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Fourth-Generation District
Heating and Motivation Tariffs
Future district heating systems and technologies—also known as fourth-generation district
heating—have a potentially important role to play in the green transition of societies. The
implementation of fourth-generation district heating involves adjustments in the demand
side to allow for low temperature supply. In order to facilitate such changes, district
heating supply companies have in recent years introduced tariffs with penalties for high
return temperatures and benefits for low return temperatures. This paper describes the
case of a housing community of 17 buildings in their attempts to adjust to such tariffs as
an integrated part of connecting to district heating. Replacing domestic hot water tanks
with instantaneous heat exchangers and introducing smart meters resulted in abilities to
lower the return temperature from around 40 °C to around 30 °C. However, the current
design of the motivation tariffs does not yet fully compensate the consumers because the
supply company provides unnecessarily high supply temperatures. Based on such efforts,
this paper discusses the fairness and effectiveness of the tariffs and provides recommenda-
tions for improving them. [DOI: 10.1115/1.4053420]

Keywords: green transition, decarbonized societies, smart energy systems, fourth-
generation district heating, low temperature district heating, motivation tariffs,
convective heat transfer, data-driven design, demand response, demand side
management, diagnostic feature extraction, energy efficiency, energy management,
failure analysis, fault analysis, heat exchangers

Introduction
The transition toward fully decarbonized societies is on the polit-

ical agenda as a result of the Paris Agreement of 2015 and its aim of
restricting the global increase in temperature to less than 2 °C above
the pre-industrial level [1], among other reasons.
The concept of Smart Energy Systems [2] and Smart Energy

Markets [3] provides a framework for understanding how to
design the green transition in a cost-efficient and technically
viable way [4]. This is done by exploiting synergies through balanc-
ing savings and production [5] as well as the integration of the
various energy sectors and infrastructures [6]—such as heating,
electricity, transport, and industry—in a holistic concept with a
focus on how demand flexibility, storage optimization [7], and pro-
duction synergies can be used to better exploit the varying energy
production from variable renewable energy sources [8].
Having energy efficiency and sector integration as well as

thermal storage and grid infrastructures as central elements, the
concept of Smart Energy Systems is closely connected with
the concept of fourth-generation district heating (4GDH) [9]. The
Fourth-Generation District Heating (4GDH) system is defined as
a coherent technological and institutional concept, which by
means of smart thermal grids assists the appropriate development
of sustainable energy systems. 4GDH systems provide the heat
supply of low-energy buildings with low grid losses in a way in
which the use of low-temperature heat sources is integrated with
the operation of smart energy systems. The concept involves the
development of an institutional and organizational framework to
facilitate suitable cost and motivation structures. The 4GDH
concept constitutes an essential framework understanding for the
design of heating and cooling strategies and solutions, which fits
well into a cost-efficient and technically viable implementation of
the green transition [10].
In several papers, the transition of district heating and cooling

grids to low temperature and the exploitation of synergies through

sector integration are central focal points [11]. Volkova et al. [12]
evaluate the feasibility of integrating a low-temperature district
heating network into an existing district heating network among
others by the use of the return heat for supplying low-temperature
district heating networks. Revesz et al. [13] introduce a methodol-
ogy for developing an ultralow temperature smart energy network
and apply the method to central London, while Jangsten et al.
[14] investigate existing temperatures of a district cooling system
in Gothenburg.
Other papers investigate how to improve the design and operation

of district energy systems. Wang et al. [15] analyze smart meter data
from the largest field trial to determine the residential energy con-
sumption profiles in the United Kingdom, and Melillo et al. [16]
present a new model for characterizing buildings’ heating demand
based on smart meter monitoring data and a simplified physical
simulation model.
Leoni et al. [17] use international success stories and stakeholder

interviews to develop recommendations for business models for
reducing return temperatures in district heating systems. The solu-
tions are described in a generic form. However, one of the recom-
mendations is to initiate customers’ engagement in fault detection
and in temperature reduction. Dorotić et al. [18] propose a taxing
system based on exergy destruction in heat-only boiler units, and
Capone et al. [19] propose a global optimization modeling approach
with demand-side management for district heating customers.
Several other previous papers add to these findings regarding devel-
opment [20–37], expansion [38–44], and operation improvements
[45–50] of smart energy grids.
In addition to the operation temperature and source origin of

district heating grids, the energy efficiency of buildings is cen-
tral to the concept of 4GDH, since energy efficiency in buildings
is often the basis for the ability to heat the buildings with low-
temperature district heating. Blumberga et al. [51] explore the pos-
sibilities of using waste heat regeneration and find that very ambi-
tious energy efficiency improvements are required to achieve
positive energy building blocks. Best et al. [52] develop a method-
ology for determining the heat demand of new residential develop-
ments using plot ratio and buildings’ energy efficiency standard
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only, and Christensen et al. find that the peak-hour energy con-
sumption of an apartment block can be reduced by 85% on
average by controlling the individual room temperature of each
room in the apartment block [53]. Benakopoulos et al. [54]
develop a strategy for low-temperature operation of radiator
systems using data from existing digital heat cost allocators, and
Ziemele et al. [55] have described a methodology for connecting
low heat density consumers to a district heating system. Lickle-
derer et al. [56] as well as Gross et al. [57] investigate the
options of integrating buildings as prosumers into the heating
grids and Gorrono-Albizu and Godoy address the issue of fairness
in the transition [58]. Several other previous papers add to these
findings regarding energy consumption modeling [59–62] and
energy renewability improvements [63–70] for buildings. The
newly developed methodologies for determining the heat
demand create the possibility of better matching the production
with the consumption, thereby creating a more energy-efficient
system. Together with reducing the overall emissions of buildings
by considering origin sources of the energy used, this brings a
better knowledge as to how the future heating of buildings can
be improved toward carbon neutrality.
In the definition and discussion of the 4GDH concept, five abil-

ities have been emphasized in order for the 4GDH to fit into the
green transition. The transition to low-temperature—or even
ultralow-temperature [71]—district heating grids is an essential
element to fulfill these five criteria. One of the five criteria is the
ability “…to ensure suitable planning, cost and incentive structures
in relation to the operation as well as to strategic investments
related to the transformation into future sustainable energy
systems” [72].

In order to facilitate such changes, district heating supply compa-
nies have in recent years introduced tariffs with penalties for high
return temperatures and benefits for low return temperatures. This
paper describes the case of a housing community of 17 buildings
in their attempts to adjust to such tariffs as an integrated part of con-
necting to district heating. Based on such efforts, this paper dis-
cusses the fairness and effectiveness of the tariffs and provides
recommendations for improving them.

The Fourth-Generation District Heating Context
and the Vaarst Vestervang Case
Aalborg municipality is located in the northern part of Denmark.

For many years, the heating of the city of Aalborg as well as its
surrounding areas has been based on comprehensive district
heating supply. The main heating sources have been excess heat
from the coal-fired power station (60%) in combination with
excess heat from the local cement industry (20%) and the local
waste incineration plant (20%). However, as part of the green tran-
sition, the coal-fired power station will be decommissioned in a
few years, and thus, Aalborg municipality is planning to change
the heat supply as a coordinated action in terms of a green transi-
tion for the entire energy supply [73]. The overall strategy is based
on creating a suitable geographical expansion of the district
heating supply as well as achieving a suitable balance between
savings and supply [74]. The basic principle of the Aalborg
green transition is based on the smart energy systems concept
including the transformation to future low-temperature fourth-
generation district heating solutions. One of the key drivers for

Fig. 1 Motivation tariff for Aalborg district heating supply. Using smart meters, supply and return temperatures are measured
on an ongoing basis at the consumer. Consumption-weighted mean temperatures are calculated and used as the basis for the
accounting. If the consumers supply a low return temperature (the green area), a discount of up to 25% of the variable price is
granted, while in the case of a high return temperature (the red area), a penalty of up to 25% is added to the price. The require-
ment for a neutral return (the orange area) is subject to the supply temperature assuming that it is usually easier to achieve a
low return temperature if the supply temperature is high.
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such a change is the potential benefits of increased efficiencies of
the future sources to replace the heat from the coal-fired power
station [10].
In order to implement the green transition in Aalborg, tariffs have

been discussed [75], and Aalborg District Heating Supply (Aalborg
Forsyning) has introduced a tariff to motivate better cooling on the
demand side in order to pave the way and facilitate the implemen-
tation of low-temperature solutions (Fig. 1).
Vaarst Vestervang is a community of 16 detached houses and a

common house located in the Aalborg district heating supply
area. Vaarst Vestervang was constructed in 1991 as low-energy
houses, which means that the heat consumption is calculated to
be at least 50% lower than consumption in a house that meets the
energy envelope of the legal building codes at the time of construc-
tion. Low heating consumption was achieved by choosing thicker
insulation in the floor, roofs, and walls; room ventilation with the
recovery of heat, and by installing all windows with Kappa
energy panes (two-layered sealed units with a coating that prevents
radiation and argon between the panes). From the beginning, the
houses were heated by low-temperature district heating from
central heating in the common house. During winter, the heat was

produced by two boilers fueled with wood pellets made from
waste material from wood processing. In the summer, the heat
came from two solar heat panels integrated into the roof of the
common house [76].
In 2019, Vaarst Vestervang decided to connect to the local dis-

trict heating supply operated by Aalborg Forsyning and thus
made subject to the motivation tariff.

Analysis: The Problem and the Solution
When the decision of connecting to the central district heating

was considered, the local district heating system at Vaarst Vester-
vang was operating with a supply temperature of 60–70 °C and a
return of 40–50 °C. With such a return temperature, Vaarst Veste-
vang would be subject to penalties in accordance with the motiva-
tion tariff. Thus, it became essential to identify the cause for such
high return and investigate potential changes in the system.
Vaarst Vestervang identified existing domestic hot water tanks to

be the main cause of the high return temperature. As illustrated in
Fig. 2, during one month of decoupling, the hot water tanks from

Fig. 2 Measurements of Vaarst Vestervang district heating supply and return temperatures
during the period April 19 to June 6, 2019. During one month of this period, all domestic hot
water tanks were disconnected from the system, and the return temperature decreased
from 40–50 °C to 30 °C. When the domestic hot water tanks were connected again, the
return temperature rose to 40–50 °C again.

Fig. 3 Schematic of (a) domestic hot water tank and (b) instantaneous heat exchanger for domestic hot water. For
the storage tank, the heat is transferred via an internal coil and controlled by a simple thermostat, whereas for the
instantaneous heat exchanger, the control is made by a thermostat with a tapping flow feed-forward function.
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the district heating supply and running domestic hot water on elec-
tric heating (in the domestic hot water tanks), the return temperature
was lowered to approx. 30 °C.
As a consequence, the domestic hot water tanks were replaced by

instantaneous heat exchangers. This was initially done as a test in
two houses and afterward in the whole community of the 17
houses. One of the benefits of choosing an instantaneous heat
exchanger is that any potential problems with legionella are
highly reduced, and thus, precautions and extra costs are avoided
[77]. Figure 3 shows a principle comparison between the two appli-
cations. The indicated district heating return temperatures are repre-
senting the tapping situation shown in Fig. 4. Also, other return
temperatures from the service of domestic hot water can occur, as
can be seen as well from Fig. 4. For the storage tank (Fig. 3(a)),
a simple thermostat is applied whereas for the instantaneous heat
exchanger (Fig. 3(b)), a thermostat with a tapping flow feed-forward
function is applied. In case there is no tapping, the district heating
flow is stopped. There is no need of keeping the heat exchanger
warm during no tapping periods.
The heat exchanger performance in terms of thermal length, also

known as the number of transfer units (NTU), is of relevance when
dimensioning a heat exchanger for low-temperature operation. A
higher NTU means that the heat exchanger is able to operate at a
lower temperature difference between the primary, in this case,
the district heating side, and secondary, in this case, the domestic
hot water side. As an example, keeping the secondary temperatures
constant, e.g., the cold water inlet temperature of typically 10 °C

and the domestic hot water outlet temperature of typically 50 °C,
a doubling of the NTU from 3.2 to 6.5 reduces the district
heating return temperature from 23.1 °C to 14.7 °C at a district
heating supply temperature of 60 °C.
For the same media pressure drop, a higher NTU requires more

heat transfer area, and it will thus consist of more or bigger heat
transfer plates. Based on the study [78], an increase of the typically
applied NTU for the heating system heat exchanger by a factor of
1.7 to 2.5 is recommendable, based on the assumption that the
added costs for the heat transfer area are covered by 12 years of
energy savings due to reduced distribution losses by operation at
the lower temperatures.
Comparing the NTU of the coil inside a hot water tank and the

NTU of an instantaneous heat exchanger, the latter has typically
higher convective heat transfer numbers due to high media speed
on both sides of the heat exchanger and a larger area, which leads
to higher NTU, and thus a lower return temperature. Furthermore,
the control principle of the hot water tank can influence the return
temperature; e.g., if the primary valve opens excessively or if the
temperature of the water increases at the bottom of the tank, the
return temperature will increase.
As illustrated in Fig. 4, the replacement of hot water tanks with

instantaneous heat exchangers solved the problem of the return
temperature.
As a next step, smart meters were installed and used in the further

identification of individual problems in the floor-heating systems of
the houses. Figure 5 illustrates a measurement in which a fault in the

Fig. 4 Temperatures in one of the houses before and after replacing the hot water tanks with instantaneous heat exchangers.
The upper diagram showsmeasurements on August 16–17 in house 3 before the replacement. As seen, the return temperature
is in general as high as 40 °C (green curve), andwhen hot water is consumed the return rises to 50 °C. The lower diagram shows
measurements of the same house on November 8–9 after the replacement (magenta curve). As seen, the return is now below
30 °C and when domestic hot water is tapped it is even close to 20 °C.
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floor heating shunt thermostat was discovered by oscillations in one
of the houses, which then has to be replaced.
Furthermore, the smart metering system was used to identify

adjustments in the supply temperature measurements and individual
problems in the return temperature as illustrated in Fig. 5 and
explained further in the following. The district heating system of
Vaarst Vestervang has pipes going directly from house to house
starting in house no. 1, the common house which holds the central
connection to the public district heating grid. From this point, the
heating is distributed in two parallel circles, one for the western
part and one for the eastern part of the community. As shown in
Fig. 6, the outlet temperature from the central point in house 1 is
64.92 °C. The temperature is reduced gradually due to grid losses
down to approx. 57 °C in the two houses furthest from the outlet
point, i.e., houses 9 and 10, respectively. Figure 6 also shows the
return temperature of each of the houses, in this case being
reduced to 26.75 when reaching the central point in house 1 again.
The smart metering management system has been used for

several purposes including:

• Identification of wrong temperature measurements in the
meters due to differences in how temperature sensors were

actually installed and the fact that the temperature sensors
were not adjusted in this case to measure absolute temperature
(for energy metering the delta t and not the absolute tempera-
tures is important). This can easily cause 0.5–1 °C difference.
As illustrated in the figure, the supply temperature actually
increases from one house to another; e.g., it increases from
59.58 °C in house 15 to 61.01 °C in house 14. This is not pos-
sible since there is no heating source involved, and thus, it
reveals a wrong temperature measurement in house 15.

• Identification of houses with a relatively high return tempera-
ture. In such situations, a detailed investigation of causes, etc.,
has been carried out, leading to changes in the use of thermo-
stats, etc.

In the case of Vaarst Vestervang, it was easy to identify wrong
supply temperature measurements in the meters since the district
heating supply pipes were connected directly between the houses,
without connection pipes from the street. In most other systems,
this principle of connection is not applied. Normally, the distribu-
tion pipes are in the street, then being connected via supply, and
return connection pipes to each dwelling. In both cases, volume-
weighted supply and return temperatures would normally be used

Fig. 5 Detection of a fault on a floor heat thermostat in house 3 in November 2019

Fig. 6 Detection of faults in measurements of supply temperatures in some of the Vaarst Vestervang (VVV) houses
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(calculated in the smart meter), which would provide the average
temperatures when the heat installation is in use and take the
volume flow history into account. If only the actual temperatures
are used, not volume-weighted, these can easily vary 10–15 °C
depending on the flow to the building.
In a district heating setup with connection pipes from the street,

temperature sensor outliers can also be detected by using data from
all smart meters and information about the pipe layout to estimate
(via digital twins) the temperature in the street. This temperature
can then be compared with the volume-weighted average tempera-
tures measured in the dwelling. For example, if the contact between
the temperature sensor and the water flow is insufficient, it can
measure temperatures that are different and too low.

Motivation Tariffs, Effectiveness, and Fairness
As described earlier, the purpose of the motivation tariff is to

motivate consumers to lower their return temperature as part of
transforming the Aalborg district heating supply into a future
fourth-generation low-temperature grid for the mutual benefits of
the supply company and the consumers.
In the case of Vaarst Vestervang, the tariff has proven quite effec-

tive since it has motivated the necessary investments and changes in
operation in order to lower the return temperature from previously
40–50 °C to currently approx. 30 °C. However, one could ask if it is
fair from the consumers’ point of view.
In Fig. 7, the starting point previous to the changes in Vaarst Ves-

tervang is shown as area 1. Aalborg district heating company sup-
plies the heat at a temperature of close to 75 °C, and Vaarst
Vestervang provides a return of 40+°C and would thus have a
penalty of around 10%. After the changes, with a return of
approx 30 °C, Vaarst Vestervang comes into the neutral area,
shown as area 2 in the figure.

However, Vaarst Vestervang can easily be operated with a supply
temperature of 60–65 °C. This is what actually happens since
Vaarst Vestervang lowers the supply temperature before it is sup-
plied into the Vaarst Vestervang distribution grid.
Area 3 in the figure illustrates where in the diagram Vaarst Ves-

tervang would have been located if the central supply temperature
had been 60–65 °C. In such case, there would have been a discount
of 10% or the similar. This means going from operating area 1 to 3
would lead to savings of approx. 20%.
Thus, the motivation tariffs do not yet fully compensate the con-

sumers because the supply company provided unnecessarily high
supply temperatures. Therefore, from the consumers’ perspective,
the tariff is not fair.

Conclusion
Motivation tariffs were introduced to motivate district heating

consumers to align with future low-temperature fourth-generation
district heating. This paper describes the case of a housing com-
munity of 17 buildings in their attempt to adjust to such tariffs
as an integrated part of connecting to district heating. Replacing
domestic hot water tanks with instantaneous heat exchangers
with high NTU and introducing smart meters resulted in the
ability to lower the return temperature from around 40 °C to
around 30 °C.
The conclusion is as follows:

• The use of instantaneous heat exchangers for domestic hot
water production with high NTU and smart meters has suc-
cessfully decreased the return temperature to 30 °C and main-
tained the decrease also when reducing the supply temperature
from 70–75 °C to 60–65 °C.

• The case has proven that fourth-generation district heating is
possible with 60–65 °C supply and 30 °C return temperatures

Fig. 7 Indication of the areas in the motivation tariff depending on the supply temperature provided by the district heating
supply company as well as the return temperature obtained by the consumer
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• Motivation tariffs have been effective: Return temperature has
decreased from 40–50 °C to approx. 30 °C

• Seen from the consumers’ point of view, the motivation tariff in
its current form is not fair: Either the supply company should
also adopt the supply temperature to fourth-generation district
heating or the design of the tariff should not depend on the
supply temperature.

• The district heating utilities should prescribe consumer instal-
lations able to handle fourth-generation district heating tem-
perature levels: both for new installations, but also in the
case of replacement due to maintenance of existing systems.

Based on these conclusions, district heating supply companies
are recommended to consider adjusting the motivation tariffs. For
example, one could remove the dependency on the supply tempera-
ture or offer consumers with lower temperature requirements a tariff
accordingly.
It should be mentioned that neither lower return temperatures nor

lower supply temperatures have any disadvantages for the overall
district heating system. On the contrary, any decrease in any of
the temperatures will generate benefits in terms of lower grid
losses, and more importantly, it will typically increase efficiencies
in most future district heating sources no matter whether it concerns
heat pumps, industrial excess heat, solar thermal or geothermal heat.
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