
Aalborg Universitet

Development of a Rich Picture editor

a user-centered approach

Valente, Andrea; Marchetti, Emanuela

Published in:
International Journal on Advances in Intelligent Systems

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Valente, A., & Marchetti, E. (2010). Development of a Rich Picture editor: a user-centered approach.
International Journal on Advances in Intelligent Systems, 3(3 & 4), 187-199.
http://www.iariajournals.org/intelligent_systems/tocv3n34.html

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 03, 2025

https://vbn.aau.dk/en/publications/9d93eee8-ee59-4277-a878-a301847864e8
http://www.iariajournals.org/intelligent_systems/tocv3n34.html

Development of a Rich Picture editor: a user-centered approach.

Andrea Valente
Dept. Electronic Systems, Aalborg University EIT

Esbjerg, Denmark
av@es.aau.dk

Emanuela Marchetti
Warwick Business School, The University of Warwick

Coventry, UK
e.manum@gmail.com

Abstract— This paper describes the development of a software
tool to support rich pictures creation for object-oriented analysis.
This software is useful both as an e-learning tool for bachelor-level
students, as well as for practitioners working with agile
methodologies. The transposition of manual rich picture practice
into software proved difficult, therefore, we decided to follow a
user-centered approach: design and implement a prototype with
basic functionalities, then run a usability test with a few students
and professionals. The feedback collected in the test validated our
hypothesis circa the need of software support for the authoring rich
pictures, but also forced us to re-consider the design of our
prototype. To gain a deeper understanding of the students' working
practice, we also reviewed rich pictures from past student projects.
All the information gathered through our study is guiding us in the
design of the tool next version. At a more general level we realized
that modern object-oriented development methodologies, such as
agile methods, are informed by design, hence they sometimes
assume design skills that programmers do not have or do not value.

Keywords- rich pictures; knowledge acquisition; object-
oriented analysis; qualitative tests; learning

I. INTRODUCTION

Rich pictures [1] are more and more part of object-
oriented analysis and design courses (OOA and OOD
courses). At our university, bachelor students in Computer
Science as well as Engineers are required to perform analysis
in small groups (3 to 6 members) and draw rich pictures as
part of their project documentation [2]. Usually rich pictures
are created with low-tech support, such as whiteboards or
pen and paper. Students sometimes adopt some general
purpose software, like a painter or a diagram-drawing tool.

Rich pictures represent knowledge about a domain
(similarly to Novak's concept maps [3]), and should guide
the developers during the definition and construction of the
system's early prototypes. However, using a generic tool
instead of a specific one has known disadvantages (see [4]).
In the case of OOA it means that fundamental concepts are
missing and that the knowledge acquired is not immediately
re-usable, especially for generative purposes. Hence, it is not
possible for an analyst using a generic tool to translate rich
pictures into rough software prototypes of the system under
study. It would of course be possible to use one of the many
formal-methods software tools, but they require training
from the part of the students, and mostly work with rather
complete and detailed knowledge of a system, being

therefore typically unusable in the analysis phase or when
acquiring knowledge incrementally.

Considering all this, we decided to develop a software
tool specific for the creation of rich pictures, to be used in
OOA. This software should be useful both as an e-learning
tool for bachelor-level students learning OOA and OOD, as
well as for practitioners, working in small teams adopting
agile development methodologies.

However, transposing the manual rich picture practice
into a software tool proved difficult, so we decided to follow
a user-centered approach and involve students in a usability
test. The feedback collected during the test greatly eased the
task of defining the main features of our tool.

In the following section we present an early version of
our tool and discuss our ideas, sources of inspiration and
related works. Section III explains how the usability test was
constructed and run, and what we discovered observing our
students interacting with the tool and later interviewing
them. In Sections IV and V we discuss the test and how the
feedback from the students is guiding the next iteration of the
tool development. The new version of the tool, with a new
GUI and extended features, is outlined in Section VI. Section
VII concludes the paper.

II. SOFTWARE SUPPORT FOR RICH PICTURES

According to [6] a rich picture provides "a broad, high-
grained view of the problem situation", and it shows
structures, processes and concerns (or issues). It is also
remarked that there is no best way to construct a rich picture.
From this consideration we derive a requirement for our
software tool: it should not impose a specific work-flow to
its users.

When rich pictures are used for OOA, structures become
visual representations of objects or grouping of objects,
while processes are understood as events, changing the state
of one or more objects instantaneously (as explained in [2]).
As for concerns, they are often simply notes written in
natural language aside of the different objects in the picture.
Our tool should therefore be a drawing program, and it
should allow users to create frames (to visually represent
objects), eventually nesting them, to group many frames
together into one. Furthermore, users should be able to
describe events involving many frames, i.e., specify the
processes at work in the system model. It should also be
possible to write natural language notes, to support concern
identification. We want our software tool to help the user to

explicit the knowledge captured by one or more rich
pictures. This will provide support for an automatic
generation of (skeletons of) executable prototypes.

A. Related tools
To our knowledge there is no software support specific

for rich pictures, so we decided to proceed on two fronts:
first we surveyed existing software tools that could generally
relate to visual editing and conceptual modeling [6], and at
the same time we established our own requirements for an
authoring tool specific to RP, and to be used in object-
oriented development.

The survey covered concept maps [3] and text graphs [7].
Concept maps have a very established community, a clear
definition and many good software tools. They have been
used for many decades in fields like knowledge acquisition,
e-learning and knowledge visualization. A concept map is
typically a graph structure, constructed from labels
containing natural language phrases, and arrows linking
labels together. The focus is on the definition of concepts,
type-like entities, while rich pictures show more concrete,
instantiated examples of a system's state and dynamics. Text
graphs are an interesting attempt at making concept maps
meaning more precise. However, they are text-oriented and
they offer no clear way to represent different steps in the
evolution of a series of concepts. While text graphs are not
developed with rich pictures in mind, they suggested a
direction of inquiry: what happens when text is replaced with
pictures, in a text graphs? And we explored possible answers
to this question in [1], where we also discuss criteria for
conceptual modeling software tools.

Another option for us was to adapt existing visual editors
to RP, therefore we experimented with a few products as
well as discussed the matter with our student testers (who
have also independently tried to author their rich pictures
with available software). The most interesting tools we
considered are Visual Paradigm for UML [8], Microsoft
Visio [9] and Dia [10], and Visual Knowledge Builder [11].

Visual paradigm for UML [8] is a specialized tools for
UML-related development activities, such as design of state
machines, use cases, class diagrams, and deployment
diagrams. In the user guide, visual paradigm is defined as:
“a powerful, cross-platform and yet the most easy-to-use
visual UML modeling and CASE tool.” A very
comprehensive tool, as other modern CASE programs, it
can import an existing object-oriented program and
automatically generate diagrams from the code. These tools
are very good and integrate well many diagrams into a
coherent detailed specification of a system. Systems can be
defined incrementally, but the notation is built-in and
standard (usually from the family of the UML diagrams).
Visually appealing, visual paradigm provides a friendly and
innovative GUI. However, its goal is not support knowledge
acquisition: if a system is yet to be defined, what is the point
of keeping strict relationships between its various sub-
components and views. We are more interested in

suspending validation and letting developers explore and
correct their diagrams through discussion.

Both Microsoft Visio [9] and Dia [10] are diagram
editors; the first is proprietary, while the second is a GTK-
based GNU tool and is often introduced as a free alternative
to Visio. We analyzed Dia in greater detail and found it a
good visual editor for diagrams, with many predefined
shape packages (e.g., for UML diagrams, electronic circuits
as well as various business diagrams). Dia has a palette and
a drawing space, and users work by dragging shapes from
the palette into the drawing space; then they can customize
properties of the shapes and connect them by means of
various types of connectors. Interestingly, the set of libraries
can be extended, as new shapes can be described by XML
files. It is also possible to design custom shapes directly in
Dia, and the custom shapes can also be given special
attributes. It is clearly possible to use Dia for RP, but being
a generic tool, the burden of interpreting the diagrams as RP
will reside solely on the users. As discussed in [4], it is not
always the best choice to adopt general purpose tools for
specific practices (as also emerged from our test, detailed in
Section IV).

Since working with RP requires spatial reasoning, it is
relevant to consider software like the Visual Knowledge
Builder (VKB) [11]. It uses incremental formalization to
simplify the expensive and time-consuming task of defining
knowledge. Many of the goals of VKB are strikingly similar
to ours. VKB is visual, but the graphic elements at disposal
are simple geometric shapes, little freedom of expression is
left to the author. VKB allows users to proceed
incrementally from concrete examples of structures, towards
more general patterns, type-like in nature. However, VKB
seems to be more oriented towards analysis than synthesis,
and it bears little relations with object-orientation and OOA.

Our general conclusion is that these tools fall into 2
opposite categories: they are in fact either too specialized
(e.g., they work very well with a subset of UML diagrams),
or too general. What we would like to achieve is a tool in
between Visual paradigm and Dia, and that can adequately
represent the concepts required for RP editing. This is why
we decided to design and implement our own RP software.

III. THE EARLY PROTOTYPE: FSSE 2009
The new tool is called Free Sketch for Software

Engineering 2009 (called FSSE in the rest of the paper) [1].
The GUI of our tool is visible in Figure 1A. It is composed
of 2 windows: the largest one is the main drawing area,
where users draw their rich picture, and a smaller window
called palette that contains type-level information about the
elements drawn in the rich picture.

The typical work-flow of a user creating a rich picture in
FSSE would be:

• Create a new, empty FSSE project.
• Draw an image in the background of the main

window (using an external painter program) or
alternatively import a scanned hand-drawn image.
This background image serves as initial draft of the
rich picture (see Figure 1A).

• Select rectangles out of the background image.
Each selection turns into a frame, that the user can
move around and clone, to obtain multiple copies of
the same frame.

• Each frame can be given a name and a list of tags.
Names do not need to be unique, and tags are like
types. Tags in FSSE are a clustering device, like
tags in blogs.

• More and more frames will be defined, so that the
initial background image will be reconstructed by
frames. This structuring process starts from a flat
image, and converts it into a rich pictures made of
objects, i.e., frames (as in Figure 1B and 1C).

• Frames can have internal details; to declare that a
user simply selects a rectangular area inside a
frame, and a new frame will appear, nested in the
selected one. It is also possible to insert a frame into
another one, via drag-and-drop.

• The palette window is automatically populated, and
contains at any given time a list of all tags used in
every frame in the main windows (without
repetition). This incremental creation of tags in the
palette is visible in Figure 1B and 1C.

• A tag in the palette (see Figure 1D) can be used to
create a new frame, instance of that tag. Each tag
also provides information about the relationships
between itself and the other tags, such as cardinality
and optionality of associations.

Our tool does not force users to decide in which order to
perform their structuring of a rich picture. For example the
division of the initial background image into frames can be
mixed with the declaration of the internal structure of the
frames.

Users can even decide not to assign names or tags to their
frames. A frame without names nor tags could be used to
group other frames. This means that frames do not
correspond exactly to the objects in an OOA. Frames are in
fact more un-structured than objects, and become
representations of objects only when users decide to assign
names and tags to them.

To implement frames we drew inspiration from mobile
ambients [12]. Dynamic tree-like structures with names and
types, ambients can easily model objects and proved a good
metaphor in the design and construction of FSSE.

In our tool, a frame can have multiple tags, which
corresponds to an object with multiple types (or classes). We

Figure 1: The GUI of FSSE. In the top-left part of the figure (A) the user imported a background image, representing some
objects of her rich picture. The second part of the figure (B) shows how the user can convert background images into

frames, with names and tags; in (B) “agenda” and “aBook” are frames, tagged with tag “Book”. The tag “Book” is also
represented in the palette (on the right). In part (C), the image of the pencil is converted into a frame named “b2”, then

nested into the “agenda” frame; the tag “Pencil” is now represented in the palette. The last part, on the bottom-right of the
figure (D) shows how the user can use the “Pencil” tag to create a new “Pencil” frame, then place it close to “aBook”.

designed FSSE to allow for multiple hierarchy, in this way a
rich picture could have rich and/or loose relationships among
tags, and the user can decide, at a later time, to clean up her
tags into a single inheritance tag system. This kind of
alteration of tags relationships (i.e., relationships among
classes) reminds of refactoring practices.

As soon as a tag is used for a frame, FSSE automatically
adds it to the palette window. Moreover, our program
analyzes the relationships among tags, and finds out the
typical structure of a tag. According to what is depicted in
Figure 1D, “agenda” is a “Book” and contains a “pencil”,
that is tagged “Pencil”. However, the frame “aBook” is also
tagged “Book”, but it does not contain any internal frame.
Therefore, FSSE will describe the “Book”-tag as having an
association 0 to 1 with the “Pencil”-tag.

Events are not yet supported in FSSE. It was unclear to
us, before running the usability test with our students, how to
best add them. Concerns are not present either, but they can
be expressed by writing comments directly on the
background image of the rich picture.

IV. TESTS

A. A qualitative usability test: set up and task
At the current development stage of FSSE, a preliminary

usability test was needed in order to complete or even to
change the tool radically. This test is based on our hypothesis
that students may find RP more relevant and useful to their
project work, if they could edit them on a specific software
tool. Such tool should also allow them to re-use RP for
generative purposes, turning RP into an integral part of
OOA.

Participants to our test were a professional programmer
and four engineering students at the 5th semester of their
bachelor, who have recently started a course about OOA and

OOD. Our aim was to evaluate how users may perceive a
tool like FSSE, if it is seen as useful, easy to use, and if it
adequately supports work-flow, for individuals and groups.
The students were divided into two groups and were invited
into a classroom, one group after the other. The students
were sitting at a desk, with a laptop running FSSE, and we
were in front of them, observing their reactions, taking notes
and filming them with a video-camera. The laptop was
connected to a projector, so that we could see (and film) their
actions on the wall behind them (Figures 2A and 2B).

The test was articulated into four stages: first we showed
the students a 5 minutes video-tutorial, then we introduced
them to a task, and we left them free to familiarize with the
tool before starting; at this point we started filming. The task
was similar to the one shown in the tutorial, they had to
create one or more rich pictures, identifying objects, classes
and events, regarding a pizza restaurant (see Figure 3). A
customer can order a pizza from a menu talking to a waiter,
the pizzas have to be baked and can be served with wine or
other beverages. Finally the customer pays the waiter and a
conflict may emerge between them about the order.

After the task completion, we asked them a few open
questions about their impressions of the tool. A list of
questions was prepared, but it was intended mostly as a
reference.

• How did you like the tool? General impressions.
• Given you experience with object-oriented

modeling, do you think the tool can facilitates
object-oriented analysis and design or no? How and
what will you change?

• Do you think that the tool makes object-oriented
analysis and design more understandable for users
or not? How and what will you change?

• How do you think it will be possible to define
events in Free Sketch, within the current user's
interface and how could it work?

(A) (B)

Figure 2: Two groups of students (on the left and on the right) trying to model events in FSSE. Since events are not actually
part of the features of FSSE, each group freely invented a way to express them: the result was a couple of different

approaches. The first group (on the left) modeled events by clustering of frames and arrows. The second (right) nested the
frames involved in the event in a new frame, representing the event itself.

• Do you think you would like in future to use a tool
like this in your work or not? Why?

• How do you think the tool supported flow of team
work? Did it facilitate team work or made it more
complex? How could the tool be improved?

• Other comments? What other changes will you
suggest to make the tool more effective in
supporting object-oriented analysis and design in
software development or its understanding from a
student's perspective?

During the test in fact we started from the first question
and then we adapted to the students' comments, who
sometimes covered several issues at one time or even
proposed new issues. For practical reasons we could not
meet the programmer in person, we gave him the program
and the tutorial, he solved the task in the tutorial and sent us
feedback by e-mail.

In designing our test we referred to user-centered
qualitative approaches, like ethnographic observations and
analysis of video recordings [13][14]. Our aim was to gain a
detailed account from users about their working habits, their
experience of the tool, how they would like to work and
eventually be supported by a tool like ours. These data were
intended to be used in a new development iteration.

The task was designed as a typical modeling problem, of
the kind they already faced during their OOA and OOD
course, so that they could reflect upon their own experience
to evaluate the tool. It was also our interest to observe how
FSSE fitted within the team work-flow and how it affected
reflection in action, intended as a process of critical thinking
while performing a skilled practice [15].

Concerning the questions, we referred to the method of
situated interviews [14], that prescribes to interview users in
their context of practice, starting with open questions and

gradually focusing on the details of users' statements and ask
for examples. We preferred interviews to questionnaires to
find out what really mattered to the students and to show
them that we cared for their contribution, and this was
explicitly appreciated by one of them.

B. Collected Data
The students responded quite positively to the test and

the prototype, it seemed as we were on the right track. They
were relaxed with their mates, probably because they were
already working together in the same group for the course
and the semester project. They sat one aside of the other, one
interacted with the computer, the other read from the paper
with the task description and often pointed at the screen with
one finger, then they talked a lot deciding together on what
to do.

We expected the time required for the test to be around
half an hour for each group, but in fact it took one hour, as
they used extra time to get familiar with the interface.
However, they all said that the purpose and the interface of
the tool were easy to understand.

Surprisingly for us, drawing appeared as a main concern
to all the testers, they felt visibly uncomfortable when they
needed to draw new icons, specifically arrows and the menu
for the restaurant. The first group expressed their uneasiness
exchanging a worried, ironic look, then after several attempts
they drew a menu and arrows to connect the pizzas to it (as
visible on the back of in Figure 2A). A member of the
second group said ironically: "Ok, we suck at drawing!",
then they modeled the menu as a new frame with the pizzas
nested inside, avoiding to draw.

The feedback we received from the programmer was
very similar, he wrote that he likes the tool, and he also
remarked that he does "not want to play with graphics, it

Figure 3: The "pizzeria" task modeled by one of the student groups, using FSSE 2009.

sucks!", when analyzing a system. He then suggested to add
a library of free, pre-drawn icons and arrows. In this way he
proposed a constructive solution to the same problem that
was signaled also by the two groups.

These reactions revealed programmers' perspective on
agile methodologies, which include soft skills, such as
prototyping and drawing to make rich pictures and
storyboards. These skills are taken from the field of design,
therefore do not belong to the curriculum of a computer
scientist or an engineer, and are not even part of their system
of values.

Through the interviews we realized that drawing on
paper is perceived as an annoying interruption in the process
of reflection in action. According to them, it takes time to
make a decent icon, approved by the whole group, as they
have often "to draw, erase and draw it again", hence "just
having a tool would help!". Moreover during the test they
were quite precise in selecting icons and spent time erasing
the superfluous parts in the external painter, to make them
more readable.

Their quotes and actions show that, despite their dislike
for drawing they want nice icons in their rich pictures, but do
not want to do them by themselves. In this sense, features
like automatic insertion of pre-made icons or creation of
icons through selection from background pictures (as
currently available in FSSE), do provide a smoother work-
flow also from a team work perspective. It was also
proposed, both from students and researchers, the possibility
to introduce collaborative user interfaces, to turn the main
drawing window of FSSE into a sort of shared, remote
desktop.

Definition of events is central during OOA, but events
were missing in the prototype tool that we tested.
Nevertheless, the task assigned to the students required to try
and represent events. We wanted to see how the students
might interpret events representation within the given FSSE
interface. They all expressed their perplexity for the lack of
support, but found their own way to solve the problem.
Interestingly they all tended to represent events as scenes of
a storyboard, but they kept the approach they used to define
complex objects. The first students grouped a few frames
and connected them with arrows (Figure 2A), while the
others grouped frames by nesting them into a fresh new
frame (Figure 2B).

Finally the students seemed to find confusing the
distinction between names and tags, so that they discussed
with each other how to use the two labels to keep their rich
picture coherent. However, it did not take long before they
understood that tags work as types and names are just
arbitrary identifiers to be assigned to the frames. One of the
students showed to be a little frustrated by this ambiguity and
said: "if it is a type, why do not call it type!". In FSSE we
wanted to use the term tag, since tags are supposed to be
used with more freedom than types (see Section II).

Moreover, to facilitate overview of the system created, a
student proposed that when a frame is selected, it should be
highlighted, together with the other frames sharing its tag.

Furthermore, FSSE was appreciated for its flexibility,
enabling users to keep their favorite work-flow and their
understanding of rich pictures making. Such flexibility
implies that users can start modeling from a chosen level of
abstraction, and mix the various activities as they like. This
is what is called middle-out modeling in [1].

One of the students, who tried a few generic software
tools in RP editing, commented: "the nice thing is that this
tool doesn't impose me a specific way of thinking, it doesn't
assume I am stupid!". Hence we realized that work-flow
flexibility can give a feeling of not being patronized, by
providing users more control on their work.

C. Theoretical framework for usability test
Our usability test was conceived to actively involve the

students in the design process, in a simple way. It is based on
User Centered Design qualitative research principles [7][1].
A prototype was provided to them and they were asked to
solve a simple modeling task, simulating their everyday
work practice augmented with our tool. The prototype was a
working software, yet it was a mock-up as did not have all
features implemented [16]. Specifically no support for events
was provided, so that the students could inspire us about how
to design this particular feature, which appeared to be quite
difficult. Therefore, our prototype did not support all the
actions required by the task, providing only a rough feeling
about how they might be supported by the finished product.

We expected that when the students realized that a
specific feature or a standard way to represent events were
not given, they would have shown a feeling of perplexity,
but found their own way to do it, bringing new ideas to the
design process.

Our approach involves principles similar to the ones
discussed by Suchman [17][18]. She points out that to be
able to reconstruct artifacts as objects of investigation it is
necessary to alienate them, so to be rediscussed and
understood in action, with the active involvement of users. In
this case, we distanced ourselves from our program, by
neglecting its completion, so that we could re-conceptualize
it together with the students. We willingly introduced an
incompleteness, which worked as a kind of provocation to
the students, creating a bit of frustration. As expected the
students were able to get over their initial uneasiness and to
affiliate with the program, deciding on one important feature.
In this way the program was designed as close as possible to
the context of use, with users expressing their point of view
about new possible versions. Some of them showed
appreciation for being invited to the test, as they realized that
we actually wanted to share with them our affiliation with
FSSE, when it was still in the beginning of development.

Another aspect that was fundamental at that stage and
required involvement of groups of students, was to evaluate
the impact of FSSE on team work. The test and the analysis
of RP in fact showed that the students prefer to work with a
software tool, for several reasons, including their dislike for
hand-drawing. But as the activity of sketching on paper fits
well team work, as it can be done by more individuals
operating on single paper sheet, the same thing is not

obvious regarding a software running on a computer. The
computer itself has an affordance to support one individual
operating and this was clearly visible during the experiment.
The students participated at the test two at a time, and
already like this we saw that one student worked at the
computer, directly using the tool. The other student instead
sat on one side and looked at the paper with the task
description, but they both participated in decision making (as
in Figure 2A and 2B). There was no strong reaction about
this interaction style from the students' part. It is possible that
they did not feel disturbed as the set-up suggested two
different roles to be chosen within the pair, or simply
because they are used to this kind of dynamics from their
everyday practice of software development. However, it is
our intention to run a user study with a new version of the
tool in the fall semester and observe students in the act of
analyzing their problem in groups. We expect that this study
will allow us to see the program in action, evaluate our
findings from the preliminary test, and to identify forms of
emergent interactions that might facilitate group interaction
in RP editing. These new data will be analyzed in order to
improve the program and make designerly activities, such as
OOA and RP editing, more engaging and meaningful from
the perspective of technical students. In our view, this aim
will be achieved re-situating RP creation, now perceived as
an independent pedagogical activity, within software
development, so to be perceived as an integral part of it and
not as a superfluous exercise.

V. RE-CONCEPTUALIZATION

A. Analysis of RP across past reports
Reflecting on OOA&D courses through the past years,

we had the impression that students generally fail to
recognize the importance of RP in the development of a
software, and certainly do not like to make them. Generally it
seems as they consider RP as compulsory project
documentation, explicitly required by the teachers, but not
particularly meaningful for development, which is
considered by our students the most relevant part of the
project.

In order to investigate further our impressions, we
analyzed a few students' project reports containing RP (or
sometimes loose re-interpretations of RP), to see how
students actually related to the rich pictures as a tool, and as
part of OOA&D.

We collected 11 reports written through the past seven
years: 7 of them were intended for a bachelor-level OOA&D
course, for which RP are a specific requirement. The other 4
were instead intended for more advanced courses involving
software development (for example a master-level course in
computer games and interactive systems), for which RP are
not mandatory, as the students are supposed to choose
independently their method. All the 7 reports intended for
the OOA&D course contain RP, 4 of them even provide a
definition of RP. Instead only one report out of the four
intended for more advanced courses has a RP. Hence it
seems as RP are made only when explicitly required, in fact

it was interesting to notice that in some cases the same group
of students made a good RP for the OOA&D course but did
not make any for more advanced courses.

Interestingly all analyzed RP make use of explicative
texts to clarify the situation described. Furthermore, the
textbook for the object-oriented course [2] recommends to
make a few RP during the system choice phase, as a way to
generate discussion and facilitate requirements definition for
the system under development, and some teachers also
suggest to proceed like this in class. Despite all this, only one
out of the 7 OOA&D reports has 2 RP representing the same
situation from a different focus; all the other only contain 1
RP.

The diagrams provided in the other four reports
(including the RP) might resemble RP, but they mostly
describe use-cases or state diagrams, showing once more the
focus of our students on the technical aspects of system
development. Interestingly the only provided RP, visible in
Figure 4, is used in a quite improper way. The students wrote
that it was drawn to "show the problem domain and possible
conflicts to the readers after all decisions were made”. This
seems to confirm our impression that the students consider
RP as a tool for readers (teachers of stakeholders), but not to
support analysis as they are supposed to. In their RP, users
and context of use are not represented, and conflicts are
missing too. Representation is based mainly on written text,
probably because of their general dislike for drawing.

Furthermore, considering the representational details of
the RP we could see that only 3 RP are handmade, all the
others are instead edited on a computer tool. The students
follow different approaches in representing the visual
structure of RP: some follow a sequential structure while
others prefer a circular representation, at which center is the
system to be developed, the context of use or the users.

Only four reports include two RP, one for the current
situation and, in opposition, another for the new improved
one.

Figure 4: Rich Picture from an advanced course. In the
report it is said that it was edited as a support for the

reader, not for analysis.

Finally, conflicts seem to be a bit neglected; only 4
reports out of all 11 show conflicts. One of them, represented
in Figure 5, has only the “tradition versus change” meta-
conflict, as given by typical examples in making RP [2][1].

B. Discussion
Analysis of students' reports shows that students abandon

RP as soon as they go further with their studies, cutting them
out of their work practice. This phenomenon could be related
to the fact that students underestimate or did not understand
the importance of requirements gathering and analysis,
preferring to get to the technical part. It might also be that
they underestimate the use of sketching, still giving
importance to knowledge acquisition. A possible reason
could be that the tasks they receive for the projects are either
too technology oriented or too simple to require a deep
analysis. This certainly has to do with the fact that it happens
quite seldom that the students receive tasks from potential
clients/users from the real world. In most cases it is the
teacher who defines such problems and assigns them to the
students (in contrast with the “complex and messy
problematic situations” discussed in [2]).

Hence these problems might be too defined from the
beginning, so that it is immediately visible how to capture
the elements of the problem domain in terms of object-
oriented features like classes and methods. In this way RP
making becomes a superfluous exercise, just to show the
teachers that the prescribed path has been followed correctly.

Assuming this explanation as correct, it means that
knowledge acquisition and analysis in software development
are in fact designerly activities, in the terms expressed by
Rittel and Webber [19]. They define design as a process
aimed at framing and solving “wicked problems”, in which
the presence of messing factors, such as people and social
interaction, makes it impossible to find easy or optimal
solutions. However, still in more recent studies [2], problem
framing is recognized as a valid tool, and it automatically
embodies suggestions towards suitable solutions. Therefore,
if the problems assigned to our students are not wicked
enough, and they did not require any framing, then the
technical part is the only one left for investigation.

The same reason could also explain why conflicts are
often left out of RP. If the problems are too easy, it might
even be necessary for students to artificially invent possible
conflicts for their RP. Conflicts should instead emerge
through analysis of a messy situation, taken from the real
world, that demands technology supported solutions.

Exploring more this angle, it is no surprise that RP were
originated within Soft Systems Methodology [2][6]. They
are related to situation boards designers use to represent
users' dilemmas and context of use. Situation boards provide
a support for reflection and design, intended as a creative and
exploratory process, within the design team eventually
involving users too [13][16]. RP should be used in a similar
way, therefore, they can be defined as a designerly tool.
According to Stolterman's definition [20], there are no step
by step instructions about how to make RP, as they are
supposed to be flexibly adapted to the situation to be
represented and preferences of individuals or the group. In
fact we saw that the students are actually keen on structuring
RP in different ways. But we could also notice in past years
that this flexibility may generate confusion: there is no
specific way to make a RP, yet students can still make them
wrong, not rich enough or missing key elements needed
when later modeling the system. Another source of
confusion is the fact that rich pictures, use cases, and state
diagrams all contain some of the same pieces (such as users
or events). In face, some diagrams from the four reports
intended for the game course tend to mix internal details of
the system to be developed, with context of use, and
conflicts about the application of the system.

In conclusion these issues may be solved if students
received their tasks from actual clients, like for example a
company. If that was not possible, the teachers could make
the effort to provide messy problems, maybe taken from
news papers or other real-world informed materials. Hence
students could be provided with heterogeneous stories
describing the same problem from different perspectives
(e.g., discussions about the different ways to administer
existing power plants and renewable energy sources). At this

Figure 5: Typical example of rich picture from a students'
project. It is edited through a software tool and represents

only the “Tradition versus Change” conflict.

point the students would be forced to analyze such material,
to frame the general problem, isolate one or a few specific
issues to focus on, identify core elements, actors, events, and
potential conflicts in the original and in the new changed
situation. Hence RP might gain recognition as a useful tool
that allows developers to find a focus in the messy real-
world and explore more before committing to a particular
system definition.

C. Re-conceptualization of RP as knowledge acquisition
Reflecting on the results gained from the preliminary test

and the analysis of RP in past project reports, we identified a
typical work practice related to knowledge acquisition and
pre-analysis, which are the initial phases of software
development, and RP editing. This work practice is what our
software tool should facilitate, when finished.

RP creation is a preliminary design activity, the stage
where developers must frame a messy problem in order to
find adequate solutions, focused on object-oriented
technology. The RP creation process is quite complex, and it
is definitely a form of reflection-in-action as defined by
Schön [15] regarding design and planning. In this practice
experience and improvisation are deeply intertwined, as
expressed by Ingold and Hallam [21]. Moreover, it is a social
practice, since decisions must be taken by a group of
developers.

Schön, in his book “The Reflective Practitioner” [15]
provides a deep analysis of professional practice,
reconstructing how professionals act in their everyday work
and reflecting on implications for education. In our case we
are dealing with bachelor students from technical
departments (Computer Science, Engineering, Medialogy),
who have to learn object-oriented analysis and design in their
curricula. During their course the students are supposed to
learn theory and practice of object-oriented software
development, usually by working at a mini-project that spans
the duration of the course. Moreover, the students are
typically developing their semester projects at the same time
as they attend the OOA&D course, and can decide to apply
some of the concepts learned to the larger semester projects
as well.

As discussed by Schön, the students are supposed to
acquire a repertoire of examples ([15] p. 138) regarding
application of techniques, theories and practical knowledge,
based on their project experience, to support their future
working practice. Working at their mini-projects, students
are training in analyzing the given problems and in applying
the knowledge they gained through lectures and text books,
in order to develop technology supported solutions. This
kind of practice is called by Schön reflection-in-action, and it
is defined as a reflective conversation with the material of
the design situation ([15] p. 165). Sketches, like RP,
represent virtual worlds through which the practitioner can
make exploratory experiments, to investigate possible
solutions for her task. New decisions will be taken, reflecting
on technical and social implications through these
exploratory experiments, which talk back to the developer.

Moreover, RP creation is also a social process, since all
group members are supposed to participate. In this sense it
involves an improvisational component, as defined by Ingold
and Hallam [21]. Improvisation is a relational generative
process, it is functional to the creation of new culture and
implies that all actors are responsive to each other and the
context. It is also temporal as it embodies a certain duration,
that is being defined by an organic sequence of actions
articulated through time [21]. All these aspects are present in
RP editing, which unfolds as a participatory knowledge
acquisition, leading to the identify objects, users and
dynamics of the system to be developed.

Considering all this, the software tool we are developing
must be re-conceptualized, to support reflection in action
within a social context. Thus, as already mentioned, FSSE
should be a designerly tool that does not impose a step by
step guided practice, yet it must have a specific affordance
for RP editing.

Furthermore, FSSE should allow developers to structure
their own elements (such as objects and events) when editing
one RP. In this way developers should be able to create a sort
of kit of tools, that is supposed to speed up the process of
editing future RP too. In more general terms, developers
should be supported in creating a rough visual domain
specific language. Therefore, in designing FSSE, balance
between specificity and openness represents a fundamental
dilemma.

VI. NEXT ITERATION: FSSE10
Considering the details analyzed in the RP we can deduce

possible features for the new version of the program. First of
all we noticed that only a few RP were handmade, this
confirms our findings from the test that technical students
dislike to draw and prefer to use a graphical software tools
for their RP. This behavior is compatible with our hypothesis
that students consider RP as something required by teachers,
and if edited at the computer, they look better in their reports
and are more readable. However, even when created with
software tools, RP are clearly structured in a personal way,
independently from the tool used.

In terms of designing our tool this implies that we have to
allow students to freely choose their representation style, a
principle that fits within the definition of a designerly tool
[20]. Refining FSSE to be a better designerly tool for RP is
our main goal for the next iteration; the new version of the
tool will be called FSSE10, since it will be finished and
tested in 2010. From a functional point of view, FSSE10
needs to provide better support for the 3 central elements of
RP: structure, processes and concerns, and possibly present a
simpler and clearer graphical user interface (GUI). In the
next sections we will discuss the design of FSSE10.

A. Streamlined GUI and new palette
Considering our observations circa the way students

work with RP and with FSSE, we think nesting of frames
complicates the GUI; therefore nesting will be replaced by
stacks of re-positionable notes (a concept similar to piles in
the BumpTop virtual desktop [22]). The new metaphor

should be that when a frame B is stacked on top of another
frame A, then B is inside A, or B part-of A.

Moreover, the new GUI will integrate free-hand drawing:
to draw we currently rely on a free external painter (Java
Image Editor, by JH Labs). Internal painting capabilities will
provide a more uniform environment and improve the flow
when drawing rich pictures.

Many students seem to like to add explicative comments
to the RP or to single elements of it. This practice, related to
RP concerns, will be supported by allowing them to place
text bubbles in the rich picture.

The palette is also undergoing significant changes: it will
look much more like a simplified UML class diagram. The
terminology used in FSSE10 will therefore be more in-line
with object-oriented jargon. Tags will be called classes and
frames will be referred to as objects (or rich picture objects).
In the current version of FSSE, a frame can have any number
of tags, but in the next version each frame (i.e., each rich
picture object) will have a single class. This implies that
FSSE10 will only support single inheritance, which is a
sensible solution to keep the tool simple. Moreover, in our
analysis of past rich pictures we discovered that multiple
inheritance is virtually never considered by students' during
OOA.

Another change will be that each class in the new palette
will contain typical instances, called prototypes. This idea
originated from observing a particular pattern of use of FSSE
during the test. A user would create some frames, give them
names and tags, and cluster them in an empty area of the rich
picture (an example of spatial reasoning within FSSE). Later
the user will proceed to create new frames by cloning the
ones in the cluster. The cluster itself can be considered as an
extension to the FSSE palette. In FSSE10 we will therefore
allow the user to drag a rich picture object (e.g., a drawing of
a dog) from her rich picture into a class of her palette (the
class “Dog”). The dragged object will then be referred to as a
prototype of that class, i.e., a typical representative of the
class. When a new object of the class is created (in this case
a new dog) the prototype (i.e., the drawing of the dog) will
be cloned, to provide an initial look for the newly created
object. Proceeding in this way, the palette will contain more
and more classes, each with its own prototypical objects, that
the user stored during her exploration of the system
concepts. A side-effect of supporting prototypes is that the
palette becomes more persistent and easier to interpret even
separated by the RP that generated it. This, in turn, opens the
possibility of sharing a palette among many rich pictures,
which is impossible in the current version.

B. Processes: arrows, events and conflicts
Processes, a very relevant aspect of RP, are not directly

supported in FSSE. In FSSE10 we plan to use events to
represent processes. We already decided to provide labeled
arrows, since they were explicitly required by our students in
the test, so events will be implemented as a arrows between
rich picture objects. Finally, conflicts will be considered as a
special kind of events.

We are considering the possibility to implement events as
hyperedges. Hyperedges are related to hypergraphs, a
generalization of graphs [23]. A hypergraph can be defined
as a set of vertices, and a set of hyperedges between the
vertices; hyperedges are usually undirected, and represent
relationship among 1 or more vertices. As an example,
consider a FSSE10 user who wants to define an event “serve
cake”, involving 3 rich picture objects: a cake, a knife and a
person. The user could select the objects and connect them
via a single hyperedge labeled “serve cake”. Each object
attached to the hyperedge will have a role, specified by a
role name; in the example the roles could be: “item to cut”
for the cake, “cut with” for the knife, and “who” for the
person. Roles of an event should be typed: e.g., the “item to
cut” needs to be an object of the same class of the cake. An
event type can later be created from the “serve cake” event,
and attached to the palette. The event type will keep
information about the role names and their required types,
providing a mechanism to constraint and validate events. In
the cake example, to serve a cake you need to link the role
“who” to an object of class person, and FSSE10 should issue
a warning if the role is attached to a dog.

Finally, in FSSE10 it would be easy to consider a
conflicts as just another kind of events, i.e., labeled
hyperedges among the parts of the rich picture that
experience the conflict. However, we have noticed that
conflicts tend to be neglected by our students, even if they
are often necessary to make good RP. Therefore, we believe
that our tool should provide an affordance for conflicts, for
example in the form of a button for the specific creation of
conflicts.

C. New file format
A FSSE10 project will be a collection of rich pictures,

together with a single, common palette (as depicted in Figure
6), and for this we need to define a new file format for
FSSE10. The new format also reflects the special role and
importance of the palette: it contains all ontological and
behavioral information about the set of RP in a project. The
palette also provides examples of typical objects of a domain
(i.e., complete objects that serve as prototypes for the various
classes), and data in natural language about conflicts and
reflections around the rich pictures, in the form of concerns.
We propose to consider the new palette as the initial core of
a Domain Specific Language, in the sense expressed by
Fowler [24]:

“If people want to think about [a system's] behavior
with events, states, and transitions—then we want that
vocabulary to be present in the software code too. This is
essentially the Domain Driven Design principle of
Ubiquitous Language--that is we construct a shared
language between the domain people [...] and
programmers.”
This shared language in our case is a visual shared
language, and the programmers should at least be able to
use FSSE10 to agree among themselves, and whenever
possible, with domain specialists and users too.

D. Intelligence, flexibility and cooperation
In FSSE we implemented a few algorithms to analyze the

way the user nests her frame, and infer aggregation
relationships among tags, as well as cardinality and
optionality. In the next version we would like to provide
mechanisms for discovery of contextual information: the
context of a frame can be defined as the types its the
surrounding frames. Relationships could be discovered using
heuristics based on this notion of context.

We are also considering to improve the flexibility of our
tool, by providing FSSE10 with a plug-in mechanism to
enable users to define their own mapping from rich pictures
to external formats, and perhaps to code.

From a social point of view, FSSE should be re-
conceptualized in order to allow groups to actively interact
with the program in their group rooms, and as it was
suggested by one of our testers, also through the Internet
from remote locations. It could be interesting to explore the
effect of both synchronous and asynchronous virtual
interaction.

E. Mock-up of FSSE10
To develop the new version of our RP authoring tool we

are proceeding in an agile way, defining stories and selecting
the most relevant ones to be the basis of the design and
implementation incrementally more complex prototypes.

Since we advocate the use of RP in the analysis phase of
software development, we sketched our stories to be visual
and similar to rich pictures. Figure 7 shows the new look of
the FSSE10 GUI, some of the steps in the creation of two
rich pictures, about the same domain, and the incremental
definition of a palette. The images in Figure 7 show, from
top-right to bottom-left:

• the creation of visual representation for 3 objects: a
house, a man and a car. The man is inside (a part of)
the house. When the user assigns types to the 3
objects, the classes H (for the house), M (for the
man) and C (for the car) are automatically added to
the palette. The palette also detects that objects of
class M can be inside objects of class H, and shows
a 1-to-1 relationship between the 2 classes.

• the user creates an event called “sleep” that relates a
man and his house. The role of the man is labeled
“who” and the role of the house is “place”.

• After creating the event “sleep”, the user can
declare an event type from the specific event. The
“sleep” event type is added to the palette, at the
bottom, and keeps information about the roles and
their types: objects linked to the role label “who”
should be of class M and objects with role “place”
should be of class H. New events “sleep” can be
created clicking on the event type in the palette.

• the user can set the object “house” as prototype of
class H, by dragging it to the class H in the palette.

• now the user can save and close the current rich
picture and start working on a fresh one, still
keeping the same palette of classes and events.
Populating the new rich picture should be quicker
thanks to the knowledge in the palette. The user
creates 2 new objects from class H, “house” and
“myHouse”. The “myHouse” object is a clone of
“house” with some details altered. Class H uses its
prototype to initialize each new instances.

• the user can declare that “me” sleeps in
“myHouse”, by creating a new event from event
type “sleep”, and linking the roles “who” to “me”
and “place” to “myHouse”. Finally a concern is
created, shaped like a text bubble, in the top-right of
the last image.

VII. CONCLUSION

This paper describes the features and development of
Free Sketch SE, a software tool to support rich pictures
authoring for object-oriented analysis. To validate and
complete the initial prototype of the tool, we ran a usability
test. Although limited to a small group, the test provided
meaningful feedback that is directing the next development
iteration.

Figure 6: The new FSSE10 file format. A FSSE10 project
is saved as a folder (labeled “Project A” in the figure, and

colored cyan). Inside the project folder there is a sub-
folder (yellow, labelled “Palette”) which contains

definition of classes, events and concerns. Some classes
might have prototypes (i.e., examples of one or more

common instances of that class), and those are also stored
inside the palette folder, Moreover, in the project folder

there is an XML file describing each individual rich
picture. This storage format reflects the fact that all rich

pictures in the same project share a common palette.

Figure 7: The new GUI of FSSE10. The images show (top-right to bottom-left) the progression of steps needed to create two
rich pictures about the same problem. The palette is defined incrementally during the creation of the first rich picture;

classes and events are specified and will be permanently stored in the palette. The second rich picture can then be built,
leveraging on the elements already in the palette. Notice how all typical elements of a rich picture are now supported in

FSSE: classes, events and constraints (bottom-left step).

After the test we reflected upon patterns of use and
analyzed rich pictures in projects from various past
semesters. From these we obtained a better understanding of
how students create their rich pictures and what role they see
for rich pictures in their project reports. The user-centered
approach we followed proved of great help in better defining
our tool's features: for example, the feedback received
suggested us how to include support for events.

Moreover, we discovered something important about
programmers and their values. They like to use authoring
software tools at different phases of their project and they are
happy to experiment with new ones. Furthermore, we
realized that a software-supported activity makes
immediately more sense to them and they are more willing to
engage in it. They definitely dislike hand-drawing and try to
avoid it. On a more general level, designerly activities, which
are by nature open, are generally considered confusing and
frustrating. An important lesson to keep in mind while
developing designerly tools for programmers.

On the long run, we plan to improve Free Sketch, test it
further, and deploy it as the main tool for a bachelor-level
object-oriented analysis and design course.

ACKNOWLEDGMENT

We thank the participants to our study and the anonymous
referees who provided valuable suggestions to improve our
paper.

REFERENCES

[1] A. Valente and E. Marchetti, "Please Don't Make Me Draw!: Lesson
learned during the development of a software to support early analysis of
object-oriented systems.". Proceedings of the Second International
Conference on Information, Process, and Knowledge Management (eKnow
2010) Saint Maarten, Netherlands, Antilles, pp 94-99, 2010.
[2] K. Kotiadis, and S. Robinson, “Conceptual modelling: knowledge
acquisition and model abstraction.” In Proceedings of the 40th Conference
on Winter Simulation, pp. 951-958. Miami, Florida, December 07 - 10,
2008.
[3] L. Mathiassen, A. Munk-Madsen, P. A. Nielsen and J. Stage, “Object-
Oriented Analysis & Design”. Marko Publishing, ISBN: 87-7751-150-6,
1st edition, 2000.
[4] A. J. Cañas, R. Carff, G. Hill, M. Carvalho, M. Arguedas, T. C.
Eskridge, J. Lott, R. Carvajal, “Concept Maps: Integrating Knowledge and
Information Visualization Export”. Knowledge and Information
Visualization journal, pp. 205-219, 2005.
[5] B. A. Nardi and J. A. Johnson, “User Preferences for Task Specific
vs. Generic Application Software”. Conference on Human Factors in
Computing Systems CHI 1994, Boston, Massachusetts, USA, 1994.
[6] A. Monk and S. Howard, “Methods & tools: the rich picture: a tool
for reasoning about work context.”. Interactions, vol. 5, num. 2, pp 21-30,
Mar. 1998.
[7] H. C. Mayr and C. Kop, “Conceptual Predesign - Bridging the Gap
between Requirements and Conceptual Design”. In proceedings of the 3rd
international Conference on Requirements Engineering: Putting
Requirements Engineering To Practice. ICRE. IEEE Computer Society,
Washington DC, April 06 - 10, 1998.
[8] E. Nuutila and S. Torma, “Text Graphs: Accurate Concept Mapping
with Well-Defined Meaning”. In proceedings of the First International
Conference on Concept Mapping, CMC 2004, Sept. 14-17, 2004.
[9] "VP-UML User's Guide" http://www.visual-paradigm.com/
support/documents/vpumluserguide/12/13/5963_aboutvisualp.html Last
visited 19 Jannuary 2011.

[10] Microsoft Visio. http://www.microsoft.com/office/visio/ Last visited
19 Jannuary 2011.
[11] DIA tutorial. http://live.gnome.org/Dia/Documentation Last visited
19 Jannuary 2011.
[12] H. Hsieh and F. Shipman, “Manipulating Structured Information in a
Visual Workspace”. Proceedings of ACM Conference on User Interface
Software and Technology, pp. 217-226, 2002.
[13] L. Cardelli and A. D. Gordon, “Mobile ambients”. Theoretical
Computer Science. Volume 240, Issue 1, pp. 177-213, 6 June 2000.
[14] J. Löwgren and E. Stolterman, “Toughtful Interaction Design. A
design perspective on information technology”. MIT Press, USA, 2005.
[15] S. Yliriksu and J. Buur, “Designing with video”. Springer, 2007.
[16] D. Schön, “The reflective practitioner. How professionals think in
action”. Ashgate, London, UK, 1991.
[17] J. Preece, Y. Rogers, and E. Sharp, “Interaction Design. Beyond
Human Computer Interaction”, USA: John Wiley and Sons, 2002.
[18] L. Suchman, J. Blomberg, J. E. Orr, and R. Trigg, “Recinstructing
Technology as Social Practice”, American Behavioral Scientist, vol. 43 n.
3, pp. 392-408, Sage Publications, November/December 1999.
[19] L. Suchman, “Affiliative Objects”, Organizations 2005, vol. 12 n. 3,
pp. 379-399, Sage Publications, 2005.
[20] H. W. J. Rittel and M. M. Webber, “Dilemnmas in a general theory of
planning,” in Policy Sciences n. 4, 1973, pp. 155-169, first edition
American Association for the Advancement of Science, Boston USA,
December 1973.
[21] E. Stolterman, J. MacAtee, D. Royer, and S.Thandapani, “Designerly
Tools”, Undisciplined! proceedings of the Design Research Society
Conference 2008, pp. 116/1-14, Sheffield, UK, July 2008.
[22] T. Ingold and E. Hallam, “Creativity and Cultural Improvisation”.
Berg Publishers, 2008.
[23] A. Agarawala, and R. Balakrishnan, “Keepin' it real: pushing the
desktop metaphor with physics, piles and the pen.” InProceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI '06.
ACM, New York, NY, pp. 1283-1292. Montréal, Québec, Canada, April 22
- 27, 2006. DOI http://doi.acm.org/10.1145/1124772.1124965
[24] F. Drewes, B. Hoffmann, and D. Plump, “Hierarchical graph
transformation.” Journal of Computer and System Sciences, volume 64, 2
(Mar. 2002), pp. 249-283. DOI http://dx.doi.org/10.1006/jcss.2001.1790
[25] M. Fowler, and R. Parsons, “Domain Specific Languages.” Addison-
Wesley Professional 2010. ISBN: 0321712943.

