el tema llamar divergencia a la densidad de expansiéon y escribirlo asi:
) oP 0Q OR
divF = s + o + Ers
Como la circulacién de un campo tiene sentido tinicamente a lo largo de una cur-
va, definiremos la densidad de rotacion de un campo tridimensional en un punto
de su dominio referida a un plano que pasa por él. Como en los casos anterio-
res, calcularemos esta densidad en el punto (0,0,0) en el plano parametrizado por
r(z,y) = (x,y,azx + by). Calculemos la circulacién de F = (P,Q, R) a lo largo del
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paralelogramo C' de vértices
(Azx, Ay, aAzx + bAy), (—Ax, Ay, —alAzx + bAy),
(—Az, —Ay, —aAz —bAy) y (Azx,—Ay,aAx — bAy)
orientado en contra del movimiento de las manecillas del reloj:

Circulacion de F a lo largo de C =

= Suma de circulaciones de F a lo largo de cada lado de C

~~ 2Ay\/l—|—7b2F(Ax,0,an)-\/1i_762(0,1,b>
+2Azv1 + a2F (0, Ay, bAy) - \/11;(12 (1,0, —a)
+2AyVT T BPF(—Ax, 0, —a — Az) - \/Lib? (0,1, —b)
+2A2v/1 4 a2F(0, —Ay, —bA) - \/117@ (1,0, a)

= 2Ay(Q(Ax,0,aAz)) — Q(—Az,0,—alAx) + bR(Az,0,aAx)) — bR(—Az,0, —aAx))
—2Az(P(0, Ay, bAy) — P(0, —Ay, —bAy) + aR(0, Ay, bAy) — aR(0, —Ay, bAy))
= 4AzAy(Qz(ag2,0,aAx) + aQ,(—Ax,0, B2) + bR, (a3, 0,aAzx) + abR,(—Ax,0, 33))

—4A£L’Ay(Py(0, g, bAy) + bPZ(Oa —A% 61) + aRy(Ov Qy, bAy) + asz(Ov _Ay7 ﬁ4))7

donde aw, 2, as, B3 € (—Ax, Azx) y donde aq, (1, au, B4 € (—Ay, Ay) (ver circulacién). En
el ultimo paso se utilizé el teorema del valor medio para derivadas. Dividiendo por el area
del paralelogramo, 4AxzAy+v/1 + a? + b2, obtenemos:

Circulacién de F a lo largo de C

4rea de C

Qz(a2,0,aAx) 4+ aQ,(—Ax,0, B2) + bR, (3,0,aAx) + abR,(—Ax, 0, 53)
Vi

Py(0, a1, bAy) + bP,(0,—Ay, 51) + aRy(0, aa, bAy) + abP.(0, —Ay, (1)
V1+a?+ b

y si usamos la continuidad de las derivadas parciales de P, @ y R, obtenemos:

Densidad de rotacién de F en (0,0, 0) referida al plano z = az + by =
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Circulacion de F a lo largo de C

= h'm(Ax,Ay)H(O,O) area de C'

= lm(az,ay)—(0,0)

(Qx(ag, 07 CLA:E) + aQZ(_A‘/Ev 07 52) =+ bRx(Oég, 05 (ZAIL‘) + asz(_A:Ev Oa B3)
Vit

B Py(0,a1,bAy) + bP.(0, —Ay, 51) + aRy(0, ag, bAy) + abP, (0, — Ay, ﬁ4)>
N

= W(Q(Qz - Ry) + b(Ra: - Pz) + (Qz - Py))

1
= g b D) (B = Qe (B~ P).Qa = By,

derivadas parciales evaluadas en (0,0, 0).

Obsérvese que el vector (—a, —b,1) es un vector perpendicular al plano z =

1
V1+a? 4 b
ax + by y de norma 1. El otro factor es un vector que recibe el nombre de rotacional del
campo F y que en los libros de texto se suele escribir rotF. Dos conclusiones importantes

de lo obtenido son:

1. La densidad de rotacién en un punto (z,y, z) de un campo vectorial F referida a un

plano con vector normal unitario N es
rotF(z,y,z) - N,

donde
rotF = (R, —Q.,—(R: — P,),Qz — P)

i j k
- |8, 9, 0.
P Q R

2. La densidad de rotacién de F referida a planos paralelos a los planos XY, XZ y Y Z
son rotF(z,y, 2) -k = Qz — Py, rotF(x,y,2)-j = P, — Ry y rotF(z,y,2)-i = Ry—Q,
respectivamente.

En la terminologia de las densidades, tenemos:
1. Densidad de rotacién de F en un punto (z,y, 2) es
5rot =rotF - N

donde N es el vector normal al plano sobre el que queremos calcularla.
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2. Densidad de expansién de F en un punto (z,y, z) es

dexp = divF.

Podemos ahora calcular la densidad de rotacién de un campo F en una superficie, cal-
culandola en cada punto de la superficie referida al plano tangente, es decir, calculando
la componente normal a la superficie del rotacional de F. En el caso de que la superficie

esté parametrizada por una funcién vectorial diferenciable r : R — R3, tenemos a la
ry X Iy

mano un vector normal unitario en cada punto: N = ya que los vectores r

b
[[ru X 1|
y r, son vectores linealmente independientes, tangentes a la supeficie. Podemos calcular

asi la densidad de rotacion en cada uno de los puntos de una superficie mediante la formula

X
rotF(r(u,v))- H; en otras palabras, la densidad de rotacién en una superficie viene
ru r'U
dada por:
r, Xr
5. — rotF C Tu X Ty
rot = rotF(r(u,v)) Tw X Lol

Usando esta notacion, podemos escribir la rotacién total de un campo F sobre una super-
ficie S, parametrizada mediante una funcién vectorial diferenciable r : R — R3:

JJs0rotdA = [[grotF - NdA

Iy X Iy

= ffR rotF(r(u,v))

s ||ry X ry|| dudv
[Ty X 1|

= [[rrotF(r(u,v)) - ry X rydudv

= [[qrotF - dA

La expansién total de un campo F en un sélido D, parametrizado mediante una funcién

vectorial diferenciable r : P — R?, se escribe asf:

[[[p0expdV = [[[,divFdV

= fffp diVF(I‘(u, v, w)) ‘(ru X rv) : rw‘ dudvdw

y la circulacién de un campo F a lo largo de una curva C, parametrizada mediante una
funcién vectorial diferenciable r : Z — R3, se escribe asf:

JubdL = [,F-TdL
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Estamos ahora en capacidad de enunciar los teoremas fundamentales: el de la divergencia
y el de Stokes.

Teorema de la divergencia. Suponga que F= (P, @, R) es un campo vectorial definido
en un subconjunto cerrado y acotado D de R?® que se puede parametrizar mediante una
funcién vectorial diferenciable r : P — R3. Si las componentes escalares de F tienen
derivadas parciales continuas, entonces la expansién total del campo en D es igual al flujo
de F a través de la frontera 9D de D. Més precisamente, se tiene que:

J[[ awrav =[] -aa

Teorema del rotacional(Stokes). Suponga que F= (P,Q, R) es un campo vectorial
definido en un subconjunto cerrado y acotado D de R3, y que S es una superficie con borde
que se puede parametrizar mediante una funcién vectorial diferenciable r : P — R3. Si
las componentes escalares de F tienen derivadas parciales continuas, entonces la rotacion

total del campo sobre S es igual a la circulacién de F a lo largo del borde 05 de S. Més

//rotF‘dA: F - dL
S oD

2.3.6. Demostracion de los teoremas

precisamente, se tiene que:

Dedicaremos esta ultima seccién a la demostracion de los teoremas fundamentales.

Teorema del rotacional (teorema de Stokes)

Supongamos que F= (P, @), R) es un campo vectorial definido en un subconjunto cerrado
y acotado D de R?, y que S es una superficie con borde contenida en D y que se puede

parametrizar mediante una funcién vectorial diferenciable r : R — R3.

Consideremos una particién de S en subregiones S;; obtenida a partir de una particién de
R = [a,b] x [c,d] en subceldas Ri; = [ui—1, u;] X [vj—1,v;]:

Sij = {(@(u, v), y(u, v), 2(u, v)) : (u,v) € [ui—1, us] X [vj-1,v5]}.
y escogemos en cada subregién S;; un punto P;;. La suma de Riemann

R(6rot,m,m,r) = >, Z _ rotF(P;j) - (ry X ry) Aulv

_ m n -

= D Zj:l Orot (Pij) ||lTe, X 1y]| AulAv,
donde r,, y r,, son las derivadas parciales de r con respecto a u y a v en F;;, respectivamente,
es una aproximacién de la rotacién total de F sobre S, que no es otra cosa que la integral:

[[s 0ot dA = ff[a,b}x[c,d] Srot (2 (u, v), y(u,v), 2(u, v)) ||ty X 1y dudv

= ff[a’b}x[qd} rotF (z(u,v), y(u,v), z(u,v)) - (ry X ry)dudv
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Cij

T Irw x r, || Au
por unidad de area. Entonces,

Tenemos que Opot(Fyj) Ay que es la circulaciéon de F a lo largo de 95;;
v

R(brot, m,m,r) = Y, Z?Zl Orot (Pij) [T, X 0| Aulv

21 Zj:l |ty X ry|| Aulv

Ity X ry|| Aulv

= > Z?:l Cij-

La circulacién de F a lo largo de 8S;; es igual a la suma de las circulaciones C}., C?

g iy
Cf’j y ij de F a lo largo de cada una de las curvas correspondientes a los lados de
Rij = [wi—1,ui] X [vj_1,v;]. Pero como C}j = —C’?Hl)j y ij = —C?(jﬂ), se tiene que

R(5r0t7 m,n, I‘) ~ Z?; Z?:l CU
= Y Y (Ch + CL+ Ch + CF)
= Y(CL +Ch)+ Z?:l(crle + ng)

= Y CL+ Y Clo+ > i1 C’rlzj +20 ng

donde 7" Cf, S Cly, 30 Coi vy 20y C’S‘j son las sumas de Riemann de las circu-
laciones de F a lo largo de cada una de las curvas correspondientes a los lados de la celda
R = [a,b] X [¢,d] y que conforman el borde 05 de la superficie S. Por consiguiente:

[[grotF - dA = limy, ,—o R(6rer, m, 7, 1)

= im0 (S0 €2, + S0, Ch+ X0, O + X0, CF)
= JpsF - dL

2.3.7. Teorema de la divergencia

Sea F un campo vectorial tridimensional definido en una regién D del espacio pa-
rametrizada por una funcién vectorial

r:P — R r(u,v,w) = (z(uvw),y(uv,w),zuuvw))

donde P = [a,b] X [c,d] X [e,h] y r con derivadas parciales continuas en (a,b) X
(c,d) x (e, h).

Consideremos una particién de la regién D en subregiones D;j; definida por una
particion de P en subceldas P, = [u;—1, w;] X [vj_1,v;] X [wg_1,wy]. Es decir,
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D = {(z(u,v,w), y(u, v, w), z(u,v,w)) : (u,v,w) € [Ui—1,u;] X [Vj_1,v;] X [W_1, W]}

Escogemos en cada subregién D;;, un punto Pjj;. La suma de Riemann

R(divF,m,n,lix) = " 370, S diVF(P) [(ry X 1) - Ty AulvAw,

es una aproximacién de la integral de divF sobre D con respecto a r, ya que:

[ff, divFdV
= M nimco Dorey Dony Doy GVE(Pyp) [(ry X 1) - 1| AuAvAw

= fff[a,b]x[cyd}x[&h] divF (z(u, v, w), y(u, v, w), z(u, v, w)) |(r, X r,) - ry| dudvdw

D;i
|(ry, X ry) - ry| AuAvAw
a través de 0D;;;, por unidad de volumen. Entonces,

Tenemos que Oexp(Pijr)= divF(Pi) ~ , que es flujo de F

R (Oexps mym, 1) =

= Zznil Z?:l 22:1 dexp(Lijr) [(Tu X Ty) - Ty | AuAvAw

e . i,
Zi:l Zj:l Zkzl |(ry, X 1) - ry| AuAvAw

Q

|(ry X 1) - Ty AuAvAw

l
= Z:il Z?:l Zk:l D,

El flujo F a través de 0D;j; es igual a la suma de los flujos Qi s = 1,2,...6,
de F a través de cada una de las superficies correspondientes a las caras de P;j;, =
[ui,l,ui] X [Ujfl,?]j] X [wk,l,wk]. Pero como q)zl]k = _(D((Si—l—l)jk’ (I)?jk = _q)?(j+1)k y

3. gt :
e = —Pij11) S€ tiene que
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R (Oexps mym, 1, 1) =
= Z:il Z?:l 22:1 Dijk
- Zyil Z?:1 22:1 (Zgzl q)fjk)
= > Z?:l(q)?jl + Ol) + D00 kaﬂ(@?nk + @) + Z?:l Ziﬂ@i@k + @)
= Z?il Z?:l (I)?jl + Z?ll Z?:l (I)?jo + 2111 22:1 Cngnk

m l 5 n l 1 n l 6
+ D i1 Dok Pior + Zj:l > et Con T Zj:l > o1 P
donde cada uno de los seis términos en la ultima suma son las sumas de Riemann

de los flujos de F a través de cada una de las superficies correspondientes a las caras
de la celda P y que conforman la superficie 0D de la regién D. Por consiguiente:

[[[sdivEdV = limy, ;10 R(Gexp; m, 1,1, 1)

— h/mm,n,lﬂo

m n m n m l
(X S @3+ S0 oy @b+ 0 Shey P
m l n l n l
Y Sl e g St P+ X Skt @)

= ffaDF -dA

Para terminar, consideremos el teorema de Stokes en el caso particular en el que la
superficie S estd contenida en el plano XY. Obsérvese que en este caso el vector
normal unitario, en cada uno de los puntos de la superficie, no es otro que el vector
k. Por consiguiente, la densidad de rotacién del campo F = (P, @, R) es rotF - k =
Q) — P,. Por tanto, en este caso:

//SrotF-dez//S(Qx—Py)dA

/F-dL:/ Pdz + Qdy.
oS oS

Es decir, el teorema toma la siguiente forma, que se conoce como el teorema de
Green:
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Teorema de Green. Suponga que F= (P, Q) es un campo vectorial definido en
un subconjunto cerrado y acotado S de R? que se puede parametrizar mediante
una funcién vectorial diferenciable r : R — R2. Si las componentes escalares de F
tienen derivadas parciales continuas, entonces la rotacién total del campo sobre S
es igual a la circulacion de F a lo largo del borde 9S de S. Mas precisamente, se

//S(Qx—Py)dA:/aSdeJery.

tiene que:
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2.4. La computacion a través de los juegos discretos

Raail Chaparro Aguilar*!

Juan Albornoz Bueno?

2.4.1. Los juegos discretos

La palabra discreto proviene del latin discretus, que significa “separado”. En ma-
tematicas y fisica, se habla de lo discreto como opuesto de lo continuo. Cuando se
tiene un sistema o conjunto cuyos elementos se pueden contar, decimos que éste
es discreto. Por ejemplo, podemos contar el nimero de personas que hay en una
familia, o en un salén. Para ello se utilizan los ntimeros naturales: 0, 1, 2, 3, ...
Pero si tuviéramos la necesidad de conocer de manera exacta su estatura o su peso,
deberiamos utilizar algiin instrumento de medicion y la interpretacion que hagamos
del resultado siempre seria una aproximacion. Entrariamos entonces en el mundo de
las medidas o continuo.

Los sistemas discretos son particularmente importantes para la informéatica, pues
el computador es una maquina de naturaleza discreta. Esto lo veremos claro més
adelante cuando estudiemos la maquina de Turing. Por el momento piense que la
memoria del computador, por grande que sea, tiene un nimero finito de posibles
configuraciones, y que la ejecucién de un programa no es sino una sucesion, paso a
paso, de configuraciones de esa memoria.

En esta seccién trataremos de precisar las nociones de discreto y continuo, mediante
el andlisis de dos juegos de distinta naturaleza.

El juego de las ranas y los sapos

A lo ancho del lecho de un caudaloso rio se encuentran siete piedras alineadas que
permiten pasar de un lado al otro. En el lado izquierdo del rio hay tres ranas y en
el lado derecho, tres sapos. Cada grupo necesita cruzar al otro lado. Las ranas se
ubican en las tres piedras del lado izquierdo y los sapos en las tres del lado derecho,
quedando una piedra libre en la mitad. Las ranas siempre van a saltar de izquierda
a derecha y los sapos de derecha a izquierda, y nunca se pueden devolver. Todos
pueden saltar de una piedra a la piedra vecina, o en caso de que ésta esté ocupada, a
la que le sigue si estd libre. Nunca pueden saltar a mas de dos piedras de distancia,
ni a una piedra ocupada. Por supuesto, no pueden caer al rio, pues se los lleva la
corriente. El objetivo es entonces llevar a las ranas a las piedras del lado derecho y
a los sapos a las del lado izquierdo, dejando la piedra central libre.

HProfesor de la Escuela Colombiana de Ingenierfa.
12Profesor de la Escuela Colombiana de Ingenierfa.
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La situacién inicial se vera asi:

[ TTIMYY

A partir de dicha situacién, en un siguiente movimiento tendriamos estas cuatro

alternativas:

1. La primera rana salta a la piedra vacia. La situacion resultante seria:

F Y PHEN X

2. La segunda rana salta a la piedra vacia. La situacién resultante seria:

Labidhih

3. El primer sapo salta a la piedra vacia. La situacién resultante serfa:

LELraR i

4. El segundo sapo salta a la piedra vacia. La situacién resultante seria:

T 73N PN

El objetivo del juego es llegar a la siguiente situacion:

Ahdh K44

Intente solucionar este problema empleando el menor ntimero de movimientos. Si

quiere, puede utilizar monedas, piedras o cualquier elemento fisico que considere
adecuado para simularlo. Una vez solucionado, registre de alguna manera su solucion.
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Juegos de destreza manual

Considere ahora el juego nacional del tejo. Se trata de lanzar desde la distancia un
objeto de hierro (el tejo) y atinarle a la bocina, e idealmente hacer explotar una
mecha. Suponga que su reto es enbocinar al menos tres veces y explotar al menos

una mecha en el lapso de cinco minutos.

- =

) : -*“

Comparacién de los dos juegos

Note que estuvo trabajando en dos juegos unipersonales, es decir, sin contrincante,
y dados unos limites de tiempo, al final podriamos determinar si fue posible ganar o
no. Sin embargo, los dos juegos tienen diferencias significativas. Intente responderse

las siguientes preguntas tanto para el juego de ranas y sapos, como para el tejo:

= ; El éxito del juego depende de los elementos fisicos que utilizé para realizarlo?
Por ejemplo, si se hubiese escogido otro material, ;habria sido méas dificil o
mas facil solucionarlo?

= Si pudo ganar el juego, ;podria darle a otra persona las instrucciones por
teléfono, de modo que al seguirlas llegue exactamente a la misma solucién?

s ;La solucion del juego consta de una sucesion de pasos, que si se siguen fiel-

mente, con seguridad nos haran ganar?

» ;Podrian darse configuraciones durante el juego en las que haya ambigiiedad
con respecto al resultado? Por ejemplo, una configuracion donde puedan existir
diferencias de interpretacion, de modo que dos personas, que conozcan bien
las reglas, pudieran emitir juicios diferentes sobre el resultado.

Analicemos estas preguntas. Para jugar ranas y sapos, aunque escoger un material
fisico para simularlo puede influir (por ejemplo, ;qué pasaria si escogemos fichas que
pesen 100 kilos?), la solucién no depende esencialmente de ello. Incluso, una persona
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con alta capacidad retentiva y de visualizacion, podria resolverlo mentalmente, sin
necesidad de utilizar ningin elemento fisico. Una vez solucionado el juego, existe
un conjunto preciso de pasos que, si se siguen correctamente, con seguridad llevan
de la configuracién inicial al objetivo. Estos pasos se pueden codificar, por ejemplo
numerando las posiciones y diciendo de dénde a dénde se hace un movimiento.
Ademas, para un conocedor de las reglas, no habria duda de si una solucién es
correcta o no.

Este no es el caso del juego del tejo. Sin duda, habré algunos materiales con los que
es mas sencillo ganar y otros con los que puede resultar practicamente imposible. Si
tenemos la “suerte” de ganar, no hay ninguna garantia de que volveremos a hacerlo
mas adelante. No existe forma de registrar la solucién de modo tal que otra persona
la pueda consultar y jugar de manera idéntica. Podemos, ademas, caer en situaciones
en las que es dificil determinar si el tejo quedoé adentro de la bocina, y resultara muy
dificil determinar el puntaje correspondiente. Este juego depende, en esencia, del
mundo en que nos movemos y de nuestras habilidades fisicas, con sus posibilidades
y condiciones.

En los ejemplos mencionados, vemos que una de las caracteristicas de los juegos
de naturaleza discreta es que admiten una representacion simbolica y, por tanto,
contamos con la posibilidad de modelarlos y escribir su soluciéon como secuencias de
pasos, con lo que las podemos guardar y recuperar.

Este es un trabajo que hace muy bien el computador. El computador es una maqui-
na de naturaleza discreta. Cuando soluciona un problema, lo hace mediante una
sucesion de pasos predecibles, que se podrian volver a reproducir con resultados
idénticos cuantas veces queramos. A veces se utiliza el computador para interactuar
en tiempo real con sistemas continuos, como por ejemplo en aplicaciones de roboti-
ca y programas empotrados en diversos dispositivos y vehiculos; pero aun en estos
casos, el computador mantiene un modelo discreto del entorno fisico, que se apro-
xima en la medida de lo posible al mundo real. Todas las acciones del computador
se pueden modelar con sistemas discretos. Por tal razén en este libro nos propo-
nemos estudiar muchos de los principios y estrategias de solucion de problemas de
informatica sobre juegos discretos. En ellos encontraremos un sinfin de posibilida-
des para experimentar y hacer explicitos los conceptos y estrategias fundamentales
utilizados en informatica.

{Qué son los juegos discretos?

Los juegos discretos tienen una naturaleza finita y formal. Finita, porque su solu-

cién se realiza mediante una sucesion finita de movimientos. Formal, porque son

independientes del medio en el cual se encuentran materializados.

Es decir, el mismo juego puede materializarse en cualquier nimero de medios dife-
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rentes, sin ninguna diferencia esencial significativa. Témese por ejemplo el ajedrez.

Una partida podria realizarse en tableros de distintos tamanos, con fichas de di-

ferentes materiales, o incluso mediante una representacion puramente simbolica, y

seguiria siendo la misma partida. Un juego discreto se compone de:

Un conjunto finito de elementos (fichas, tablero, etc.).

Una disposicion inicial de dichos elementos, a la que también podemos llamar
estado inicial del juego.

Un conjunto de reglas que definen los movimientos permitidos en cada estado
del juego. Al hacer un movimiento, el juego cambia de estado.

Un criterio para decidir si se ha llegado al estado final, también llamado estado

ganador. El objetivo del juego es llevar los elementos a este estado.

Ejercicios

1.

Solucione el juego de las ranas y sapos, y escriba de la manera mas concisa su
solucién.

Dé ejemplos de tres juegos continuos y tres juegos discretos.

Encuentre juegos discretos populares con las siguientes caracteristicas:

Juego de contrincantes.

)
b) Juego solitario (unipersonal).
) Juego de azar.

)

El jugador puede llegar a “callejones sin salida”, es decir, a estados que

no son ganadores, desde los que no se puede continuar.

e) Juegos en los que es posible caer en ciclos de movimientos eternos, sin
nunca ganar.

f) Juegos donde sea imposible caer en ciclos de movimientos eternos.

Encuentre un algoritmo o “receta” para solucionar el juego de las ranas y
sapos, que funcione para cualquier cantidad de ranas y de sapos, separados
por una piedra.

Encuentre una féormula para determinar el nimero de pasos necesarios para
solucionar el juego de ranas y sapos, dado que se cuenta con n ranas y m

sapos.
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2.4.2. Sistemas formales

En ciencias e ingenieria es esencial el desarrollo de modelos. Un modelo es una
representacion (matematica, fisica, gréafica, etc.), de un sistema o fenémeno, con el fin
de analizarlo, explicarlo o simularlo. En informatica es comtn el desarrollo de diverso
tipo de modelos (simbdlicos, graficos o computacionales), que nos ayudan a entender
los problemas, a domesticarlos, y comunicar las soluciones que encontramos. Uno de
los instrumentos de modelado mas frecuente son los sistemas formales.

Hemos dicho que los juegos discretos son de naturaleza formal; esto es, son inde-
pendientes del medio externo donde se llevan a cabo. En consecuencia, se pueden
representar y jugar mediante cadenas de simbolos, de manera completamente libre
de ambigiiedades. En esta seccién estudiaremos un tipo particular de juego discreto,
llamado sistema formal combinatorio.

Un sistema formal combinatorio consta de un alfabeto, que es simplemente el con-
junto de simbolos que se va a usar; un conjunto de palabras iniciales, escritas en ese
alfabeto, y un conjunto de reglas que nos dicen cémo generar nuevas palabras. La
idea es empezar con alguna palabra inicial e ir generando nuevas palabras siguiendo
las reglas dadas. Ilustraremos esto con un juego, que llamaremos “Sistema OM”:

= Alfabeto: {O, M}

Esto quiere decir que las tinicas letras que podemos usar son la O y la M. Con
estas letras podemos formar palabras que no son sino sucesiones de letras. Por
ejemplo: MO, MMO, MOMO, M, O. No se contemplara en nuestro sistema
ninguna palabra que tenga una letra que no esté en el alfabeto, como por
ejemplo: MI o MA. Podemos convenir también en que hay una palabra que
no tiene ninguna letra a la que llamaremos palabra vacia, que también forma

parte de las palabras posibles.

» Palabra inicial: {M}

La tnica palabra con que contaremos en un comienzo es M.

= Reglas:

e R1: A partir de una palabra que termina en M, se puede generar una
nueva palabra agregando una O al final. Por ejemplo, a partir de MM
podemos generar MMO.

e R2: Se puede duplicar cualquier palabra y generar una nueva palabra.
Duplicar una palabra quiere decir que se escribe dos veces de manera
pegada; por ejemplo, al duplicar MOM generamos MOMMOM.
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e R3: Si se tiene OM dentro de una palabra, podemos generar una nue-
va palabra, cambiando OM por MO. Por ejemplo, a partir de MOMO
podemos generar MMOM.

= Objetivo del juego: generar la palabra OM.

Empezamos entonces con la palabra M. En cada paso tomamos la ultima palabra
generada y le aplicamos cualquier regla que se pueda aplicar. A una sucesién de

palabras obtenidas con este método se le llama una derivacién. Por ejemplo:

= M — MO — MOMO — MOMOMOMO es una derivacién donde se aplico pri-

mero la regla R1, y luego dos veces la regla R2.

= M— MM — MMMM — MMMMO es una derivaciéon donde se aplico dos veces
la regla R2 y una vez la regla R1.

Un sistema formal combinatorio consta de:

= Un alfabeto, que es un conjunto finito de simbolos.
= Un conjunto de palabras iniciales, también llamado axiomas.

= Un conjunto de reglas. Cada regla permite generar nuevas palabras a partir

de alguna palabra previamente generada.

Una derivacién es una secuencia de palabras, que empieza en un axioma, y cada

palabra en lo sucesivo es obtenida por la aplicacién de alguna regla a su palabra

precedente. A la palabra final obtenida se le llama teorema.

Ejercicios

En el sistema OM, encontrar derivaciones que terminen en las siguientes palabras.

Si no se puede, argumente por qué.
1. MMOMMO
2. MOMOMOMOMOMOMOMO
3. MMMMMMMM
4. MMOMMOMMO
5. MMOO

6. OM (finalmente, jéste es el objetivo de nuestro juego!)
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Encontrando invariantes

., Qué sabemos si es imposible generar algunas palabras? Tomemos el caso de la
palabra OM. Observando un poco, notamos el siguiente hecho: todas las palabras
generadas empiezan por M. jSera este un invariante de nuestro sistema? Un inva-
riante es una propiedad que se cumple para todas las palabras en una derivacién.
Es claro que si demostramos que todas las palabras del sistema empiezan por M,
entonces es imposible generar OM, por mas que lo intentemos; pero ;cémo podemos
demostrar este hecho? La tinica manera de obtener palabras es por medio de una
palabra inicial, o de la aplicacién de alguna regla a una palabra ya obtenida. Tenemos
que enfocarnos en analizar las propiedades de la palabra inicial y de las reglas.
Veamos entonces por qué se cumple el invariante “todas las palabras del sistema
empiezan por M”:

= La unica palabra inicial principia por M, por lo que cumple esta propiedad.

= Laregla R1 agrega una O al final, pero no modifica la letra inicial. Por tanto, si
partimos de una palabra que comienza por M, la palabra generada seguird em-
pezando por M.

s La regla R2 duplica la palabra. Al duplicar, la letra inicial de la palabra origen
seguird apareciendo en el mismo lugar en la palabra generada. Es decir, que si la
palabra original empezaba por M, la palabra generada continuara comenzando
por M.

= La regla R3 permite remplazar OM por MO. Si tenemos una palabra que
empieza por M, a la que se le pueda aplicar esta regla, la palabra generada
seguird comenzando por M, pues a la primera letra no la afecta la regla.

Como no hay otras maneras de generar palabras, podemos concluir que todas las
palabras generables empezaran por M. Y como OM no comienza por M, tenemos
entonces que es imposible generarla.

Ejercicios
Utilizando el sistema OM:
1. Demuestre los siguientes invariantes:

a) Siuna palabra tiene al menos una O, entonces termina en O.

b) El nimero de letras M en una palabra es una potencia de dos; es decir,
se puede escribir como 2" para algin n >= 0.



2.4. RAUL CHAPARRO A. & JUAN ALBORNOZ B. LA COMPUTACION A TRAVES DE JUEGOS 167

c) El nimero de letras O en una palabra es una potencia de dos; es decir,

se puede escribir como 2" para algin n >= 0.

d) En una derivacién nunca se puede utilizar la regla R1 més de una vez.
Encuentre tres palabras que se puedan generar utilizando todas las reglas

del sistema.

2. Caracterice completamente a todas las palabras del sistema OM. Es decir,
encuentre una propiedad que sea satisfecha por todas, y sélo por todas las
palabras generables en el sistema OM.

Especificando palabras y reglas con plantillas

Los lenguajes naturales con los que nos comunicamos las personas, como el espanol,
el inglés, etc., son propensos a multiples ambigiiedades. Por ejemplo, qué pasaria
si permitiéramos reglas en nuestros sistemas formales como “una palabra se puede
agrandar” o “una palabra se puede invertir”. Podriamos tener diferentes interpre-
taciones de agrandar, como por ejemplo anadirle letras, o dibujarla con letras mas
grandes. Igualmente habria ambigiiedad al invertir una palabra: ;se trata de leerla
de derecha a izquierda, o de que una M se convierta en W?

Nos interesa eliminar este tipo de ambigiiedades de nuestros sistemas formales. Para
ello vamos a usar plantillas que representan conjuntos de palabras. Una plantilla
es un formulario que puede tener letras del alfabeto y variables. Cada variable es
una “casilla en blanco” que se puede rellenar con cualquier cantidad de letras del
alfabeto. Una vez que se han llenado las variables de una plantilla, se obtiene una
palabra. A manera de ejemplo presentamos las siguientes plantillas, donde el alfabeto
es O, M y las variables son z, y, 2.

s M|z O

Con esta plantilla se pueden obtener palabras como:

e MMO, donde la z se ha llenado con la palabra M.
e MOO, donde la z se ha llenado con la palabra O.
e MOMO, donde la z se ha llenado con la palabra OM.

e MO, donde la x se dejo en blanco. En este caso se puede hablar también

de x como la palabra vacia.

Es claro, ademads, que hay palabras que no se pueden formar con la plantilla,
pues no seria posible llenar las variables de modo que al final obtengamos la
palabra. Por ejemplo, es imposible encontrar una manera de llenar la variable
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z, de modo que obtuviéramos las palabras MOM, OMO, OMM. Podemos ver
que con esta plantilla estamos representando todas las palabras que empiezan

por M y terminan en O.

LR MM y:

Con esta plantilla se pueden obtener palabras como:

e MM, donde z y y se han dejado en blanco, es decir, son palabras vacias.
e OMM, donde z se ha llenado con la letra O e y se ha dejado en blanco.

e MMO, donde la z se ha dejado en blanco y la y se ha llenado con la letra

O.

e MMMO, donde hay varias maneras posibles de llenar las variables. Por
ejemplo, podemos presumir que la z se ha dejado en blanco y la y se ha
llenado con la palabra MO, o también que la z se ha llenado con la letra
M y la y se ha llenado con la letra O. En este caso, la plantilla representa

las palabras que tienen dos M sequidas en alguna parte.

= Olz: M| y:

Con esta plantilla se pueden obtener palabras como:

e OOM, OMM, OMMO, OM. Intente llenar las variables para obtener estas
palabras. Detecte en qué casos hay mas de una manera de llenar las
variables. Encuentre también tres palabras que no se puedan generar con
la plantuilla. Notara que esta plantilla corresponde a las palabras que

empiezan por O y después tienen al menos una M.

|2 O| z:

Notese que las dos casillas de la variable x se deben llenar con las mismas
letras, pues se trata de la misma variable. Con esta plantilla se pueden obtener
palabras como:

e MOM: en este caso = se ha llenado con la letra M.
e OMOOM: en este caso = se ha llenado con la palabra OM.

e O: en este caso z se ha dejado sin llenar.

Es imposible encontrar una correspondencia para palabras como MOO, dado
que no se puede aceptar que la primera z se llene con una palabra diferente
de la segunda z. Esta plantilla representa las palabras que tienen una O en
la mitad y tanto a la izquierda como a la derecha de esta O se encuentra la
misma subpalabra.
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T

Representa cualquier posible palabra que se pueda hacer con este alfabeto, in-
cluyendo la palabra vacia.

En adelante, para simplificar la escritura de las plantillas, anotaremos tan sélo la
secuencia de letras y variables, omitiendo pintar las casillas. Entonces, cuando apa-
rezca una variable, podemos imaginar que alli lo que hay es una casilla en blanco
por llenar.

Utilizando plantillas podemos expresar de una manera mas precisa y concisa las
reglas de un sistema formal mediante “Reglas de reescritura”. Estas reglas tienen
dos plantillas, separadas por una flecha hacia la derecha. Para poder aplicar una
regla, tenemos que partir de una palabra que se pueda obtener con el lado izquierdo
de la regla, y entonces generamos la nueva palabra usando la plantilla del lado
derecho. Por ejemplo, las reglas de nuestro sistema OM se pueden expresar de un

modo muy conciso asi:

= R1: zM — zMO
» R2: 2 — 22

= R3: zZOMy — zMOy

Suponga que ya hemos generado la palabra MOMO y queremos ver qué se puede
generar a partir de ésta. Entonces tendriamos que la primera regla no se podria
utilizar, pues no hay manera de llenar la z del lado izquierdo de la regla, para
obtener MOMO. La segunda regla si se podria aplicar: si la z se llena con MOMO,
entonces el lado izquierdo de la regla coincide con nuestra palabra y podemos generar
lo que resulte en el lado derecho de la regla, en este caso MOMOMOMO. A partir
de MOMO también podriamos haber utilizado la tercera regla: llenando la z con M
y la y con O, obtenemos nuestra palabra de origen, MOMO, y con el lado derecho
de la regla generariamos la palabra MMOO.

Ejercicios

Utilizando como alfabeto: {M, A, O}

1. Encuentre para cada plantilla tres palabras distintas que se puedan obtener y
tres que no. Describa luego en forma precisa qué conjunto de palabras repre-

senta la plantilla.

a) zMyAz
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TYT
rtAzMzOz
zy

AMO

2. Encuentre plantillas para los siguientes conjuntos de palabras:

Las palabras que empiezan por A y terminan en O.

Las palabras que se pueden partir en tres subpalabras idénticas, colocadas
una a continuacion de la otra. Por ejemplo: MAMAMA, MAOMAOMAO

Las palabras que tienen al menos una A.

Las palabras donde hay al menos una M, después de la cual en algin

lugar aparezca una O.

3. Proponga normas de reescritura para especificar las siguientes reglas:

a)
b)

A una palabra se le pueden agregar dos letras M en el extremo derecho.
A una palabra se le pueden agregar dos letras M en el extremo izquierdo.

Si una palabra empieza por M, entonces esta M se puede quitar y agre-

garla en el extremo derecho.
Si en una palabra aparece la subpalabra MM, ésta se puede retirar.

Si en una palabra aparece la subpalabra MA, se puede remplazar por

MAMA.

Una palabra se puede triplicar. Por ejemplo, si se tiene MA se puede
generar MAMAMA.

4. Interprete en espanol cada una de las siguientes reglas de reescritura:
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Modelando con sistemas formales

Uno de los usos de los sistemas formales es modelar problemas del mundo real. Por
ejemplo, podemos producir un sistema formal para el juego de ranas y sapos, para
lo cual debemos representar simbdélicamente los elementos del juego. Por ejemplo,
podemos representar las ranas con la letra R, los sapos con la letra S y las piedras
vacfas con el simbolo _. Es decir, nuestro alfabeto sera el conjunto {S, R, _}. Como
variables usaremos letras: z, y, ...

El juego, entonces, se puede modelar asi:

» Palabra inicial: RRR_SSS

R1: xRS_y — x_SRy

R2: xRR_y — x_RRy encontrar

R3: x RSy — xSR_y

R4: x SSy — xSS_y

Palabra ganadora: SSS_RRR

Con esta representacion y estas reglas se puede describir la solucion al problema de
las ranas y sapos, mediante una derivacion de la palabra ganadora asi:
RRR_SSS— RR_RSSS— RRSR_SS— RRSRS_S — RRS_SRS—

R_SRSRS — _RSRSRS — SR_RSRS — SRSR_RS — SRSRSR_. —

SRSRS_R — SRS_SRR —S_SRSRR—SS_RSRR —SSSR_RR —SSS_RRR

Actividades de juegos y sistemas formales
Problema del robot

A una linea de montaje llegan cuatro componentes en el orden ABCD:
AlBlC]D]

En la etapa siguiente los componentes pueden ser necesarios en cualquier orden.

Para disponerlos en el orden requerido se ha programado un robot, capaz de realizar
dos operaciones basicas:

1. Intercambio de los dos primeros componentes. Por ejemplo, partiendo del orden

inicial llegariamos a la siguiente configuracién: ’ B ‘ A ‘ C ‘ D ‘

2. Rotacion ciclica, llevando el ultimo componente a la primera posicién y des-
plazando los demas un espacio hacia atras. En este caso, partiendo del orden

inicial llegariamos a la siguiente configuracién: ’ D ‘ A ‘ B ‘ C ‘




172 CAPITULO 2. TALLERES Y CURSILLOS

Preguntas

1. ;De qué modo se deben combinar las dos operaciones basicas del robot para
producir el orden DACB?

2. ;Seréa que si el orden inicial es DBCA podemos llegar a ABCD?

Problema de negras y blancas

Se tiene un tablero lineal con dos fichas negras, dos fichas blancas y una casilla vacia,
ast: | N|N|[B|B]| |

Las reglas para los movimientos validos son:

1. Una ficha puede moverse a la posiciéon adyacente vacia.

2. Una ficha puede saltar por encima de otra (sélo una) para colocarse en la
posicién vacia. Si la ficha que salta es de distinto color que la saltada, esta
ultima cambia de color.

Preguntas

1. Modelar el anterior juego como sistema formal, definiendo claramente el alfa-

beto, los axiomas y las reglas.

2. Plantear el objetivo del juego como teorema y demostrarlo, exhibiendo la de-

rivacion.

3. Enunciar un invariante, no trivial, y demostrarlo (una propiedad que se cumple
siempre; por ejemplo: el nimero de B no es mayor que 5).

Ejercicios
1. Con el alfabeto {M, O}, construya sistemas formales para cada una de las
siguientes exigencias:

a) Las palabras deben tener un ntimero impar de letras M.

b

Las palabras no deben tener dos letras iguales consecutivas.

d

)
)
c) Las palabras deben tener una cantidad par de letras M y de letras O.
) Las palabras deben tener el doble de letras M que de letras O.

)

e) Las palabras deben tener un multiplo de tres de letras O.
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2. La bandera de Colombia esta compuesta por tres franjas horizontales de colo-
res amarillo, azul y rojo, en este orden, donde el amarillo ocupa exactamente
la mitad, y tanto el azul como el rojo una cuarta parte. Podemos representar
las banderas con palabras del alfabeto {A, Z, R}, donde la A representa el
color amarillo, la Z el azul y la R el rojo. Por ejemplo, las siguientes serian
banderas validas: AAZR, AAAAZZRR, AAAAAAZZZRRR, ... No serian ban-
deras validas si no se respetara el orden de los colores, al leer de izquierda a
derecha, o si no se mantuviera la proporcién. Tampoco es una bandera valida
la palabra vacia. Queremos tener un sistema formal que genere banderas de
Colombia.

a) Disene un sistema formal cuyas palabras representen banderas vélidas.

b) Demuestre por qué su sistema sélo permite generar banderas validas.

3. Se quiere desarrollar un sistema formal para ordenar palabras hechas con el
alfabeto {A, B, C}. Es decir, si partimos de una palabra cualquiera escrita
en este alfabeto, y aplicamos exhaustivamente las reglas, hasta que no haya
ninguna mas que se pueda aplicar, queremos que la palabra final tenga la
misma cantidad de cada una de las letras, con respecto a la palabra inicial,
pero en orden alfabético. Esto es, primero estén las letras A, luego las B y
finalmente las C.
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CAPITULO 3

Ponencias

3.1. Inclusién de los ambientes digitales en el aprendizaje
del calculo diferencial “razén de cambio”

Myg. Dorys Jeannette Morales Jaime!

Resumen

En este articulo se presenta una investigacién desde el desarrollo tecnolégico e inclu-
sién social, abordando los temas referentes a la pertinencia y la complementariedad
de las TIC en la educacion superior, por medio de la aplicacién de ambientes digitales
en el desarrollo de estrategias de aprendizaje en el calculo diferencial.

La investigacién se centra en la caracterizacion de estrategias cognitivas y metacog-
nitivas utilizadas en la resolucién de problemas de razén de cambio en estudiantes
que emplean conocimiento lingiiistico, semantico y esquematico en un ambiente e-
learning. Para la validacion de la investigacion se disend e implement6 un ambiente
digital (software) sobre plataforma Moodle, que permite evidenciar las estrategias
metacognitivas como cognitivas y el tipo de conocimiento (lingiiistico, seméantico,
esquemético) que el estudiante emplea en la resolucién de problemas de razén de
cambio. El software permite la tipificacion de las estrategias frente al tipo de cono-

cimiento y la eficacia en el aprendizaje significativo del cédlculo diferencial.

Como estrategia metodoldgica se utilizo el analisis de protocolos por medio de infor-

mes concurrentes (protocolos automatizados y escritos), aplicada en estudiantes de

!Universidad Pedagdgica y Tecnolégica de Colombia, Tunja, Colombia. Escuela de Mateméticas
y Estadistica. dojemoja@yahoo.com, dojemoja@hotmail.com.
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primer semestre de ingenieria en la Universidad Pedagdgica y Tecnolégica de Colom-
bia. La investigacion permitié contribuir a la teoria de Mayer “basada en procesos y
conocimientos especificos” (1982, 1983, 1985, 1987) y, a su vez, dar inicio al disefio
de un ambiente adaptativo con redes neuronales (I.A.) que permita retroalimentar
al estudiante, de acuerdo con el tipo de conocimiento que trae en la resolucién de

problemas y al fortalecimiento de estrategias.

Palabras claves: cognicién, metacognicion, estrategias, TIC, lingtiistico, semantico,

esquematico, resolucién de problemas.

3.1.1. Descripcion

La investigacién empieza con un estado del arte donde se realiza un barrido docu-
mental de los antecedentes documentales de la ultima década de investigaciones en
areas de pedagogia y matematicas, aproximadamente, centradas en resolucién de
problemas y estrategias de resolucion de problemas.

Por otro lado, esta el marco tedrico centrado en la teoria de Mayer basada en procesos
y conocimientos especificos y estrategias de resolucién de problemas matematicos.

Para el desarrollo de esta investigacion se trabajé con una muestra de quince estu-
diantes, que interactuaron con un ambiente digital donde se encontraban problemas
resueltos aplicados en razéon de cambio en volimenes y areas. El ambiente consta
de tres ventanas (A, B, C), donde la solucién de los problemas se centra en estra-
tegias de resolucion de problemas con caracteristicas pertenecientes a conocimiento
lingiifstico, seméntico y esquematico, respectivamente. Las ventanas presentan la
misma estructura general de estrategias de resolucién de problemas, pero se dife-
rencian en el lenguaje, acorde con las caracteristicas de cada tipo de conocimiento.
La navegacion es libre, en un ambiente amigable que permite la interaccion del

estudiante en forma espontanea.

La interaccion con el software y las estrategias empleadas en la resolucién de pro-
blemas permitieron identificar y tipificar el tipo de conocimiento que el estudiante
presenta cuando aborda problemas de razén de cambio mediante protocolos auto-
matizados en la plataforma Moodle.

Para el procesamiento de los resultados arrojados se utilizé la metodologia de pro-
tocolos concurrentes utilizada para procesos cognitivos registrados por medio de
protocolos escritos y automatizados (Luis Facundo Maldonado Granados, 2001).
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3.1.2. Contenidos

Problema
1 Qué estrategias se tipifican en estudiantes que utilizan tres tipos diferentes de re-
presentacién de conocimiento (lingiiistico, seméntico y esquemético) en la resolucién

de problemas de razon de cambio?

Antecedentes
Entre los antecedentes de mayor incidencia se cuenta con las investigaciones realiza-
das con estrategias de resolucién de problemas, cognicién y metacogniciéon, citadas

en las referencias de esta investigacion.

Marco tedrico

Para el desarrollo de la investigacion se tomo la teoria de Mayer basada en procesos
y conocimientos especificos, estrategias de resoluciéon de problemas, haciendo un
recorrido por las estrategias metacognitivas y cognitivas, como la representacion de
los tipos de conocimiento lingiiistico, seméntico, esquematico, diferentes modelos
teoricos de la memoria y sus implicaciones en la memoria a corto y largo plazos,
para concluir con el aprendizaje significativo y la tipificacion de estrategias frente al

tipo de conocimiento.

3.1.3. Metodologia

La metodologia que se us6 para esta investigacion pertenece a protocolos retrospec-
tivos concurrentes, abordados en cinco momentos de la investigacion, que es de corte
descriptivo. Se trabajé con una muestra de quince estudiantes de primer semestre
de ingenierias industrial, mecanica y electronica, que cursan la asignatura de calculo
diferencial en la Universidad Antonio Narino, resuelven problemas de razon de cam-
bio e interactian con un ambiente digital disenado con estrategias de resolucién de
tres tipos de conocimiento diferentes: lingiiistico, semantico y esquematico en pla-
taforma Moodle. La plataforma permite realizar un seguimiento automatizado para
identificar las estrategias de resolucién de problemas (metacognitivas y cognitivas),

acorde con su tipo de conocimiento.
El desarrollo de esta investigacion esta compuesto de cinco momentos:

Momento uno. Los estudiantes leen el problema y fijan sus estrategias para abordar
la resolucién. Este momento se llama estrategia uno E1.

Momento dos. Los estudiantes aplican estrategias de resolucion de problemas desde

su conocimiento. Este momento se denomina estrategia de resolucién uno ER1.

Momento tres. Una vez abordados E1 y ER1, se identifica el tipo de conocimiento
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TC utilizado por el estudiante en la resolucién del problema. Los tipos de conoci-
miento son lingiiisticos, semanticos o esquemaéticos (glosario), que en forma implicita
trae el estudiante al abordar el problema. En este momento el estudiante navega y
explora el software en plataforma.

Momento cuatro. En esta etapa, el estudiante elige un problema propuesto en las
actividades del curso y describe las nuevas estrategias para abordarlo, apoyado en

el wiki individual en linea.

Momento cinco. En esta tltima etapa, el estudiante aplica las estrategias para la
resolucién del problema elegido; este momento se llama estrategia de resolucion dos.

Estos momentos de la investigacion se evidencian en la metodologia de protocolo
retrospectivo y concurrente, disenada para la soluciéon de un problema mediante el
comportamiento motor, cuyo modelo tedrico para el estudio de procesos cognitivos
lo desarrollaron Newell y Simon (1972).

Para la seleccion del modelo pedagdgico se toma el de procesamientos de informacion,
ya que su proposito es estudiar el pensamiento humano articulado con el estudio de
valores, el dominio de la informacion y el aprendizaje de asignaturas basicas, como
las matematicas. Combinan la disciplina con la flexibilidad (crear entornos exigentes

pero no asfixiantes) y la retroalimentacion.

El analisis y comparacion del tipo de conocimiento empleado frente a la estrategia
utilizada en la resolucién del problema se fundamenta en la experiencia en la solucién
de problemas (Polya y Pogioli), y en procesos y conocimientos especificos como

esquemas de razonamiento (Mayer, 1992).

3.1.4. Conclusiones y proyecciones

= En el momento uno de la investigacién, donde se describen las estrategias
que se van a emplear en la resolucion de problemas de razon de cambio, se
observan estrategias de orden general que no permiten la identificacion del
tipo de conocimiento especifico, quizas por falta de entrenamiento en el diseno
de estrategias. En este momento se identifica una generalidad, orientada a la

lectura y comprensién del problema tinicamente.

= En el momento dos de la investigacion, donde se registran las estrategias de
resolucion del problema abordado, se pueden identificar los primeros indicios
de las caracteristicas empleadas por los estudiantes, evidenciadas en la re-
presentacion de la informacién en forma grafica, en representacién de datos

en un lenguaje simbdlico matematico y la representacién de la informacion,
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inicialmente en un lenguaje familiar al problema y transcrito después a una

representacion simbolica matemaética.

En contraste con las estrategias empleadas en los momentos uno y dos, se
observa que en el primer momento lo planeado no se ejecuta en su totalidad
en el segundo momento; sin embargo, las estrategias de resolucién usadas en
el momento dos presentan una estructura mas formal que las empleadas en el

momento uno.

En el momento tres, donde el estudiante interactia con el ambiente compu-
tacional, se evidencia en su navegacion una tendencia a trabajar con estrategias
de un solo tipo de conocimiento, permitiendo asi la identificacién de sus ca-
racteristicas frente al tipo de conocimiento especifico. El estudiante en este
momento realiza toma de decisiones de estrategias frente al tipo de conoci-
miento.

En el momento cuatro, donde el estudiante ha interactuado con el ambiente
computacional y hace la eleccion del problema que se va a resolver, registra
en el wiki estrategias més explicitas que en los momentos uno y dos, donde se
evidencian caracteristicas propias del tipo de conocimiento especifico. En este
momento se presenta una mejor planeacion, quizas por la interacciéon hecha en

el momento tres con las estrategias acordes con su tipo de conocimiento.

Las estrategias empleadas en el momento cuatro, contrastadas con las del
momento dos, permiten observar que las estrategias utilizadas en el momento
cuatro son mejor planeadas, puesto que evidencian caracteristicas comunes a
los tipos de conocimiento especifico, como también una estructura clara de
los procesos de resolucion, lo que permite inferir que la realimentacién del
ambiente contribuye al entrenamiento y fortalecimiento de las estrategias.

Las estrategias usadas en el momento cinco, donde el estudiante resuelve el
problema elegido, muestran una concordancia con las estrategias registradas
en el momento cuatro, gracias a lo cual se puede mostrar que hay una secuencia
entre la planeacion y la ejecucion de estrategias acordes con el tipo de conoci-
miento especifico, quizas por realimentacién del ambiente computacional.

Efectuadas la codificacion y la segmentacién de los protocolos, se hace un
analisis de las estrategias empleadas en los cinco momentos de la investigacién
frente a las semejanzas encontradas en los quince estudiantes, generando una
identificacion en las estrategias y el tipo de conocimiento especifico que permite
hallar cinco estudiantes pertenecientes al conocimiento lingiiistico, cinco al

conocimiento semantico y cinco al conocimiento esquematico.
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= A partir de la agrupacién se hace una caracterizacion de las estrategias re-

gistradas y empleadas en cada momento de la investigacion, que arroja la

siguiente estructura:

CARACTERISTICAS
T. P. LINGUISTICO

CARACTERISTICAS
T. C. SEMANTICO

CARACTERISTICAS T.
C. ESQUEMATICO

Representa el plan-
teamiento del proble-
ma en un lenguaje

simbdélico.

Representa los datos
iniciales en un lengua-
je matural al proble-
ma.

Realiza una representa-
cién grafica del proble-

ma.

Identifica el modelo
matematico que se va

a trabajar.

Transcribe los datos
de un lenguaje natu-
ral a una representa-

cién simbdlica.

Codifica los

ciales a representaciones

datos ini-

simbdlicas.

Aplica técnicas de de-
rivacion apropiadas al

modelo matematico

Identifica el modelo
matematico que se va

a trabajar.

Identifica el modelo ma-
tematico que se va a tra-
bajar.

Muestra un manejo
claro del vocabulario
del problema en un
lenguaje matematico

apropiado.

Aplica técnicas de de-
rivaciéon apropiadas al

modelo matematico.

Aplica técnicas de deriva-
cién apropiadas al mode-

lo matematico.

Fuente: Resultados del estudio.

= La caracterizaciéon de las estrategias frente al tipo de conocimiento especifico se
diferencia en el primer proceso de resolucion, es decir, en la representacién del
analisis de la informacion, siendo notoria la interpretacion en forma individual
enmarcada en la representaciéon del tipo de conocimiento lingiiistico, semantico

y esquemadtico expuesto por Mayer (1992).

= Realizada la caracterizacion de la codificacion y segmentacion de las estrate-
gias, se generan estructuras segin el tipo de conocimiento especifico (figura

1).

= A través del desarrollo en los cinco momentos de la investigacién se observa
que al resolver problemas matematicos en los estudiantes se activan estrategias
de resolucion con diferentes estructuras, ajustables al tipo de conocimiento
lingliistico, seméntico o esquematico, corroborando asi la hipdtesis.
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= La articulacién de las nuevas tecnologias y especificamente el desarrollo de
ambientes digitales sobre plataforma Moodle permiten emplear herramientas
como el wiki individual, donde el estudiante actiia de manera libre, y a su vez
evidencian procesos metacognitivos que en el aula de clase no son faciles de
comprobar.

= Kl diseno y la aplicacion de ambientes digitales permiten generar nuevos es-
cenarios pedagogicos, donde el estudiante articula el conocimiento de manera
mas espontanea en pro del aprendizaje significativo.

Proyeccion

Esta tipificacion permite identificar las variables de acuerdo con el tipo de cono-
cimiento empleado frente a la estrategia utilizada en la resoluciéon de problemas
de razén de cambio para dar inicio al disenio de un ambiente adaptativo con redes
neuronales (I.A.), que permita identificar las caracteristicas del estudiante cuando
ingresa a un ambiente digital, generando un acompanamiento pertinente a su cono-
cimiento en pro del fortalecimiento de sus estrategias en la resolucion de problemas
y, a su vez, contribuyendo al aprendizaje significativo del célculo diferencial.

ESTRATEGIAS VS TIPO
DE CONQCIMIENTO

Lingiiistico | Semantica | ‘ Esquematico

Datos lenguaje ‘ Datos miciales | ‘ Grafica ‘
simbohico

Datos en lenguaje Datos lenguaje

Modelo matematico
natural simbolico

Equivalencia de " N
Modelamiento datos a lenguaje Modelo matematico

sumbélico

Sustitucion de datos )
. Modelo matematico Modelamiento
en el modelamiento

Evaluacion | ‘ Modelamiento | Sustitucion de datos
en el modelammento

Sustitucion de datos

en el modelamiento Evaluacion

Figura 1.
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3.2. El software dinamico: una herramienta que propicia

el desarrollo de la visualizacién matematica

Eder Antonio Barrios Herndndez
Guillermo Luis Munoz Rodriguez

Irving Guillermo Zetién Castillo?

Resumen

En el siguiente articulo se describen y analizan los procesos cognitivos que inter-
vienen en el desarrollo de la visualizacion en estudiantes de nivel superior, cuando
resuelven una actividad geométrica mediante el uso de papel y lapiz y comparan la
solucién con software dindmico. Esta investigacion se ajusta a los principales refe-
rentes tedricos de la psicologia cognitiva y al modelo teérico propuesto por Raymond
Duval (1998).

En el trabajo se tomé en cuenta un enfoque de investigacion cualitativa a dos estu-
diantes de primer semestre de ingenieria en el ciclo de ciencias béasicas de la Univer-
sidad Tecnolégica de Bolivar (Cartagena, Colombia), cuyas edades oscilan entre los
16 y 18 anos; se describen, ademas, las estrategias utilizadas para la resolucién de
problemas geométricos.

Palabras claves: visualizacién, Cabri, resolucién de problemas, geometria.

3.2.1. Introduccion

En Colombia, la educacién matematica ha puesto de manifiesto la necesidad de
insistir en la buisqueda de mecanismos que permitan su mejoramiento. ; Por qué son
importantes las matematicas y especificamente la geometria? Pues porque, como
es de conocimiento general, constituyen un vehiculo mediante el cual tiene lugar el
aprendizaje humano complejo. Las matematicas se enfocan hoy hacia el desarrollo
de las competencias necesarias para crear, resolver problemas, razonar, argumentar,

establecer conexiones y comunicar resultados (Lépez, 2002).

La idea de observar los procesos de construccién de conocimiento y desarrollar ha-
bilidades de pensamiento, en la ensenanza aprendizaje de las matematicas, en los
estudiantes que ingresan a los primeros semestres de la Universidad Tecnoldgica de
Bolivar es de mucha relevancia, pues es posible constatar las grandes dificultades
que éstos presentan, muchas de las cuales tienen su origen en los pocos desarrollos

2Docentes de tiempo completo, Facultad de Ciencias Bésicas, Universidad Tecnoldgica de
Bolivar. ebarrios@unitecnologica.edu.co, guillelee@hotmail.com y izetien@Hotmail.com.
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de procesos cognitivos en la formacion basica, razén por la cual, se generan proble-
mas que dificultan los procesos de aprendizaje durante los primeros semestres de la
carrera y que, ademas, se convierten en obstaculos muy serios para la asimilacién
de conceptos cientificos.

En la actualidad, diversos investigadores en el campo de la educacion matemaética se
dirigen a concientizar la necesidad imperante de introducir una nueva direccién en
la planeacion, administracion y evaluacion del acto educativo; esto se fundamenta
en que los sistemas instruccionales no cumplen satisfactoriamente su cometido, los
alumnos cada dia almacenan maés informacion y la reproducen en forma mecanica,
sin llegar a la adquisiciéon de habilidades o estrategias que les permitan transferir

sus conocimientos en la resolucion de problemas y de situaciones en su vida diaria.

A lo largo de esta investigacion se describe tedrica y analiticamente “El proceso
cognitivo de la visualizacién por estudiantes de nivel superior mediante el uso de
software dindmico Cabri en la resolucion de problemas geométricos”. Se elaboré con
la intencién de aportar a las investigaciones que, en general, han abordado el estudio
de la visualizacion en lo relacionado con la racionalidad instrumental cognitivista en

el escenario de utilizacién del software dindmico Cabri.

3.2.2. Objetivos

Objetivo general

Establecer el desarrollo del proceso cognitivo de la visualizacién que presentan los
estudiantes de nivel superior al resolver un problema geométrico mediante el uso de
tecnologia tradicional y potenciar el concepto solucién con software dindmico Cabri.

Objetivos especificos

1. Describir los procesos cognitivos de la visualizacién que emplean los estudiantes
de nivel superior en torno a la construccion y justificacién de conjeturas en la
resolucion de problemas geométricos, en un escenario de tecnologia tradicional

y en otro con software dindmico Cabri.

2. Aplicar los niveles de visualizacién de Duval en estudiantes de nivel superior
al resolver problemas de tipo geométrico con la tecnologia tradicional y con

software dinamico.

3.2.3. Desarrollo

Se escogié a dos estudiantes de primer semestre de un curso de ingenieria de la
Universidad Tecnoldgica de Bolivar y se le aplicé un estudio de casos a cada uno. Se
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utilizaron las técnicas de pensar en voz alta y el cuestionario, se les proporcionaron
los instrumentos para construir un rectangulo y se les dio una guia de trabajo,

valorada por unos jueces expertos.

3.2.4. Momentos del proceso investigativo

= En un primer momento se manifiesta a cada alumno la intencién y el propési-
to del estudio y su importancia dentro del proceso de aprendizaje de las ma-

tematicas, asi como su papel relevante en el estudio en mencion.

= En un segundo momento, se dicta una capacitacién sobre el uso del software
dinamico Cabri.

= En el tercer momento, los jueces expertos dan su visto bueno al instrumento y
adicionan algunas recomendaciones que tuvimos en cuenta en la construccién
final de este tultimo.

= En el momento cuatro se aplica el instrumento.

= En un quinto momento, el estudiante se enfrenta a la soluciéon del mismo

problema, pero esta vez utilizando el software dindmico Cabri.

= En un sexto momento, el estudiante se somete a una entrevista estructurada.

3.2.5. Resultados

NIVEL DE VISUA-
LIZACION

PAPEL Y LAPIZ

SOFTWARE
DINAMICO

Global de percep-
cion visual

El trazado va asociado
a una imagen mental
y a objetos fisicos del

entorno.

El trazado va asociado
a una imagen mental
y a objetos fisicos del

entorno.

Asocia la figura con
objetos de la vida real.

Relaciona la figura con
objetos fisicos de la vi-
da real.

Deficiencia en el len-

guaje geométrico.

Percepcion de ele-
mentos constituti-

VOS

No se ha apropiado del
concepto.

Habla con propiedad
de los elementos que

constituyen la figura.




3.2. EDER A. BARRIOS, GUILLERMO L. MUNOZ & IRVING G. ZETIEN. EL SOFTWARE DINAMICO

187

No establece relacio-
nes entre sus elemen-

tos.

La herramienta le per-
mite verificar sus con-

jeturas.

Desconoce las carac-
teristicas que permi-
ten identificar la figu-

ra.

Construye la figura te-
niendo en cuenta las

propiedades.

Operativo de per-
cepcion visual

La estaticidad de la
figura no le permite
visualizar ciertas rela-
ciones entre los ele-

mentos.

El instrumento le ayu-
da a visualizar relacio-
nes de proporcionali-
dad y variacion entre

los elementos.

El instrumento no le
permite hacer mayores

transformaciones.

Puede visualizar las
partes que varian y las

invariables.

3.2.6. Conclusiones

= La tecnologia capacita a los estudiantes para visualizar la geometria de manera

activa, tal como ellos generan sus propias imagenes mentales.

» La naturaleza dinamica del Cabri permite desarrollar la capacidad de visua-
lizacién con la figura en cualquier posicion, en tanto que el vinculo dindmico
entre las partes de la figura facilita la formulaciéon y comprobacién de concep-
tos.

= El uso del Cabri permite la articulacién de las representaciones del concepto.

Por medio de esta investigacion se ha podido identificar el efecto de la visualizacion
en el aprendizaje de la geometria, en particular de dos estudiantes de primer semestre
de ingenieria de la Universidad Tecnoldgica de Bolivar, y conocer de qué manera el
uso de la herramienta tecnoldgica (software dindmico Cabri) influye en el desarrollo
de ese proceso cognitivo. El analisis del estudio se hizo teniendo en cuenta los obje-
tivos especificos de la investigacion, dentro del marco de los niveles de visualizacion
establecidos por Raymond Duval.

El proceso de analisis de las grabaciones, videos, bitacoras y técnicas usados en los
casos de este estudio arroja una informaciéon muy valiosa que puede ser ttil en el
proceso de ensenanza - aprendizaje que se imparte a los estudiantes en la geometria
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y constituye un aporte a la educacion de las matemaéticas, conociendo las creencias,
temores, tabties y mitos que sienten los estudiantes y que constituyen una causa

fundamental en el bajo rendimiento académico y en la fobia por esta drea.
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3.3. El uso de los Tablet PC HP en la ensenanza de la
funcion lineal y cuadratica: descripcion de una

experiencia de aula

Frey Rodriguez Pérez
Adriana Maritza Matallana®

Resumen

En el afio 2007, la Corporacién Universitaria Minuto de Dios (Uniminuto) recibié de
parte de la empresa Hewlett-Packard un conjunto de portatiles Tablet PC-HP, como
herramienta bésica para el desarrollo del proyecto investigativo Teach-Me (Techno-
logy, Engineering and Calculus Hewlett-Packard (HP) Mobile Environment), el cual
se soporto en una propuesta didactica que buscé innovar los procesos de ensenanza
y aprendizaje de las matematicas de primer semestre del programa de Ingenieria
Civil a través del uso de las TIC como apoyo a la presencialidad, especificamente
en el tema de funciones de variable real. En este articulo se describe la experiencia,
desde las épticas didactica, tecnolégica y logistica, con el fin de que, para experien-
cias posteriores, se tenga un referente préactico de los diversos aspectos que se deben

tomar en cuenta.

Palabras claves: Tablet PC, teoria de las situaciones didacticas, aprendizaje cola-

borativo, representaciones.

3.3.1. Introduccién

La Corporacion Universitaria Minuto de Dios desarrollo el proyecto Teach-Me Precalcu-
lo, durante los anos 2007-2008, ante la necesidad de modernizar los procesos de
ensenanza y de aprendizaje en asignaturas que causan gran dificultad para los es-
tudiantes, como es el caso del primer curso de matemaéticas de los programas de
ingenieria, precalculo. Para su planteamiento se usaron teorias tales como la teoria
de las situaciones (Brousseau, 1986) y la teoria del aprendizaje colaborativo (Kos-
chman, 1996), con el fin de integrar el uso de los computadores en el aula a través
de procesos didéacticos y pedagdgicos que permitieran el desarrollo de competencias,
estructurando una propuesta que buscaba el acercamiento al estudio de la funcién,

a partir del uso de las representaciones del objeto matemaético.

3Uniminuto, Departamento de Ciencias Bésicas. Especialista en educacién matemética.

frodriguez@uniminuto.edu.
4Uniminuto, Departamento de Ciencias Bésicas. Magistra en docencia de las matem4ticas.

amatallana@Quniminuto.edu.
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3.3.2. Estructura de la propuesta

Durante tres semestres, dos docentes del Departamento de Ciencias Bésicas desa-
rrollaron e implementaron una propuesta basada en el diseno de tres tipos de situa-
ciones, cuyo fin era utilizar los computadores Tablet PC 4400 HP como herramienta
para la ensenanza de las matematicas. A medida que se hacian practicas, se empezo a
evidenciar que en situaciones mediadas por el uso de herramientas computacionales
se requerian no soélo los equipos, sino toda una organizacién para su empleo. En
muchas ocasiones, en la literatura se encuentran experiencias exitosas, pero en muy
pocas se narran todas las situaciones que deben contemplarse para este fin. Por
lo anterior, en esta ocasién se busca mostrar, mas que el componente matematico,
los aspectos generales que hay que tener en cuenta en el momento de implementar

propuestas didacticas que utilizan tales herramientas.

Aspectos tecnolégicos

Como parte de los aportes que la empresa Hewlett-Packard hizo a Uniminuto, el
proyecto conté con 21 HP Tablet PC 4400, con sus respectivos drives externos.
Para el desarrollo de las clases se requirieron el uso de un videobeam, asi como la
adaptacién de un router para configurar una red inaldmbrica de internet (ya que los
computadores se utilizaron en diferentes salones) y de dos aulas con mesas especiales
(a cambio de los pupitres tradicionales), que permitieron usar los equipos en forma
comoda y segura para los estudiantes.

Adicionalmente se conté con varios monitores (estudiantes de tltimo semestre de
tecnologia en sistemas de Uniminuto), quienes colaboraron permanentemente en la
solucién de inconvenientes que se presentan al usar computadores (red y equipos
desconfigurados, por ejemplo). Ellos también estaban encargados del traslado de los
equipos y la organizaciéon de las aulas de clase, con anticipaciéon a su inicio. Fue
fundamental que personas casi expertas y diferentes de los docentes estuvieran ayu-
dando, ya que hay situaciones que se presentan sin previo aviso y el docente no
puede interrumpir el desarrollo de la clase para dedicarse a solucionar tales situa-
ciones. A estos monitores se anade otro grupo de estudiantes, encargados del diseno
y elaboraciéon de iméagenes, gifs, diseno de paginas, distribucién del curso en Moodle
y, en general, del diseno grafico y la programacion requeridos. Especificamente, dos

monitores hicieron sus préacticas profesionales en el proyecto.

En relacién con los Tablet PC HP 4400, son computadores portatiles que se diferen-
cian de otros equipos por un accesorio denominado lapiz 6ptico y por la posibilidad
de girar la pantalla, lo que permite no sélo utilizarlo como una agenda sino también,
gracias a su capacidad de memoria y su resistencia a golpes, en espacios exteriores
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al aula (figuras 1y 2).

Figura 1. Tablet PC He- Figura 2. Uso de la pluma di-
wlett Packard 4400. Fuente: gital de los Tablet PC HP 4400,
http://www.hp.com/. en contextos exteriores al aula de

clase. Fuente: los autores.

Uno de los programas mas utilizados fue Windows Journal (), que junto con el lapiz
optico permitia a los estudiantes desarrollar diversas actividades para mostrarselas
posteriormente a sus companeros, en forma cémoda, agradable y 1til, generando un
entorno en el que la argumentacion fue indispensable para comunicarse. Adicional
al hardware y software utilizados, se tuvieron a disposicion la red local y la platafor-
ma Moodle para retroalimentar talleres, lecturas y presentaciones de las diferentes
tematicas. Esta plataforma generd acceso directo a foros y chats, que apoyaron los
diversos procesos comunicativos y colaborativos, tanto en el aula como en espacios

fuera de clase.

3.3.3. Aspectos logisticos

Para llevar a cabo las clases, se organizaban las mesas en forma de U con el fin de que
todos los estudiantes compartieran sus experiencias, observaran las imagenes pro-
yectada en el videobeam y trabajaran en grupo (figura 3). En las clases, los equipos
se conectaban por medio del software NetMeeting (®), con el cual se podia proyectar
el material preparado para la clase y controlar las exposiciones de los estudiantes
desde cualquiera de los equipos que estaban conectados. A estos elementos se suma
un factor muy importante en el desarrollo de propuestas didécticas: el tiempo. En
diferentes ocasiones, las actividades exigieron mas tiempo del planeado, dadas las
participaciones y los avances del grupo. Frente a este factor, es dificil determinar
con anticipacién su manejo; sin embargo, fue tarea del docente incentivar al grupo
a avanzar y a resolver dudas, teniendo en cuenta el tiempo con el que se contaba.
Surge sin embargo la necesidad de revisar los programas, con el proposito de pro-
poner situaciones que permitan avanzar y, a la vez, cumplir con todos los temas

programados.
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Figura 3. Uso del videobeam y organizacién

del aula de clase. Fuente: los autores.

3.3.4. Aspectos didacticos

Béasicamente, la propuesta tenia como fundamento emplear situaciones problema
contextualizadas en temas propios de la formacion de estudiantes del programa de
Ingenieria Civil. Entre los aspectos que se tomaron en cuenta para el desarrollo del
proyecto estaban la importancia de las TIC en la educaciéon superior, los modelos
educativos en la formacion mixta blended learning, la relacion entre la virtualidad
como apoyo a la presencialidad y los cambios en el papel de los profesores y los estu-
diantes, asi como los beneficios del uso de la tecnologia inaldmbrica en la educacion.
La propuesta estaba conformada por tres tipos de actividades, las cuales pretendian
ajustarse a las tematicas del curso de precalculo, por medio de situaciones problema.

Ezxperiencias tipo A. Tenian por objetivo permitir que el estudiante desarrollara
diferentes actividades de aplicacién, de modo que profundizara en algunos aspectos
de manera contextualizada. En esta ocasion, el docente podia intervenir durante la
clave y después, aclarando dudas y haciendo sugerencias que permitieran al grupo
llegar a una respuesta valida. Estas situaciones se disenaron para trabajarlas con el
uso del software Windows Journal ®), ya que éste permitia una interaccién directa
con el Tablet PC. Entre los contextos utilizados estuvieron un parque y la zona verde
cercanos a la corporacion y el Museo de Arte Contemporaneo del barrio Minuto de
Dios (figuras 4 y 5).

Figura 4. Uso del Tablet PC en Figura 5. Uso del Tablet PC en
una situacién tipo A. Fuente: los una situacién tipo A. Fuente: los

autores. autores.
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Experiencias tipo B. Segun Brousseau (1986), son las llamadas situaciones adidacti-
cas, en las cuales los estudiantes, a partir de sus conocimientos, dan respuesta a
situaciones problema planteadas. El docente no intervenia sino en el momento de
mediar la socializacién, tratando de institucionalizar los procesos validados por to-
dos, e incentivando la discusion como herramienta para la emergencia de invariantes
propios de cada objeto matemadtico (figura 6).

Figura 6. Uso del Tablet PC en una situacién tipo A. Fuente: los autores.

Experiencias tipo C. Con estas experiencias se pretende presentar al estudiante
explicaciones generales del tema, donde prima la exposicién magistral. Sin embargo,
la diferencia radica en que se utilizan diferentes materiales educativos digitales to-
mados de la red o creados por el docente, tales como presentaciones en Power Point
®), applets para explicaciones, etc. Ademds, el empleo del Tablet PC permitia al
docente escribir sobre estos materiales, es decir, las clases no se limitaban a ellos,
sino que el docente los podia utilizar de acuerdo con el ritmo de la clase. Este tipo de
actividades surgié como una necesidad ante la premura del tiempo en el desarrollo
de las tematicas de los programas. Se complementaban con actividades creadas por
el docente para que las resolviera todo el grupo con su ayuda o explicacion. Por lo
general, uno o dos estudiantes tomaban el control del equipo y proponian soluciones
que eran discutidas por el grupo. El docente se podia apoyar en el ambiente virtual
de aprendizaje o en el curso en Moodle designado para el proyecto, con el objeto de
que los estudiantes pudieran acceder a los materiales utilizados en clase. Ademas, el
docente podia subir al curso virtual otros materiales que sirvieran como apoyo a los
procesos presenciales. En la figura 7 se muestra al docente exponiendo el tema.

Figura 7. Uso del Tablet PC en una situacién tipo C. Fuente: los autores.

Durante el planteamiento de las situaciones, se pretendia que el docente fuera
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autonomo, puesto que es necesario adaptar toda propuesta didéactica a las condi-
ciones no so6lo tecnolédgicas, sino también a las condiciones propias de los grupos de
estudiantes. En todas las situaciones, el uso de las representaciones de los objetos
matematicos fue fundamental. En cuanto al estudio del objeto funcién de variable
real, se dio mayor importancia a la elaboracion de situaciones tipo C, ya que se

considera que este objeto matematico es fundamental en la formacién de ingenieros.

3.3.5. Papel del docente

Ademads de planear la clase (con todas las exigencias de una clase mediada por
computador), el docente debia organizar y clasificar las elaboraciones de los estu-
diantes para potenciar no sélo el aprendizaje colaborativo sino también la construc-
cion del conocimiento matematico. Esto exigié tiempo y compromiso no sélo por
parte del docente sino también del Departamento de Ciencias Basicas, ya que se
requiere un tiempo mayor para su preparacién que en un curso normal. Ademas, fue
indispensable la colaboracion de los monitores, quienes apoyaron al docente desde
el uso de la tecnologia. El docente indagaba continuamente sobre MED (materiales

educativos digitales) que pudieran apoyar el proceso en el aula.

3.3.6. Papel del estudiante

El estudiante debia, aparte de cumplir con las funciones tradicionales, tales como
asistencia, entrega de trabajos a tiempo, participaciéon en clase, entre otras, era
necesario que se concientizara de que su proceso de aprendizaje estaba mediado
por herramientas computacionales, lo cual le exigia estar dispuesto a aprender a
manejar buscadores en internet, a utilizar el correo electronico, los chats y los foros,
entre otros. Esto lo llevaba a desarrollar habilidades que, en 1ltimas, se esperaba
favorecieran el desarrollo de habilidades de autoaprendizaje.

3.3.7. Conclusiones

Las experiencias de aula, disenadas y soportadas en la teoria de las situaciones
de Brousseau y el aprendizaje colaborativo, generaron un ambiente propicio para
el acercamiento a la funcién lineal y cuadratica, ya que a partir de problemas en
contexto real, la funcién y sus representaciones surgieron como una herramienta

importante en la propuesta de soluciones.

El uso de tecnologia inalambrica permitié ampliar las posibilidades de las experien-
cias. Por ejemplo, la visita que se realizé a un acueducto veredal en un municipio

cercano permitio que los estudiantes pudieran vivenciar la elaboracion de mapas, la
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toma de medidas, el planteamiento de hipétesis, el reconocimiento de las partes de

un acueducto y la utilizacién de funciones para la solucién de situaciones.

Los resultados de la puesta en marcha de la propuesta permitieron evidenciar la
posibilidad de reproducir en otras asignaturas el trabajo con los Tablet PC-HP,
dadas sus caracteristicas, innovacion e impacto tanto en los estudiantes como en los
docentes. Se requiere el compromiso de diferentes instancias para la consecucién de
estos logros.

Es fundamental generar en los estudiantes, desde primer semestre, la confianza y el
autoaprendizaje, puesto que en la actualidad hay muchas fuentes de informacién que
el estudiante no conoce o no sabe manejar. Son ellos los que mas interés presentan

por herramientas novedosas y creativas.

El uso de computadores en el aula de clase exige el compromiso no sélo de los docen-
tes de matematicas, sino de disenadores gréaficos, ingenieros de sistemas, directores
de investigacion, entre otros, que, desde sus conocimientos, aporten diferentes ele-

mentos que son necesarios para el desarrollo de propuestas en este tipo de ambientes.

La investigacion es larga y, por tanto, se requiere compromiso tanto de tiempo como
econémico por parte de la institucién.
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3.4. Analisis de las concepciones operacional y estructural

de funcidn real

Mirydn Trugillo Cedeno

Nivia Marina Castro®

En este articulo se presentan los resultados de la investigacion titulada “Media-
cién de situaciones didédcticas apoyadas en el uso de la calculadora graficadora en
la superacion de obstaculos cognitivos en el aprendizaje del concepto de funcién”.
Se siguié una metodologia basada en la ingenieria didactica, con un tipo de diseno
antes-después sin grupo control, que contaba con los obstaculos cognitivos que habia
que superar, como variable dependiente y como variable experimental la estrategia
(guia pautada), y una prueba final aplicada después de un tiempo de desarrolla-
da la estrategia y que permitié la medicién del efecto causado sobre la variable

experimental.

Tales resultados estdan relacionados especificamente con el andlisis realizado sobre
las concepciones operacional y estructural de funcién real en estudiantes de calcu-
lo diferencial de primer semestre de la Universidad de La Salle, que resulté de la
intencionalidad de identificar y superar obstaculos cognitivos asociados al concepto
de funcién. Los resultados obtenidos dieron respuesta a una de las preguntas de
investigacion formulada como sigue: jse puede atribuir a la presencia de obstaculos
cognitivos, asociados al concepto de funcién, la ausencia de una concepcion estruc-
tural de este concepto?

3.4.1. Elementos tedricos

Para analizar las concepciones operacional y estructural de funcion real, se tomé co-
mo base el indicador del nivel basico de comprensién de funcién (ICBF), que de
acuerdo con Alvarez y Delgado (2001), estd dado por un vector de seis componen-
tes, asi:

ICBF= ( DP*, COGH, NEF, NEI, NECB, DSA)

Donde:

NEF= nivel de éxito al identificar funciones en los distintos contextos. Se obtuvo al
dividir el nimero de aciertos entre el nimero de contextos (parejas, grafico, alge-
braico y a trozos) y su méaximo valor fue 1.

NEI = nivel de éxito de cada estudiante al seleccionar funciones que poseen inversa.

Se obtuvo al dividir el nimero de aciertos entre el nimero de contextos (parejas,

®Docentes de la Universidad de La Salle. mtrujillo@unisalle.edu.co. y mcastro@unisalle.edu.co.
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grafico y algebraico), siendo la nota maxima 1. Se consideré$ aprobatorio cuando la
nota era mayor o igual que 0,6. El NEI se obtuvo al dividir el nimero de aciertos
entre el nimero de contextos y su maximo valor fue 1.

DSA = disponibilidad del sistema simbdlico abstracto. Apunta a revelar en qué me-
dida el estudiante ha construido en forma general el significado de los signos: f(a),
f(x) =by h(g(a)), analizando el nivel de éxito que obtiene al realizar tales célculos

en contextos especificos.

Se supuso que un estudiante disponia del significado abstracto de cada simbolo
cuando realizaba con éxito dicho céalculo en por lo menos dos contextos diferentes
entre parejas, grafico o algebraico. En este caso se asigné el valor 1; en caso contrario,
cero. El valor del DSA fue el promedio aritmético tomado sobre los tres calculos
que se presentaron con los simbolos mencionados. Para analizar el nivel minimo de

comprensién, se supuso que el DSA debia ser mayor o igual que 0,66.

NECB = nivel de éxito que tiene el estudiante para realizar los calculos basicos en
los contextos de parejas, grafico y algebraico. Cuando son indicados en el simbo-
lismo abstracto de funciones (f(z), d = f(z), f(g(x)) se halla del promedio de los
indicadores NEC de h(g(a)), NEC de f(a) y NEC de f(z) = b. Para calcular cada
NEC (nivel de éxito en el cdlculo), se calificé sobre 5 cada variable, en los tres con-
textos, asi: a cada respuesta acertada en un contexto, se le asigné la nota 1,7 (5/3).
Si tenia dos aciertos, se le asignaba 3,4; si tenia los tres aciertos, se le asignaba 5; si
no tenia aciertos, se le asignaba cero. El NECB se consideré aprobatorio cuando su
calificacién era mayor o igual que 3,00.

DP= definicion personal. Es la que el estudiante escribe o verbaliza, en relaciéon con
el conocimiento matematico.

ICE= imagen conceptual evocada. Es una subestructura de la IC (imagen concep-
tual). Se activa por la demanda cognitiva de la situacién matematica planteada. Se
infieren plausiblemente de los observables de las acciones del estudiante.

La DP y la ICE se identificaron con base en los prototipos de imagenes conceptuales
evocadas y definiciones personales asociadas con la identificacién de funciones, de
acuerdo con las acciones de los estudiantes. Los cédigos de los prototipos de funcion

se tomaron de Alvarez y otros (2001).

DPE= definicién personal estable. Se considerd que el estudiante tenia una DPE si
al comparar los prototipos de DP con el de la pregunta ;para usted qué es funcion
matematica?, se observaba que el estudiante poseia un cierto ntimero de prototipos
iguales.
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Los criterios fueron los siguientes: se considerd que el estudiante poseia una DPE si
aparecia un prototipo en la pregunta anterior y existia al menos otro igual en las tres
preguntas que calificaron la DP, o dos o mas prototipos iguales en las mismas tres
preguntas, aunque no hubieran respondido la pregunta ;para usted qué es funcion
matematica? En este caso se le asigné un valor de 1 y en el caso contrario se le

asigné el valor cero.

COH= coherencia local. Es la coherencia que presentan las definiciones personales
de funcién respecto de la accién del estudiante, referido a un contexto particular.
Se le asigné el valor 1 si la imagen conceptual evocada (ICE) coincidia con la defi-
nicién personal (DP), utilizada al justificar la accién realizada, al resolver la tarea
correspondiente al contexto que se trabajaba y cero en caso contrario.

COHG = coherencia global. Se refiere al grado de integracion entre la acciéon or-
ganizada por las ICE y la conciencia de como y por qué se hace, determinada por
la DPE. La medida es un coeficiente entre cero y uno que se obtuvo al dividir el
nimero de prototipos de ICE que se habian identificado y que coincidian o eran

equivalentes con el prototipo de la DPE, entre el niimero de respuestas.

DP* = definicién personal estable, bien adaptada matemadticamente. Estuvo deter-
minada por la existencia de un prototipo estable al calificar la pregunta ; para usted
qué es funcién matematica?, que coincidia con la definicién cuasiconjuntista (C). Si

éste era el caso, se escribia 1; si no, cero.

Se caracterizo un nivel minimo de comprension de funcién, teniendo en cuenta los

siguientes criterios:
DP* =1, COHG > 0,66, NEF > 0,6, NEI > 0,6, NECB > 3, DSA > 0,66

Para determinar el segundo nivel de comprension, se adoptaron los siguientes cri-
terios: NEF y NEI mayor o igual que 0,75, NECB mayor o igual que 3,75, COHG
mayor o igual que 0,825, manteniendo invariables DP* y DSA.

Otro aspecto importante que permitié estudiar la prueba diagnostica fue el saber si
un estudiante podia tener una comprension estructural mejor establecida de funcion,

que una comprensién operacional®.

Se consider6 que un estudiante poseia una concepcion estructural de funcién cuando

su nivel de éxito al identificar funciones que tenian funcién inversa (NEI) era mayor

6Segiin Sfard (1991), ver una entidad matemdtica como un objeto (estructural) significa ser
capaz de referirse a él como si fuera una cosa real. También significa ser capaz de reconocer la idea
con una mirada, manipularla como una totalidad sin entrar en detalles. Interpretar una nocién
como un proceso implica considerarla una entidad potencial mas que como entidad actual, que

viene a nuestra existencia interior en peticiéon de una secuencia de acciones.
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o igual que 0,66, su nivel de éxito al calcular composicién de funciones (NEC de
h(g(a))) era mayor o igual que 3,00 y el nivel de éxito en el reconocimiento de
funciéon como objeto era igual a 1. Tendria una concepcién operacional de funcion
si su nivel de éxito al calcular imdgenes (NEC de f(a)) era mayor o igual que 3,00 y
su nivel de éxito al calcular preimdgenes (NEC de f(z) = b) era mayor o igual que
3,00.

Tall y Vinner introducen en varios articulos la nocién de concepto imagen y senalan
diferencias entre definicién formal y definiciéon personal de un concepto matematico,

manifestada la problemética en torno a estos dos conceptos:

» Definicién personal (DP). Concepto matematico tal como es apropiado por

las personas.

» Imagen conceptual (IC). Determina la forma en que entendemos el con-

cepto.

» Imagen conceptual evocada (ICE). Subestructura de la IC activada por
la demanda cognitiva de la situaciéon. Las ICE se infieren de los observables de

las acciones del estudiante.

» Definicién formal o institucional (DI). Concepto matematico tal como se

expresa y concreta socialmente en la academia.

Con el fin de hacerlo operativo y entender como evoluciona y se transforma el con-
cept 1mage, Alvarez y Delgado (2001) hacen una redefinicién del término imagen

conceptual, introducido por Tall y Vinner, y precisan los siguientes conceptos asi:

Una definicion personal relativa a un concepto matematico es estable cuando la
persona verbaliza una definicién sobre el concepto en forma consistente y equivalente
en diferentes situaciones. Una definicion personal estable se llama bien adaptada
matemadticamente si es equivalente a la definicion institucionalizada del concepto.

La coherencia de la definicién se refiere al grado de articulaciéon que tiene dicha
definicién personal con la accién, es decir, con el concepto imagen evocado, cuando
argumenta y opera con el concepto. Se dice global cuando esta referida a distintos
contextos. Sera local cuando esta referida a un solo contexto o situacién. El concepto

de coherencia supone el de estabilidad.

Estabilidad no implica necesariamente buena adaptacién matematica. No es extrano
encontrar que una persona tenga una definicién estable de un concepto, mal adapta-
da matematicamente. Tampoco se cumple que una definicion personal estable, bien
o mal adaptada, sea necesariamente coherente. Puede ocurrir que una definicién
personal estable mal adaptada, sea coherente.
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Prototipos de imagenes conceptuales evocadas y definiciones personales

asociadas con la identificacion de funciones. De las categorias o prototipos

de las imagenes conceptuales y las definiciones personales asociadas al concepto de

funcién estudiada por Alvarez et &l. (2001), se tuvieron en cuenta las referidas a

continuacion. Estas pueden diferir de un contexto a otro en un mismo sujeto, por

lo que es necesario establecer los prototipos que se activan en ciertos contextos para

analizar sus variaciones y su estabilidad.

C ( Cuasiconjuntista) (Dirichlet): sean X y Y conjuntos no vacios arbitrarios.
Una funcion de X en Y es una asociacién o correspondencia entre elementos de
X y elementos de Y tal, que a cada elemento de X le corresponde un elemento

y s6lo uno en Y.

CI (Cuasiconjuntista Inyectiva): f es una “funcién” del conjunto X en el
conjunto Y si todo elemento de X tiene una sola imagen en Y. Ademas, a

elementos distintos de X les corresponden iméagenes distintas en Y.

CS (Cuasiconjuntista Simétrica): f es una “funcién” en el sentido cuasicon-

juntista, pero no discrimina dominio y codominio.

R (Relacién): f es una “funcién” del conjunto X en el conjunto Y si todo

elemento de X tiene por lo menos una imagen en el conjunto Y.

RS (Relacién Sobreyectiva): f es una “funcién” del conjunto X en el conjunto

Y si todo elemento de Y es imagen de algtin elemento de X.

RR (Relacién Restringida): f es una “funcién” del conjunto X en el conjunto
Y si algunos elementos de X tienen una y sélo una imagen en el conjunto Y.

E (Euleriana): f es una funcién si su regla de correspondencia se puede ex-

presar mediante una expresién matematica variable Unica.

ED (Euleriana Despejada): una ecuacién en x y y define a y como una funcién

de z, si y esta expresada explicitamente en términos de x.

G (Geométrica): f es una “funcién” si al trazar una recta perpendicular al
eje de abscisas, ésta no corta la grafica en mas de un punto.

GC (Gréfica Continua): f es una “funcién” si la gréifica de f es continua.
N: no contesta.

O: otro prototipo diferente de los anteriores.
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Definicién formal o institucional (DI) de funcién: la definicién institucional
de funcién que se usé dentro del proyecto de investigacion fue la Cuasiconjuntista
C (Dirichlet), ya que es la definicién que mads se aproxima a la que enuncia Stewart
(2003) en el texto guia para estudiantes de primer semestre de ingenieria en la
Universidad de La Salle.

Para efectos del desarrollo del proyecto se usdé una metodologia que permitié que
el estudiante transitara por las diferentes definiciones de funcién real y que, en ese

transito, se pudiera construir el concepto estructural de funcién.

3.4.2. Resultados

En la tabla 1 se recopilan los resultados de la preprueba y la posprueba, relacionados
con la disponibilidad del sistema simbélico abstracto (DSA) y nivel de éxito en la
realizacién de célculos basicos (NECB).
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Tabla 1. Disponibilidad del sistema simbdlico abstracto (DSA) y nivel de éxito que tiene el

estudiante para realizar los calculos bésicos (NECB).

[= preprueba.
F= posprueba.
N= no contesta.

Los resultados de la preprueba y la posprueba, correspondientes a la definicion
personal estable, a la coherencia global y a la definicién personal bien adaptada al
concepto matematico de funcién, aparecen consignados en la tabla 2.
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10 1 ED| G |[ED| C |C|1]0
2 O | C R|C|]0|0]|11]067]100/0]1
3 ED|ED |ED| C |1]1
15 ED | C
11 1 N| O] NJED|O]|O
2 NG| N]J]GC|0|0]|0|1]0,00]000/|0]0
3 NI/ N| N|ED|O0|O
15 N | O
12 1 N |ED | ED | ED | 0
2 N | G| N G |0 0/1(000]033[0|0
3 ED | ED | ED | ED | 1
15 N | G
13 1 N |ED|ED| 0 |0
2 NI N|]O|]N/J0O|O0O]|O|0]000]000/|0]O0
3 N | N |ED|ED|0|O
15 G| O
14 1 CS|CS| O C 10
2 CS| G |CS| C |1]1|1|1]033[1,00{0]1
CS|CS|ED| C | 0]0
15 cs | C
15 1 N | R | N C 10
2 N | G| N C |]011]0|1]0,00]100(0]1
3 N | R | N C 10
15 N | C
16 1 N| N| NJ|ED|O0|O
2 NI G| N]O|[0|0]0/0]000]033/0]0
3 NI/ N| NJ|ED|O0|O
15 N | O

Tabla 2. Definicién personal estable (DPE), coherente globalmente (COHG) y bien adaptada

(DP*) al concepto matemédtico de funcién.

De acuerdo con los datos de la tabla, se observa que:

» El43,8% de la poblacién tenfa una DPE de funcién aceptable y después de la
estrategia aument6 al 81,3 %.

» El 18,8 % de la poblacién tenfa una COHG aceptable; después de la estrategia,
el porcentaje aument6 a 37,5 %.
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» Antes de la estrategia, ninguno de los estudiantes tenfa una DP*; después de
la estrategia, el 31,3 % de la poblacién tuvo una DP* representativa.

Con respecto al indicador vectorial de comprensiéon bésica de funcién (ICBF), a
continuacion se muestran los resultados de la preprueba y la posprueba aplicadas a
la poblacién objetivo, que permitieron determinar el nivel minimo de comprension,

y el segundo nivel de comprension, del concepto de funcién (tabla 3).

Identificacion de Funciones Nivel minimo de | Segundo nivel de
Est. | DP* COHG NEF NEI NECB DSA Comprension Comprension
I|F I F | F | F I E I F I F | F
1 |0(0|000|067|000| 050 (000)000)0,00|0,00|0,00|0,00 NO NO NO NO
2 |0|0|0&7 |ODOO|0O75| 075 | 000|033 |0,00(0,00|0,00)|0,00 NO NO NO NO
3 |0)0|000|033|025( 020 (000 )|0,00|057227 000|066 NO NO NO NO
4 |0|0(00C|000|000| OF5 | 000|000 |0,00|0,57|0,00)|0,00 NO NO NO NO
5 (00| 033 |000(025| 0,75 | 033|100 |0,57)|390|0,00)0,66 NO NO NO NO
6 (01033 1 0,25 1 0,00 1 1,13 | 3.37 | 0,33 | 0,66 NO Sl NO NO
7 |0|0(0O0C 000|025 O5 | 000|000 |057(1,13|0,00|0,33 NO NO NO NO
8 |0|1| 067 1 0,75 1 0,33 1 0,57 3.9 |0,00| 0,66 NO 5l NO Sl
9 (0|0)|00C|000|050]( 050 |000|000|0,00|227|0,00)|0,66 NO NO NO NO
10 |01 ]| 0.67 1 0,50 1 0,33 1 333 5 |066|1,00 NO Sl NO Sl
11 |0|0| 0,00 |000|000( 075 (000|033 |0,00|227|0,00|0,66 NO NO NO NO
12 (0|0| 000|033 |000| 0,75 | 0,00 | 0,00 |1,13)|3.33|0,33| 0,66 NO NO NO NO
13 |0|0|00C|000|05( 075 (000|000 |1,70)|280|033|066 NO NO NO NO
14 (011|033 1 050 ( 6,75 | 0,00 1 1,13 3,9 (033|066 NO sl NO Sl
15 (0|1 0,00 1 0,00 ( 075 | 0,00 I 0,00|3.33 | 000|066 NO Si NO NO
16 |0|0|000|(033|000( 075 (000|033 |0,00|3,90(0,00|0,68 NO NO NO NO

Tabla 3. Indicador vectorial de comprensién béasica de funcién (ICBF).

I = preprueba.
F= posprueba.
NO= no alcanza el nivel de comprension.

SI= si alcanza el nivel de comprension.

Los resultados contenidos en la tabla anterior reflejan que ningin estudiante en el

momento de ingreso tenia el nivel minimo de comprensién del concepto de funcion.

Al finalizar la estrategia, el 31,3 % de la poblacién obtuvo el nivel minimo de com-
prension del concepto de funcién, mientras que el 18,7 % de la poblacién alcanzo el
segundo nivel de comprension del concepto de funcién.
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En lo relacionado con las concepciones estructural y operacional de funcién, segui-
damente se muestran los resultados de la preprueba y la posprueba aplicadas a la

poblacién objetivo (tabla 4).

NEC NEC Funcion
como Concepcion | Concepcion
NEI NEC(f(a))
Est. hi{g(a)) f(x)=b objeto Estructural | Operacional
| F I F | F | F | F I F | F

1 |000|000|0| 000 |O0,00]000]|000]|000] 0 N | NO | NO | NO | NO

2 0,00 | 033 |0 0,00 0,00 | 0,00 | 0,00 | 0,00 N 0 NO | NO | NO NO

3 0,00 | 0,00 O 0,00 1,70 | 3,40 | 0,00 | 3,40 0 0 NO | NO | NO Sl

4 0,00 | 0,00 | O 0,00 0,00 | 1,70 | 0,00 | 0,00 N N NO | NO | NO NO

5 033|100 0O 1,70 1,70 | 5,00 | 0,00 | 5,00 0 1 NO | NO | NO Sl

8 0,00 | 1,00 | O 5,00 3,40 | 340 | 0,00 | 1,70 0 1 NO Sl NO | NO

7 0,00 | 0,00 | O 0,00 1,70 | 3,40 | 0,00 | 0,00 0 0 NO | NO | NO NO

8 033 | 100 | O 1,70 1,70 | 5,00 | 0,00 | 5,00 0 1 NO | NO | NO Sl

8 0,00 | 000 | O 0,00 0,00 | 340 | 0,00 | 3,40 0 0 NO | NO | NO =]

10 033 | 100 O 5,00 5,00 | 500 | 500 | 500 0 1 NO Sl Sl Sl

11 0,00 | 033 | O 0,00 0,00 | 340 | 0,00 | 3,40 0 0 NO | NO | NO Sl

12 0,00 | 0,00 O 0,00 3,40 | 500 | 0,00 | 500 0 0 NO | NO | NO Sl

13 0,00 | 0,00 O 0,00 3,40 | 500 | 1,70 | 3,40 0 1 NO | NO | NO Sl

14 0,00 | 100 | O 1,70 3,40 | 5,00 | 0,00 | 5,00 0 0 NO | NC | NO Sl

15 0,00 | 1,00 | O 0,00 0,00 | 5,00 | 0,00 | 5,00 0 0 NO | NO | NO Sl

16 0,00 | 033 | O 1,70 0,00 | 5,00 | 0,00 | 5,00 0 0 NO | NO | NO Sl

Tabla 4. Anélisis de la concepcién estructural y la concepcién operacional de funcién.

[= preprueba.
F= posprueba.
NO= no tener la concepcién estructural u operacional de funcién.

SI= tener la concepcién estructural u operacional de funcién.

Los resultados contenidos en la tabla anterior reflejan que antes de la aplicacién de
la estrategia el 6,3 % de los estudiantes tenfa una concepcion operacional de funcién,
después el 68,8 % alcanzé tal nivel.
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Antes de la aplicacién de la estrategia, ningin estudiante tenia una concepcion

estructural de funcién; después sélo el 12,5 % alcanzé tal nivel.

Segun el indicador vectorial de comprension basica de funcién (ICBF), antes de la
estrategia ningun estudiante tenia el nivel minimo de comprensién del concepto de
funcién. Al finalizar la estrategia, el 31,3 % de la poblacién obtuvo el nivel minimo
de comprensién del concepto de funcién, mientras que el 18,7% de la poblacién

alcanzo el segundo nivel de comprension.

Este resultado revela que en los cursos de primer semestre de ingenieria en la Uni-
versidad de La Salle existen problemas de comprensién alrededor del concepto de
funcién, que persisten o evolucionan muy lentamente. Se advierte que ignorar la
presencia de esta problematica puede traer como consecuencia el fracaso de los estu-
diantes en los cursos de calculo y, por tanto, un aumento en los niveles de desercién.

Estos resultados no difieren mucho de los obtenidos por Alvarez y Delgado (2001) en
un estudio realizado en la Universidad del Valle con estudiantes de primer semestre
de ingenieria y ciencias, donde encontraron que al momento del ingreso a la univer-
sidad el 17,1 % de la poblacién mostré tener el nivel uno de comprensién bésica de
funcién y ningun estudiante alcanzé el nivel dos. Al término del semestre, 27,3 %
alcanzé el nivel uno y 9,1 % el nivel dos.

3.4.3. Conclusiones

Los resultados mostraron que al parecer algunos estudiantes pueden alcanzar una
concepcién estructural de funcion, sin tener una concepcion operacional, lo cual se
contrapone a lo dicho por Sfard (1991), cuando afirma que “en el proceso de forma-
cion del concepto, las concepciones operacionales deben preceder a la estructural”,
proposicién considerada béasicamente verdadera en lo que concierne al desarrollo
histérico o al aprendizaje individual.

Por 1ltimo, se comprobd empiricamente que la superacion de obstaculos cognitivos
asociados al concepto de funcion es necesaria para la construccién de una concepcion

estructural del concepto en mencién.
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3.5. Actitudes hacia las matematicas y rendimiento

académico; una experiencia en la Universidad Sergio
Arboleda.

Luis Fduardo Pérez L.”

Resumen

Se presentan los avances de la investigacion “Actitudes hacia las matematicas y
rendimiento académico”, logrados por el grupo IMA en la linea de investigacion
metamatematicas, que se ha venido desarrollando durante mas de dos anos. Se in-
troduce el tema de la actitud, definicion, estudios previos, importancia pedagdgica
de las actitudes, medicién de las actitudes, construccion de escalas de actitud. Apli-
cacion al caso de los estudiantes que ingresan al primer semestre en la Universidad

Sergio Arboleda.

Palabras claves: actitudes, test, escala tipo Likert, rendimiento académico, ma-

tematicas.

3.5.1. Introduccion

Las asignaturas de algebra, trigonometria y calculo para la educacion media, y cur-
sos como precalculo, calculo diferencial y algebra lineal para quienes ingresan a la
educacién superior, representan, por el bajo rendimiento de los estudiantes, una gran

preocupacion para quienes conforman el entorno social inmediato de los estudiantes.

Directivos, profesores y padres de familia buscan alternativas que permitan superar
las bajas calificaciones de los estudiantes; el cambio de profesores que imparten
las asignaturas, la implementacion de estrategias pedagogicas para el desarrollo de
actividades en el aula y fuera de ella, y la contratacién de profesores particulares que
dicten clases extras, son algunas de las estrategias empleadas, sin que ninguna de
ellas incremente significativamente y de manera general el rendimiento académico
de los estudiantes en dichos cursos. La aprobacién de tales asignaturas se convierte,
en la mayoria de los casos, en un logro parcial, ya que en el siguiente curso la
situacion se repite, con la mismas alternativas parciales de soluciéon y con tan sélo
la esperanza de que el tiempo pase para poder, en el caso de los estudiantes de
bachillerato, escoger una carrera que no tenga cursos de matematicas, o para los

alumnos universitarios, superar los cursos para no volver a saber nada que tenga

"Investigador IMA (Instituto de Matemdticas y sus Aplicaciones), docente de matemaéticas,
magister en docencia e investigacién universitaria con énfasis en matematicas, especialista en ma-
temdtica aplicada, matematico y licenciado en matematicas.

luis.pereze@usa.edu.co.
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que ver con éstos, dos cosas que casi en ningin caso se consiguen, ya que la reina
de las ciencias y sus aplicaciones hacen presencia en la mayor parte de las areas del
saber.

La identificacion especifica de los causantes del mal rendimiento en estas asigna-
turas se convierte en una prioridad, ya que su conocimiento permitirda tomar los
correctivos o implementar las politicas que lleven a superar de manera significativa
el nivel académico actual. Empiricamente, los bajos resultados son atribuidos por la
comunidad académica a la formacion previa de los estudiantes, a las acciones de los
profesores, a problemas de didactica de la matematica y a las actitudes hacia la ma-
tematica de profesores, directivos, alumnos y demés actores que pertenecen al circulo
social de los estudiantes. Al centrar la atencion en el 1ltimo aspecto mencionado,
es decir, en la influencia de las actitudes hacia las matematicas en los resultados
académicos obtenidos en los primeros cursos por los estudiantes que ingresan por
primera vez a la educacion superior, y buscar establecer la existencia de una corre-
lacién positiva entre la actitud hacia la matematica y el rendimiento académico en
los cursos de matematicas de los estudiantes que ingresan por primera vez a la Uni-
versidad Sergio Arboleda, con sedes en Bogotd, se ha desarrollado, durante mas de
dos afios, un trabajo en el interior del grupo MUSA. IMA18, con el que se pretende
determinar las causas reales del bajo rendimiento en matemaéticas de los estudiantes
en la educacién superior.

3.5.2. Actitudes y matematicas

Las actitudes han sido uno de los temas mas estudiados por los psicélogos sociales,
que han propuesto variadas definiciones; una que recoge las ideas aqui enunciadas
acerca del concepto de actitud es la dada por Bazén y Aparicio (1998), quienes

manifiestan:

La actitud es una predisposicion del individuo para responder de mane-
ra favorable o desfavorable a un determinado objeto (matemética - es-
tadistica). La actitud es entonces una disposicién personal, idiosincrési-
ca, presente en todos los individuos, dirigida a objetos, eventos o per-
sonas, que se organiza en el plano de las representaciones considerando

los dominios cognitivo, afectivo y conativo.

8MUSA.IMAL1 significa Matematicas Universidad Sergio Arboleda. Instituto de Matemadticas y
sus Aplicaciones, grupo 1.
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La actitud determina aprendizajes a través de procedimientos produc-
tivos, emotivos y volitivos elaborados a través de informacién psiquica,
y a su vez estos aprendizajes pueden mediar como informacién social

futura para la estabilidad o no de esta actitud.

Como se puede observar en esta definicién, el concepto enuncia y enumera algunas
componentes para la actitud. Asi, una actitud hacia la matematica que refleje aprecio
e interés por esta ciencia hace referencia a una componente afectiva de ésta, mientras
que referencias hacia el modo de empleo de las capacidades generales y habitos de
trabajo hacia esta disciplina evidencian un componente cognitivo de la actitud. Del
mismo modo, la disposicion a participar en actividades que involucren conocimientos
matematicos hace referencia al componente comportamental, y el reconocimiento o
no de la utilidad de los conocimientos matemaéaticos muestra la intervencién de un

cuarto componente de la actitud: el valor.

3.5.3. Medicion de actitudes

En 1926, el socidlogo norteamericano Emory Bogardus diseno el primer instrumento
reconocido para medir cuantitativamente las actitudes, que llamé escala de distancia
social; con éste midi6 la disposicion de la gente a mantener y aceptar una proximidad

con diversos grupos sociales.

Siguiendo la naciente linea de la psicometria, Rensis Likert disend en 1932 una escala
que permitia situar a una persona en un continuo que iba desde una actitud muy

positiva hasta una actitud muy negativa hacia algo.

En la actualidad, de entre las multiples técnicas de observaciéon que se conocen
(entrevistas, cuestionarios, test proyectivos, observaciones de la conducta, etc.), el
instrumento de medida de actitudes son las escalas de actitud, porque como indica
Gairin (1987), presentan como ventajas el anonimato, dan tiempo al encuestado
para pensar acerca de las respuestas, se pueden administrar de manera simultanea
a muchas personas, proporcionan uniformidad, los datos obtenidos son facilmente
analizados e interpretados y pueden administrarlas terceros sin pérdida de fiabilidad

de los resultados.

Las investigaciones relacionadas con la evaluacion de las actitudes hacia la matemati-
ca en la década de los setenta se centraron en analizar las opiniones de los estudiantes
hacia las materias relacionadas con matematicas y sus formas de ensenarlas, asi co-
mo lo afirma McLeod (1992), algunos de los estudios més importantes que se han
desarrollado son los siguientes: Higgins (1970), realiza una investigacién en la que



3.5. LUIS EDUARDO PEREZ. ACTITUDES HACIA LAS MATEMATICAS 211

evalia las actitudes de los alumnos antes y después de la actividad instruccional;
Aiken (1974) disené dos escalas de actitud tipo Likert acerca de las matemaéticas;
Harvey, Plake y Wise (1988) estudiaron la relacién existente entre una serie de va-
riables afectivas y cognitivas; Garofalo y Lester (1985) evidencian la influencia de
las creencias de los estudiantes sobre las matemaéticas a la hora de resolver un pro-
blema; Auzmendi (1992) analiza la vinculacién de las actitudes con el logro y los
factores que constituyen las actitudes hacia las matematicas y la estadistica; Schau
et 4l. (1992) describen la existencia de relacién entre el grado de escolaridad de los
encuestados y la actitud antes y después de realizar la instruccién; Moyra, Rufel et
al. (1998) confirman la influencia de las actitudes del profesor en sus alumnos como
un factor dominante; Bazdn y Sotero (1997) muestran que no hay diferencias por
sexo en la actitud hacia las matematicas, pero que si existen discrepancias marcadas
de acuerdo con la edad; Bazdn y Aparicio (2004-2005) muestran la relacién entre
actitud y rendimiento en estadistica de 87 maestros.

A nivel nacional se destacan los estudios de Gémez y Carulla, en la Universidad de los
Andes de Bogotd, quienes destacan el cambio en la percepcion hacia la matematica
de los estudiantes que emplearon la calculadora graficadora en su primer curso de
matematicas universitarias.

La mayoria de las investigaciones mencionadas se caracterizan porque hacen uso de
escalas de actitud tipo Likert como instrumento de medicién, ademas, evidencian la
necesidad de realizar investigaciones acerca de actitudes hacia las matematicas en

contextos universitarios.

3.5.4. Desarrollo de la investigacion

La investigacién se desarrollé en tres etapas: en la primera se hizo un estudio ex-
ploratorio con el propdsito de detectar el tipo de instrumento que se va a aplicar,
en la segunda se busco aplicar un instrumento piloto fiable y en la tercera etapa se
pretendié decantar el instrumento y aplicarlo a una cohorte de estudiantes que in-
gresan por primera vez a la Universidad Sergio Arboleda, que permitiera responder

al problema planteado y verificar la hipétesis de investigacion.

Primera etapa

La preocupacion del grupo MUSA. IMA1 por el rendimiento académico en ma-
tematicas de los estudiantes que ingresan a la universidad llevé durante el primer
semestre de 2006 a la realizacion de una encuesta exploratoria. Los objetivos que

motivaron el diseno del mencionado instrumento fueron:
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Indagar sobre las experiencias de los encuestados con la matematica en la

primaria y el bachillerato.

Considerar la influencia de los profesores de matematicas en el rendimiento

académico de los estudiantes en primaria y bachillerato.
Conocer el interés de los participantes por la matematica.

Determinar las expectativas de los estudiantes hacia los cursos universitarios

de matematicas.

Determinar cuales son los libros de matemaéticas méas recordados y utilizados

durante el bachillerato.

Verificar la incidencia del gusto por las matematicas en la escogencia de la

carrera.

Conocer experiencias positivas y negativas en el estudio de las matematicas.

Después de una exploracion en el interior en el grupo, se decidié que la encuesta

contaria con 16 preguntas: siete abiertas, seis con tinica respuesta y tres con respuesta

multiple.

El instrumento disenado se aplicé a 71 estudiantes que ingresaron a las carreras

de Ingenieria y Administracion de Empresas, de la Fundacién Universitaria San

Martin, universidad vinculada al comienzo del proyecto. El andlisis de la informa-

cion emanada permitié concluir en primera instancia los aspectos que se citan a

continuacion:

= De la totalidad de los estudiantes, tan sélo ocho consideran que su desempeno

en los cursos de matematicas de la universidad sera excelente, cifra muy baja
si se tiene en cuenta que son alumnos que de antemano saben que en su carrera
enfrentaran un nimero significativo de cursos de matematicas. Este resultado
induce a pensar que, en efecto, la actitud hacia la matematica puede afectar

el rendimiento académico en el area.

El 52 y el 38% de los encuestados manifiestan haber tenido una experiencia
positiva con las matematicas en primaria y bachillerato, respectivamente; la
diferencia pone de manifiesto un rompimiento respecto a la actitud hacia esta
ciencia en las dos etapas de formacion.

No se encontré una relacién directa de la influencia de los profesores de ma-
tematicas en el desempeno académico de los estudiantes, ya que apenas dos
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estudiantes en primaria y tres en secundaria la consideran negativa, y 69 es-
tudiantes reconocen a Pitdgoras como un gran matematico; por el contrario,
un muy bajo nimero identifica a Gauss y Euler como tales. Curiosamente, 60
de los 71 estudiantes creen que Aurelio Baldor fue un matematico ilustre. Se
puede inferir que los estudiantes que ingresan a las carreras de ingenieria con-
sideran que los cursos de matematicas son indispensables para su formaciéon
como futuros ingenieros, pero evidencian cierta resistencia y prevencién hacia
éstos. En cuanto a los estudiantes de administracion de empresas, se observa
que toman sus cursos de matematicas como aquellos que deben aprobar pero

no manifiestan la importancia que tienen.

En cuanto a las preguntas abiertas, éstas presentaron bastantes dificultades para los
alumnos, puesto que en muchos casos los estudiantes no las respondieron o contes-
taron con frases cortadas o incoherentes; por ejemplo, a la pregunta “Describa una
experiencia positiva que lo(a) haya marcado en su estudio de las matematicas”, se

obtuvieron respuestas como las que se transcriben a continuacion de manera textual:
= “Trigonometria en 10°”.
» “Ayuda a personas, con algunos problemas (temas)”.

= “Superacion en los tultimos grados de bachillerato demostrando buen rendi-

miento”.
= “Responsabilidad acerca a la persona con cosas”.
= “Las matematicas desarrollan el intelecto y eso es muy bueno”.
= “Pues cuando fui el tercer mejor de esta drea como en 8°”.
= “Que siempre tenia las mejores notas”.
= “Indiferente”.
= “El autoaprendizaje”.

El estudio de estas y otras respuestas similares a las preguntas abiertas evidencio la
dificultad de conocer el sentir de los estudiantes hacia la matematica mediante este
tipo de cuestionamientos. Por esta razén, dentro del grupo MUSA. IMA1 y con la
hipdtesis de investigacion: “Existe una correlacion positiva entre las actitudes hacia
las matematicas y el rendimiento académico en matematicas de los estudiantes que
ingresan por primera vez a la Universidad Sergio Arboleda”, se desarroll6 un trabajo
de investigacion que permitio verificar esta hipétesis, midiendo la actitud a través
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de una escala de actitud tipo Likert y como resultado académico de los estudiantes

las calificaciones finales del primer curso de matematicas de la respectiva carrera.

Para la variable “actitud hacia la matematica”, después de estudiar gran cantidad de
escalas tipo Likert empleadas en investigaciones similares y siguiendo la metodologia
de construccién de escalas de actitud de Elejabarrieta e Tniguez [EI] (1984), se decide
adaptar y complementar la escala de actitud de 31 items hacia las matematicas
disenada por Bazan y Sotero [ByS] en 1997.

Segunda etapa

En esta etapa se llevaron a cabo la adaptacion y la modificacion de la escala men-
cionada a nuestro contexto y a las necesidades del estudio. Adicionalmente se cons-
truyeron siete items, completando asi un instrumento de medicién con 38 cuestiona-
mientos tendientes a medir la actitud hacia la matematica. Esta escala fue validada
por tres grupos: el primero, integrado por estudiantes de las universidades Sergio
Arboleda y San Martin; el segundo, conformado por profesores con experiencia en la
ensenanza de las matematicas, quienes habian tenido a su cargo en varias ocasiones
el primer curso de esta area a nivel universitario, y el tercero, compuesto por dos
psicologas con experiencia en el tema. Segin la valencia de los items, es decir, si
éstos reflejan una actitud positiva o negativa hacia el objeto actitudinal, esta ver-
sién de la escala tuvo 20 {tems positivos y 18 negativos. Ademds, de acuerdo con la
componente actitudinal medida, esta version tenia 17 items afectivos, 5 cognitivos,

10 comportamentales y 6 valorativos.

Aplicacién a estudiantes

La aplicacion de la escala version 1 se realizo a un grupo de estudiantes, escogi-
dos al azar, de la poblaciéon que en ese momento ya estaba en el primer curso de
matematicas. Los objetivos al aplicar la escala a este grupo fueron:

= Verificar la claridad y escritura de los items.
= Determinar la impresiéon de los estudiantes sobre la escala.
» Estimar el tiempo de aplicacion de la escala.

= Recoger las impresiones, comentarios y sugerencias de los estudiantes acerca

del instrumento.

Adicionalmente, en esta etapa del trabajo se llevd a cabo un anélisis estadistico
de los datos obtenidos a través de la suma de los puntajes de los items en la escala
para cada uno de los estudiantes. Algunos de estos puntajes aparecen a continuacion
(tabla 1).
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ESTUDIANTE | PUNTAJE| |ESTUDIANTE | PUNTAJE
1 139 20 139
2 166 21 157
3 144 22 123
4 150 23 171
5 128 24 156
6 144 25 151
7 142 26 146
8 148 27 153
9 138 28 146

10 166 29 161
11 164 30 145
12 106 31 166
13 175 32 161
14 123 33 149
15 143 34 153
16 150 35 158
17 158 36 139
18 152 37 163
19 155 38 157

Tabla 1. Puntajes totales obtenidos.

En el cuadro 1 se han resaltado los puntajes maximo y minimo, de 175 y 106, para
los estudiantes que hemos denotado como 13 y 12, respectivamente; estos valores
indican que debe existir una diferencia en la actitud de los estudiantes 12 y 13.
Adicionalmente, si se piensa en los objetivos al disenar una escala de actitudes,
podriamos decir que el instrumento version 1 mostré buenas perspectivas como
escala de medicion y, ademas, que el estudiante 13 debe tener una mejor actitud
hacia la matematica que la mostrada por el estudiante 12.

A continuacién se transcriben literalmente los comentarios escritos por cuatro estu-

diantes en la aplicacion del instrumento:

» Estudiante 24: “Las matematicas realmente son faciles, el problema es el
mito de que son dificiles y por esta razon el estudiante no abre la mente de

forma adecuada puesto que se encuentra ya con obstaculos mentales...”.

» Estudiante 31: “Las matematicas es una ciencia que uno practica en todo

momento de su vida, por eso es tan importante”.

» Estudiante 13: “Las matematicas son una excelente materia. Para aprender

bien, hay que practicar y hacer ejercicios. No es dificil”.

= Estudiante 14: “En ocasiones las clases son tediosas y no se entiende”.
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Al leer los renglones anteriores puede inferirse que los estudiantes 24, 31 y 13 parecen
tener una mejor actitud hacia la matemaéatica que el estudiantes 14, y al verificar los
puntajes de estos estudiantes en el cuadro 1, se puede ver que, en efecto, quienes se
expresan positivamente hacia la matemaética, los estudiantes 24, 31 y 13, obtienen un
mayor puntaje que quien no lo hace, el estudiante 14, corroborando asi la impresion

que se menciono anteriormente acerca del cuadro 1.

Las conclusiones obtenidas fueron:

= El nimero de preguntas no parecio afectar en forma alguna la contestacion de
la prueba.

» Algunas palabras causaron dificultad y preguntas por parte de los estudiantes.

= El nimero de comentarios y sugerencias puestos por los estudiantes en las
pruebas son muy bajos, y ninguno hace referencia a los objetivos de la aplica-

cién de esta primera version.

Aplicacion a profesores

Se llevo a cabo la aplicacién de la escala version 1 a un grupo de 24 profesores de
la Escuela de Matematicas de la Universidad Sergio Arboleda, seleccionados por su
experiencia en la ensenanza, especialmente en los primeros cursos de esta ciencia en

cada una de las carreras mencionadas.

En esta aplicacion se cambi6 la graduacion para cada uno de los items, ya que no se
pretendia medir la actitud hacia la matematica sino conocer la opinién acerca de cada
item, es decir, si éste parecia ser pertinente para el trabajo que se iba a desarrollar
con los estudiantes. Se pidi6é entonces a los profesores que calificaran cada pregunta
como: excelente, si segin su apreciacion la pregunta daba indicios sobre la actitud
de los estudiantes hacia la matematica y, por el contrario, calificarla como “mala” si
no daba ningun indicio hacia la actitud, pasando por las posibilidades intermedias
“buena” y “regular”.

Los objetivos de la aplicacion de la escala a este grupo fueron:
» Verificar la claridad y escritura de los {tems.
= Determinar la pertinencia de los items planteados en la escala.
= Recoger las sugerencias y comentarios acerca de la escala.

Las conclusiones obtenidas de este grupo fueron las siguientes:
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= Los items 9 y 38 presentaban muy poca diferencia. Por esta razén se deter-

miné eliminar el item 38.

= Por sugerencia de los profesores se debian eliminar de todos los items las dobles
negaciones, con el unico fin de hacer mas claros los enunciados y no confundir

a los estudiantes al responderlos.

Aplicacion a psicologas

De manera individual dos psicologas, con experiencia en el tema de actitudes, revi-
saron la escala construida para corroborar la valencia de los items y la componente
actitudinal que cada uno de ellos media. Ademas sugirieron:

= Eliminar el item 38, ya que se correspondia con el item 9.

= Al igual que los docentes evaluadores, invitaron a eliminar de la redaccion de
los items las dobles negaciones.

Con el trabajo desarrollado hasta aqui, y las conclusiones descritas anteriormente
para cada uno de los grupos de aplicacion, se elaboré la segunda version de la escala,

a la que nos referimos a continuacion.

Tercera etapa

La aplicacion de la escala se realizo previa validacion del instrumento con una bateria
de 34 items. La muestra considerada para este estudio estuvo conformada por 239
alumnos de las universidades Sergio Arboleda y San Martin con sede en Bogota, de
los programas de Ingenieria, Marketing y de Ciencias Econémicas y Empresariales
para el segundo semestre de 2007; la ejecucion de la prueba piloto se realizé con
similares caracteristicas a la prueba prepiloto, para que cada uno de los estudiantes

de la muestra seleccionada la aplicara y resolviera de manera individual.

Para el andlisis de la informacion, procesamiento y presentacién de datos, se uti-
lizaron la hoja electréonica de Excel y el software SPSS, al igual que las medidas
estadisticas correspondientes, tales como las pruebas de normalidad de Jarque-Bera
y la de Kolmogorov-Smirnov, pruebas de hipétesis, correlacién de Pearson, la formula
de Spearman-Brown, e insumos como la distribucién F de Snedecor, la distribucién
t de Student y el alfa de Cronbach, entre otros.

La escala piloto consté de 19 items positivos, es decir, aquellos proposiciones que se
presentaron con una redaccion tal, que indique directamente una actitud favorable
hacia las matemaéticas y 15 items negativos para aquellas proposiciones que indiquen
una relacién desfavorable hacia las matematicas. La escala se aplicé en la primera



218 CAPITULO 3. PONENCIAS

clase de matematicas por profesores no titulares de la asignatura de matematicas, con
el propésito de obtener la verdadera opinion de los estudiantes hacia las matematicas.

3.5.5. Metodologia

A continuacion se presenta grosso modo la metodologia seguida, que validé la hipéte-
sis de la investigacién:

Existe una correlacion positiva entre las actitudes hacia las ma-
tematicas y el rendimiento académico de los estudiantes que ingre-

san por primera vez a la Universidad Sergio Arboleda.

En principio se buscé saber si los datos obtenidos siguen una distribucién normal o
no, con el propédsito de establecer el camino del anélisis estadistico que habia que
seguir; para tal efecto se realizaron los dos test de normalidad:

= Prueba de normalidad de Jarque-Bera.
= Prueba de normalidad de Kolmogorov-Smirnov.

Estas determinaron que los datos obtenidos por la escala siguen una distribucién

normal, como se puede advertir a continuacién (tabla 1):
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Tabla 1.

Se trabajé con un nivel de significancia del 5% y no se encuentran elementos para
rechazar la hipdtesis de normalidad, es decir, de que los datos sigan una distribucién
normal.

Una vez obtenidos estos resultados, se procedié a ratificar que el instrumento media
lo que se pretendia medir, las actitudes hacia las matematicas; para ello se trabajé de
nuevo en la verificacion de que los items evidentemente discriminaban, proceso que
se realizé por el método de los grupos extremos y por el de correlacién ftem-test,
método este ultimo que permitié ademas estudiar la fiabilidad de la escala.
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El método de los grupos extremos consiste en asignar a cada item los pesos o puntua-
ciones correspondientes, dependiendo de si es un item positivo o un item negativo,
tal como se observa en la tabla 2:

Items negativos Items positivos

TA|A|T1|D|TD TA|A|T1|D|TD

1 121314 5 5 | 4132 1
Tabla 2.

Hallada esta informacion, se calcularon las puntuaciones globales de cada estudiante.
Se eligié un grupo de estudiantes con puntuaciones globales altas (25 % superior)
y un grupo con puntuaciones globales bajas (25 % inferior), esto es, los estudiantes
que se encuentran en los extremos. Dicho de otro modo, para formar estos grupos
se tomaron los estudiantes que integran el cuartil superior Q3 y los estudiantes
del cuartil inferior Q;. Asi, 60 estudiantes con puntajes iguales o inferiores a 117
conformaron el cuartil Q; y 61 estudiantes con puntajes iguales o mayores que 141
conforman el cuartil Qs.

Q; Qs
74 117 141 169
A J \ J
Y Yo
60 estudiantes 61 estudiantes
Figura 1.

Para que un item sea discriminativo es necesario que los estudiantes del cuartil Q3
(grupo 2) tengan puntajes mas elevados en media que los individuos del cuartil Q1
(grupo 1). Se plantearon, por tanto, las siguientes hip6tesis:

= Hipoétesis nula. Los estudiantes del grupo 2 tienen igual media en promedio
(2) que los estudiantes del grupo 1 (1), esto es:

Ho:py=p2 = pn—p2 =0

» Hipotesis alterna. Los estudiantes del grupo 2 tienen diferente media en pro-
medio que los estudiantes del grupo 1, esto es:

HY:py # po = pi1 — pg # 0

Es de anotar que esta comparaciéon se realizé porque la distribucion de los datos
corresponde a una distribucién normal y, por tanto, se utilizé la t de Student. Un
insumo que se tuvo en cuenta fue la prueba de hipdtesis para el cociente de varianzas



220 CAPITULO 3. PONENCIAS

usando la prueba F' de Snedecor, con el fin de ver la homogeneidad entre las va-
rianzas de los dos grupos. Asi, mediante la F' de Snedecor se verificé si se cumple la
condicion de igualdad de las varianzas para cada uno de los ftems y se compararon
posteriormente las medias mediante la ¢ de Student, ratificando que los 34 items
discriminan.

El método de correlacion item-test se aplicé con un doble propdsito: por un lado,
verificar si los ftems de la escala discriminan y comparar dichos resultados con los
obtenidos por el método de los grupos extremos, y por otro establecer la consistencia
interna de los items, es decir, la fiabilidad de la escala. Al igual que el método de
grupos extremos, se realiz6 una prueba de hipdtesis, a saber:

= Hipoétesis nula. El item no discrimina si no hay correlacion entre las puntua-

ciones de cada item y las puntuaciones globales de la escala, es decir:

Hy:p=0

» Hipdtesis alterna. El {tem discrimina si hay correlaciéon diferente de cero (0)

entre las puntuaciones de cada item y las puntuaciones globales de la escala:
H1 p 7’é 0

Para ello se utiliza la correlacion r de Pearson. Hay varias férmulas para calcular r

de Pearson, pero la que se usé en esta investigacion fue:

ny xy—Q_z)(>y)
VIt = (o] S - (S )]

Donde z representa puntuaciones en una de las variables. Por ejemplo, de uno de

r =

los items y representa las puntuaciones globales y n es el nimero de pares de pun-
tuaciones; cabe senalar que siempre debe haber igual niimero de puntuaciones de
cada variable. La correlacién r de Pearson es un valor que corresponde a; |r| < 1;
por tanto, fue indispensable conocer a partir de qué valor un item discrimina, para
lo cual se utilizé el contraste estadistico de la distribucion ¢ de Student.

Por este método se observé el buen comportamiento de todos los items de la escala,
pues todos los items discriminan; vale la pena anotar que la escala muestra ademas

una alta fiabilidad, pero la fiabilidad de la escala se estudié por otros dos métodos:
» Dos mitades (split-half).

» Alfa de Cronbach.
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El método de las dos mitades o split-half consiste en hallar la correlacién entre
dos grupos de items; los grupos de items se pueden escoger de manera aleatoria
para garantizar el equilibrio en la prueba. En la investigacion se recurrié a la hoja
electronica Excel para hallar la generacién de 34 nimeros aleatorios con una distri-
buciéon de Bernoulli y una probabilidad de 0,5; asi, los items se dividieron en dos
grupos. Una vez seleccionados estos dos grupos de items, A y B, se hall6 la suma de
los puntajes de los items que conformaban el grupo A y los puntajes de los items del
grupo B; ademas, se calculd el coeficiente de correlacion r de Pearson entre los tota-
les parciales de los dos conjuntos de valores (grupos A y B) y se obtuvo el siguiente
resultado: T = 0,86. Como en este cdlculo solo se utilizé la mitad de la prueba,

fue necesario corregir el resultado con la férmula de Spearman-Brown, que arrojo el
siguiente resultado: or,, = = 0,93. Este valor esta bastante alejado de la

correlacion nula.

Dentro de la categoria de coeficientes, el alfa de Cronbach, o =

LT
k—1 S?
es uno de los mas relevantes, ya que mide la confiabilidad de la escala en funcién

del niimero de tems y la proporcion de la varianza total de la prueba, donde k es el
nimero de ftems; > S? es la suma de las varianzas de los ftems y Sy la varianza del
puntaje total. Como resultado de calcular el alfa de Cronbach se obtuvo: a = 0,92.

Por tanto, la escala es bastante confiable.

3.5.6. Conclusiones

Se adapto la escala actitudinal del profesor Jorge Luis Bazan a nuestro medio edu-
cativo, la cual se validé con un grupo de expertos integrado por los profesores de
la Escuela de Matemaéticas de la Universidad Sergio Arboleda y por dos psicélogas.
Ademas, se aplico la escala piloto a un corte de estudiantes en el segundo semestre
de 2007, en el que se verificaron la fiabilidad y la validez de la escala, pero sobre
todo se concluyd que existe una correlacion positiva entre la actitud de los estudian-
tes hacia las matematicas y su rendimiento académico. Para probar la hipétesis de

investigacion que nos convocaba en este trabajo, se hizo una prueba de hipétesis:

= Hipotesis nula. No existe correlacion entre las actitudes hacia las matematicas
y el rendimiento académico de los estudiantes que ingresan por primera vez a

las universidades Sergio Arboleda y San Martin.
Hy:p=0

= Hipoétesis alterna. Existe una correlacion positiva entre las actitudes hacia las
matemaéticas y el rendimiento académico de los estudiantes que ingresan por
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primera vez a las universidades Sergio Arboleda y San Martin, es decir:

Hy:p>0

Para esta prueba de hipdtesis, el calculo se realizé en Excel y se obtuvo el estadistico
de prueba tedrico con t = 1,65 y el calculado de t = 3,89; para este caso, el coeficiente
r de Pearson que se utilizé fue el calculado entre las puntuaciones de la escala
frente a las notas obtenidas por los estudiantes al final del semestre académico,
r = 0,22; de esta manera se rechaz6 la hipétesis nula y por tanto se validé la hipdtesis
alterna, p > 0, es decir, existe una correlacion positiva entre las actitudes hacia las
matematicas y el rendimiento académico de los estudiantes que ingresan por primera
vez a las universidades Sergio Arboleda y San Martin. La anterior informaciéon se
resume a renglén seguido (tabla 3):

Test de la hipdtesis de la investigacion
Probabilidad p=0,1
Grados de libertad gl =218
Test de prueba (¢ tedrico) t=1,65
Test de prueba (¢ calculado) t=3,89
Conclusion | Hay correlacién

Tabla 3.

3.5.7. Proyeccion de la investigacion

A partir del segundo semestre de 2008, el grupo de investigacion se plantea el si-
guiente interrogante: jcomo construir una metodologia de intervencion directa para

el cambio de actitudes negativas hacia la matematica?
Para ello ha trabajado en torno de los siguientes interrogantes:

1. ;Qué metodologia es la mas adecuada para seguir con los estudiantes ya cla-
sificados mediante la escala?

2. ;Qué perfil deben tener los docentes para cada uno de estos grupos de estu-
diantes?

3. (Qué papel desempenan en esta labor docentes de otras areas, administrativos,

funcionarios y padres de familia?

4. jQué estrategias se han de seguir para un cambio actitudinal hacia las ma-

tematicas?
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5. ;Cémo implementar una nueva cultura matematica en la comunidad universi-

taria, en particular de la Universidad Sergio Arboleda?
6. ;Cambia la actitud de los estudiantes hacia las matematicas segin el sexo?

7. ;Cambia la actitud de los estudiantes hacia las matematicas de acuerdo con
su edad?

3.5.8. Construyendo una metodologia de intervencién

En el primer semestre de 2009, el grupo de investigacion aplicé el primer dia de clase
de calculo diferencial dos indicadores: una escala de actitudes hacia las matematicas,
que consta de 34 items, y una prueba de conocimiento de 20 preguntas a estudiantes
que ingresaron a los programas de las Escuelas de Marketing & Negocios Interna-
cionales, Ciencias Empresariales e Ingenieria. El propésito de estos indicadores en
principio fue establecer una correlacién entre la actitud de los estudiantes que ingre-
san por primera vez a la Universidad Sergio Arboleda y los conocimientos previos
que ellos poseen. El estudio, que se realizé a toda la poblacién (363 estudiantes),
arrojo los siguientes resultados:

1. Se hallé una correlacién positiva entre las actitudes y los conocimientos con que
ingresan los estudiantes al primer semestre de la Universidad Sergio Arboleda.

2. De la poblacién estudiada, se encontrd que:

a) En cuanto a actitud:

Actitud
Numero de .
. Porcentaje

estudiantes
Positiva 100 27.5%
Indiferente 162 44 6%
Negativa 101 27.9%
Total 363 100%

b) En cuanto a conocimientos:
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Prueba de conocimientos
Actitud
Bueno Aceptable Deficiente
Positiva 0 0% 22 6.1% 78 21.5%
Indiferente 1 0.3% 21 5.8% 140 38.6%
Negativa 0 0% 6 1.7% 95 26.2%
Total 1 0.3% 49 13.6% 313 86.3%

Analizados los resultados, el grupo MUSA. IMA1 decidié tomar algunas acciones
para mejorar el nivel académico de los estudiantes y prevenir en lo posible un alto
indice de mortalidad académica, a saber:

1. Reunién con los profesores titulares de calculo diferencial todos los lunes de
4:00 a 6:00 p.m. para:
a) Brindar un informe del desarrollo del curso.

b) Revisar los temas vistos en clase con el objetivo de ir ajustando el pro-

grama.
c¢) Elaborar en conjunto un taller que consta de dos partes para aplicarlo en

la dltima sesion de clase de cada semana.

2. Con ayuda de las escuelas se organizaron los cursos de célculo diferencial en
franjas horarias, con el propésito de:
a) Contar con un horario para reunién de profesores.
b) Dictar charlas magistrales para los cursos.
c¢) Disponer de un mejor horario para el desarrollo de los cursos.

3. Se vincularon al proyecto estudiantes del semestre anterior con un excelente

nivel académico, para que sirvan de apoyo a los estudiantes el dia del taller.

4. Se establecié un horario de asesorias para estudiantes con 40 horas de atencion

de lunes a viernes, a cargo de los profesores del Departamento de Matematicas.

5. Con el apoyo del director del Departamento de Matematicas se planted y

elabord el siguiente sistema de evaluacion:

a) Primer corte: 30 %

» 30 % parcial

= Hasta + 0,5 décimas por asesorias, asistencia a clase y presentacion
de talleres y quizzes.
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b) Segundo corte: 30 %

s 15 %: parcial
s 15 %: informe del monitor, tutorias, tareas, talleres, trabajos y quiz-
ZES.

c¢) Tercer corte: 40 %

» 30 %: examen final.
= 5%: profesor.

= 5%: monitor.

6. Se organiz6 un taller como propuesta de intervencién psicolégica para modifi-
car la actitud negativa hacia las mateméaticas de un grupo de 30 estudiantes
de la Universidad Sergio Arboleda con edades comprendidas entre los 17 y 23
anos, taller que se desarrolla en dos jornadas horarias: miércoles de 7:00 a 9:00
a.m. y de 4:00 a 6:00 p.m.

7. Se repartié una circular a los estudiantes en la que se les recordaban los recursos
y apoyos que brinda el Departamento de Matematicas, tales como:

a) Pagina web http://espanol.geocities.com/usa.calculo.

b) Aulas virtuales.

d

)
)
c) Asesorias académicas.
) Asesorias de tipo psicolégico.
)

e¢) Monitores.

Con estas acciones, el grupo MUSA. IMAT1 realizé el 14 de marzo del ano en curso
un balance del desempeno académico de los estudiantes, para el cual analizo los

resultados alcanzados al cierre del primer corte académico.

S Primer Parcial 30%
363 PC Bueno Aceptable Deficiente
Estudiantes 5.0 - 4.0 3.9-3.0 2.9-0.1
1
Bueno 1 100%
38 6 5
Aceptable 49 77 6% 12.2% 10.5%
o 66 98 149
Deficiente 313 21 1% 31.3% 47.6%

Tabla 4.
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0,
Poblacion viric
3[?'3 PC Bueno Aceptable Deficiente
Estudiantes 4.0-5.0 3.0-309 20-29 0.1-1.9
1 1
Husno 0.3% 0.3%
49 39 6 3 2
Acoptable 13.5% 10.5% 1.7% 0.8% 0.6%
Sofidionia 313 66 08 74 75
86.2% 18.2% 27% 20.4% 20.7%
Salance 105 104 77 77
28.9% 28.7% 21.3% 21.3%
Tabla 2.

Como se observa en la tabla 2, de 363 estudiantes que ingresaron al primer semes-

tre, 313 (86,2 %) obtuvieron deficiente en la prueba de conocimientos, de los cuales

164 alumnos aprobaron el primer parcial, correspondiente al primer corte académi-

co, lo cual muestra una reduccién del 52,4 % de estudiantes que presentaban bajo

rendimiento académico. Es de anotar que 66 estudiantes obtuvieron notas iguales o

superiores o 4,0, que corresponden a un 21,1 %.

Una vez que presentaron el primer parcial, se encuesté a todos los estudiantes (455)

que toman calculo diferencial (incluyendo los que estan repitiendo la asignatura)

con el propédsito de evaluar el proceso realizado por el grupo de investigacion; a

continuacion se presenta el instrumento aplicado, con sus respectivos resultados:

5: Excelente 4: Bueno 3: Aceptable 2: Malo 1: Pésimo
Pregunta 5 4 3 2 1 NC
Mi rendimiento académico en el curso de 57 194 131 53 7 3
calculo diferencial ha sido 12.8% | 43.6% 29.4 11.9% 1.6% 0.7%
El desarrollo y metodologia del curso de 187 226 30 1 1
calculo diferencial ha sido 42% 50.8% 6.7% 0.2% 0.2%

5 . 266 165 i 1 1 1
El desempeiio del profesor ha sido 59.8% | 37.1% 5 5% 0.2% 0.2% 0.2%
. . : 122 189 92 23 11 8
Elsmbso-delmontorhe sido 27.4% | 42.5% | 20.7% | 5.2% | 2.5% | 1.8%

El tiempo que dedico fuera de las clases
a estudiar calculo diferencial

Promedio = 3.9 horas semanales de estudio.
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Mi conocimiento y la frecuencia con que utilizo los apoyos académicos que la Universidad ofrece
para el desarrollo del curso de Calculo Diferencial es:
Conocimiento " - -
delos apoyes Frecuencia de Utilizacion
Frecuente- | Algunas Pocas
sl s mente veces veces .
. 355 7 161 129 71 49
A 80% | 16% 36% 29% 16% 11%
Pagina web del curso - b - e - -
g 58% | 37% 17% 23% 20% 29%
Asesorias con profesores e 1z e 108 102 14£
P 69% | 26% 1% 24% 24% 33%
Asesorias con monitores el 162 ad T L) -0d
52% | 42% 7% 17% 17% 47%
Biblioteca 296 123 60 116 112 125
67% | 28% 13% 26% 25% 28%

Al cierre del semestre se aplicaron de nuevo los dos instrumentos, los cuales arrojaron

los siguientes resultados:

Vs. Prueba de conocimientos
Actitud Bueno | Aceptable | Deficiente
Positiva 6 37 23

Indiferente 4 46 68

Negativa 6 18 38

Total 16 101 129
Tabla 5.

A continuacién se muestra un cuadro comparativo entre la tabla anterior y las notas

finales del semestre.

andimmn inicial. . . Nota final | MORTALIDAD
Estudiantes | Porcentaje | Estudiantes | Porcentaje .
ACADEMICA
Bueno 1 0.3% 43 11.3% 02-2008
Aceptable 49 13.6% 144 37.9%
Deficiente 313 86.3% 193 50.8% 65%
Tabla 6.

3.5.9. Informe taller de actividades en calculo diferencial

Grupo de la manana

El 29 de enero de 2009 se realizd, en el auditorio principal de la universidad, una
reunion con todos los estudiantes de los cursos de calculo diferencial, con el fin
de invitarlos a participar en este taller de actividades; luego de la inscripcién, se
conformaron dos grupos de trabajo: uno en la manana y el otro en la tarde.

Los talleres se iniciaron el 4 de febrero del presente ano con el grupo de la manana,
integrado por estudiantes que se inscribieron de manera voluntaria para mejorar su
actitud hacia las matematicas, debido a que los resultados arrojados en las pruebas
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de diagnostico que se realizaron en los diferentes cursos de célculo diferencial no

fueron satisfactorios, ya sea en la escala de actitud o en la prueba de conocimientos.

Se celebraron reuniones semanales en el auditorio principal de la universidad todos
los miércoles, en el horario de 7:00 a 9:00 a.m., con la orientaciéon de la psicologa
Liliana Castro, quien dirigia las diferentes actividades con las que se buscaba mejorar

la motivacién hacia las matemaéticas.

A continuacién se presenta un cuadro comparativo de los resultados en las pruebas
iniciales de actitud y conocimiento, la prueba final del taller y la nota definitiva en

el curso de célculo diferencial de estos estudiantes.

Estudiante F.L ROTITUD | permenm | PROGEAD | e
1 ND MUY POST 3.0 Finanzas 13
2 ID N/S 3,5 Economia 14
3 ND MED. POST 30 Economia 13
4 PD MUY POST 45 Economia 14
5 ID N/S 3,7 Finanzas 10
6 MED. POST 3.0 Marketing 8
7 PD N/S 3.1 Finanzas 8
8 ND N/S 3.0 Marketing 8
9 N D N/S 3.0 Marketing 7
10 PD N/S 33 Finanzas 6
11 ID N/S 3.1 Marketing 6

Tabla 7.

Grupo de la tarde

El grupo de la tarde inicié trabajos el dia 11 de febrero. Este grupo se reunia
semanalmente en el salén E-403 de la universidad todos los miércoles, en el horario
de 4:00 a 6:00 p.m., con la orientacion de la psicéloga Liliana Castro, quien dirigia
las diferentes actividades con las que se buscaba mejorar la motivacién hacia esta
ciencia; también se conto con el apoyo del grupo de investigacion conformado por
profesores de calculo diferencial y dirigido por el profesor Jesis Hernando Pérez.
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Estudiantes F.l. Al | S e | et
1 ID MUY POST 44 Marketing 13
2 1D 18 Marketing 10
3 1D MED. POST 3,5 Marketing 11
4 1D NEUTRA 3.0 Marketing 13
5 ND N/S 2,0 Marketing 10
6 ND MED POST 20 Marketing 10
7 MUY POST 22 Marketing 13
5 1D N/S 42 Marketing 12
9 ND N/S 2,0 Marketing 12
10 1D N/S 35 Marketing 11
11 ND N/S 3.7 Marketing 12
12 MED POST 3.2 Marketing 10
13 ND MED POST 3.2 Marketing 11
14 ND MED POST 35 Marketing 9
15 ID MED POST 3,0 Marketing 9
16 FD MUY POST 3,0 Marketing 8

Tabla 8

Al finalizar el taller con este grupo, sélo un estudiante no participé en las ultimas
tres sesiones. De los estudiantes que participaron en los talleres, se concluye que el
81 % de ellos aprobé el curso de calculo diferencial. El trabajo con estos dos grupos
terminé el 22 de mayo, con una ultima prueba de actitud, la cual se presenta en la
tabla anterior.
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3.6. Herramientas didacticas en ciencias basicas.
Implementacion de aulas virtuales como apoyo a la

presencialidad. Aciertos y dificultades

Guillermo Antonio Manjarrés®

Néstor Raul Roa Becerra'®

Jorge Enrique Tarazona Sudrez'!

Jair Zambrano Castro‘?

3.6.1. Introduccion

Durante los 1ltimos anos se ha producido un gran avance en el desarrollo tecnologi-
co, lo cual justifica la necesidad de formar a los estudiantes en el campo de las
tecnologias de la informacién y comunicacion (TIC). Los estudiantes precisan de los
conocimientos necesarios para ser agentes activos y “alfabetizados” en esta nueva
“aldea global”, que de manera continua presenta innovaciones técnicas y formales

en el campo de la comunicacién y la informacion.

Estos medios, cada dia méas presentes en nuestra vida, obligan a los estudiantes a
adquirir los conocimientos necesarios para su utilizacién, tanto en su cotidianidad
como en su formacion y educacion; corresponde al profesorado realizar esfuerzos por
dominarlos y adquirir la capacidad de transmitirlos de manera que se usen en forma
critica, constructiva y eficaz.

Por otro lado, la gran accesibilidad que los alumnos tienen para manejar estas nuevas
tecnologias y el atractivo que sobre ellos ejercen permite que se conviertan en un tutil
y eficiente instrumento pedagogico, a la vez que estimulante para ellos. Por tanto,
debemos ayudarles a que descubran que las TIC, ademas de ser una herramienta
ludico-recreativa, constituyen también un valioso instrumento para su formacién y

para su integracién en la nueva sociedad de la comunicacion.

Para una adecuada introduccion de las TIC en el aula, se deben analizar todos
los factores del contexto (perfil del estudiante, infraestructura de la institucién,
politicas sobre programas, material existente, recursos financieros, de infraestructura
y humanos, que interaccionarén en las nuevas situaciones de aprendizaje), de modo

que el diseno de las nuevas actividades tengan la garantia de éxito deseado.

En el caso de Uniminuto, el estudiante normal tiene un contacto limitado con las

9Corporacién Universitaria Minuto de Dios. Ciencias Bésicas.
0Corporacién Universitaria Minuto de Dios. Ciencias Bésicas.
M Corporacién Universitaria Minuto de Dios. Ciencias Bésicas.
12Corporacién Universitaria Minuto de Dios. Ciencias Bésicas.
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TIC, y un nivel bajo de empleo del computador y muy centrado en el aspecto re-
creativo. Los profesores apreciamos la necesidad de intervenir para que el estudiante
descubra los otros usos y ventajas que ofrecen estos nuevos instrumentos. Hay que
constatar también el hecho de que son atin escasos los alumnos que disponen en sus
hogares de equipos y conexiones adecuadas para acceder a todo el potencial que hoy

ofrecen estas nuevas tecnologias.

Junto con estas necesidades, que por si solas justificarian plenamente el desarrollo
de este proyecto, cabe destacar también una necesidad muy concreta que ha venido
surgiendo y es que existen actividades para las cuales el aula de clase no resulta
adecuada: presentaciones multimedias interactivas y participativas, programas para
realizar cdlculos rapidos, eficientes y certeros, graficos con representaciones dindmi-
cas sobre algunos temas especificos, debido a que la actitud pasiva de ésta da pie,
en muchas ocasiones, al aburrimiento y poca receptividad de los temas tratados.

3.6.2. Planteamiento del problema

Es claro que a partir de la justificacién anterior surge una necesidad: utilizar las TIC
como un medio para reforzar conceptos que se ven en clase presencial. Para esto se
cuenta con el apoyo de la Facultad de ingenieria y del Departamento de Ciencias

Basicas de Uniminuto.

Este proyecto pretende indagar, acorde con la experiencia personal del estudiante, si
el uso de un aula virtual, como complemento a las clases presenciales, rinde beneficios
a la hora de apropiar conceptos matematicos especificos.

3.6.3. Objetivos generales del proyecto

= Presentar un aula virtual como apoyo a la presencialidad en un curso.

= Introducir el uso de las TIC como una herramienta de trabajo para el profe-
sorado, de modo que favorezca el proceso de ensenanza con los estudiantes.

= Fomentar el uso de las TIC como herramienta en el proceso de aprendizaje.
= Elaborar, en lo posible, materiales didacticos propios y contextualizados.

» Facilitar el aprendizaje autéonomo, individual o en grupo entre los alumnos.
= Mostrar a los estudiantes otras formas de hacer uso de las TIC.

= Desarrollar destrezas en el estudiante para el uso de la plataforma de apren-
dizaje Moodle.
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= Presentar al estudiante informacion clara, oportuna, contextualizada y actua-

lizada de algunos de los temas vistos en clase.

3.6.4. Marco tedrico

Sobre éstos se tiene bastante informacion, pero se hace un resumen de tres de ellos
que se consideran de importancia. Quesada (1994) realizé una investigaciéon a lo
largo de tres semestres con 710 alumnos de un curso de precalculo de una universidad
de Estados Unidos. Se comparo el rendimiento de los estudiantes divididos en un
grupo control y un grupo experimental. Los estudiantes del grupo control cursaron
la materia del modo tradicional, utilizando una calculadora cientifica y un libro
comun de texto. El tratamiento del grupo experimental consistié en el empleo de la
calculadora grafica y un texto especificamente escrito para ser usado con ella. Tres
instructores distintos ensenaron al grupo experimental y siete al grupo control. Los
instructores del grupo experimental usaban un aparato que, junto con un proyector,
les permitia mostrar el display de la calculadora en la pantalla. La evaluacion de los
estudiantes fue la misma para ambos grupos, y consistié en cuatro test, un examen

comprensivo final y una o dos encuestas semanales.

Segun los autores, la aproximacion grafica agregé una nueva luz al conocimiento de
conceptos, y permitié que los estudiantes mantuvieran su interés en los distintos
temas. La aproximacion manual y la habilidad de chequear sus respuestas con la

calculadora grafica aumentaron la motivacion de los estudiantes.

En un trabajo (Ruthven, 1990) hecho en Inglaterra durante 1990 y 1991, seis gru-
pos de profesores participaron en el proyecto denominado “Graphic Calculators in
Mathematics”, subvencionado por el National Council for Educational Technology.
En este proyecto participaron estudiantes que habian tenido acceso permanente a
las calculadoras graficas en el transcurso de los dos tltimos anos del secundario.
Ruthven, como investigador principal, examiné el rendimiento en matematica cerca
del final del primer ano del proyecto, y lo comparé6 con el de estudiantes que seguian
el mismo curso de matemaética pero que no tenian acceso a las calculadoras grafi-
cas. La muestra constaba de 87 estudiantes: 47 estaban en las clases del proyecto y
40 pertenecian al grupo de comparacion. En este estudio, Ruthven presté especial
atencién a los items simbdlicos, pues estaban mas influenciados por el uso de las
calculadoras graficas y porque revelaron importantes diferencias en el rendimiento
de los dos grupos. En estos items, el estudiante primero identificaba los graficos de
funciones como correspondientes a alguna familia y luego efectuaba el refinamiento,
utilizando asi sus conocimientos matematicos; el autor encontré que los estudiantes

que habian usado calculadoras graficas tuvieron mayor rendimiento en los items de
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simbolizacién, pero no en los de interpretacion. La diferencia la atribuyé a que la
utilizacion regular de las calculadoras graficas habian generado en los estudiantes un
mayor uso de aproximaciones graficas en la resolucién de problemas y el desarrollo
de nuevas ideas matematicas, que fortalecieron no soélo esas relaciones especificas,
sino también generaron mayores relaciones entre las formas graficas y simbdlicas.
Por otra parte, noté que al aumentar el éxito del estudiante se redujo su ansiedad,
generando indirectamente un mayor rendimiento en aquellos estudiantes que usaron

calculadoras graficas.

Aldanondo (2002) confirma el hecho de que las personas aprenden haciendo y no
escuchando. La préactica diaria en las aulas de clase nos lleva a tener presentes dos
cosas: que el docente busca explicar con la mejor metodologia los temas y que si
el estudiante quiere mejorar lo aprendido en el aula de clase, tiene que practicar.
Pero tendra que hacerlo ¢él, con su cerebro y su razonamiento. Y especialmente
fracasando y razonando sobre los motivos de su fracaso hasta dar con la solucion.
No hay mejor tutor que uno mismo cuando esta cautivado por una actividad que
lo fascina. Para aprender, el protagonista debe ser el alumno que tiene que hacer
cosas y no escuchar pasivamente cémo se las cuenta otra persona. La memoria y el

aprendizaje van intimamente ligados a las emociones.

3.6.5. Descripcion de la metodologia propuesta

La educacion electrénica (e-learning) sirve de linea conductora a este proyecto, ya
que por definicion el e-learning es el suministro de programas educacionales y siste-
mas de aprendizaje a través de medios electrénicos. De acuerdo con Mendoza (2003),
el e-learning se basa en el uso de un computador u otro dispositivo electrénico (por
ejemplo, un teléfono maévil) para proveer a las personas de material educativo. La
educacién a distancia creé las bases para el desarrollo del e-learning, el cual viene
a resolver algunas dificultades en cuanto a tiempos, sincronizacion de agendas, asis-
tencia y viajes, problemas tipicos de la educacién tradicional. Este término abarca
un amplio paquete de aplicaciones y procesos, como el aprendizaje basado en web,
capacitaciéon basada en computadores, salones de clases virtuales y colaboracion
digital (trabajo en grupo).

Se ha escogido la plataforma Moodle por ser ésta la que maneja la universidad.
Ademss, es de caracter libre y posee caracteristicas ideales para hacer seguimiento
a los estudiantes.

Se implementaran cursos de apoyo, en los cuales se incluirdn lecturas motivadoras,
ejercicios resueltos y propuestos, teoria sobre algunos temas, paginas interactivas,
applets realizados en Java, animaciones, videos y un foro. Todos los cursos tendran
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estas caracteristicas. No se pretende brindar apoyo a cada uno de los temas que se
tratan en el curso presencial, sino mas bien de respaldar las grandes teméaticas que
se presentan a los estudiantes en cada curso presencial. El aula virtual en ningin
momento sustituird al profesor-tutor, ni tampoco la presencia del estudiante en la
clase.

Se han creado equipos de trabajo compuestos de dos profesores que estaran encar-
gados de geometria, cdlculo integrodiferencial y precdlculo; a la par, un equipo de
cuatro profesores trabajara con la asignatura fisica en tres cursos que se vienen desa-
rrollando hace un par de semestres. Se han escogido estas asignaturas por ser las
que ofrecen un nivel de dificultad relativamente alto al estudiante y ademés porque

los profesores tienen a su cargo esas materias en este momento.

Se hara una encuesta a cada uno de los estudiantes que accedan al curso para evaluar
el grado de satisfaccion con éste, comparandolo con la experiencia que cada uno de

ellos posee en otros cursos que no tienen tal apoyo.

La infraestructura de la universidad permite que los estudiantes puedan acceder a
esta plataforma desde cualquiera de las salas de informatica, aparte de que pueden
hacerlo desde la casa, un café internet o desde el campus por red inalambrica. Todo
alumno que tome las asignaturas estudiadas puede matricularse en el curso, pero
se seleccionaran algunos especificos con el propdsito de tener cursos que no hayan
recibido el beneficio del aula de apoyo y poder hacer comparaciones en un estudio
futuro; a los estudiantes seleccionados se les informa, mediante una guia impresa y

una visita al aula de informatica, cémo pueden matricularse en un curso dado.

A los profesores involucrados se les asignara tiempo, dentro de su carga del semestre,
para la realizacién de este proyecto, ya que éste sélo se trabajara en dichos espacios.

3.6.6. Muestra

La poblacion meta consta de estudiantes de primer y segundo semestre de las carreras
de Ingenieria Civil, Agroecoldgica y Tecnologias, entre 18 y 25 anos que no han tenido

un gran contacto con las TIC y cuyo nivel académico es bajo o regular.

3.6.7. Modelo educativo
Caracteristicas de operacién

= Kl curso se desarrolla en internet en un “entorno” al que pueden acceder aque-
llos estudiantes seleccionados de los cursos presenciales y a los que se les ha
dado una contrasena.
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Funciona en forma asincrénica y los alumnos pueden utilizar el horario que
mas les convenga para acceder. Ademas, en la pagina del curso se les marcan
pautas, ejercicios y lecturas, entre otras actividades. Hay profesores-tutores
que hacen el seguimiento de los alumnos y marcan dichas pautas.

El estudiante se comunica con los tutores y companeros a través del servicio
de mensajes de la plataforma y por medio de un foro de discusién dispuesto
para este fin.

Los materiales y lecturas necesarios para el curso se encuentran en internet, y

si el alumno quiere, puede imprimirlos y tenerlos en formato papel.

Por ser un curso de apoyo no se evaluara, pero se proponen ejercicios de au-
toevaluacién que pueden resolverse y presentarse al tutor para su discusion.

3.6.8. Puesta en accion

Desarrollo de los cursos

En reunién con los profesores encargados, se acordé el uso de la plataforma Moodle.

Con miras a llevar un formato, se llegd al acuerdo de utilizar el siguiente esquema:

Trabajar en formato tipo moédulo, cuatro o cinco.

Insertar una imagen alusiva al tema que se va a tratar en cada modulo, junto

con un titulo en color y resaltado y un texto de bienvenida.

Presentar un texto introductorio de corte histérico sobre el tema, textos en
formato PDF sobre algunos de los temas vistos en la sesion presencial y que

el tutor disenador considere que es vital que aparezca en el curso.

Presentaciones, animaciones, applets en Java y demas medios multimedia que

traten uno o varios de los temas que se quieren apoyar.
Ejercicios resueltos paso a paso.

Ejercicios propuestos para que el estudiante los realice.
Un foro para la interaccion estudiante-tutor.

Encuesta de opinion y satisfaccion.

Cada grupo hace seguimiento de las actividades realizadas y pasa un informe a

coordinacién.
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Los cursos se han venido disenando desde el semestre inmediatamente anterior.
Se planeé presentarlos a los estudiantes en el primer semestre del 2008, pero por
sugerencia de la decanatura de ingenieria se decidié realizar una prueba piloto con
los cursos como estan; asi las cosas, a partir de octubre de 2007 se escogieron tres
cursos: geometria, precalculo y calculo integrodiferencial para realizar la prueba, que

se encuentra en curso.

3.6.9. Tipo de investigaciéon

El tipo de investigacién es cuantitativo - experimental, con levantamiento de mues-
tras, utilizando un muestreo aleatorio simple, en el que se combinan las metodologias
pre-post y experimental - control.

Se optd por este tipo de investigacion debido a los instrumentos evaluativos que se
aplicaron para la recoleccién de la informacion. Se aplicé un primer instrumento de
evaluacién (pretest) al grupo experimental y al de control, con el fin de determinar
los conocimientos previos de los estudiantes sobre el tema. Al finalizar el proceso de
la aplicacién del aula virtual de aprendizaje (grupo experimental), y desarrollados
los temas en clase (grupo de control), se aplicé una segunda evaluacién (postest),
donde el estudiante debera presentar los respectivos algoritmos y demostrar sus com-
petencias para brindar soluciones a situaciones sencillas en el campo de la ingenieria

civil.

3.6.10. Evaluacién del aula virtual

Al finalizar el aula virtual, se realizé una encuesta al grupo experimental, en la que

se evalud cada item de uno a cinco y se obtuvo la siguiente calificaciéon promedio:

Evaluacion del aula virtual

Pregunta | Descripcion Promedio

1 El nimero de imagenes fue suficiente y aporté a la com- 4,6
prensién de los contenidos.

2 Las imégenes lograron apoyar, sintetizar y complemen- 9,0

tar el texto, facilitando el aprendizaje de los contenidos.

3 Las imagenes conectadas légicamente con el texto cum- 4.8

plieron un papel didactico en mi aprendizaje.

4 Las imagenes que apoyaron el texto fueron necesarias 4,6
para el aprendizaje de los contenidos.

5 Las imagenes dindmicas como estrategia visual incidie- 4.8

ron positivamente en mi aprendizaje.
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6 La forma en que se representaron los contenidos faci- 5,0
lité notoriamente la comprension y el aprendizaje de los
contenidos.

7 Las tareas propuestas en cada médulo me permitieron 4,0
aplicar en forma significativa los conocimientos adquiri-
dos.

8 Las imagenes y textos fueron presentados en forma gra- 4.8
dual y légica.

9 Su participacién en cada una de las actividades propues- 4,0
tas en el aula.

10 El soporte del tutor en el aula. 5,0

3.6.11. Conclusiones

Ambos grupos demuestran gran cantidad de conceptos adquiridos, lo cual se eviden-
cia en las preguntas acertadas al comparar los resultados del pretest y del postest.

Los estudiantes relacionan correctamente las matematicas y la geometria, lo cual se

evidencia en las preguntas de la tercera a la sexta.

De la séptima a la décima preguntas, los estudiantes demuestran la aplicacion de
los algoritmos sugeridos. Comparando los resultados del grupo experimental y del

grupo de control, se puede afirmar que:

Los estudiantes manifiestan su interés de consulta cuando se remiten a la parte tedri-

ca, complementando los conceptos primarios presentados en forma visual y animada.

conceptos adquiridos.

para realizar calculos.

clases los graficos son estaticos y su tiempo de presentacién es muy limitado,

mientras que al utilizar el ambiente virtual el estudiante puede retomar los

graficos y diagramas cada vez que lo considere necesario.

Dentro del proyecto se aprecian los siguientes aciertos:

» Actitud positiva de los profesores encargados.

= El grupo que utilizé el ambiente de aprendizaje presenta mayor cantidad de

= Este grupo integra mejor los conceptos de las matemaéticas y de la geometria

= Las animaciones son de gran ayuda al exponer un tema, ya que en el salén de
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s Actitud positiva de los estudiantes hacia la virtualidad.
= Construccion de instrumentos propios por parte de los docentes.
= Creacion de un grupo fuerte de tutores.

Para la realizacion del proyecto se han presentado algunos inconvenientes, tales
como:

= Falta de computadores en ciencias basicas durante los horarios asignados para
el disefio y manipulacién de los cursos.

= Poca capacitacion en el manejo de la plataforma Moodle.

= La incorporacién de material en la plataforma se ha hecho con documentos,
animaciones y applets que se encuentran en internet, los que, con alguna re-

gularidad, no cumplen con lo que el profesor desea mostrar.

= Falta capacitacion en el manejo de programas multimedia de gran utilidad

para la elaboracién de instrumentos adecuados (Flash y Java, especialmente).
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3.7. Concepciones y creencias de algunos profesores

universitarios sobre la evaluacion en matematicas

Grupo Pentagogia'®
Grupo Matemdtica Computacional*

Resumen

En este articulo se presenta un informe de avance de la investigacién “Concepciones
y creencias de algunos profesores universitarios sobre la evaluacién en matematicas”,
que estan realizando los grupos Pentagogia, de la Escuela Colombiana de Ingenieria,
y Matematica Computacional, de la Pontificia Universidad Javeriana. Hasta el mo-
mento se han terminado las etapas de diseno del instrumento para recolectar la
informacion que les interese a los profesores que ensenan matemaéticas en los progra-
mas de ingenieria de las dos universidades. Actualmente se esta realizando el andlisis
de la informacién que permitira identificar las concepciones y creencias de los pro-
fesores, con el fin de poder proponer acciones tendientes a mejorar las practicas

evaluativas en las dos instituciones.

Palabras claves: evaluacion, concepciones y creencias sobre evaluacion, matemati-

cas universitarias, ensenanza, aprendizaje.

3.7.1. Introduccion

Como resultado de los cambios curriculares que se gestan dentro de las instituciones,
la evaluacion de los aprendizajes es un elemento que debe evolucionar paralelamente

para dar respuesta a los procesos asociados a la ensenanza y el aprendizaje.

Niss (1993, citado por Becerra y Moya, 2008) reporta que el campo de la educacién
matematica ha centrado su atencién en los procesos de formacion y adquisicion
de conceptos matematicos, dejando de lado la evaluacion; “se ha considerado que la
evaluacién es un factor de menor importancia para la educacion matematica, siendo,

ademas, un factor externo a ella”.

Actualmente, la sociedad reclama personas competitivas, calificadas, con capacidad
de aprender a aprender, lo que ha llevado a plantear cambios curriculares en los
que los estudiantes sean el centro del proceso, individuos activos y responsables en
su formacion. Dentro de este panorama cobra importancia el papel del profesor, al
igual que las concepciones, creencias y actitudes que éste tenga sobre la evaluacion,

el aprendizaje, la ensenanza y la matematica.

13Bernarda Aldana, Carlos Alvarez, Sandra Gutiérrez, Guiomar Lleras y Edgard O’bonaga.
Escuela Colombiana de Ingenieria.
Martha Alvarado Gamboa y Patricia Herndndez Romero. Pontificia Universidad Javeriana.
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Uno de los objetivos a largo plazo de la comunidad cientifica es construir bases teori-
cas que permitan avanzar en el campo de estudio sobre el profesor y su desarrollo
profesional (Moreno y Azcarate, 2003). En este aspecto, y dentro de las lineas de
investigacion en educacién, uno de los focos de estudio es el pensamiento del pro-
fesor, en particular las concepciones y creencias como factores determinantes de las
practicas y de las acciones en el aula, a lo cual no es ajena la matematica, segin
lo demuestra el creciente nimero de estudios al respecto (Houston, 1990; Thom-
pson, 1992; Llinares, 1998, Ponte, 1996; Garcia, 1997 citados por Gil y Rico, 2003).
Por esto consideramos clave identificar las concepciones y creencias que sobre la en-
senanza y aprendizaje de las matematicas tienen los profesores pero por ser un tema
tan amplio creemos que podriamos indagar por un elemento fundamental en este
proceso, que corresponde a la evaluacion en matematicas. También es importante
preguntarse qué tanto inciden las concepciones del docente en el desempeno de los
estudiantes; como podriamos cambiar la evaluacion para que esté acorde con los
procesos de ensenanza - aprendizaje y permita generar aprendizajes significativos
en los estudiantes.

Interesados por dar pasos encaminados a solucionar preguntas de esta indole, se
considera necesario indagar por las concepciones y creencias que los profesores de
matematicas del nivel universitario tienen de la evaluacién. En principio, en esta
investigacion se trabajara con el grupo de profesores de matemaéticas de la Escuela
Colombiana de Ingenieria y la Pontificia Universidad Javeriana. Las respuestas a
estas preguntas nos ayudarian a identificar el perfil del profesor de matematicas en
nuestras universidades y, a partir de ellas, podriamos proponer acciones que incidan
en las practicas pedagdgicas de los docentes en las dos instituciones.

Se habla en general de la practica pedagogica porque una reflexién sobre la evalua-
cion en matematicas debe tener en cuenta también el proceso ensenanza-aprendizaje
de las matematicas, pues estan intimamente relacionadas dado que la evaluacion de
alguna manera ayuda a regular y controlar este proceso, y a reconocer los cambios
que se presentan para generar un trabajo en el aula a partir de los errores de los
estudiantes y de los planes de mejoramiento, mediante los cuales dichos errores pue-
dan superarse. Asi, se comparte el criterio del documento Estandares curriculares,
elaborado por el National Council of Teachers of Mathematics (NCTM), y més es-
pecificamente la seccién final, Estandares para la evaluacion de las matematicas,
en la que se afirma que “para desarrollar la capacidad matematica en todos los es-
tudiantes, la evaluaciéon debe apoyar el aprendizaje matematico continuo de cada
estudiante”, y ademas recomienda abandonar el tratamiento de la evaluacién como

una parte independiente del curriculo o la instruccion.
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3.7.2. Objetivos
Los objetivos que se proponen en la investigacién son los siguientes:

Objetivo general
Determinar las concepciones y creencias que sobre la evaluacion tienen los profe-
sores de matematicas en la Escuela Colombiana de Ingenieria y en la Pontificia

Universidad Javeriana.

Objetivos especificos

» Adaptar y diseniar un instrumento para caracterizar las concepciones y creen-
cias que sobre la evaluacién tienen los profesores de matematicas de la Escuela

y de la Universidad Javeriana.

= Aplicar el instrumento de medicién en las dos instituciones participantes en el

proyecto.

= Proponer acciones tendientes a incidir en las préacticas evaluativas en las dos

instituciones participantes en el proyecto.

3.7.3. Marco conceptual

Este proyecto se enmarca dentro de las investigaciones en educacion que estudian el
pensamiento del profesor y que, segiin Llinares (1998, citado por Gil y Rico, 2003),
pretenden ofrecer una mejor comprension de los procesos de ensenanza-aprendizaje,

de reforma y de desarrollo curricular.

En virtud de que consideramos que la evaluacién es un elemento del proceso de
ensenanza-aprendizaje, pretendemos explorar las concepciones y creencias que sobre
ésta tienen los profesores de la Escuela Colombiana de Ingenieria y de la Pontificia
Universidad Javeriana que ensenan matematicas en las facultades de Ingenieria,
Economia y Administracion. De esta manera, se pueden entender y analizar sus
acciones y proponer, quizas, nuevos enfoques en la forma de concebir la ensenanza-

aprendizaje de las matematicas y en particular la evaluacién de éstas.

Por otra parte, para ensefiar matemaéticas no sélo es necesario conocerlas sino ademas
cada profesor necesita saber las razones por las cuales actia en una u otra forma.
Debe conocer qué es lo que debe ensenar y cémo lo debe ensenar, a quién se dirige su
accion y para qué lo hace. Debe saber también qué y como evaluar. Estas serfan las
preguntas fundamentales que se deben plantear cuando se quiere reflexionar sobre la
ensenianza de una materia. Su actuacion se orientara dependiendo de las respuestas
que dé a cada una.
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Pensamos que cada profesor da una respuesta personal a cada pregunta y tratamos
de indagar cudles son sus concepciones y creencias con respecto a ellas y, mas es-
pecificamente, con respecto a la evaluacién (Gil, Moreno, Olmo, Ferndndez, 1997;
Gil y Rico, 2002).

Una reflexién sobre el proceso de ensenanza-aprendizaje de las matematicas nos lleva
a tener en cuenta la evaluacion, pues ésta es la concrecion de las expectativas del
profesor y, por consiguiente, de la manera como los estudiantes entienden lo que su
profesor espera de ellos. ; Qué saben sus estudiantes? ; Como aprenden mateméaticas?
L Qué ajustes y cambios son necesarios en el curriculo?

Cuando se trata de reflexionar sobre la evaluacién en general o en particular del
aprendizaje de las matematicas, surgen muchas preguntas que sobrepasan las fron-
teras del salon de clase y la interaccion entre un grupo de estudiantes y un profesor,
como las siguientes: ;puede la evaluacion constituirse en un componente del apren-
dizaje? ;Qué elementos hay que tener en cuenta cuando se evalia el desempeno
en matematicas de un estudiante? ;Hay otras posibilidades de evaluar, ademés de
las pruebas tradicionales escritas, bien sean de preguntas abiertas o en forma de
test? Las respuestas a éstas y otras preguntas similares implican una toma de con-
ciencia sobre el sentido de la evaluacién y de alguna manera condicionan la accién
pedagdgica en el trabajo con los estudiantes. Se espera que como resultado de esta
investigacion se puedan ofrecer unas primeras respuestas a estas preguntas en el

marco de las dos instituciones en las que se aplicaran los instrumentos.

Lo que es claro es que con la evaluacion se pretende indagar por lo que han aprendido
los estudiantes. Encontrar diferentes formas de evaluar el aprendizaje apunta a la
busqueda de que las calificaciones que se dan reflejen lo que realmente han aprendido
y, aun mas que eso, que lo que han aprendido lo puedan aplicar en otros contextos, es
decir, que puedan efectuar la transferencia de conocimiento, que es tan importante
especialmente cuando nuestros alumnos no estudian una carrera de matematicas,

sino que la aplican en programas de Ingenieria, Economia y Administracién.

Por otro lado, como nuestro propésito es indagar sobre las concepciones y creencias
que tienen los profesores de matematicas acerca de la evaluacién, vale la pena aclarar
los significados de los términos que estamos empleando. En este sentido, revisando
la literatura se encuentra una estrecha relacion existente entre los términos concep-
cién y creencia; en la presente investigacion adoptaremos las definiciones de Moreno
y Azcarate (2003), adaptadas de Linares (1991), Pajares (1992), Ponte (1994) y
Thompson (1992).

Las creencias son conocimientos subjetivos, poco elaborados, generados a nivel particular
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por cada individuo para explicarse y justificar muchas de las decisiones y actuaciones
personales y profesionales vividas. Las creencias no se fundamentan en la racionalidad, sino
mas bien en los sentimientos, las experiencias y la ausencia de conocimientos especificos
del tema con el que se relacionan, lo que las hace ser muy consistentes y duraderas para

cada individuo.

A nivel universitario se percibe que el conocimiento que tienen algunos de los profe-
sores, no solo de matematicas, sobre los procesos de ensenanza-aprendizaje, asi como
de la evaluacion, son el resultado de sus experiencias como docente y estudiante, lo
que hace que estén cargados de subjetividad y generalmente sin una base pedagdgica,

con lo cual se conforma una creencia.

Las concepciones son organizadores implicitos de los conceptos, de naturaleza esencial-
mente cognitiva y que incluyen creencias, significados, conceptos, proposiciones, reglas,
imagenes mentales, preferencias, etc., que influyen en lo que se percibe y en los procesos
de razonamiento que se realizan. El cardcter subjetivo es menor en cuanto se apoyan sobre

un sustrato filoséfico que describe la naturaleza de los objetos matematicos.

3.7.4. Antecedentes

Cuando reflexionamos acerca del proceso ensenanza-aprendizaje, teniendo en cuenta
que nuestros estudiantes parecen, cada vez mas, estar interesados en la nota y no
en el aprendizaje, es decir, mas en el 3,0 y en aprobar la asignatura que en lo
que realmente deben y pueden aprender en un curso, es factible pensar que es un
problema de la modernidad o la posmodernidad, pero realmente los planteamientos
sobre la evaluacién y sus problemas surgen desde tiempos remotos, esto es, desde
cuando el hombre tiene la necesidad de evaluar.

En las sociedades primitivas la actividad valorativa se desarrollaba por ejemplo
cuando a los jévenes que habian adquirido conocimientos sobre la vida se les hacian
pruebas para convertirlos en miembros del grupo. En la sociedad esclavista empie-
za el nacimiento de una teoria pedagogica que se veia reflejada en los tratados de
filésofos griegos, como Sécrates, Platén y Aristoteles. Sécrates introdujo el método
socratico para ensenar y evaluar, en tanto que Aristoteles planteaba que en cualquier
actividad puede haber defecto, exceso y término medio. El establecié con esto nor-
mas para evaluar. En la época del feudalismo, la Iglesia catdlica tenia el monopolio
de la formacién intelectual. La evaluacion era totalmente reproductiva. El pensa-
miento pedagdgico comienza a desarrollarse cuando surge la lucha de clases contra
la nobleza. Se destaca el pedagogo Juan Amos Comenius, quien escribe varias obras,
entre las que se encuentra Diddctica magna.
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Del siglo XVII al siglo XIX hubo un gran desarrollo social y cientifico que influy6 mu-
cho en las teorias de la educacién. En este periodo se tienen pedagogos y filésofos

como Rousseau, Pestalozzi, Tolstoi, etc.

Ya a finales del siglo XIX y en todo el siglo XX existen varias corrientes pedagogicas
y en cada una de ellas se hacen planteamientos sobre la evaluacion:

En el conductismo se prefiere la evaluaciéon que compara la actuacion de una

persona consigo misma.

= En el cognoscitivismo se nos muestra la importancia de evaluar las habilidades

del pensamiento y de reforzamiento del alumno.

= El humanismo dice que el objetivo de la educacion es promover la autorreali-

zacion. La unica evaluacion valida es la autoevaluacion del alumno.

» Los psicoanalistas dan importancia a una evaluacién que dé mas prioridad al

proceso que al resultado educativo.

» La teoria piagetiana (anos sesenta) hace hincapié en la evaluacién en el estudio
de los procesos cognitivos y en la utilizacion del método critico-clinico.

= La teoria sociocultural, desarrollada por Vigotsky, plantea que la evaluacion
debe apuntar a determinar y promover el nivel de desarrollo potencial para
verificar el desarrollo real del estudiante.

El docente y el sistema educativo en general, inmersos en el proceso ensenanza-
aprendizaje, han seguido una u otra teoria e incluso varias al mismo tiempo, y de
acuerdo con sus creencias y formacion el maestro se ve enfrentado a la dificil tarea
de evaluar a sus alumnos. Se establecen entonces algunos enfoques que pretenden
comprender y explicar el papel que desempena la evaluacién en la educaciéon: como
medicion, como juicio de expertos, basada en objetivos, como toma de decisiones y
como comprensién. Analizando los diferentes planteamientos se puede concluir que
no hay enfoques evaluativos buenos o malos, sino enfoques adecuados para determi-
nadas circunstancias educativas, y es el docente el que debe tener la capacidad de

decidir qué enfoque utilizar en su accion evaluativa.

A pesar de todas las teorias y tendencias pedagdgicas en general y sobre la evaluacion
en particular, la sociedad descarga en el docente la responsabilidad, no sélo de formar
a los jovenes, sino de evaluarlos. Entonces es muy importante tener en cuenta que
la practica evaluativa del docente responde a sus principios educativos, sus valores
personales, su formacion técnica como evaluador, la naturaleza del conocimiento en

el que se desempena y toda la normatividad tanto oficial como institucional.
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Teniendo en cuenta todos los planteamientos anteriores parece claro que si deseamos
impactar, reestructurar o cambiar las formas de evaluar a los estudiantes en las
instituciones universitarias, el primer paso que hay que dar consiste en explorar las
concepciones y creencias que sobre la evaluacion tienen los profesores, y como una
de las variables principales es el conocimiento experto por areas, entonces es logico
empezar con una primera agrupacion de los docentes por areas del saber en las que
se desempenan. En nuestro proyecto en particular, se realiza con los profesores que

ensenan matematicas.

3.7.5. Metodologia

La propuesta recurre a métodos con una orientaciéon predominantemente explorato-
ria y descriptiva. Como instrumento de recoleccién de datos se utiliza una encues-
ta cerrada, elaborada tomando como punto de partida un cuestionario propuesto
por Gil y su grupo de investigadores (Gil, 1997). La validacién del instrumento se
realiz6 con un grupo de profesores de las dos universidades, luego se hicieron los
ajustes pertinentes y se obtuvo el instrumento definitivo. Es de anotar que el ins-
trumento resulto ser muy diferente del disenado por el grupo de Gil, debido por un
lado a que nuestro medio es distinto y por otro a que ellos trabajaron en el contexto
de la educacién bésica, mientras que esta investigacion se hace en el contexto de la

educacién universitaria.

Una vez validado el instrumento, se aplicé a todos los profesores que imparten los
cursos de matematicas en las dos universidades y se sistematizé la informacion en
una hoja de Excel; actualmente se estd realizando el analisis que permitira establecer

las concepciones y creencias de los profesores acerca de la evaluacion en matemaéticas.

Instrumento de recoleccién de datos

Como ya se menciond, el instrumento se disené tomando como punto de partida el
propuesto por Gil y su grupo de investigadores (Gil, 1997). Se analizé cada una de
las preguntas, teniendo en cuenta lo que se queria indagar y si era o no pertinente
en nuestro medio y en el ambito universitario. A partir de la discusion del grupo de
investigacion se llegd a una primera propuesta, que fue aplicada a un grupo reducido
de profesores de las dos universidades; estos profesores hicieron los comentarios y
sugerencias que consideraron pertinentes, conociendo de antemano el objetivo del
cuestionario, y después de otras discusiones acerca de los comentarios y sugerencias

se concretd la encuesta definitiva, que se presenta a continuacion:
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ESCUELA COLOMBIANA DE INGENIERIA JULIO GARAVITO
PONTIFICIA UNIVERSIDAD JAVERIANA DE BOGOTA

Estimado profesor. los grupos de investigacion Pentagogia (ECI) v Matemdtica computacional (PUJ) estamos realizando de manera conjunta el
proyecto de investigacion Concepciones y creencias de algunos profesores universitarios sobre la evaluacion en matemdticas. De manera atenta
solicitamos su colaboracién para diligenciar la presente encuesta. Agradecemos su valiosa v oporuna informacion, la cual tendra un manejo

confidencial

Institucion en la que labora: ECI PUI

Timlo(s) profesional(es):

Numero de afios de experiencia en la ensefianza de la matematica universitaria:

Asignaturas que tiene a su cargo

En cada item asigne un valor de 1 a 5 teniendo en cuenta que 1 corresponde al menos importante v 5 al mas importante segin su crterio.

L. Lo gue debe ser objeto de evaluacion en

PRIORIDAD

1|2

3|4

5

Ios cursos de matemdticas es:
El conocimiento

adquinido  por los
estudiantes.

5. Las formas gue usted ntiliza para evalnar
a los estudiantes de maremaricas son:

PRIORIDAD

112(3|4

Parciales.

El trabajo realizado por los estudiantes.

Examen final

La actitud v el interés del esmudiante.

Talleres.

La Iabor del profesor.

Interrogatorios orales o usando el tablero.

Los contenidos con enfasis en lo conceptual

Evaluaciones en linea.

Los contenidos con énfasis en las
aplicaciones.

Trabajos en grupo.

Los logros alcanzados respecto de los
objetivos.

Tareas.

Autoevaluacién.

Otros:

Exposiciones.

Examenes con libro abierto.

Evaluaciones en grupo.

2. En los cursos de matemdticas se evalia
para:

Examenes utilizando calculadora graficadora
o computador.

Otros:

Obtener informacion sobre el aprendizaje de
los estudiantes.

Tomar decisiones sobre la promocion de los
estudiantes a cursos posteriores.

6. Las pregunias gue nusied unliza para nna
evalnacion de matemaricas incluyen:

Confrontar el proceso de ensefianza-
aprendizaje v el resultado del mismo.

Solamente ejercicios propuestos
anferiormente.

Replantear el proceso ensefianza-aprendizaje.

Preguntas teoricas.

Cumplir con el reglamento de la universidad.

Demostraciones.

Otros:

Ejemplos resueltos en el texto.

Problemas tipicos del texto guia.

Ejercicios que no estin en e} texto guia.

3. El estudiante debe ser evaluaido por:

Ejercicios que impliquen una elaboracion
adicional a la vista en clase.

El profesor de la asignatura.

Otros:

El departamento que offece la asipnamra.

Los profesores de la misma asignatura.

Los compaiieros del curso.

El mismo.

Equipo evaluador independiente de los
profesores de la asignatura.

7. Usted cree que Ia desercion y mortalidad
académica en los cursos de matemdticas se
deben a:

n

La madurez del esmdiante.

Otros:

Las dificultades del aprendizaje.

La msuficiente cantidad de evaluaciones.

4. La promocidn de un estudiante en sus
cnrsos de matemiticas depende de:

La falta de conocimienfo disciplinar de los
profesores.

wm

El examen final

La falta de conocimiento pedagdgico de los
profesores.

El promedio de las notas parciales.

El bajo nivel académico de los estudiantes.

Su participacion € interés en clase.

La msuficiente explicacion del profesor.

Su cumplimiento v responsabilidad en los
trabajos asignados.

La poca dedicacion del estudiante.

La actitud del profesor con sus estudiantes.

Condiciones especiales de los estudiantes
(becarins, situacidén académica, situacion
economica, enfermedades. efc ).

Otros:

Otros:

Continua al respaldo.
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13. Para usted lo mas adecuade en la | PRIORIDAD
8. Usted considera gue la razon por la cnal | PRIORIDAD ensenianza de las matemticas es: 1/2(3|4]5
un  estudiante  cursa  asignamras  de 1|3 4|5 Fomentar el trabajo intelectual de los
matematicas en su carrera es: alunmos.
El caricter formativo (orden. disciplina. Establecer Ia conexion de los conceptos con
logica. etc.). situaciones reales.
Que estan en los planes de estudio. Realizar gjercicios en clase.
El desarrollo de compefencias cognitivas Lograr 1a motivacion v el interés del
(abstraccion, analisis, sintesis). estudiante.
Su importancia como fundamentacion de la Explicar v dar ejemplos.
parte profesional. Proponer talleres en clase.
El ser una buena herramienta para resolver Proponer trabajos extra clase.
problemas de 1a vida cotidiana v profesional Propiciar el trabajo en equipo de los
Otros: estudiantes.
Fomentar el estudio previo a la clase
Otros:
9. Para nsted Tas principales dificultades en | PRIORIDAD
la ensenianza de las malemdticas sedebena: | 12|13 4|5
La mala preparacion de los estudiantes. 14. Al preparar muna evalnacién de | PRIORIDAD
La dificultad de la materia. matemaricas usted fene en cnenida: 12|13/ 4|5
La falta de preparacion pedagogica de los Los objetivos del curso.
docentes. El rendimiento acadéemico evidenciado en las
Fl horario de clases. clases.
La falta de disciplina de estudio de los La opinion de sus colegas.
alumnos. Las indicaciones dadas por la institucion
La dificultad que tienen los estudiantes para Las evaluaciones propuestas en los textos.
leer. Que pase la mayor cantidad de estudiantes.
Los estudiantes no fienen disciplina. Los mveles de dificultad.
Otros: Las competencias (interpretativa.
argumentativa, propositiva).
El trabajo desarrollado por usted en clase.
10. Para nsted Ios conrenides maremaricos | PRIORIDAD Otros:
mds importantes en las asignatiras son: 1|2]3]45
:\g‘;?: 3 D(Lu; I;iﬁggdi i:;:;f:t;ocgs !3 15 {.’.os hechos gne e .’tm‘m_ senfir que ha PRIOR]DAD_
Tos que tienen aplicaciones en Ia vida real !‘e’ﬂh:(lt‘.!‘(—" un  buen trabajo enseriamdo | 1| 2| 3| 4|5
Los que tienen implicaciones curriculares AT 0R sa’.*_" = e
S, Obser_va:r interés ¥ participacion de los
Tos concephules. esmudiantes en el aula. .
I B Los buenos resultados obtenidos por los
05 proc entales. . : i
T oS st estudiantes enlos examenes.
La modelacion v solucion de problenas. E-l avacice &0 £l aprencizge de fos alamins
Oos: (interpretar. argumentar, pmponer}.'
Lograr un buen nivel de atencién en los
estudiantes.
11, Para nsted nn buen esmdiante en nn | PRIORIDAD ];;u;;.ﬁ;:_cmﬂ e P ik 0h e
curso de matemaricas es el que: 1/2|3|4|5 : 5
Tiene buenas capacidades intelecmales. Ii;gr%‘?;iz;}:onom e
Se esfuerza y trabaja. - Las evaluaciones que hacen los estudiantes
Esta motivado por la matematica. de usted.
Es responsable. solidario. participativo.. Otros:
Obtiene buenas notas en los examenes.
Es ordenado.
Es analitico y critico. I6. Usted considera gue las matemdticas se | PRIORIDAD
Ofros: aprenden: 1{2(3[4(5
Memornizando procedimientos v definiciones.
T2 ET objera de Ta socializacion de fos | PRIORIDAD Metiain: cxyiicaciocs: 3 memgios Ucl
resultados de la  evaluacion com los | 1|2 (3| 4|5 profesor._ — -
e T - Por gfemsposl_cton namural del es’ru_dun}e.
Dar a conocer las notas a los estudiantes. Med‘“.‘“‘.‘ £l ’ﬂ‘:’fm’?‘“" dealgimtipo de
= _ conocimiento o capacidad.
Analizar los errores cometidos por los Estimulando  procesos  COgmifivos ¥
estudiantes. fomentando ciertas  actividades. como
Reevaluar la planeacion del curso. abstraccion. analisis v sintesis.
Disefiar actividades de mejoramiento. Por motivacion. -
Replantear la metodologia. Trabajando en equipo con los compaiieros.
Otros: Haciendo muchos ejercicios.
Otros:
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3.7.6. Analisis de la informacion

A continuacion se presenta un avance de la manera en que se estda analizando la

informacion.

Al investigar sobre las concepciones de los profesores de matematicas acerca de la
evaluacion en la universidad, el instrumento disenado indaga sobre los siguientes

factores:
1. La evaluacién: preguntas 1, 5, 6 y 14.
2. Razén de ser de la evaluacion: preguntas 2, 3 y 12.

3. Importancia de la formacién matematica en las carreras: preguntas 8,
10, 13 y 16.

4. Perfil del estudiante: preguntas 4, 7 y 11.
5. Caracteristicas del profesor: preguntas 9 y 15.

Las variables de cada uno de esos factores son cualitativas, con posibles valores
definidos por los investigadores, de acuerdo con el cuestionario disenado por Gil et
al. en las universidades de Almeria y Granada. También se asigné un puntaje para

cada respuesta, desde menor importancia (1) hasta mayor importancia (5).

Se consideraron dos grupos de estudio compuestos por los profesores de matematicas
de la Escuela Colombiana de Ingenieria y la Pontificia Universidad Javeriana, sede
Bogotd, adscritos a los departamentos de Matematicas de cada una de ellas. La
muestra estuvo conformada por 77 personas: 38 profesores de la Escuela Colombiana

de Ingenieria y 39 profesores de la Pontificia Universidad Javeriana, sede Bogota.

Presentacién descriptiva de la informacion

Para la presentacion descriptiva de la informacion se usaran las tablas, medidas y
graficas que aplican para este caso.

En la informacién basica se tienen los siguientes resultados:

Titulos profesionales. La mediana de los anos de experiencia de los docentes
encuestados fue de 20; esto significa que el 50 % de las personas encuestadas tienen

una experiencia de 20 anos o mas como docentes universitarios.

La distribucion por formacion basica de los profesores se muestra en el siguiente
diagrama.
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DISTRIBUCION POR FORMACION
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3.7.7. Analisis de las variables

El analisis contempla varios aspectos: el resultado de cada pregunta en el conjunto
total de individuos, el resultado de cada pregunta en cada grupo de estudio y la
comparacion de los dos grupos. Ademads, a los investigadores les interesa determi-
nar el grado de asociacién de algunos grupos de preguntas mediante el anélisis de
correlacion, ya que esto evidenciara la coherencia en las respuestas de los profesores.

Ejemplo del analisis de una de las preguntas.

Resultados de la pregunta 1 en el grupo total de profesores

Pregunta 1: Lo que debe ser objeto de evaluacion en los cursos de matemdticas es:
a) El conocimiento adquirido por los estudiantes.

b) El trabajo realizado por los estudiantes.

¢) La actitud y el interés del estudiante.

d) La labor del profesor.

e) Los contenidos con énfasis en lo conceptual.

f) Los contenidos con énfasis en las aplicaciones.

g) Los logros alcanzados respecto de los objetivos.

h) Otros.
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INC.1 | INC.2 | INC.3 | INC.4 | INC.5 | INC.6 | INC.7

PRIORIDAD 1 1 1 5 14 6 1 6
PRIORIDAD 2 1 4 1 6 3 6 1
PRIORIDAD 3 3 14 24 19 7 6 )

PRIORIDAD 4 | 27 25 21 13 27 30 22
PRIORIDAD 5 | 45 33 26 25 34 34 43
TOTAL 7 7 7 77 7 7 7

DISTRIBUCION PUNTAJES PREGUNTA No 1

INC.1 INC.2 INC. 3 INC. 4 INC. 5 INC, & INC. 7

EPRIOR1 ®WPRIOR2 ®WPRIORI ®PRIOR4 ®PRIORS

La categorizacion de la prioridad dada a cada aspecto fue la siguiente:

= Prioridad alta a los puntajes 4 y 5.

= Prioridad media al puntaje 3.

= Prioridad baja a los puntajes 1 y 2.

Si se enfoca la atencion en el nimero de personas que respondieron las opciones 4 y
9, es decir, que asignaron prioridad alta a cada uno de los incisos de la pregunta 1,
se encuentra la distribucion de respuestas que se muestra en la siguiente grafica:



252 CAPITULO 3. PONENCIAS

DISTRIBUCION DE INCISOS PREGUNTA No 1
POR PRIORIDADES MAS ALTAS
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Se decidié entonces explorar esta distribucién en una forma maés profunda y para
ello se decidié hacer una prueba de proporciones multiples.

Prueba de proporciones multiples para la pregunta 1

Aqui se realiza la siguiente prueba de hipotesis:

Ho: La forma de escogencia de las prioridades més altas por inciso en la pregunta
1 es la misma en todos los profesores.

H1: Hay diferencias significativas en la escogencia de las prioridades més altas por
inciso en la pregunta 1.

Se realiza la prueba chi cuadrado de proporciones miltiples y se halla un valor
calculado de 15,80, lo cual nos permite concluir que hay diferencias significativas en
la escogencia de las prioridades més altas (p < 0,05).

Al examinar la estructura de la pregunta se llega a la conclusién de que los incisos
1,7, 6 y 5 son considerados prioritarios en la pregunta 1 por parte de los profesores.

Por tanto, en la pregunta 1 los profesores consideran que los aspectos mas impor-

tantes que deben ser objeto de evaluacion son, en su orden:

1. El conocimiento adquirido por los estudiantes (94,8 %).
2. Los logros alcanzados respecto de los objetivos (85,7 %).
3. Los contenidos con énfasis en las aplicaciones (84,4 %).
4. Los contenidos con énfasis en lo conceptual (81,8 %).

5. El trabajo realizado por los estudiantes (75,3 %).

6. La actitud y el interés del estudiante (61 %).

7. La labor del profesor (48 %).
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Analisis de las diferencias de opinién entre los dos grupos que conforman

la muestra

Con el objeto de determinar si hay homogeneidad en las opiniones expresadas por los
profesores de ambas universidades o si éstas difieren significativamente, se analizaron
los dos grupos por separado, encontrandose lo siguiente:

Escuela Colombiana de Ingenieria

INC.1 | INC.2 | INC.3 | INC.4 | INC.5 | INC.6 | INC.7
PRIORIDAD 1 0 0 2 6 3 0 3
PRIORIDAD 2 1 3 1 6 1 6 1
PRIORIDAD 3 2 11 17 11 6 2 4
PRIORIDAD 4 17 12 ) 6 14 12 7
PRIORIDAD 5 18 12 13 9 14 18 23
TOTAL 38 38 38 38 38 38 38
25
20
il | = PRIORIDAD 1
15
® PRIORIDAD 2
N . s B = PRIORIDAD 3
w7 = PRIORIDAD 4
' = PRIORIDAD 5
¢ L
0 ".'._"_F__"_V_L "____:.'

Pontificia Universidad Javeriana

INC.1 | INC.2 | INC.3 | INC.4 | INC.5 | INC.6 | INC.7

PRIORIDAD 1 1 1 3 8 3 1 3
PRIORIDAD 2 0 1 0 0 2 0 0
PRIORIDAD 3 1 3 7 8 1 4 1
PRIORIDAD 4 10 13 16 7 13 18 15

PRIORIDAD 5 27 21 13 16 20 16 20
TOTAL 39 39 39 39 39 39 39
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0T

25 1

20 1 = PRIORIDAD 1

m PRIORIDAD 2

® PRIORIDAD 3
® PRICRIDAD 4
= PRIORIDAD 5

INC.1 INC.2 INC.3 INC.4 INC.5 INC.6 INC.7

Al enfocar el interés en la asignacién de prioridad alta (puntaje 4 y 5) a cada inciso
de la pregunta 1 por universidad, se encontro lo siguiente:

ECI | PUJ
INCISO 1| 35 37
INCISO 2 | 24 34
INCISO 3 | 18 29
INCISO 4 | 15 23
INCISO 5 | 28 33
INCISO 6 | 30 34
INCISO 7 | 30 35

W ESCUELA
| JAVERIANA

———— ———— T
INCISO INCISO INCISO INCISO INCISO INCISO INCISO
1 2 a 4 5 & 7

Los profesores de las dos universidades coinciden, con ligeras variaciones,
en que el objeto de la evaluacién debe considerar que los aspectos fun-
damentales son el conocimiento adquirido por los estudiantes, los logros
alcanzados respecto de los objetivos, el trabajo de los estudiantes, los
contenidos con énfasis en las aplicaciones y los contenidos con énfasis en
lo conceptual.
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Cada una de las preguntas del cuestionario tiene un andlisis igual al del ejemplo

mencionado.

En este momento se estd terminando el andlisis de cada pregunta, que dard como
resultado las concepciones que los profesores tienen en relaciéon con la evaluacion,
identificando asi los aspectos que consideran prioritarios a la hora de evaluar los
grupos de asignaturas a su cargo.

Posteriormente se realizara un consolidado por cada factor, definido al comienzo, y

esto determinara los aspectos prioritarios por factor.

3.7.8. Conclusiones generales

Se sacaran después del analisis de los resultados. Por lo pronto queremos destacar
la gran acogida de la encuesta, el interés que ha despertado su andlisis y las expec-
tativas que se tienen con respecto a hacer alguna propuesta que permita incidir en
las practicas de la evaluacién en matematicas en las dos instituciones, la Escuela
Colombiana de Ingenieria y la Pontificia Universidad Javeriana, que formaron parte
de este proyecto de investigacion.
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3.8. Registros semioéticos presentes en los significados
personales declarados por estudiantes de décimo grado

que son observables desde la probabilidad frecuencial

Diana Isabel Torres Rojas™®

Pedro Rocha Salamanca'®

Resumen

El mundo estd inmerso en situaciones que en ocasiones no logramos comprender, al-
gunas llenas de incertidumbre o regidas por el azar. Cuando esta clase de situaciones
se llevan al aula, carecen de sentido para el estudiante al no ser contextualizadas y
lo involucran en un mundo determinista y ligado a la aplicacion de reglas de calculo,
perdiéndose del proceso de construccion del significado de probabilidad. Por eso, con
el presente escrito se busca dar respuesta a una pregunta de investigacién emergente
a lo largo de mi ejercicio docente: jcudles son los registros semioticos presentes en
los significados personales declarados por estudiantes de décimo grado del Colegio
Colombo Internacional Acoinprev que son observables desde la probabilidad frecuen-
cial? Se dan a conocer la problematica presente dentro del curriculo de matematicas,
los hechos de aula y la construccién de un pensamiento determinista frente al sig-
nificado de probabilidad en los estudiantes de la educacion media, al igual que la
necesidad de identificar los elementos de significado de un objeto y la importancia
del uso de las representaciones, en particular de los registros semioticos. Finalmente,
se plantea la metodologia de investigacion utilizada y se presentan algunos instru-
mentos que permitieron recolectar informacién con el propdsito de dar respuesta a

nuestra pregunta de investigacion.

Palabras claves: elementos de significado, registro semiético, significados persona-

les declarados, aleatoriedad y probabilidad frecuencial.

3.8.1. Introduccion

En los procesos de formacion escolar para el desarrollo del pensamiento estadistico
y aleatorio los sistemas de datos se han introducido con el fin de considerar, tratar,
interpretar y comprender aquellas situaciones que, por presentar multiples variables
y resultados impredecibles, se consideran regidas por el azar. Segiin Batanero (2001,
p. 117), Borba y Skovsmose (1997, p. 10) y MEN (1998, p. 47), en la formacién

5Profesora del Colegio Colombo Internacional Acoinprev. Universidad Distrital Francisco
José de Caldas. Facultad de Ciencias y Educacién. Proyecto Lebem. Bogota, Colombia. isabe-
llatoras@hotmail.com.

Director de Investigacién. Pedro Rocha Salamanca. Profesor Universidad Francisco José de
Caldas. Grupo Crisalida. Bogota, Colombia. pgrocha@udistrital.edu.co.
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estocastica escolar tradicionalmente se ha hecho énfasis en la construccién del pen-
samiento determinista, en el que priman la apropiaciéon de métodos deductivos, el
tratamiento y la busqueda de soluciéon a problemas con una y soélo una respuesta
correcta, limitando a los estudiantes en la posibilidad de enfrentar, analizar y tratar
la realidad compleja del mundo, influyendo asi de manera directa o indirecta en su
capacidad frente a la toma de decisiones en situaciones afectadas por la incertidum-
bre, tan habituales en nuestra sociedad; esto los lleva a dejar de lado la comprensién
y el significado de los objetos estocasticos y limitarse meramente a la aplicacién de
una regla de célculo.

Cuando se habla del significado de un objeto matematico o estocéstico, Wittgenstein
(citado por Godino, 2003, p. 35) comenta que “El verdadero significado de una
palabra ha de encontrarse observando lo que un hombre hace con ella, no lo que dice
de ella”. Es en este uso donde los estudiantes ponen en juego sus elaboraciones y
en el cual es posible reestructurar sus conocimientos; sin embargo, como lo plantea
Behar (2004), en las investigaciones realizadas al analizar los libros de texto las
situaciones planteadas a los estudiantes no los llevan hacia una contextualizacién de
las situaciones aleatorias, sino que, por el contrario, los centran en la operatividad
y aplicacion de una regla de calculo. Para este autor, el significado de una palabra
radica en su uso, comenta que el mundo se nos revela sélo en la descripcion lingiiistica
y es a través de esta percepcién e interpretacién del mundo como es posible construir
un significado del objeto puesto en juego. La ensenanza ha dejado de lado el caracter
metacognitivo del lenguaje y se ha centrado en la operatividad, olvidando la funciéon
que tienen la representacion y el lenguaje en la construccion de un objeto estocéstico,

en este caso en particular.

De esta manera se convirtié en algo necesario e importante investigar sobre los re-
gistros semiéticos ligados al significado de probabilidad frecuencial, ya que como lo
comenta Azcéarate (1996), “Existen muy pocos datos sobre los diferentes aspectos
relacionados con el conocimiento matemaéatico y practicamente inexistentes los estu-
dios de concepciones de profesores sobre el conocimiento estocédstico”, razoén por la
cual se hizo primordial reconocer las funciones de las representaciones y los registros

semiodticos en la ensenanza y el aprendizaje de la probabilidad.

Ademas, los registros semioticos son una de las dos caracteristicas que distinguen la
actividad cognitiva; éstos permiten efectuar operaciones de diferente naturaleza, van
desde lo verbal hasta lo formal, llevando al estudiante no sélo a determinar y utilizar
diferentes tipos de registro, sino a establecer una relacién entre éstos y asi construir
un significado de probabilidad que le permita interpretar su mundo (Duval, 1999, p.
24). Por ejemplo, al enfrentarse a situaciones de tipo aleatorio desde el enfoque fre-
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cuencial de probabilidad, le permitira al estudiante verse en la necesidad de realizar
varias veces el experimento, recoger datos, analizarlos, identificar regularidades, de-
finir conceptos, modificar estructuras, establecer patrones de variacion, y en medio
de este proceso los registros seran una herramienta y en ocasiones instrumentos que
le permitan comprender lo que sucede, establecer hipdtesis, validarlas o refutarlas
y, finalmente, establecer o hacer una estimacion frente a la probabilidad de que el

evento ocurra.

Analisis del significado de probabilidad y el uso de los registros semiéticos
desde el enfoque ontosemidtico

Para enfrentar el problema de la significacién y representacion nos enfocaremos en el
EOS (enfoque ontosemiético). Godino, Font y D’Amore (2007) consideran el objeto
matematico como “cualquier entidad o cosa a la cual nos referimos, o de la cual ha-
blamos, sea real, imaginaria o de cualquier otro tipo”. En este caso en particular, el
sistema de practicas declarado por los estudiantes permite evidenciar el significado
del objeto, probabilidad que estd presente en las actuaciones o expresiones (verbal,
grafica) que realizan al resolver problemas, comunicar soluciones o generalizar en
otros contextos (Batanero y Godino, 1998). Dichos objetos mateméticos, al surgir
en el interior de las practicas o intervenir en éstas, se desenvuelven en un deter-
minado lenguaje y pueden considerarse ostensivos y no ostensivos. Dentro del EOS
las representaciones pueden dividirse en diferentes facetas o dualidades, una de las
cuales es la faceta ostensiva, en el interior de la cual las representaciones generan

configuraciones de tipo epistémico (relacionado con el saber).

Teniendo en cuenta lo planteado anteriormente, se hace necesario:

A. Identificar y describir en las practicas observables los significados personales
declarados por los estudiantes frente al concepto de probabilidad frecuencial.
Los significados personales desde el punto de vista de Godino se entienden
como el conjunto de “sistemas de practicas operativas y discursivas que son
capaces de realizar los estudiantes a propodsito de un cierto tipo de probabili-
dad” (Godino, 2002), es decir, comprender el proceso que llevan los estudiantes
en la construccion del significado de probabilidad y todos los elementos que es-
te proceso implica (acciones, estrategias, hipdtesis, representaciones y registros

semidticos, etc.).

Los significados personales estan divididos en tres: el significado global, el
logrado y el declarado; este ultimo da cuenta de las précticas efectivamente
expresadas a propésito de las pruebas de evaluacién propuestas y evidencia las
estrategias, las hipétesis, la propiedad, los conceptos, los registros (lenguajes,
términos, expresiones simbdlicas) utilizados por los estudiantes al momento de
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formular y validar sus acciones dentro de la solucion a la situacion planteada.

B. Identificar y describir los registros semidticos emergentes en los significados
personales declarados por los estudiantes (oral y escrito) al resolver problemas

relacionados con probabilidad frecuencial.

Para la exploracion de los significados personales se tomaron en cuenta los registros
semidticos o, como lo cita Godino, el lenguaje, simbolizado en las representaciones
ostensivas y las configuraciones de tipo epistémico. Estos elementos del EOS permi-
ten una mirada mucho mas amplia del significado del objeto puesto en juego, ya que
como comenta Duval (1992, cap. 2), las representaciones y las relaciones estableci-
das entre éstas permiten la comprension y construccion del significado de un objeto
matematico y sin ellos la comprension quedaria de lado. “No hay comprension del
significado de un objeto si no se logra establecer una relacién entre el objeto repre-

sentado y su representante y viceversa, en un contexto determinado” (Duval, 1999,
p. 13).

., Cual es el significado de probabilidad frecuencial emergente en los registros semioti-

cos declarados por los estudiantes de décimo grado?

., Cudles son los registros semiéticos empleados por los estudiantes al momento de
solucionar una situacion cotidiana relacionada con la aleatoriedad?

Antecedentes

Algunas investigaciones relacionadas con este tema son:

a) Tesis doctoral. Luis Serrano (1996). “Significados institucionales y personales
de objetos matematicos ligados a la aproximacion frecuencial de la ensenanza
de la probabilidad”.

b) Investigaciones sobre ensenanza y aprendizaje de las matemédticas. Carmen
Batanero (2002). “Un reporte iberoamericano. Significados de la probabilidad

en la educacion secundaria”.

3.8.2. Metodologia

“La comprension del lenguaje y su uso por el nifio depende de su implicacién en las
situaciones en que se utiliza; por ello se considera esencial que el estudiante y el maestro
analicen los diversos significados e interpretaciones de las expresiones lingiiisticas (registros
semidticos), de manera que cada uno sepa claramente lo que el otro quiere decir al usar

determinadas formas lingiiisticas” (Dickson et &l., 1991).

A continuacién se describira la metodologia que guio esta investigacién, teniendo en
cuenta los elementos que hacen de ésta una investigacion de tipo cualitativo.
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Fase I. Se realizé una revision bibliografica del objeto estocéstico probabilidad, los
registros semidticos que le son propios y su relacién con lo propuesto en los marcos
legales. Posteriormente se hizo un estudio de la teoria de las funciones semidticas
formulada por Godino, ya que a partir de este estudio fue posible considerar los
elementos de significados que hay que tener en cuenta para la caracterizacion del
significado de probabilidad frecuencial y los registros involucrados en ésta, con el fin

de delimitar la investigacion y construir asi el marco tedrico y conceptual.

Fase I1. Se disené e implemento una situacién en torno al significado de probabilidad
y aleatoriedad, la cual se desarroll6 en el aula a partir de la teoria de las situaciones
didacticas propuesta por Guy Brouseau, teniendo como prioridad sus tres primeras
etapas (accién, formulacién y validacién).

Fase III. Establecimiento de categorias desde los registros semidticos, anélisis de
resultados y conclusiones.

3.8.3. Elementos para el analisis de resultados

Al analizar los registros semioticos declarados por los estudiantes es necesario re-
conocer la relacion existente entre las representaciones semidticas y los registros
semioticos. Recordemos que entenderemos registro semidtico como el conjunto de
reglas entre signos, reglas que se pueden aplicar en el interior de un registro (tra-
tamiento) o de un registro a otro (conversién); en este caso en particular, nos cen-
traremos en analizar los registros utilizados y el tratamiento que se da dentro de un

mismo registro.

Para el andlisis de resultados en los registros semioticos y en las nociones de pro-
babilidad presentes en los significados personales declarados por los estudiantes, se
tendran presentes:

a) Las representaciones y los registros semiéticos trabajados desde la teoria de
Godino, particularmente los escritos y orales.

b) El sistema de categorias propuesto por Azcarate en su libro Estudio de las
concepciones disciplinares de futuros profesores de primaria en torno a las no-
ciones de aleatoriedad y probabilidad (1996). Estas categorias son pertinentes y
contribuyen a la orientacion y analisis de los significados personales declarados
por los estudiantes.

CODIGOS | DESCRIPCION
CATEGORIA 1 | No hay respuesta o justificacién, explicacion.
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CATEGORIA 2

Los argumentos presentados son confusos y no estdan claros

los criterios utilizados en la explicacion.

CATEGORIA 3

ceso determinista.

No se reconoce el suceso como aleatorio, se analiza como su-

CATEGORIA 4

terios objetivos de justificacion.

Se utilizan valoraciones cualitativas de tipo personal, sin cri-

3.8.4.

Al analizar los registros semidticos (representaciones ostensivas) declarados por los
estudiantes desde EOS, identificamos el sistema de practicas como el conjunto de
situaciones, acciones, lenguaje, conceptos y argumentos relacionados frente a una

practica matematica. La relacion de estos objetos genera una configuracion, en este

Andlisis de resultados

caso de tipo epistémico.

A continuacién se presentan las respuestas dadas por los estudiantes, los registros
declarados al momento de enfrentarse a la siguiente pregunta: plantee una situacion
de su vida diaria que considere aleatoria y justifique su respuesta. Estas respuestas se
han categorizado a partir de los niveles planteados por Azcarate y algunas categorias

que se establecen como emergentes y que estan intimamente ligadas a diferentes

significados de la aleatoriedad.

Grupo de es-
tudiantes

Situacién relatada

Justificacién (escrita)

1

La vida es aleatoria.

No es constante, suceden
cada dia diferentes cosas,
siempre cambiamos de ropa.

Diferentes resultados.

Invitacién a fumar. Hacer el

bien o el mal.

Cuando me invitaron a fu-
mar marihuana, tenia un di-

lema: hacerlo o no.

Al momento de comer.

No hay un orden estableci-
do, no hay un horario. No
existe un patréon de compor-

tamiento en la informacién.
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4 Un partido de futbol. Puede ir ganando, y luego
empatar, es aleatorio, no se
sabe cual puede ser el re-
sultado. La aleatoriedad co-
mo ignorancia sobre resulta-

do del experimento.

5 La amistad “es como un | Puede hundirse o flotar.
barco que sube y baja”

6 Las emociones en un parti- | Alegria, preocupacién, tris-
do. teza.
7 Diferentes momentos de la | Es algo no repetitivo que

vida en la que el diablo nos | transcurre en varios proce-
ataca en nuestra debilidad. | sos. No existe un patréon de

comportamiento en la infor-

macion.
8 El cuidado del cabello. El | Cada persona tiene diferen-
estado de animo. tes facetas (estados de &ni-

mo). Diferentes resultados.

9 Las etapas de la vida. No responde.

Los estudiantes consideran que una situacion aleatoria es aquella que varia, no es
estable, depende de las circunstancias y cambia constantemente. Teniendo en cuenta
los significados personales que declaran los estudiantes, es posible ubicarlos en las
categorias 2 y 4, debido a que los argumentos presentados en sus declaraciones son
confusos, no son claros los criterios utilizados en su explicacion, ademas de que sus

valoraciones son de tipo personal y carecen de justificacion.

Ningiin grupo puede ubicarse en la categoria niimero 1, ya que todos asocian una si-
tuacion de su vida a la aleatoriedad y logran explicarlo a partir de ejemplos; ademas,

se apoyan en sus representaciones escritas (lenguaje natural, grafico, tablas) y orales.

Después de analizar las declaraciones escritas de los estudiantes, es posible establecer

otras categorias que subyacen en la nociéon que éstos tienen sobre aleatoriedad.
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GRUPO | CATEGORIA REGISTRO ESCRITO DE-
CLARADO
3,7 No existe un patron de | Al momento de comer: No hay

comportamiento en la | un orden establecido, no hay
informacion. un horario. Diferentes momen-
tos de la vida en la que el dia-
blo nos ataca en nuestra debili-
dad: Es algo no repetitivo que
transcurre en varios proce-

SOS.
4 La aleatoriedad como ig- | Un partido de futbol: Puede ir ga-
norancia sobre resultado | nando y luego empatar, es aleato-
del experimento. rio, no se sabe cual puede ser el

resultado.
1,8 Diferentes resultados, posi- | La vida es aleatoria: No es cons-
bilidad de cambio. tante, suceden cada dia di-

ferentes cosas, siempre cam-
biamos de ropa. El cuidado del
cabello. El estado de animo: ca-
da persona tiene diferentes face-
tas (estados de &nimo).

2,5,6,9 Incertidumbre, otros | Invitacion a fumar. Hacer el
(equiposibilidad) bien o el mal. La amistad
“es como un barco que sube
y baja” (puede hundirse o flotar)
Las emociones en un partido

(alegria, preocupacién, tristeza).

Las etapas de la vida.

Al analizar las declaraciones de los estudiantes fue posible identificar similitudes y
diferencias entre ellas. Por ejemplo, los grupos 3 y 7 no reconocen un patron de
comportamiento en la informacién y la nociéon que declaran de aleatoriedad
gira en torno a un suceso sin orden y no repetitivo. Caso contrario ocurre con el
grupo 4, cuyos integrantes consideran que no es posible estimar sobre la infor-
macion debido a que hay una variacion en los datos; de esta manera, el significado
de aleatoriedad surge como ignorancia sobre el resultado del experimento.

Los grupos 1 y 8 reconocen el significado de aleatoriedad ligado a la diferencia
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de resultados, ya que algo aleatorio es algo que cambia. Pero en el caso de los
grupos 2, 5, 6 y 9 sus declaraciones relacionan el significado de aleatoriedad con la

incertidumbre, o con la posibilidad de que suceda una cosa o la otra.

El instrumento se aplico a 30 estudiantes de grado décimo del Colegio Colombo
Internacional Acoinprev (ver anexos). A partir de las respuestas obtenidas se esta-
blecieron las categorias, cada una relacionada con el uso de las representaciones y
registros semidticos que emplean los estudiantes en sus declaraciones (justificacio-
nes, procedimientos, etc.) al momento de enfrentarse a una situacién relacionada

con probabilidad y aleatoriedad.

3.8.5. Conclusiones

Los estudiantes de décimo grado del Colegio Colombo Internacional Acoinprev uti-
lizan diferentes registros semidticos como herramientas para justificar sus procedi-

mientos, concepciones o nociones intuitivas frente al significado de aleatoriedad y

probabilidad.

El uso de representaciones y registros semiéticos permite evidenciar las nociones,
creencias y concepciones que tienen los estudiantes frente al significado de aleato-
riedad y probabilidad. Ellos consideran que una situacién aleatoria es aquella que
varia, no es estable, depende de las circunstancias y cambia constantemente.

Los argumentos presentados en sus declaraciones son confusos, no son claros los cri-
terios utilizados en su explicacién, fuera de que sus valoraciones son de tipo personal
y carecen de justificacion.

A partir del andlisis de las declaraciones de los estudiantes se establecieron cuatro
categorias emergentes sobre el significado de aleatoriedad: No existe un patréon de
comportamiento en la informacién; La aleatoriedad como ignorancia sobre resultado
del experimento; Diferentes resultados, posibilidad de cambio; Incertidumbre, otros
(equiposibilidad).

Los registros semidticos presentes en los significados personales declarados por los
estudiantes mds utilizados son grafico y verbal (oral-escrito). Dentro del registro
grafico los estudiantes recurren con mayor constancia a uso de tablas, pictogramas
o diagramas de arbol.

Los estudiantes dieron cuenta de sus nociones sin necesidad de recurrir a una regla de
calculo o algin algoritmo matematico; utilizaron las representaciones para justificar

o refutar sus hipotesis o planteamientos.

Finalmente, esta investigacion permite corroborar que el andlisis hacia el uso de
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las representaciones y los registros semioticos permite evidenciar las diferentes in-
terpretaciones o concepciones que los estudiantes tienen sobre el significado de la
probabilidad y, a su vez, ver la oportunidad que ofrece el manejo de los registros en
el aula cuando el docente reconoce su necesidad y lleva al estudiante, por medio de
preguntas orientadoras, a realizar el tratamiento y, si es posible, el transito entre los
registros semiéticos, llegando asi a una construccion del significado de probabilidad
lejana del pensamiento determinista.
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3.9. Una propuesta didactica para la ensenanza del

concepto de limite de una funcién
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Resumen

Se presenta una propuesta didactica para la ensenianza del concepto de limite de
una funciéon en grado once de la educacién media colombiana, compuesta de dos
actividades en las que subyacen tres tipos de representaciones y una nocion del limite
de una funcién. La propuesta contiene un alto componente lidico, lo que permite que
el trabajo en el aula de matemaéticas sea placentero; dicha propuesta didactica fue
aplicada, evaluada y finalmente reformulada utilizando herramientas tecnoldgicas,
atendiendo a las necesidades actuales de la educacién colombiana. La definicién de
limite de una funcién que se trabajé es la propuesta por Blazquez, Gatica, Benegas
y Ortega (2006), que enlaza las concepciones de D’Alembert y Cauchy, lo que hace

que sea mas sencilla y méas adecuada de utilizar en la secundaria.

3.9.1. Presentacion

El concepto de limite de una funcién es uno de los conceptos matematicos sobre
los cuales se han realizado multiples investigaciones didacticas, pero pocas tienen
que ver con su ensenanza, contrario a lo que ocurre con las relacionadas con el
aprendizaje de este concepto, de las cuales se encuentra una extensa bibliografia
(Azcarate, 1996). En las investigaciones referentes al aprendizaje de este concepto
se han estudiado y analizado, entre otros aspectos, los obstdculos epistemoldgicos,
los errores y las dificultades que los estudiantes presentan al abordar su estudio.
A manera de ejemplo, Cornu (1983), al igual que Sierpinska (1985), considera que
una de las dificultades que presenta la definicién de limite de una funcién es la
ruptura que hay entre el significado de la palabra “limite” en el lenguaje coloquial
y su definiciéon matemaética. Con estos antecedentes de investigacién y reconociendo
la trascendencia del concepto de limite de una funcién en el contexto del calculo,
se disené una propuesta que atienda a la solucion de las dificultades relacionadas

17Estudiante de la maestria en docencia de las mateméticas. Grupo de Algebra de la Universidad
Pedagogica Nacional. Profesor del Instituto Pedagégico Nacional. Williamajg@hotmail.com.

18Estudiante de la maestria en docencia de las matematicas. Grupo de Algebra de la Universidad
Pedagdgica Nacional. Profesora del Instituto Pedagégico Nacional. rojastolosa@yahoo.com.ar.

YEstudiante de la maestria en matematica aplicada, Universidad Nacional de Colombia. Profesor
del Instituto Pedagodgico Nacional. kamandramsan@gmail.com.
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con este concepto por medio de la utilizacién de material concreto y del juego como

estrategia didactica y motivadora.

3.9.2. Referentes teoricos
Historia del concepto de limite

Son diversas las investigaciones (Séanchez y Contreras de la Fuente, 1998; Cornu,
1983; Deledicq, 1994; Sierpinska, 1985; Blazquez y Ortega, 2001) que se han dedicado
a estudiar aspectos relacionados con la ensenanza y el aprendizaje del limite de
una funcién como la historia, concepciones, dificultades, obstaculos epistemologicos,
representaciones, entre otros; en este marco, la historia de las matematicas permite
identificar aspectos relativos a la evolucion de los conceptos, las ideas de donde
surgieron, el origen de los términos, lenguajes y notaciones, las dificultades que
involucraban, los problemas que dichos conceptos resolvian, entre otros aspectos.
Adicionalmente, la historia de las matematicas se considera un recurso didactico que
mejora la calidad de la transmisién del conocimiento matematico (Gonzélez, 2004).
Por tales razones, en principio se presentara una breve resena histérica del concepto
de limite, identificando los aspectos histéricos mas relevantes de su evolucion.

Aunque se podria fijar la fecha del nacimiento del limite en 1850, los antecedentes
de este concepto aparecen en una época anterior, claro que con fisonomia diferente,
pues como se puede notar en analisis matematicos, este concepto esté ligado con
otros dos: el infinitesimal y el infinito, que aparecen desde la época griega. Un
ejemplo de esto se hace evidente en el trabajo de Arquimedes (287-212 a. de C.),
El método, estudiado por J. L. Heiberg en 1906. En éste se aprecia cémo el autor,
para calcular el volumen de algunos sélidos, hacia infinitas divisiones de ellos que
mantuvieran un espesor infinitesimal (Stewart, 2005), lo que muestra claramente
dos limites: uno tendiendo a infinito y el otro tendiendo a 0. Sin embargo, aunque
Arquimedes consideraba este método de gran importancia, carecia de rigurosidad y
no se mostraba cuando se hacian ptblicos los descubrimientos. De la misma manera
son renombrados los matematicos griegos que usaban sistemas muy parecidos, entre
ellos Demécrito (470-370 a. de C.) con su método para hallar el volumen de un cono,
Eudoxo de Crudo (350 a. de C.) con su método exhaustivo y Nicolds de Cusa, que

lo usaba para encontrar el area del circulo.

Pero jpor qué si el concepto se conocia desde la época griega, no tuvo un desarrollo
matematico en ésta? La respuesta a este cuestionamiento tiene muchas razones, pero
dos de las mas destacadas son: por el rigor que requeria el concepto y por conflictos
filoséficos. Un ejemplo de este iltimo es el filésofo Zenon (450 a. de C.), de la escuela
eledtica, que propuso cuatro paradojas referidas al espacio y al tiempo; en dos de
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ellas atacaba la idea de que son discretos y en las otras dos, que son continuos,
basandose en ideas que pueden sostenerse desde el infinitesimal e infinito. Estos
problemas significaron para las matematicas griegas avances referidos a la geometria,
pero a pesar de ser amplios, dicha falta de equilibrio ocasioné una grave distorsion
en el desarrollo de las matematicas. Sus repercusiones ain se dejaban sentir dos mil
anos mas tarde, cuando Isaac Newton y Gottfried Leibniz se propusieron inventar
el calculo (Stewart, 2005).

Lo interesante es que debido a que los griegos estuvieron en los brazos de la geo-
metria, surgieron varios problemas. Uno de ellos, estudiado desde la época de Apo-
lonio (250 a. de C.), fue el punto de partida para la ratificacién del concepto de
limite; el problema consistia en dibujar una recta tangente a una curva dada. Aun-
que Apolonio lo resolvié para las conicas, en especial para la parabola, la solucién
general aparecié alrededor del ano 1734, gracias a dos matematicos; claro esta que
esta construccion es un edificio en el que importantes matemaéticos colaboraron con
uno o mas aportes. La siguiente es una lista de los més destacados junto con sus
aportes, aunque tan solo se mencionan los posteriores al ano 1637, una época en
que la matematica contaba con un &lgebra literal, heredada de la escuela italiana
y de Vieta, una notacion algebraica fijada, el calculo logaritmico, el método de los
indivisibles de Cavalieri (1548-1647) (Collette, 2000), y ademas fue alli donde se
marcé el desarrollo de la geometria analitica como una importante columna de la

edificacion.

» René Descartes (1596-1650). Este matemaético, debido a su relacién con Fer-
mat, manifesto interés en el tema de las tangentes; aunque no utiliza el con-
cepto de limite o infinitesimal, usa un procedimiento equivalente a definir la

tangente como limite de una secante.

» Pierre Fermat (1601-1665). Desarrollando su geometria analitica en 1629 hizo
dos descubrimientos, el mas importante de los cuales fue un método para dis-
tinguir los maximos y los minimos de una funcién algebraica (curva), escrito en
Méthodus ad disquirendam mazximam et minimam en 1637. El método consiste
en remplazar en una funcién f de variable a por a+x y hacer f(a+z) ~ f(a),

lo que después de un procedimiento algoritmico resulta ser equivalente a cal-
 flatz) = [f(a)
cular lim

z—0 X
el cambio de a a a + x es la esencia del andlisis infinitesimal” (Collette, 2000,

. “Aunque Fermat no poseia el concepto de limite,
p. 29). El resultado del limite anterior también se puede obtener analizando el
método que Fermat usa para resolver el problema de las tangentes.

» Evangelista Torricelli (1608-1647). Este alumno de Galileo, preocupado por
la falta de rigor y las dificultades logicas que implicaba el método de los in-
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divisibles, elabor6 pruebas a la manera griega usando el método exhaustivo,
haciendo 21 demostraciones sobre la cuadratura de la parabola con el método

de los antiguos y once utilizando los indivisibles.

» Gregorie Saint-Vincent (1584-1667). Basado en el método de los antiguos grie-
gos (exhaustivo), pero con algunas modificaciones, publicé en el tratado Opus
geometricum quadrature circuli et sectionum coni, un nuevo método utilizando
rectangulos infinitamente delgados en un nimero infinito, de aqui que Saint-
Vincent no se conformé con una aproximacion arquimediana. Este procedi-
miento equivale a definir una curva por el poligono inscrito cuando se duplica

infinitamente el niumero de los lados.

» James Gregory (1638-1675). En trabajos como Vera circuli et hyperbolae qua-
dratura, utilizaba la idea de convergencia doble, haciendo gran uso de los in-
finitesimales, inscribiendo y circunscribiendo poligonos para encontrar con-
vergencia de series dobles; las ideas de Gregory se inspiraron en trabajos de
Saint-Vincent y sus demostraciones en el método exhaustivo modificado, como
se puede evidenciar en Geometriae parts universalis, donde determina arcos,

tangentes, volimenes y superficies.

Antes de continuar el listado es conveniente mencionar que los dos siguientes ma-
tematicos parten la historia del limite, pues son ellos quienes, segtin autores como
Cornu (1983, citado en Blazquez, Ortega, Gatica y Benegas, 2006), nos llevan a
“la supremacia del calculo”. Aunque los historiadores no atribuyen la invencién del
calculo a un matematico por la controversia generada entre Newton y Leibniz, lo
interesante es que esta rama de las matematicas nace en el problema de las tangen-
tes, usando una geometria semejante a la de Apolonio pero mirando el problema de

una manera general.

Isaac Newton (1642-1727) y Gottfried Leibniz (1646-1716) desarrollaron un método
practico y nuevo para resolver gran cantidad de problemas de fisica y geometria,
y superaron los obstaculos que impidieron a numerosos matematicos encontrar un
método general para la obtencién de tangentes, maximos y minimos, y el calculo de
las cuadraturas. Para lograr esto, los padres del calculo basaron su trabajo en tres

pilares:

1. Elaboraron su trabajo en el andlisis infinitesimal.

2. Comprendieron la reciprocidad entre el problema de las tangentes y el de las

cuadraturas.

3. Gracias a la geometria de Fermat y Descartes trataron los problemas con un
método general, aplicable a todas las curvas de una clase.
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Adicionalmente, el desarrollo del célculo diferencial e integral se sometié a la asimi-

lacién de métodos geométricos de Cavalieri, Barrow, Descartes, Fermat y Wallis.

Newton hizo diversos trabajos que aportaron a las matematicas y a la fisica, como el
teorema del binomio y numerosos textos, pero sin duda el que més aporté al calculo
fue el método de las fluxiones en su obra Methodus flurionum et serieum infiniturum
(1671), en la que define dos términos: fluente y fluxion:

Llamaré fluentes a cantidades aumentadas gradual e indefinidamente, representadas por v,
T,y y 2,y las letras con un punto arriba seran las velocidades con las que éstas aumentan

por el movimiento que las produce y por consiguiente las llamaré fluxiones.

De aqui se deduce que las fluentes son las variables y la fluxién, la tangente de la
funcién. Para observar la forma en que Newton abordé el problema de las tangentes,
se muestra a continuacién una interpretacién del matematico Ian Stewart (2005)
de las lineas de razonamiento de Newton para las tangentes de la parabola, cuya

ecuacién es y =

1. Se incrementa el valor de z a = + 0, como consecuencia x? pasa a ser (z + 0)%.

2. Las razones de los incrementos son, por consiguiente, las diferencias de los
cuadrados sobre la diferencia de los valores de x; dicho en otra forma:
(r+0)?—2* 2%+ 201+ 0% —1?

r+o—2x 0

=2xr+o0

3. Se hace que o tienda a 0, obteniendo la pendiente 2z, o como Newton la llamo,
la fluxién de la fluente.

Leibniz desarroll6 un razonamiento similar pero no utilizé o sino dz (una pequena
porcién de x), que es la notacién actual. Sin embargo, no fue aqui donde se defi-
nio verdaderamente el limite, pues surgieron grandes opositores de este razonamien-
to, entre ellos George Berkeley, que insistia en pensar como un algebrista, en cuyo
caso o deberia ser una constante definida. Berkeley objeté que o no es exactamente
cero, en cuyo caso las condiciones no son validas, pero si o es cero, no puede usarse
como divisor. Segun este matematico, el método funcionaba debido a errores que se
compensan entre si; aunque el opositor tenia razén en cuanto a légica, el método

tuvo gran resonancia, pues funcionaba perfectamente.

Pero ;jpor qué no se formalizé el limite en esta época? Existen muchas razones para
dar respuesta a este hecho, pero la mas importante puede ser la insistente contro-
versia sobre la invencion del célculo entre los matematicos ingleses, que apoyaban
a Newton, y los matematicos del resto de Europa, en especial los Bernoulli, que
apoyaban a Leibniz; adicionalmente, los argumentos del caballero inglés estaban
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sustentados en la fisica y, por tanto, en el movimiento. Claro estd que fueron bas-
tantes los matematicos que trataron de definir el limite a partir del infinitesimal.
Leibniz: “Hay que especificar que dx y dy se toman de tal modo que sean infini-
tamente pequenas, de tal forma que cuando se busca su cociente, no puedan ser
consideradas como cero, pero que se puedan desechar siempre” (Stewart, 2005, p.
85); es decir, lo que es vélido para cualquier valor distinto de cero es valido para o=0.
Johann Bernoulli (1667-1784): “Una cantidad que se reduce o incrementa mediante
una cantidad infinitamente pequena, no se incrementa ni se reduce” (Stewart, 2005,
p. 85) y traté de definir el infinitesimal como .

Aunque ninguna definicién acierta por completo, aparecen dos grandes matematicos,
Euler y Cauchy, que hacen grandes aportes:

Leonard Euler (1707-1883) integré el cdlculo de Leibniz y la teorfa de las fluxiones,
dando lugar al “andlisis” como area de la matematica que estudia los procesos in-
finitos, basandose en el concepto de funcion: “Cualquier expresion analitica finita o
infinita formada por una cantidad de variables y nimeros o cantidades constantes”
(Boyer, 1996, p. 58). Este adelanto, junto a la complicacién de los niimeros comple-
jos, hizo necesario que Agustin-Louis Cauchy (1789-1857) definiera como principal

arma del andlisis el limite de la siguiente manera:

Cuando los valores atribuidos sucesivamente a una variable se aproximan indefinidamente
a un valor fijo, para llegar finalmente a diferir de este valor una cantidad tan pequena

como se desee; dicho valor fijo recibe el nombre limite (Stewart, 2005, p. 86).

Lastimosamente, Cauchy seguia utilizando procesos infinitos para definir el limite,
pero 29 anos mas tarde se puso fin a este problema, convirtiendo la variable, que

cambia de una forma activa en un simbolo estatico. Karl Theodor Weierstrass (1815-
1897) definié:

“Una funcién f(x) tiende a un limite L cuando x tiende a un valor a si, dado
cualquier nimero € la diferencia f(xz) — L es menor que ¢, cuando  — a es menor
que cierto nimero § dependiente de €” (Stewart, 2005, p. 86), haciendo todo como
un juego: “Si td me dices qué tan cerca quieres que esté f(x) de L, entonces yo te

digo cémo de cerca tiene que estar x de a” (Stewart, 2005, p. 86).

Esta definicion liber6 al calculo de consideraciones metafisicas y asi nacié el andlisis
moderno, pero también trajo consigo maravillosos avances, entre los cuales se puede

contar el andlisis no convencional entre 1920 y 1950.

Por tltimo, avances nuevamente relativos a la geometria, como la geometria no

euclidea y el programa de Erlangen en 1872, sugerido por Felix Klein (1849-1925),
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dieron origen a la topologia, y fue alli donde la matematica consiguié un pilar desde
donde se podian generar innumerables logros gracias a Gauss (1777-1855), Johann
Listin (1808-1882), Mobius (1790-1868), entre otros, que consiguieron generalizar la
idea de transformacién, entregdndonos la definicion mas amplia de limite en la que

las anteriores son casos particulares:

Sif:A—Y esuna aplicaciéon de un subconjunto A de un espacio topolégico X en
un espacio topolégico Y y xg es un punto de adherencia de A, entonces se dice que
yen Y es limite de f en z( si para toda vecindad V' de y en Y existe una vecindad
U de z tal que

fAncl)ycv

Marco didactico

Segun El Bouazzaoui (1998), Cornu (1983), Deledicq (1994) y Sanchez y Contreras
(1995), se distinguen cuatro concepciones histéricas relacionadas con el concepto de
limite de una funcién (Sanchez y Contreras, 1998):

1. Concepcion geométrica (CG). Estd relacionada con situaciones ligadas al con-
texto geométrico, procesos geométricos infinitos que surgen de las paradojas de
Zenom. Algunas situaciones que se pueden plantear desde este punto de vista
pueden ser la aproximacién de las areas de poligonos inscritos en un circulo,

seglin se aumenta el nimero de lados.

2. Concepcion numérica (CN). Esta ligada a la utilizacién de sucesiones de valores
de la variable independiente y las correspondientes de la variable dependiente.

3. Concepcion analitica o métrica (CAM). Esta relacionada con la introduccion

de las variables légicas.

4. Concepcion topoldgica (CT). Es la definicién mds general y en la que se utiliza

el concepto de punto de acumulacion.

Dependiendo de la concepcién de limite que se pretenda ensenar, se pueden identifi-
car algunas dificultades; Sanchez y Contreras (1998) realizaron una investigacién en
la cual analizan el tratamiento didactico, dado el concepto de limite de una funcién
en algunos manuales, identificando las definiciones que emplean y las concepcio-
nes que se toman sobre este concepto, ademas de las dificultades que presenta su

ensenanza.
Una manera de introducir el concepto de limite de una funcién es:

= A través de una tabla de valores y la grafica de una funcién, haciendo referen-
cia al término de aproximacién, la dificultad que puede presentar esta forma de
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introducir este concepto es que no se establezca la relacion entre la grafica y la
tabla de valores con las aproximaciones numéricas, haciendo que el estudiante
no pueda solucionar un problema de limite si no dispone de una representa-
cién grafica. Esta forma de introducir el concepto de limite se enmarca en las
concepciones CN y CAM.

Otra forma es la siguiente:

= Por medio de la definicion: si x se aproxima hacia zq, los valores correspon-
dientes de f se aproximan hacia un nimero real L, diremos que L es el limite
de f cuando x se aproxima al nimero xy; si no se aclara el término de apro-
ximacion, el estudiante puede no distinguir entre aproximacion y distancia, y
ademas puede suceder que el alumno crea que una funcién que sélo tiene un

limite lateral, tiene limite en el punto.

s A través de la definicion métrica, empleando las variables logicas € y §. Si no se
hace una explicaciéon previa o posterior y la utilizacién de una excesiva forma-
lizacion tedrica, se obliga al estudiante a realizar un esfuerzo de comprensién

muy superior, creando dificultades de aprendizaje.

» Mediante la gréfica de una funcién abstracta para la interpretacion geométrica
del concepto de limite de una funcién, lo que conduce al estudiante a reconocer

el limite de una funcién sélo cuando dispone de la grafica.

De las diferentes formas de abordar el concepto de limite aludidas, las que se emplean
en general para su ensenanza son las que tratan el concepto de limite de una funcion
a partir del analisis de graficas con la ayuda de tablas de aproximacion, y en algunas
ocasiones se emplea la definicion métrica. Posteriormente se trabaja la algebrizacién

del limite, basandose en las operaciones algebraicas.

La definicién que se trabaja en este documento es la propuesta por Blazquez, Gatica,
Benegas y Ortega (2006). Segtn estos autores, las conceptualizaciones del concepto
de limite han sido el resultado del desarrollo de la matematica y no desde la didactica,
pues van orientadas al rigor matematico. En este sentido, la definicién que proponen
es la conceptualizacién de limite funcional como aproximacién 6ptima, que enlaza
las concepciones de D’Alembert y Cauchy, lo que hace que sea mas sencilla y mas

adecuada de utilizar en la secundaria.

Definicién de limite de una funcion

“El limite de la funcién f en z — a es L si para cualquier aproximacién K de L,
K # L existe un entorno reducido de a, tal que las imagenes de todos sus puntos
estan mas proximas a L que K.
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Si se emplea la significacion de tendencias, el limite de la funcién f en £ —a es L
si cuando z tiende a a sus imédgenes f(z) tienden a L” (Blazquez y Ortega, 2002,
citado en Blazquez, Ortega, Gatica y Benegas, 2006, p. 195).

3.9.3. Secuencia de actividades

Se disenaron tres actividades, en las cuales se proponen situaciones novedosas, con
sentido para los estudiantes que incorporan elementos que se asemejan a los proble-
mas y situaciones que dieron origen al concepto; teniendo en cuenta que la compren-
sion del concepto de limite en su dimensién “aprendizaje con significado” esta carac-
terizada por el dominio de sus sistemas de representacion y por los distintos tipos de
actividad asociadas a éstos (Medina, 2001), supuesto que comparten otros autores
(Blazquez y Ortega, 2001; Javier, 1987; Sfard, 1991; Hiebert y Carpenter, 1992; Du-
val, 1991), cada una de las actividades esté enfocada en un sistema de representacién
del concepto de limite.

Actividad 1

En esta actividad se trabaja el limite en el contexto geométrico con ayuda de material
concreto: el geoplano. Aqui el limite es una aproximacion de procesos geométricos
infinitos.

A cada estudiante se le entregan un geoplano, un caucho y un pitillo; el geoplano
se usa por la parte donde se encuentra el esbozo de una circunferencia (figura 1).
Se acuerda con los estudiantes como unidad de medida la longitud del arco com-
prendida entre dos puntos consecutivos del geoplano. Se debe tener en cuenta que
el geoplano con el que se trabajara tiene 24 taches, los cuales representaran puntos

que se enumeraran en el sentido de las manecillas del reloj (figura 1).

=
=18 . s
E.

I3 a u /| r
THapnle o 1 ’

Figura 1 Figura 2

Paso seguido, el profesor propondra a los estudiantes representar la circunferencia
con el caucho, poniéndolo alrededor de los puntos del geoplano, y se plantearan los
siguientes cuestionamientos: estando de acuerdo con que el perimetro de la circun-
ferencia es 24 unidades, aproximadamente, ;jcudl es el valor aproximado del area
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comprendida por la circunferencia, representada por el caucho puesto alrededor de
los puntos del geoplano?

Después de entregado el material, y dadas las instrucciones anteriores, el maestro

propondra el siguiente ejercicio:

1. Ubique el pitillo en la circunferencia de tal manera que la longitud de la cuerda
sea la mayor posible; ;sobre cudles puntos ubico el pitillo?

2. Ubique el pitillo en la circunferencia de tal manera que la longitud de la cuerda
sea la menor posible; ;jsobre cuales puntos ubicé el pitillo?

Extremos de | Longitud aproxi- | Valor aproximado del

la cuerda mada de la cuerda | area de la regién com-
prendida por la semicir-
cunferencia y la cuerda

1,13 8 unidades 24 unidades

1,12

1,10

1,3

1,2

L

L

Ll

Actividad 2

En esta actividad se plantea un juego de estrategia, en el que se trabajan los sistemas
de representacién analiticos del limite de una funcion, haciendo uso de la aproxima-

cién con el fin de construir, junto con los estudiantes, la definicién de limite.

En la figura 3 se presenta un mapa con tres paises A, B y C, comunicados entre
si por dos caminos, y cada pais desea invadir a los otros dos. En la figura 4 se
muestra una representacion de esta situacién en un plano cartesiano. Los paises A,
B y C estan representados por los puntos de coordenadas (1,1), (0,0) y (—1,—1),

respectivamente; los caminos se representan con la grafica de las siguientes funciones:
w f(z) =2 Dominio: R; Rango: R

o f(x) =23 Dominio: R; Rango: R
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El juego consiste en situar las tropas en todos los caminos de los paises que se
pretenden invadir, tan cerca como sea posible. Esto con el objetivo de desarrollar

una nocién basica del limite como aproximacién éptima.

Se entregaran dos dados. Uno de ellos tendra las funciones que representan los
caminos (f(z) =z y g(z) = 2%), y cada funcién se encuentra en tres caras del dado;
el otro tendra los niimeros de uno al seis. Este dado decide la cantidad de ntimeros
del dominio que cada jugador puede escoger en su turno.

Cada jugador lanza los dados y escoge los nimeros del dominio que, a su juicio, lo
acerquen mas a los paises que desea invadir (teniendo en cuenta las limitaciones que
le impongan los dados); el propésito del juego es situar tropas tan cerca como sea
posible en todas las rutas de acceso a los territorios enemigos. Con estas reglas el
juego no tiene fin, dada la densidad de los niimeros reales, asi que se conjetura que los
estudiantes, después de un rato de juego, noten este detalle, y a que al preguntarles
por posibles estrategias para terminar el juego den un paso de aproximacién al

concepto de limite de una funcién.
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Conclusiones de la aplicacion

Las actividades se realizaron con 30 estudiantes de grado once, con énfasis en socia-
les del Instituto Pedagdgico Nacional, durante dos sesiones de 90 minutos cada una.
El analisis de la aplicacién de la propuesta se hizo con base en el andlisis de dos
categorias referidas a aspectos relacionados con la ensenanza y el aprendizaje. La
primera hace referencia al modelo de ensenanza, la secuencia de actividades, la per-
tinencia de los materiales y la motivacion generada en los estudiantes; en la segunda
se analizan aspectos relacionados con el aprendizaje logrado por los estudiantes, co-
mo la actividad generada, obstaculos evidenciados y superados, dificultades, entre

otros.

Los instrumentos utilizados para recolectar esta informacion fueron las grabaciones
en audio y video, una encuesta a los estudiantes y la entrevista a la profesora titular
del curso, todas evaluadas en las categorias que mostramos a continuacion.



278

CAPITULO 3. PONENCIAS

Las categorias fueron:

1.

Existencia y coherencia de un modelo de ensenianza (por descubrimiento) en

la propuesta didactica y generacion de motivacion de los estudiantes.

Aprendizaje promovido por la propuesta didéctica.

. A partir de la manipulacién y visualizacién de los materiales empleados (geo-

plano, cauchos y pitillo), los estudiantes construyeron una sucesién de apro-
ximaciones que les permitieron conjeturar sobre el trabajo realizado; las ca-
racteristicas del material hacen que el estudiante se abstraiga después de un
nimero de pasos. Sin embargo, las caracteristicas del pitillo hacen que este
paso se dé demasiado rapido.

Proponer actividades matemaéticas a través de situaciones variadas y cercanas
al estudiante que involucran diversas representaciones del concepto de limite de
una funcién con sentido, y que incorporan elementos que se asemejan a los pro-
blemas y contextos que en la historia dieron origen al concepto, permitié que
los estudiantes construyeran una definicion del concepto a partir de su propia
actividad y establecieran relaciones entre las diferentes representaciones.

Trabajar con la definicion del limite de una funcién como aproximacion 6ptima
sugerida por Blazquez y Ortega (2002, citado en Blazquez, Ortega, Gatica y
Benegas, 2006) generé un aprendizaje con comprension del concepto y evita
caer en los obstaculos epistemologicos referidos a la simbologia de la definicién

métrica.

El uso de material didactico y del juego como estrategias estimulantes hace de
la clase de matematicas un espacio placentero para los adolescentes. El alto
componente lidico promueve la interaccién entre los estudiantes y el maestro,

y posibilita que el conocimiento se construya colectivamente.

Herramientas tecnolégicas

“La matematica es un campo del conocimiento en el cual el reto de dirigir el apren-

dizaje hacia la busqueda de estructuras cognitivas preparadas para la indagacion

genuina es fundamental. Para ello ha resultado de la mayor importancia la me-

diacién de las nuevas tecnologias” (Ministerio de Educacién Nacional, 2001). En

el desarrollo de las actividades planteadas anteriormente, se tenia la dificultad pa-

ra modelar y presentar los resultados parciales, dificultando el acercamiento a la

definicién de limite; por tal razén se propone utilizar el computador como agente

mediador entre la actividad propuesta y el estudiante.
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Para esto se propone utilizar Descartes, el cual es un applet configurable; que sea un
applet significa que puede insertarse en paginas web y que sea configurable significa
que cada aplicacién o configuracion puede tener un aspecto diferente. Las aplica-
ciones de Descartes son escenas educativas con grdficas y numeros y en las que el
estudiante puede modificar pardmetros manipulando controles y observando el efecto

que esas modificaciones tienen sobre las graficas y nimeros.

Descartes no es un programa y su licencia es gratuita, para su utilizacién es necesario
contar con un explorador web y tener instalado la maquina virtual de Java. Estos
requisitos facilitan enormemente la utilizacién de Descartes, pues en la actualidad

la mayoria de los computadores los cumplen.

A continuacién se combina el uso de Descartes con las dos actividades propuestas
para facilitar la modelaciéon, esperando que la comprension del concepto de limite

sea mas eficaz que al hacer la modelacién con geoplanos, lapiz y papel.

Actividad 1.01

En esta actividad se trabaja el limite en el contexto geométrico con ayuda del applet
Descartes; aqui el limite es una aproximacién de procesos geométricos infinitos. Los
estudiantes se ubicardan por parejas en un computador, el cual tendra abierto el
explorador web con la siguiente pantalla.

:orrﬂg|

B Langitud=1010

30

[}
v oin

Se indica a los estudiantes que el radio de la circunferencia son cinco unidades.

Acto seguido se plantearan estos cuestionamientos: estando de acuerdo en que el
perimetro de la circunferencia es de unas 30 unidades, jcudl es el valor aproximado
del area comprendida por la circunferencia?

Después de entregado el material y dadas las instrucciones anteriores, el maestro
propondra el siguiente ejercicio:
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1. Ubique la cuerda en la circunferencia de tal manera que su longitud sea la
mayor posible; jsobre cudles puntos la ubico?

2. Ubique la cuerda en la circunferencia de tal manera que la longitud de la

cuerda sea la menor posible; jsobre cudles puntos la ubicé?

Complete la siguiente tabla.

Extremos de | Longitud aproxi- | Valor aproximado del
la cuerda mada de la cuerda | area de la regién com-
prendida por la semicir-
cunferencia y la cuerda

1,20 10 unidades 36 unidades

1,18
1,15
1,12
1,10
1,8

1,5

1,2

’2

1
L5

‘n

Actividad 2.1

En esta actividad se plantea un juego de estrategia para dos o tres jugadores, en el
que se trabajan los sistemas de representacion analiticos del limite de una funcion,
haciendo uso de la aproximacién con el fin de construir junto con los estudiantes la
definicién de limite.

En la figura se presenta un mapa con tres paises A, B y C, comunicados entre si por
dos caminos; cada pais desea invadir a los otros dos. El plano de la mitad muestra
una representacion de esta situacién en un plano cartesiano. Los paises A, By C
estan representados por los puntos de coordenadas

(—0,744,-0,9) (0,0) (0,744,0,9)
respectivamente, los caminos se representan con la grafica de las siguientes funciones:

f(x) = ¢/ Dom: R; Rang: R g(z) = 42° — r Dom: R; Rang: R
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El juego consiste en situar las tropas en todos los caminos de los paises que se
pretenden invadir, tan cerca como sea posible, con el objetivo de desarrollar una

nocién basica del limite como aproximacion 6ptima.

Se entregaran dos dados: uno de ellos tendra las funciones que representan los cami-
nos (f(z) = ¥/ g(r) = 423 — ). Cada funcién se encuentra en tres caras del dado,
el otro tendra los niimeros de uno al tres; este dado decida la cantidad de niimeros

del dominio que cada jugador puede escoger en su turno.

Cada jugador lanza los dados y escoge los niimeros del dominio que a su considera-
ci6n lo acerque mas a los paises que desea invadir (teniendo en cuenta las limitaciones
que le impongan los dados); el propésito del juego es situar tropas tan cerca como
sea posible en todas las rutas de acceso de los territorios enemigos. Con estas reglas
el juego no tiene fin, dada la densidad de los niimeros reales, asi que se conjetura
que los estudiantes después de un rato de juego noten este detalle y a que al pregun-
tarles por posibles estrategias para terminar el juego den un paso de aproximacién
al concepto de limite de una funcion. El applet utilizado permite hacer tanto zoom
como se quiera y a medida que el jugador escoge las tropas, éste las acomoda en la
funcién.
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3.9.4. Conclusiones

Al poder dinamizar las actividades, los estudiantes se enfocan mejor en lo que el
maestro quiere mostrar, esto es, la aproximaciéon al concepto de limite. Como el
computador realiza las diferentes operaciones requeridas en cada actividad de ma-
nera automatica, esto agiliza el tiempo de ejecucion y fomenta la formulacién de
hipétesis y sus posibles demostraciones.

Asi mismo, el maestro en el momento de la puesta en comin y generalizacion del
concepto puede utilizar las actividades dindmicas en una presentacion frente al curso,
para mostrar visualmente el concepto de limite trabajado en las dos actividades.

Asi como se formularon y ejecutaron estas dos actividades, se pueden crear muchas
mas que al poder dinamizar facilitan la aprehension del concepto. Se extiende la in-
vitacion para que el docente interesado formule sus propias actividades, las dinamice
con este o cualquier programa y saque sus propias conclusiones.
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3.10. Analisis didactico de la igualdad en los nimeros

reales

Edgar Alberto Barén Poveda®
Hugo Edver Zamora Coronado®

Palabras claves: andlisis didactico, actividad de aprendizaje, nociéon de igualdad,

construccién de conocimiento matematico escolar.

3.10.1. Resumen

Desde nuestro trabajo investigativo en educacion matematica, junto con la expe-
riencia universitaria directa de orientar cursos de matematicas a estudiantes que
ingresan a primer semestre, hemos avanzado en la caracterizacion de situaciones del

aula de clase que obstaculizan el aprendizaje comprensivo de la nocion de igualdad.

El escaso nivel de reflexiéon que se propone acerca de nociones como equilibrio,
desequilibrio, semejanzas, diferencias o tantas otras de la cotidianidad vinculadas a la
nociéon de igualdad, genera que las actividades planteadas alrededor de las ecuaciones
no superen el aspecto procedimental de la solucion y més bien incentiven el uso
de saberes informalmente construidos, que posibiliten tales soluciones sin alcanzar

comprension sobre el conocimiento matematico que apoya dichos procedimientos.

Por consiguiente, los supuestos y las exigencias que la escolaridad superior plantea
a los estudiantes que ingresan a sus programas no siempre concuerdan con los co-
nocimientos y estado de desarrollo intelectual de la mayoria de ellos. Es asi como
los propdsitos que se desean alcanzar en los primeros semestres de la formacién pro-
fesional de un estudiante, en cuanto a que el desarrollo de su pensamiento avance,
mediante la integracion que logre entre el conocimiento matematico, su cotidianidad

y su entorno disciplinar, no siempre se consiguen.

La aproximacién a la propuesta que fundamenta la investigacién en didéactica de
las matematicas, orientada en la perspectiva del aprendizaje y que se desarrolla en
AprendEs, encamind la reflexion sobre la escolarizacion del conocimiento matematico
en nuestros entornos de desempeno profesional hacia el diseno de un proyecto de

investigacion que hemos venido desarrollando en el Politécnico Grancolombiano.

Presentamos los avances de este proyecto de investigacién que intenta dar respuesta
al siguiente interrogante: jexiste un posible camino de elaboraciéon comprensiva de

las nociones y conceptos asociados a la igualdad, que tenga como punto de partida

20Politécnico Grancolombiano. eabaronp@poligran.edu.co.
21Politécnico Grancolombiano. hzamora@poligran.edu.co.
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los conocimientos aritméticos, el cual le permita al estudiante conocer, comprender,
modelar y resolver situaciones y problemas cotidianos, a la vez que desarrollar su
pensamiento y avanzar en los procesos de generalizacion, abstraccion y simboliza-

cién?

Dar respuesta a la pregunta formulada implica la tarea de identificar los conocimien-
tos matematicos y no matematicos que posibilitan la comprensiéon de las nociones
y conceptos especificados, desde la aritmética y a través del avance en el estudio
de los sistemas numéricos. También esta explorar con estudiantes de asignaturas de
matematicas en los primeros semestres de la universidad, actividades que posibiliten

aprender comprensivamente esos conocimientos mediante procesos de construccion.

Las actividades que se van a proponer a los estudiantes se disenaron en concordancia
con algunos lineamientos que sustentan el trabajo de aula en forma de taller. Ini-
cialmente, presentamos de manera sintética los dos elementos con los que miramos
el problema de investigacién que nos ocupa. Cabe anotar que estos dos elementos
son parte fundamental del programa de investigacion centrado en el aprendizaje en

el que estamos avanzando.

1. Diddctica de las matemdticas. Aqui exploramos lo que seria posible y necesario
de aprender y cémo desarrollar y orientar procesos de aprendizaje. Para ello
estudiamos la historia de las matematicas desde una mirada mas alla de lo
anecdotico. Nos adentramos en reflexionar el desarrollo de nociones y conceptos
en el contexto donde éstas aparecen; por otra parte, soportamos este trabajo
desde el conocimiento de lo disciplinar y también desde la epistemologia.

2. Epistemiologia genética en términos escolares. Partimos del hecho de que una
actividad significativa es fuente de conocimiento. Revisamos el conocimien-
to anterior, la cotidianidad, el entorno y la experiencia. Es importante hacer
notar que la reflexién sobre el objeto de conocimiento debe hacerse de ma-
nera individual y colectiva. Es el maestro responsable de proponer, disenar y

orientar actividades de aprendizaje.

El trabajo de investigacion llevado a cabo nos ha permitido construir una primera
red didactica acerca de la ecuacion y la igualdad, la cual aparece en la siguiente
figura:
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Comparar

En los seminarios que hemos realizado, la reflexion se centré en las palabras asociadas
a la idea de igualdad que aparecen en la red. Es asi como hicimos una primera

aproximacién a:
» La nocién de relacién (desde la cotidianidad)
e Funcionamiento y uso de las cosas. Correspondencias.

e Relaciones interpersonales.

e Relaciones sociales.
» La palabra igualdad (uso corriente)

e Palabras relacionadas: semejante, parecido, equivalente, idéntico, ser lo
mismo, tantos como.

e Por contraste: diferentes, tantos mas, mas grande que.

e Referido a la misma cualidad o caracteristica de objetos.

Aparece también el transito de la cotidianidad a la aritmética, donde se busca refle-

xionar acerca de:

= La cantidad como elemento de comparacién de caracteristicas de los objetos.

El signo igual ( =) como simbolo de la igualdad.

La igualdad como identidad

6=206 3z = 3w

La igualdad como indicador de resultado de operacion

2+4=6 2a +5 =17

La igualdad como equivalencia
44+2=5+1 3r=x+4+z+x

3z2=5+1 3r=4x —x
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Finalmente, presentamos un par de resultados obtenidos en un taller que consistié en

resolver el siguiente problema:

El sefior Pérez distribuye su sueldo mensual asi: 2/5 lo destina para alimentacién;
de lo que queda destina el 60 % para arriendo. Del nuevo saldo asigna 3/4 para pago
de estudio y el resto lo ahorra. Si el ahorro es de $108.000, jcudl es el sueldo del
senor Pérez?

Las ideas de trabajo para resolver este problema pasaron por las siguientes posibi-
lidades:

Un trabajo grafico

Alimentacion
Arriendo

Estudio

36.000 36.000 36.000 Ahorro

Un trabajo aritmético, donde se completa la unidad:

Recomposicion de la unidad (Representacion grafica)

Ahorre
1 T i
Ahorro y Estudio
k ¥ i | | I Ahorro y Estudio. Arriendo
F L} L] L] L] L

Ahorro, Estudio y Arriendo. Alimentacion

El ahorro corresponde a 3/50 del sueldo mensual.

Por regla de tres se determina el sueldo mensual.

En cuanto a la reflexién docente, es importante considerar los siguientes aspectos,
que son vitales al momento de proponer una actividad significativa a nuestros estu-
diantes y que involucra directamente al docente:

., Como resuelve el docente ejercicios asociados a la igualdad? Aqui debe reflexionarse
acerca de como plantea la justificacion y reconstruccién de procedimientos seguidos.

., Cémo resuelven los estudiantes el ejercicio? ;Cémo lo resolverian? Se intenta des-
cribir la manera como los estudiantes buscan la solucion.
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Una actividad de taller incluye el didlogo entre los estudiantes y el maestro. Nece-
sariamente aparecen estas preguntas: ;jcémo orientar el aprendizaje de conocimien-
tos matematicos involucrados en la solucién del problema? ;Cémo podrian ser las
posibles secuencias de aprendizaje, de tal manera que los estudiantes utilicen sus

conocimientos anteriores?

En sintesis, ;como orientar una reelaboracion de conocimientos asociados a la igual-

dad e involucrados en un problema?

Estas preguntas proponen al maestro la necesidad de reflexionar al momento de
proponer una actividad que en verdad resulte significativa para sus estudiantes.
Exigen que el maestro avizore nuevas maneras de resolver problemas y abandone
la comodidad que le ofrece un solo procedimiento para resolver un determinado

problema asociado con la igualdad.

Terminamos citando a la doctora Myriam Ortiz, cuando se refiere al taller como
actividad de reelaboracién de conocimientos: “Forma de trabajo a establecer dentro
del aula, en la que lo fundamental es el hacer significativo, individual y colectivo
del estudiante y la confrontacion de sus elaboraciones. Hacer orientado por el maes-
tro con el propédsito de que a partir de él, los estudiantes construyan o reelaboren

conocimientos matematicos, socialmente aceptados y exigidos”.
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3.11. Construccion de conocimiento matematico: el caso

de la transformacion lineal

Solange Roa Fuentes®
Asuman Oktac®

Resumen

En este trabajo se muestra un analisis cognitivo sobre cémo un estudiante universi-
tario puede construir el concepto de transformacion lineal, mediante la descripciéon
de las construcciones y mecanismos mentales que puede realizar al abordar dicho
concepto. Las evidencias empiricas muestran cémo los conceptos de funcién y es-
pacio vectorial son fundamentales en la construccion de la transformacion lineal y
las dificultades que los estudiantes enfrentan al no tenerlos como elementos prelimi-
nares. Ademas, se evidencia la necesidad de motivar el desarrollo del pensamiento
matematico de los estudiantes abordando los conceptos del algebra lineal desde su
propia naturaleza: la abstraccién.

3.11.1. Introduccién

Durante los iltimos 20 anos, investigadores de diferentes paises como Canada, Es-
tados Unidos, Francia y México, entre otros, han centrado sus trabajos en el estudio
de la ensenanza y el aprendizaje del algebra lineal. En estos paises, al igual que
en Colombia, los programas universitarios de ingenieria y ciencias incluyen en sus
dos primeros anos de estudio los requisitos bésicos de matematicas en cursos de
algebra y calculo. Pero la experiencia de los alumnos al intentar comprender los
conceptos propios del algebra lineal ha causado sensaciones de frustracién en los
estudiantes y la necesidad, por parte de los profesores, de crear cursos donde los
conceptos sean tratados con un mayor o menor grado de formalidad, dependiendo
de las caracteristicas de los programas que incluyen esta materia. Por tal razon, es
facil encontrar en una misma escuela o departamento cursos de dlgebra lineal con el
mismo contenido pero con un énfasis distinto en su desarrollo en el aula; basta con

comparar el desarrollo de una clase para matematicos con una para ingenieros.

Estudios realizados en Francia (Dorier, 2002) muestran que algunos estudiantes, al

enfrentarse con el primer tema de édlgebra lineal (teoria de los espacios vectoriales),

22M. en C. Solange Roa-Fuentes. roafuentes@gmail.com. Grupo Educacién Matemética Edumat
de la Universidad Industrial de Santander (UIS), Colombia. Centro de Investigaciones y de Estudios
Avanzados del IPN, Cinvestav, México.

23Dra. Asuman Oktac. oktac@cinvestav.mx. Centro de Investigaciones y de Estudios Avanzados
del IPN, Cinvestav, México.
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experimenten la sensacion de aterrizar sobre un nuevo planeta donde no logran ubi-
carse. Los contenidos del algebra lineal no tienen relacién con las matematicas que
ellos conocian; éstas estan mas relacionadas con los conceptos de calculo. Ante tal
panorama, decidimos reflexionar sobre la importancia de incluir el curso de algebra
lineal en los programas universitarios. Consideramos que un elemento fundamental,
como lo menciona Dubinsky (2001), es que su estudio es el camino hacia el desa-
rrollo del pensamiento matematico avanzado, ya que su aplicacién cumple un papel
fundamental dentro de la misma matemaética en areas como el calculo multivariado,
ecuaciones diferenciales, geometria diferencial y andlisis funcional. Este comienzo
hacia el desarrollo del pensamiento matematico avanzado esta determinado, desde
nuestra perspectiva, por la esencia abstracta del algebra lineal. Aunque segin Du-
binsky (2001), los elementos del dlgebra lineal pueden clasificarse en dos grupos: los
abstractos (como transformaciones lineales) y los concretos (como matrices y vecto-
res), consideramos que establecer qué es concreto para un individuo es una situacién
compleja, determinada por su propia experiencia y por la naturaleza de los concep-
tos. Por ejemplo, podriamos senalar que un vector es concreto para un estudiante si
lo considera una pareja ordenada o una flecha. Pero éstas son sdlo representaciones
de un objeto matematico mucho mas complejo y abstracto que fundamenta el estu-
dio del algebra lineal. Desde nuestra opinién, un vector debe construirse como un
elemento de un espacio vectorial; esta idea no es concreta e incluso es imperceptible

para muchos estudiantes que han aprobado un curso de dlgebra lineal.

Entonces, jqué hace un concepto mas concreto que otro? Desde nuestro punto de
vista, esto estd ligado con la idea que tengamos del concepto y determinado por el
tipo de situaciones que hayamos experimentado. Dubinsky (1997) se refiere a este
hecho realizando un anélisis a la propuesta de LACSG (Linear Algebra Curriculum
Study Group), que presenta una lista de recomendaciones para la ensenanza de un
curso basico de dlgebra lineal en Estados Unidos. En términos generales, LACSG
propone que un curso basado en las aplicaciones y operaciones con matrices dismi-
nuiria las dificultades que tienen los estudiantes en esta area. Dicha propuesta hace
énfasis en el trabajo con matrices, dando menos importancia a los conceptos abs-
tractos y tratando las transformaciones lineales como matrices y los vectores como
énuplas. Con base en nuestra experiencia, podemos decir que un énfasis desmedido
en el uso de matrices y vectores desvirtia la esencia del dlgebra lineal y sélo logra
ejercitar a los estudiantes en la imitaciéon y memorizaciéon de procedimientos, algo-
ritmos y resultados mecanicos, sin que se logre la construccion de conceptos. Este
velo sobre los conceptos basicos del algebra lineal genera un aprendizaje superficial,
generando sentimientos de inconformidad y frustracion en aquellos estudiantes que
creen comprender determinados conceptos, pero que al enfrentarse con situaciones

que requieren algo mas que la aplicacion de acciones especificas no encuentran las
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estrategias adecuadas para abordarlos.

Con este trabajo buscamos aportar, desde nuestra perspectiva, un analisis cognitivo
de uno de los conceptos basicos del algebra lineal: el concepto de transformacion
lineal. En particular, buscamos dar cuenta de las construcciones (acciones, proce-
sos, objetos y esquemas) y mecanismos (interiorizacion, coordinacién, encapsulacién
y asimilacién) mentales que un estudiante universitario puede realizar sobre dicho
concepto. Para esto presentaremos un analisis cognitivo denominado descomposi-
cién genética por la teoria Apoe, donde de manera especifica senalamos un camino
mediante el cual es posible construir dicho concepto (Roa y Oktag, 2009). En es-
ta presentacion especificamente, nos centraremos en el analisis de las evidencias de
dicho andlisis con base en los datos empiricos presentados en Roa (2008).

Esperamos contribuir con esta presentacion en la reflexién sobre la importancia de
la construccién del conocimiento matematico, en particular sobre la importancia del
algebra lineal como motor de procesos de abstraccién, fundamentales en el desarrollo

de conceptos matematicos avanzados.

3.11.2. Fundamentos tedricos

La teoria ApoeOE se fundamenta en la relacién entre la naturaleza de los conceptos
matematicos y su desarrollo en la mente de un individuo. Por tanto, las explica-
ciones dadas por esta teoria son de orden epistemoldgico y psicolégico (Dubinsky
et al., 2005). En este sentido, la teorfa Apoe es una herramienta que se puede usar
para explicar las dificultades de los estudiantes con un concepto y plantear caminos
de construccién para su aprendizaje. Este andlisis dado por la teoria arroja resul-
tados concretos respecto a las estrategias pedagdgicas pertinentes para motivar la
construccién de un concepto en particular. El principal interés que compartimos con
este marco de referencia es que permite describir la manera como se construye el
conocimiento matematico, y una de las principales herramientas para este fin es la
descomposicion genética, ya que en ella se describen los aspectos constructivos de
una porcién de conocimiento matemadatico que a su vez, se espera, determinen as-
pectos metodoldgicos relacionados con la ensenanza de los conceptos matematicos.
Asi, se espera comprender cémo los estudiantes construyen conceptos o adquieren
habilidades para abordar y resolver problemas matematicos (Asiala et al., 1996).

A continuacién se describe el proceso dinamico mediante el cual un estudiante cons-
truye los conceptos matematicos desde el punto de vista de dicha teoria. Las acciones
y procesos son transformaciones sobre objetos que el estudiante posee previamen-
te; un estudiante que posee una concepcién accién de un concepto depende de los
estimulos externos para realizar tales acciones y es controlado por dichos estimulos.
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Pero una vez que logra interiorizar estas acciones, se dice que el estudiante tiene una
concepcion proceso del concepto, ya que toma el control sobre dicha accién y puede

pensar en ella sin necesidad de realizar célculos explicitamente (figura 1).

Interiorizacion

Accién

OBJETOS PROCESOS

Coordinacion

Encapsulacion
Figura 1. Construcciones y Mecanismos (Dubinsky, 1991).

Otro mecanismo importante es la encapsulacion. Cuando el estudiante reflexiona
sobre las operaciones aplicadas a un proceso particular, tiene conciencia de dicho
proceso como una totalidad y da cuenta de las transformaciones que puede realizar
sobre él, se considera que lo ha encapsulado en un objeto. Finalmente, una coleccion
coherente de acciones, procesos, objetos y otros esquemas, y las relaciones entre
ellos, todos relacionados con el concepto, se denomina esquema; la coherencia es
una herramienta mental que le permite al estudiante determinar si una situacién se
puede manipular con dicho esquema. A continuacion presentamos una descripcién
detallada de cada una de estas construcciones, tomando como ejemplo el concepto
de funcién definido por Breidenbach et al. (1992):

Accion. Diremos que un estudiante posee una concepcion accién de un concepto de-
terminado si su entendimiento estd limitado por la realizacion de acciones especificas
motivadas por estimulos externos. Por ejemplo, un estudiante con una concepcion
accion de funcion relaciona el concepto con la accién de remplazar ciertos valores
dados en una expresion o formula para obtener otros valores, por ejemplo en la expre-
sién f(x) = x2+ 1. Esta concepcién de funcién limita el entendimiento de conceptos
relacionados con ella y los contextos en que este concepto se puede abordar.

Proceso. Cuando el estudiante puede pensar en un determinado concepto sin actuar
de manera directa sobre él, diremos que el estudiante ha interiorizado tal concepto en
un proceso. En contraste con las acciones, los procesos se perciben como algo interno,
donde el individuo tiene el control y estd en capacidad de describir el concepto sin
actuar de manera directa sobre él. Por ejemplo, en el caso de las funciones, un
estudiante con una concepcion proceso de funcién puede determinar la composicién
de funciones sin estar limitado por su representaciéon. Determinando sin dificultad,
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por ejemplo, la funcién f o g para las funciones

241 six <0
flz) =a*+1 g(z) = B
l+senx sixz>0

Objeto. Cuando un individuo reflexiona sobre las operaciones aplicadas a un proceso
particular, tiene conciencia de dicho proceso en su conjunto y puede identificar
las transformaciones (acciones o procesos) que puede aplicar sobre él, diremos que
el proceso ha sido encapsulado en un objeto, y por tanto el individuo posee una
concepcion objeto del concepto. En esta concepcion, el mecanismo de desencapsular
es tan importante como el de encapsular; mediante este mecanismo, un individuo
puede regresar al proceso por el cual gener6é un determinado concepto. Por ejemplo,
en una concepcién objeto de funcién un estudiante puede determinar la derivada de
una funcion f cualquiera, sin depender de la forma como esté dada y puede pensar
en f’ como funcién. Es importante mencionar que la naturaleza del objeto depende
del proceso por el cual fue encapsulado. En muchos casos es muy dificil cambiar
la concepcion que un estudiante posee sobre un concepto en particular; esto puede
deberse a que dicho concepto ha sido encapsulado mediante un proceso no adecuado,

y por tanto es necesario cambiar este proceso y encapsularlo en un nuevo objeto.

Esta descripcién de las construcciones y mecanismos involucrados en la formacion
de un concepto matematico se reporta finalmente en una descomposicion genética

de dicho concepto.

Una descomposicién genética es el resultado del analisis tedrico, primera componente
del paradigma de investigacion de Apoe, donde se describen las actividades mentales
que un individuo debe realizar para construir su conocimiento. En este reporte,
presentaremos una descomposicion genética del concepto transformacion lineal que
muestra dos posibles caminos de construccién del concepto determinados por el

objeto transformacion.

Analisis Teorico

Observacion. Awalisisw Disefio e Implementacion
Verificacion de Datos = de Ensenanza

Figura 2. Paradigma de investigacion (Dubinsky, 1991).



294 CAPITULO 3. PONENCIAS

Siguiendo con las componentes de nuestro paradigma de investigaciéon (figura 2),
presentaremos el diseno de la prueba diagnéstica y la entrevista, ademés de algunos
de los resultados obtenidos al aplicar dichos instrumentos a dos grupos de estudian-
tes de la Pontificia Universidad Catdlica de Valparaiso (Chile), matriculados en los
programas de Matematicas y Estadistica del Instituto de Matematicas de dicha uni-
versidad. Estos datos empiricos permitirdn enriquecer la descomposicion genética
preliminar y presentar una mas cercana a la realidad, que ofrezca a los docentes un
camino viable para ayudar a sus estudiantes a levantar las estructuras apropiadas
para la construcciéon del concepto transformacién lineal. Esperamos que esta presen-
tacion enriquezca nuestro trabajo y contribuya a la reflexion de los asistentes sobre
la importancia de ayudar a los estudiantes a construir en forma adecuada los obje-
tos matematicos. De esta manera, todo estudiante que construya adecuadamente las
estructuras mentales apropiadas para aprender un concepto particular estara en ca-
pacidad de construir su esquema y propiciar la continua evolucion de sus estructuras

mentales.

3.11.3. Descomposicion genética

Teniendo en cuenta la intenciéon de nuestro trabajo y la descripcion del marco de
referencia, empezaremos con la descripcién de nuestra descomposicién genética, re-
sultado de la aplicacién del ciclo de investigacién. Consideramos conceptos previos
esenciales en la construccién del concepto transformacion lineal, el de funcion y
de espacio vectorial. Los resultados que a continuacién presentamos partiran de la
asimilacién del objeto espacio vectorial por el esquema de funcién.

La construccion del concepto parte de la construcciéon de las dos propiedades de
linealidad por separado. Mediante la asimilacién del espacio vectorial como objeto
por el esquema de funcién, un estudiante puede determinar la existencia de funciones
definidas entre espacios vectoriales. Cuando estas acciones se interiorizan por el uso
del cuantificador, se construyen las propiedades como procesos por separado. Esto
permite que los individuos reflexionen sobre el concepto més alla de la memoriza-
cion. La coordinacion entre los dos procesos es posible cuando se tiene conciencia
de que el cumplimiento de las dos propiedades es equivalente a la preservacion de
combinaciones lineales. Un estudiante con esta concepciéon puede determinar antes
de la realizacién de acciones sobre la funcién dada si ésta es o no una transformacion
lineal y elegir el tipo de argumento que utilizard para validar sus razonamientos. Una
vez que el estudiante tenga una concepcion proceso, puede encapsularlo en un ob-
jeto. Cuando necesita aplicar determinadas transformaciones (acciones o procesos),
no es posible si no se han encapsulado en un objeto. En este camino consideramos
que esta construccién estd determinada por las transformaciones particulares que un
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estudiante puede considerar en un curso de algebra lineal basico. Por ejemplo, me-
diante el algebra de transformaciones lineales, donde ya sea por la suma, el producto
escalar o la composicion se definen nuevas transformaciones lineales como resultado
de una transformacién sobre dos o mas transformaciones lineales dadas (para més
detalle sobre este andlisis, consultar Roa y Oktag, 2009).

Accion Accion
Fijados ¢ y b vectores particulares en [J Fijados @ en U vy ken K
Tla+b)=T(a)+T(b) T(ca)=cT(a)
Interiorizacion
»
it
Proces ? Proceso
Viy.uy €U se tiene que YuesUy YeeK setiene que

T(”l+”,,):I(”l)+ﬂ”.,] T((’H):C’I(H)

Coordinacion (»)

'

Yyt eUyVbeeK

T(buy +c1y) =0T (1) + cT'(u5)

Proceso
Transformacion lineal

Encapsulacion

!

Objeto Transformacion Lineal
Aplicacion de acciones v procesos

Figura 3. Descomposicién genética refinada (Roa y Oktag, 2009)

Durante el analisis de los resultados fue evidente la necesidad de construir este con-
cepto de manera paralela con otros, como por ejemplo establecer principalmente
fuertes conexiones con el concepto de base, ya que éste cumple un papel fundamen-
tal en la construccién y evolucion del esquema. A continuacién presentaremos las

principales construcciones realizadas por los estudiantes.

3.11.4. Evidencias de los estudiantes

Una vez determinada la descomposicién genética, como resultado del anélisis tedrico,
realizamos el diseno de instrumentos para validar dicho andlisis. En esta investiga-
ci6n decidimos disenar un diagndstico donde participaron 17 estudiantes (ocho de
licenciatura en matematicas, ocho de estadistica y uno de ingenieria) y una en-
trevista donde participaron seis estudiantes, todos del programa de licenciatura en
matematicas. Estos ultimos estaban tomando un curso de algebra lineal II y los
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deméds un curso de algebra lineal I; en el momento de tomar los datos, este ultimo
grupo acababa de abordar el concepto de transformacion lineal. Es pertinente acla-
rar que en la realizacién de esta investigacion no hicimos ningtn tipo de intervencién
en el proceso de ensenanza del concepto. Nosotros intervenimos una vez, ya que se
consideraba que los estudiantes habian abordado los conceptos de interés. El diseno
y la aplicacién de un modelo de clase con base en nuestro andlisis tedrico es un

trabajo del que pensamos hablar mas adelante.

Dadas las caracteristicas de los grupos, consideramos que el diagnéstico nos per-
mitia encontrar aquellos estudiantes que dieran algin tipo de evidencias sobre la
construccién del concepto transformacion lineal, y la entrevista nos dejaba indagar
en estos estudiantes acerca de aquellas construcciones tal vez més complejas sobre
el concepto que no podian evidenciarse en los resultados del diagnéstico. Una ca-
racteristica muy importante de las entrevistas es que fueron de tipo didéactico. Es
decir, las situaciones planteadas alli no son de respuestas inmediatas, pues lo que
buscamos era motivar en el estudiante estados de desequilibrio que nos permitan ver
como al abordar un problema su propia comprension de un concepto podia hacerse
evidente incluso para él mismo (Roa, 2008). La prueba diagnéstica estaba compues-
ta por siete problemas, y los estudiantes debian contestarla de manera individual y
por escrito. La entrevista se grabd en video y se realizé de manera individual; cada
entrevista duré un tiempo aproximado de dos horas. Los resultados del diagnéstico
y de la entrevista se transcribieron, para hacer un analisis mas detallado de ellas

(para més detalle, consultar Roa, 2008).

Los resultados del diagndstico nos demostraron la importancia de las construcciones
que consideramos indispensables en la construccion del nuevo concepto. Encontra-
mos que particularmente los conceptos de funciéon, espacio vectorial y vector cumplen
un papel fundamental; esto es consistente con el principio de aprendizaje que plantea
la teoria Apoe, que hace referencia a la capacidad de todo individuo de construir
conceptos matematicos, siempre y cuando cuente con las estructuras matematicas
apropiadas. Esto fue muy evidente en los estudiantes del curso de dlgebra lineal I,
ya que presentaron graves problemas con los conceptos de funcién y vector.

Sin duda, la entrevista fue el instrumento que nos dio mayor informacién sobre
las construcciones que los estudiantes habian realizado sobre el concepto que nos in-
teresa. En la aplicacién de este instrumento encontramos evidencias de las siguientes
concepciones en los estudiantes: Concepcion accion del producto escalar, Concepcion
proceso de transformacion lineal, Concepcion objeto de transformacion lineal (Roa,
2008).

En general, el andlisis de los datos obtenidos en las entrevistas nos muestra la impor-
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tancia de relacionar la preservaciéon de las propiedades de linealidad como un tinico
proceso para encapsularlo en un objeto. Considerar siempre las propiedades de ma-
nera independiente impide que un estudiante logre ver el concepto transformacién

lineal como un objeto y realizar transformaciones sobre él.

Vale la pena mencionar que determinar ejemplos particulares de transformaciones
lineales no es una condicién suficiente para garantizar que un estudiante tiene una
concepciéon objeto de este concepto. Este es el caso, como ya mencionamos, del estu-
diante 4, que puede dar ejemplos de transformaciones lineales a pesar de su concep-
cion del concepto, centrada sélo en la preservacion del producto escalar para vectores
particulares de un espacio vectorial determinado. Contrario a esto, el estudiante 6
(Roa, 2008), durante el desarrollo de la pregunta 5, donde se preguntaba si existia
una transformacion lineal con ciertas caracteristicas sobre su nicleo e imagen, pudo
caracterizar la transformacién lineal T : R? — R?, pedida mediante un anélisis men-
tal de la informacién presentada en el problema, determinando que la transformacion
T estéd definida por T'(z,y) = (x —y,z —y, x —y). Este estudiante mostré evidencias
de su capacidad para pensar en la transformacion lineal y caracterizarla a partir de
condiciones dadas sobre su imagen y ntcleo. Ademas, reflexion6 sobre la unicidad
de su ejemplo, y empezo a considerar otras transformaciones lineales que de la mis-
ma manera cumplen con las caracteristicas, llegando a una generalizacion sobre el
conjunto de transformaciones lineales de la forma (a(x —y), a(x —y), a(x —y)). Este
estudiante pudo generar nuevas transformaciones a partir de una transformacion

determinada.

Los procedimientos de los estudiantes revelan diferentes formas de abordar los pro-
blemas, fijadas por las relaciones que logran establecer con otros conceptos. Esto,
desde nuestra mirada, hace referencia a los niveles de evolucién de los esquemas
determinados por la coherencia que pueden establecer a la hora de abordar una

situacién matematica.

El estudiante 5, en el desarrollo de la pregunta 3, donde se plantea una generaliza-
ci6én sobre transformaciones lineales (Roa, 2008), presenta un tipo de razonamiento
que da muestra de su capacidad para realizar acciones sobre objetos especificos al
determinar que dadas dos transformaciones lineales 77 : U — V y 15 : U — W es
posible determinar una nueva transformacion lineal T': U — V x W de la forma
T(u) = (Ty(u), To(u)) para todo u en U. Este estudiante, sin ninguna dificultad,
puede establecer dos casos particulares de transformaciones lineales y mediante la
aplicacién de acciones (determinando cada componente como la aplicacién de T; y
T,) sobre ellas puede establecer una nueva transformacion lineal. Incluso es posible
percibir que puede desencapsular el objeto y volver sobre el proceso que lo determind,
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la conservaciéon de combinaciones lineales. De esta manera muestra que la funcion
definida es una transformacién lineal. Aunque casi todos los estudiantes realizan un
procedimiento similar en este problema, este alumno después de contestar la pre-
gunta, expresa la necesidad de verificar la estructura de W x V. Al parecer, no habia
considerado que el producto cruz entre dos espacios vectoriales es un espacio vec-
torial. Para esto define las operaciones para el producto cruz, y reflexionando sobre
ellas determina que W x Ves un espacio vectorial y por tanto sus razonamientos
anteriores estan completos. Consideramos que este tipo de razonamientos senala el
pensamiento global que un estudiante puede desarrollar al poseer una concepcién
objeto de transformacion lineal. Puede considerar los elementos que forman parte
del concepto e integrarlos a su pensamiento, sabe que una transformacién lineal debe
estar definida entre espacios vectoriales; esto es parte de sus estructuras mentales y
por tanto es consciente de ello.

3.11.5. Conclusiones

Podemos afirmar que las estructuras de funcién y espacio vectorial como esquemas
son indispensables para la construccion del concepto transformacion lineal. Ademés,
las dificultades de algunos estudiantes durante el diagndstico nos indican la necesidad
de realizar acciones sobre vectores particulares, que después nos permitan generalizar

el cumplimiento de las propiedades para cualquier vector.

La construccion intermedia que habiamos considerado entre la accion y el proceso
determinado por el uso de los cuantificadores no se presenté en nuestro analisis.
Pensabamos que en algunos casos los estudiantes podrian hacer uso de vectores en
su forma general, sin pensar en el cumplimiento de las propiedades para todos los
elementos del espacio vectorial; con todo, el andlisis de los datos no mostro evi-
dencias de este tipo de construcciones. Los estudiantes consideran el cumplimiento
de las propiedades para todos los elementos del espacio vectorial cuando escriben
los vectores de manera general. Aunque no escriban especificamente los cuantifica-
dores, sus construcciones evidencian que tienen en cuenta el cumplimiento de las
propiedades para todos los vectores del dominio de las funciones presentadas en los

instrumentos.

Los datos también nos muestran la importancia de considerar la construccion de las
propiedades como lo mostramos en nuestro analisis (figura 3). Hacer la construccién
de las propiedades como procesos independientes ayuda a los estudiantes a eviden-
ciar la existencia de los espacios vectoriales y el campo, asi como la importancia de
los cuantificadores. Esta construccién y la coordinacién de ellas forman un papel
fundamental en la construccién del concepto de transformacién lineal. La concep-
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cion proceso de este concepto como resultado de la coordinacion de dos procesos
es, desde nuestra perspectiva, un camino muy viable para la construccién del con-
cepto. Mediante este camino es posible considerar su encapsulacion como un objeto
y motivar la evolucién de su esquema. Si los estudiantes perciben la construccion
de manera aislada, serd imposible que éstas evolucionen, ya que su consideraciéon
de las transformaciones lineales estara limitada por la percepcion de dos procesos
independientes.

Un estudiante con una concepcién proceso de transformacion lineal puede determi-
nar, previamente a la realizacién de acciones sobre una funcién dada, si ésta es o no
una transformacién lineal y elegir el tipo de argumentos que utilizara para validar
sus razonamientos. Es decir, podra demostrar, mediante la preservacién de operacio-
nes o la preservacion de combinaciones lineales, si la funcién es una transformacién
lineal; en caso contrario, presentara un contraejemplo para un caso particular donde

no preserve alguna de las operaciones.

Una vez que un estudiante logra tener una concepcion proceso de este concepto,
estd en capacidad de encapsularlo en un objeto. Cuando un estudiante necesita apli-
car determinadas transformaciones (acciones o procesos) sobre un concepto, no es
posible si éste no se ha encapsulado en un objeto. En este camino consideramos
que dicha construccién esta determinada por las transformaciones particulares que
un estudiante puede considerar en un curso de algebra lineal basico. De la misma
manera, creer que una transformacion lineal es un elemento de un espacio vectorial
nos permite pensar que el estudiante ha logrado ver el proceso en su conjunto y pue-
de actuar de manera consciente sobre él. Como se pudo percibir durante el andlisis
de los datos empiricos, las construcciones descritas en esta descomposicién genética
no pueden verse de manera aislada. No es suficiente observar en un estudiante su
capacidad para describir determinadas transformaciones lineales y determinar otras
a partir de cierto procedimiento, para asegurar que tiene una concepcién objeto del
concepto; en este asunto cumple un rol fundamental el mecanismo de desencapsu-
lacién. Un estudiante que logra una concepcion objeto del concepto debe mostrar
evidencias de su capacidad para regresar sobre el proceso mediante el cual logré en-
capsular dicho objeto; en este caso, su concepcion proceso debe estar fundamentada

sobre la preservacién de combinaciones lineales.

Un modelo de ensenanza que se base en nuestro analisis puede considerar la cons-
truccién de funciones que cumplen con una u otra propiedad. Esto implica un analisis
mas especifico acerca de la naturaleza del campo sobre el cual estén definidos los
espacios vectoriales. Por ejemplo, consideremos la funcion T : C — C definida como
T(z) = z, esta funcién es una transformacion lineal si el espacio vectorial C (con-
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junto de los ntiimeros complejos) se define sobre R (conjunto de los niimeros reales).
Pero si se define sobre el campo de los niimeros complejos no lo es, ya que la suma
vectorial se preserva pero no el producto escalar (basta tomar z =1—1iy c=1+1,
es facil ver que T'(cz) = 2y ¢I'(z) = 2i). Este tipo de ejemplos promueve un tipo de
pensamiento distinto, que desde nuestra opinién puede generar el desarrollo de ra-
zonamientos abstractos, donde el estudiante siente la necesidad de reflexionar sobre
los contenidos mas alld de desarrollar habilidades para repetirlos, por concebirlos
como algo acabado.

De la misma manera, cuando se estan construyendo por separado la preservacion de
la suma vectorial y el producto escalar, es posible determinar relaciones entre estas
propiedades.

Hay que considerar si las condiciones son independientes la una de la otra, o analizar
por ejemplo que para cualquier funcién definida entre espacios vectoriales sobre el
campo de los racionales, el cumplimiento de la suma vectorial implica el producto
escalar (Maher, 1987); esto genera en los estudiantes la reflexiéon mas alld de la me-
canizacion. En este camino consideramos que los materiales propuestos por Weller
et 4l. (2002), donde el trabajo con transformaciones lineales se inicia con acciones
sobre vectores especificos de espacios vectoriales de dimension finita como Zs, per-
mite la reflexién sobre las caracteristicas de los vectores y las operaciones definidas

entre ellos.

Con este tipo de opciones buscamos que los maestros motiven el desarrollo del
pensamiento matematico en los estudiantes por medio de una reflexién profunda de
los conceptos. Indudablemente, el camino que describimos en nuestra descomposicion
genética puede ser la base que motive esta reflexién, que ofrece mucho mas que la
presentada en los textos. Tal vez ésta puede convertirse en una alternativa que
motive el razonamiento sobre éste y otros conceptos del algebra lineal, sin evadir su
caracter abstracto, que es en definitiva una de las caracteristicas por las cuales nos

interesa incluir esta materia en los programas de formacion profesional.
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