
Aalborg Universitet

Power Control for 6G Industrial Wireless Subnetworks

A Graph Neural Network Approach

Abode, Daniel Ohizimede; Adeogun, Ramoni Ojekunle; Berardinelli, Gilberto

Published in:
2023 IEEE Wireless Communications and Networking Conference (WCNC)

DOI (link to publication from Publisher):
10.1109/WCNC55385.2023.10118984

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Abode, D. O., Adeogun, R. O., & Berardinelli, G. (2023). Power Control for 6G Industrial Wireless Subnetworks:
A Graph Neural Network Approach. In 2023 IEEE Wireless Communications and Networking Conference
(WCNC) Article 10118984 IEEE (Institute of Electrical and Electronics Engineers).
https://doi.org/10.1109/WCNC55385.2023.10118984

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 01, 2025

https://doi.org/10.1109/WCNC55385.2023.10118984
https://vbn.aau.dk/en/publications/febffaad-5aa8-4221-ad16-e97d67a90c55
https://doi.org/10.1109/WCNC55385.2023.10118984


Power Control for 6G Industrial Wireless
Subnetworks: A Graph Neural Network Approach

Daniel Abode, Ramoni Adeogun, Gilberto Berardinelli
Department of Electronic Systems, Aalborg University

Aalborg, Denmark
Email:{danieloa, ra, gb}@es.aau.dk

Abstract—6th Generation (6G) industrial wireless subnetworks
are expected to replace wired connectivity for control operation in
robots and production modules. Interference management tech-
niques such as centralized power control can improve spectral
efficiency in dense deployments of such subnetworks. However,
existing solutions for centralized power control may require full
channel state information (CSI) of all the desired and interfering
links, which may be cumbersome and time-consuming to obtain
in dense deployments. This paper presents a novel solution for
centralized power control for industrial subnetworks based on
Graph Neural Networks (GNNs). The proposed method only
requires the subnetwork positioning information, usually known
at the central controller, and the knowledge of the desired link
channel gain during the execution phase. Simulation results
show that our solution achieves similar spectral efficiency as the
benchmark schemes requiring full CSI in runtime operations.
Also, robustness to changes in the deployment density and
environment characteristics with respect to the training phase
is verified.

Index Terms—Interference management, power control, graph
neural networks, channel state information, subnetworks.

I. INTRODUCTION

The flexible and reconfigurable manufacturing vision of
Industry 4.0. [1] relies on the availability of highly reliable
wireless connectivity at the field level to replace rigid wired
connections [2]. This motivated a novel radio concept termed
in-X subnetworks, short-range cells consisting of controllers
acting as the access point to some sensors and actuators for
field-level control, described as Industrial Wireless Subnet-
works (IWS) in this paper. Such subnetworks are envisioned
as a relevant component of upcoming 6th Generation (6G)
systems [3], [4]. They can be installed in robots or production
modules to support local connectivity for critical industrial
use cases [4]–[6], such as the closed-loop control systems
and safety systems [7]. Besides, an industrial scenario may
require highly dense deployment of subnetworks to cater for
the large number of sensors, actuators and controllers for a
diverse set of applications and use cases. This would heighten
interference, thereby limiting the network’s spectral efficiency
(SE). Interference reduction techniques such as power control
are therefore crucial for a spectrally efficient IWS deployment.
Several works (e.g., [8]–[14]) have proposed efficient power
control methods that however require input measurements
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of the inter-cell interference levels reported by each cell.
Acquiring such information introduces significant delays and
large signalling overhead. In addition, the computational com-
plexity of the power control algorithm can be significantly
high, especially in the case of a high number of cells. The
practicality of efficient power control for a system such as
IWS depends on resolving these limitations.

The quest to achieve efficient power control with low
computational complexity has influenced the adoption of
neural network (NN) methods to replace traditional complex
iterative algorithms such as Geometric programming (GP) [8]
and Weighted Minimum Mean Square Error (WMMSE) [9].
Initial works [10], [11] used feed-forward NN, but the NN
architecture can not adapt to changes in the wireless network,
such as changes in the number of links. Recent works [12]–
[14] employed a novel NN technique, message passing graph
neural networks (MPGNN) leveraging the wireless network
topology in the form of a graph model as an input. They
showed that the MPGNN approach offer advantages such
as invariance to network topology, lower complexity, better
robustness and performance compared to feed-forward NN
methods. However, the aforementioned methods still depend
on the full channel state information (CSI) as input data, but in
practice, obtaining the full CSI introduces considerable delays.
Meanwhile, for IWS, the capability of prompt decision is of
fundamental importance as some in-robots subnetworks may
be mobile causing inter-subnetworks interference levels to vary
rapidly over time [6]. In this respect, delays in acquiring full
CSI can be a considerable limitation.

In this paper, we propose a centralized power control
solution for IWS based on MPGNN that only requires limited
CSI knowledge in runtime operations. IWS are expected to
operate within the coverage of a central network, hence a
central resource manager (CRM) can be employed for power
control. While the training phase relies on full CSI acquisition,
in the execution phase, only information on the geometrical
distance between subnetworks and the desired link CSI is
needed at the CRM. Since information on the mutual distance
among subnetworks can be known in advance (or planned
by the CRM itself), signalling is therefore reduced to the
desired CSI, avoiding the necessity of sensing and reporting
interference. The CRM uses such information for updating a
graph representation of the IWS deployment consisting of the
desired link CSI as the node features and the interfering links’



Fig. 1. Simple representation of IWS. (a) Each cell consists of a controller and uplink communication between the sensor and controller. Signalling links
exist between the subnetworks’ controllers and a central resource manager (b) Graph model of the subnetworks. Note that the graph is a directed graph, the
edge notation En−m implies both En,m, Em,n.

geometrical distances as the edge features. Such graph repre-
sentation serves as the input for the MPGNN power control
algorithm. We show that the proposed method achieves similar
performance as the methods using complete CSI. Moreover,
it is equally robust to changes in deployment parameters such
as shadowing standard deviation or subnetworks density.

The remainder of this paper is structured as follows. We
introduce our proposed graph model of industrial wireless
subnetworks in Section II, while Section III describes the pro-
posed graph-driven power control method. In Section IV, we
evaluate the performance of the proposed method. Finally, we
summarise our observations and present directions for future
work in Section V. The code for the numerical evaluation is
publicly available on GitHub1.

II. GRAPH MODEL OF INDUSTRIAL WIRELESS
SUBNETWORKS

IWS are short-range cells installed in robots, production
modules, automated guided vehicles (AGVs), conveyors and
other industrial machines, consisting of an access point with
controller capabilities and associated sensors and actuators.
Fig. 1 shows a simplified representation of a 2D layout of an
IWS deployment in a factory environment. The representation
shows a single uplink between a sensor and a controller in each
subnetwork, and a signalling link from each subnetwork’s con-
troller to a central resource manager (CRM). It is assumed that
all the devices within a subnetwork are allocated orthogonal
resources making inter-cell interference the main limitation
to the subnetwork’s spectral efficiency (SE) [6]. We focus
on the uplink transmission in a network of N subnetworks.
For simplicity, for the rest of the paper, we assume that each
subnetwork serves a single device whose transmissions occupy
the available bandwidth. In subnetwork n, the device is located
at coordinate (xn, yn) and the controller at the centre of the
subnetwork (x0

n, y
0
n). The channel gain of the desired link

in subnetwork n, which comprises the large-scale path loss,
shadowing and small-scale fading is denoted as hn,n ∈ R. In
the same way, the channel gain of the interfering link between
the device in subnetwork n and the access point in subnetwork
m is denoted as hn,m, and the corresponding distance is

1https://github.com/danieloaAAU/Power Control GNN.git

denoted as dn,m ∈ R, n,m ∈ {1, 2, .., N}. Accordingly,
we formulate an attributed graph model G(Λ, E ,Γ) of the
deployment as shown in Figure 1b, where Λ is a finite set
of nodes corresponding to the subnetworks and E ∈ BN×N

is an adjacency matrix of booleans indicating the presence or
absence of edges. Γ ∈ RN×N represents a matrix of the graph
attributes, so that;

ΓhD
n,m =

{
hn,n, if n = m,

dn,m, if n ̸= m.
(1)

To build the graph, the CRM only requires information
of the desired channel, hn,n from the subnetworks since all
the subnetworks’ positioning coordinates and as such their
mutual distances can be already available at the CRM. In
the case of mobile subnetworks, e.g. those installed in AGVs,
the CRM can be aware of the robot routes and therefore the
expected mutual distances over time through its knowledge
of the factory’s operations plan. The CRM would use the
graph representation as an input to an MPGNN algorithm
to optimize power allocation. The next section presents the
proposed architecture for power control.

III. UNSUPERVISED CENTRALIZED POWER CONTROL
ARCHITECTURE

In this section, we describe the architecture of the proposed
power control method based on the MPGNN algorithm on
a network graph attributed by hn,n and dn,m as nodes and
edges features respectively. We refer to our method as power
control graph neural network –hD (PCGNN-hD), where the
acronym ”hD” indicates that the desired link channel gain,
”h” and the interfering link distances, ”D” are used as the
graph features. Fig. 2 shows the training and inference process,
which is further described below.

For our power control problem, the objective is to decide
the array of transmit powers P ∋ pn for all subnetworks that
maximize the network’s sum SE, Υ(P,H) given the channel
gain matrix H ∈ RN×N, i.e.

maximize
P

Υ(P,H),

subject to

0 ≤ pn ≤ Pmax ∀pn ∈ P,

(2)



Fig. 2. The architecture of PCGNN-hD, a centralized power control based on the Message Passing Graph Neural networks (MPGNN) algorithm with an
input graph attributed by desired links CSI and interfering links geometric distances. The ticked box highlights the inference procedure while all parts of the
architecture are involved in the training procedure.

where

Υ(P,H) =

N∑
n=1

log2

1 +
pnhn,n

N∑
m=1
m ̸=n

pmhm,n + σ2

. (3)

In (3), σ2 = JTB · 10NF/10 is the thermal noise power,
where J is the Boltzmann constant, T is the temperature
(kelvin), B is the bandwidth (Hz), and NF is the Noise figure
(dB).

The MPGNN algorithm is a method of deep learning on
graphs that involves the creation of messages at each node
using the node as well as the edge attributes, and the exchange
of the messages among neighbouring nodes [15]. The message
passing framework consists of two operations; the aggregation
function and the combination function, which form a layer of
message passing computation. At the k-th layer, the aggrega-
tion function at each node is an arbitrary permutation invariant
function that accumulates the neighbouring messages, βk

N (n),
where N (n) refers to the neighbours of the subnetwork n. The
combination function combines the aggregation output, βk

N (n),
with the previous embedding of the node, βk−1

n to produce a
new embedding for the node n, βk

n at layer k. Our adaptation
of the MPGNN algorithm for power control, PCGNN-hD is
shown in Algorithm 1.

Some mathematical and neural network functions have been
proposed for both aggregation and combination. We chose
the mean aggregation function (denoted as Mean()), and we
parameterized the message computation and combination with
artificial neural networks (ANN) to generate trainable message
computation weights, W and message combination weights,
Z. According to earlier works on MPGNN [12]–[15] using
the ANN for message computation and the combination helps

to improve the expressive and generalization ability of the
MPGNN. Note that in Algorithm 1, the symbol ∥ denotes
vector concatenation.

Algorithm 1: PCGNN-hD
Input: Graph G(Λ, E ,Γ); Number of subnetworks, N ;

Number of MPGNN layers, K; Message computation
weights, W; Message combination weights Z;
Rectified Linear Unit, σ(·); Sigmoid function ζ(·);
Aggregation function, Mean(·) ;

Output: pn ∀ n ∈ 1, ..., N ;
Initialize: β0

n ← hn ← Γn,n ∀ n ∈ 1, ..., N ;
Initialize: dn,m ← Γn,m ∀ n ̸= m;n,m ∈ 1, ..., N ;
for k := 1 to K do

for n := 1 to N do
βk
N (n) ← Mean(σ(W[βk−1

m ∥ dm,n])) ;
βk
n ← ζ(Z[βk−1

n ∥ βk
N (n)]) ;

end
if k ̸= K then

βk
n ← βk

n ∥ βk−1
n ;

end
end
pn ← βK

n × Pmax

As discussed in Section II, the CRM updates the graphical
representation of the subnetworks deployment as an input
graph for the PCGNN-hD algorithm. The algorithm generates
a node embedding for each subnetwork following the message
passing framework. Finally, the transmit power is computed
via a node task, pn = βK

n × Pmax for all nodes. As shown in
the construction of the input graph in Fig. 2, the only radio
information needed for inference is the channel gain of the
desired links which can be easily obtained. This is one of
the advantages of this approach. However, during the training



phase, the full CSI is needed to compute the network perfor-
mance Υ(P,H). We recommend that the training procedure is
done offline due to the complexity of obtaining the full CSI.
For example, a well-calibrated simulator or digital twin of
the operational environment, eventually aided by preliminary
measurement campaigns can generate the full CSI needed for
the offline training process.

The loss function is defined as the negative of the network
sum SE (−Υ(P,H)). During the training, the computed loss
is backpropagated through the layers of the PCGNN-hD to
update W and Z at every time step using gradient descent until
convergence after a fixed number of iterations. The evaluation
of the performance and robustness of the described method is
presented in the next section.

IV. NUMERICAL EVALUATION

A. System model

We consider an IWS deployment of N subnetworks in an
L × L (m2) factory area. Subnetwork n has one controller
in the centre of a circular cell of radius R = 2 m, and one
sensor randomly positioned at distance dn,n with minimum
proximity of 0.5 m to the controller. The channel gain in the
link between the sensor at subnetwork m and the access point
in subnetwork n is given by

hm,n =
c2

(4πf)2drm,n

.κm,n.|ζm,n|2, (4)

where r denotes the path loss exponent, shadowing is denoted
by κ and small-scale fading as ζ. Note that c is the speed of
light in (m/s), f is the carrier frequency in (Hz), and κ is
randomly sampled from a lognormal distribution with standard
deviation, λ; κ ∼ Lognormal(0, λ2) for all links. Likewise, ζ
is randomly sampled from a complex-valued normal distribu-
tion; ζ ∼ CN (0, 1). For the desired links, n = m and for the
interfering links, n ̸= m, n,m ∈ {1, 2, .., N}. The achievable
SE (bits/s/Hz) at subnetwork n is approximated using the
Shannon capacity equation as shown below:

Cn ≈ log2

1 +
pnhn,n

N∑
m=1
m ̸=n

pmhm,n + σ2

. (5)

For the dataset, we collected 10,000 snapshots for training
and 50,000 snapshots for testing using different random seeds.
Each snapshot is a different realization of the system model
of the subnetworks’ deployment. Hence the SE, shadowing
values, distance, and channel gains vary randomly across all
the links in a snapshot, and across the snapshots. The value
of the main parameters used in our simulations is collected in
Table I.

B. PCGNN-hD Training specification

We consider a PCGNN-hD of K=3 layers; the message
computation function is a 4-layer ANN with a fully connected

TABLE I
SYSTEM ASSUMPTIONS

Parameter Value
Subnetwork radius, R 2 m
Number of devices per subnetwork 1
Minimum distance between controllers 2 m
Sensor to controller minimum distance 0.5 m
Factory area, L× L 20 m x 20 m
Number of subnetworks per snapshot, N 20
Deployment density (Subnetworks/km2) 50000
Shadowing standard deviation, λ 7 dB
Path loss exponent, r 2.7
Maximum transmit power, Pmax 0 dBm
Bandwidth, B 20 MHz
Center frequency, f 6 GHz
Noise figure, NF 10 dB

structure of [2, 32, 32, 32] neurons with rectified linear units
for activation. Likewise, the message combination function is a
4-layer ANN with a fully connected structure of [34, 32, 16, 1]
neurons using the sigmoid activation function, which ensures
that βk

n ∈ [0, 1]. The size of the PCGNN-HD and the ANN is
fine-tuned to offer the best performance from simulation trials.
The weights of both ANN were initialized from a uniform
distribution according to the method described in [17] and
were updated using the adaptive moment estimation gradient
descent algorithm (ADAM). The training was done for 1500
epochs which ensured the convergence of the PCGNN-hD as
observed from the simulation trials.

C. Benchmarks

We evaluate the achieved average SE and robustness of our
proposed method in comparison with the following schemes.

• Maximum power (Max Power): The transmit power for
all the links in the deployment is set to the maximum
power, Pmax = 0 dBm, i.e. power control is not used.
This was used as a benchmark in [10].

• Weighted Minimum Mean Square Error (WMMSE):
This is a popular benchmark scheme for power control,
used in [11], [14] and also as a ground-truth to supervise
NN methods for power control in [10], [13]. It is an
iterative method that requires the full CSI information
input and has a high computational complexity, rendering
it impractical for real-time applications [14]. We im-
plemented WMMSE as in [10] to solve the objective
function (2), with an option to terminate execution when
the difference between the achieved sum SE at iteration
t and t− 1 is less than 10−5, which we found to take on
average 10 iterations.

• PCGNN-dD : It employs the same PCGNN algorithm
as in PCGNN-hD, but the attribute of the input graph
G(Λ, E ,Γ) is based only on the distance of the desired



links and interference links, i.e.,

ΓdD
n,m = dn,m, n,m = 1, 2, .., N. (6)

The usage of geometric information only as input feature
for power control was considered in [18].

• PCGNN-hH : It also uses the same PCGNN algorithm as
PCGNN-hD, but the input graph G(Λ, E ,Γ) is attributed
by the full channel gain matrix as in

ΓhH
n,m = hn,m, n,m = 1, 2, .., N. (7)

Using the full channel gain matrix as the input features
is a common approach for neural network-based power
control methods [10]–[14].

D. Average SE performance

We evaluated the resulting average network SE over 50,000
test snapshots. Fig. 3 shows the Cumulative Distribution
Function (CDF) of the average SE. We can observe that the
PCGNN-hD improved the achievable average SE by 33% with
respect to Max Power, with only a 3% penalty with respect to
PCGNN-hH and a 2% gain with respect to WMMSE. PCGNN-
hH and WMMSE both require the full channel gain matrix, but
PCGNN-hH performs 5% better than WMMSE. The advantage
of our method is better appreciated by looking at the CDF of
the average SE achieved by PCGNN-dD. On average, PCGNN-
dD achieved a gain of 15% compared to Max Power. In
essence, even though the CRM has the knowledge of the
location of the devices in the subnetwork, this information
alone is not enough to efficiently maximize the SE. But,
by combining the interfering distance information and the
desired link channel gain as in PCGNN-hD, the gain in spectral
efficiency was only 3% lower than PCGNN-hH.

Furthermore, in Fig. 4, we show the CDF of the average
power allocated to the subnetwork deployment snapshots. We
can observe that PCGNN-hD used marginally less power than
PCGNN-hH as seen in the tail of the distribution. And on
average 50% less power than WMMSE. Generally, the PCGNN
methods tend to reduce the average power while improving the
SE, hence translating to improved energy efficiency.

E. Robustness Analysis

PCGNN methods are expected to be trained with data
collected from an environment which closely resembles the
operational environment. However, some differences are likely
to occur during operation such as changes in the shadowing
standard deviation, or changes in the deployment density. It is
desirable that PCGNN-hD remain robust to these changes to
ensure continuity of efficient operation without the need for
a time-expensive retraining procedure. In this subsection, we
sought to observe the robustness of the PCGNN methods to
such changes.

1) Shadowing standard deviation λ: We consider three
shadowing standard deviation λ = 4 dB, 7 dB, and 10 dB as
shown on the x-axis of Fig. 5(a) which displays the SE gain of
the discussed PCGNN solutions with respect to Max power.
We compared two cases; a) The network which is trained in
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Fig. 3. Cumulative distribution function of the average SE per deployment
over 50000 test snapshots
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Fig. 4. Cumulative distribution function of the average power allocated per
deployment over 50000 test snapshots

an environment with λ = 7 dB is tested with three shadowing
standard deviations λ = 4 dB, 7 dB, and 10 dB. This is shown
with the blue continuous lines (legend T1). b) We trained and
tested the network in environments with the same shadowing
standard deviation. This is shown by the red dashed line
(legend T2). The positive slope of the lines shows that the gain
of PCGNN methods with respect to Max power increases as λ
increases. This is intuitive since lower λ means the deployment
has a minor variance in the desired links channel gain and the
interference links channel gain, hence power control has less
effect. However, the PCGNN methods preserve a significant
gain with respect to Max power as λ changes. PCGNN-dD
gain with respect to Max power remained relatively constant
since the feature selection is based only on the distance metric
and independent of λ. Our proposed PCGNN-hD also showed
considerable robustness to changes in λ, considering the tight
gap between the red dashed line and the blue continuous line.
This means that there is no need to retrain PCGNN-hD when
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Fig. 5. Robustness to changes in deployment parameters (a) Robustness to
variation in shadowing distribution for the 3 PCGNN methods PCGNN-hH,
PCGNN-hD and PCGNN-dD (b) Robustness to variation in density for the 3
PCGNN methods PCGNN-hH, PCGNN-hD and PCGNN-dD. T1- trained and
tested with different deployment properties, T2- trained and tested with the
same deployment property.

λ changes.
2) Deployment density: In this case, we changed N in

the same factory area thereby reducing or increasing the
subnetworks density. In the case of a density of 75000
subnetworks/km2, we increased N to 30. In Figure 5(b), note
that; 1) the red dashed lines (legend T2) refer to the gains
when the training and testing environments have the same de-
ployment density, and 2) the blue continuous lines refer to the
gains when training is performed with the initial environment
of deployment density 50000 subnetworks/km2, and testing
is done over environments of subnetwork deployment density
25000, 50000, and 75000 subnetworks/km2. We can observe
that PCGNN-hD remained as robust as PCGNN-hH, and the
gain with respect to Max Power increases as density increases.
This is of practical importance as it means that there is no need
to retrain the PCGNN-hD power control algorithm when there
are changes in the number of subnetworks in the factory area.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a graph neural network approach
for optimizing power allocation for industrial wireless subnet-
works (IWS) based on a novel input graph model consisting
of desired links as node features and interfering link distance
as edge features. The approach is motivated by the desire
to remove the bottleneck of collecting the interfering link
channel gain for the input graph model of the subnetworks
during the operational phase. Simulation results show that
the proposed PCGNN-hD algorithm performs almost as good
as the PCGNN-hH algorithm in terms of achievable average
SE, while the latter requires full knowledge of the interfering
link channel gain during operations. We also verified the
robustness of the proposed solution to variations of shadowing
and subnetwork densities.

The solution presented in this paper is intended as a first
step towards highly effective low overhead radio resource
management for IWS. Future work will further investigate
GNN-based solutions for other radio resource management
problems, such as dynamic channel allocation, considering
additional performance metrics, such as guaranteed minimum
transmission rate per subnetwork. In addition, performance
will be analyzed with more realistic industrial deployments,
including subnetwork mobility (e.g., in mobile robots).
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