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Abstract: In remote sensing (RS), shadows play an important role, commonly affecting the quality of
data recorded by remote sensors. It is, therefore, of the utmost importance to detect and model the
shadow effect in RS data as well as the information that is obtained from them, particularly when the
data are to be used in further environmental studies. Shadows can generally be categorized into four
types based on their sources: cloud shadows, topographic shadows, urban shadows, and a combina-
tion of these. The main objective of this study was to review the recent literature on the shadow effect
in remote sensing. A systematic literature review was employed to evaluate studies published since
1975. Various studies demonstrated that shadows influence significantly the estimation of various
properties by remote sensing. These properties include vegetation, impervious surfaces, water, snow,
albedo, soil moisture, evapotranspiration, and land surface temperature. It should be noted that
shadows also affect the outputs of remote sensing processes such as spectral indices, urban heat
islands, and land use/cover maps. The effect of shadows on the extracted information is a function
of the sensor–target–solar geometry, overpass time, and the spatial resolution of the satellite sensor
imagery. Meanwhile, modeling the effect of shadow and applying appropriate strategies to reduce
its impacts on various environmental and surface biophysical variables is associated with many
challenges. However, some studies have made use of shadows and extracted valuable information
from them. An overview of the proposed methods for identifying and removing the shadow effect
is presented.

Keywords: shadow; surface biophysical variables; shadow detection; de-shadowing; remote sensing

1. Introduction

Extraction of information from satellite sensor images can be challenging due to effects
on the recorded signal of natural phenomena that are not the subject of interest, such as from
the atmosphere, soil, and water. Additionally, the limited spatial, spectral, temporal and
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radiometric resolutions of satellite sensors must be considered as serious challenges [1,2].
These challenges can cause geometric, atmospheric, and topographic errors in feature
extraction [3,4], which reduce the quality of the extracted information. An issue that is
common, but relatively unstudied, is the effect of shadow on the recorded signal [5–7]. For
example, the micro-scale shadow distribution within each pixel is a key parameter affecting
directly spectral reflectance anisotropy [8].

Shadow is created via the interaction of solar light with the canopy over various types
of terrain cover. Shadows are dark and their properties, shape, and form depend on several
parameters including Sun–target–sensor geometry, atmospheric scattering, illumination
intensity, and canopy type [9]. The effects of shadow vary according to the time of satellite
sensor image acquisition (hour, day, and season) [10], as shadow coverage and intensity
vary with the time of day [9]. Shadow shape is also influenced by topography [11,12]. High
elevation relief can cause relief shadows, and topographic complexity can cause canopy
mutual shadowing [13]. This can mix spectral features of objects, mainly in fine spatial
resolution images [7,14].

Four main groups of shadows have been recognized: shadows from (1) urban phenom-
ena, (2) topography, (3) clouds, or (4) a combination of these [15]. Many studies reported
that shadow areas in satellite sensor imagery can be used to obtain useful information
such as thermal inertia, emissivity, soil moisture (SM), forest structural characteristics,
geological feature characteristics, object height measurement, and ecological and urban
studies [16–18].

Shadow has more often been considered as noise in passive satellite sensor images [19–21]
because shadow causes a change in the spectral response of objects at the thermal and
optical wavelengths of the electromagnetic spectrum. Therefore, shadow can affect the
interpretation of phenomena on Earth. Moreover, shadow can have major effects on
satellite-derived surface biophysical characteristics [22]. Simpson, et al. [23] outlined that
shadows can produce low and negative values in the normalized difference vegetation
index (NDVI) especially in dense vegetation regions. Based on [24], shadow is an error
source in detection of snowy or glacier areas in mountainous regions using satellite sensor
images. Beside optical bands, thermal bands are also used in mountainous regions to
minimize the negative effects of shadow. Shadow causes bias in land use/cover (LULC)
mapping in areas with severe topography and in urban areas [25,26]. Assessment and
enhancement of LULC change, feature extraction, and image mosaicking are all affected
by shadow [27,28]. Negative effects of shadow on indices and models in thermal and
optical RS such as impervious surfaces [29,30], vegetation [31], land surface temperature
(LST) [32–34], SM [35], water [36], evapotranspiration [37,38], LULC [39,40], snow [24,41],
and albedo [42,43] were also emphasized.

Despite the above, shadows provide useful information in some cases. The structural
characteristics of forests can be modeled using tree shadows and their canopies in fine
spatial resolution images such as Quickbird [44]. Shadow can also be useful for assessing
geological features, especially while the Sun’s altitude is low, since shadows can describe
the smallest elevation changes in an area [45]. A shadow’s size, shape, and form, along
with its location, provide information not only about the attributes of a natural feature or
object, but also about the position, height, and direction of that feature or object in both
natural and urban environments [44,46–49].

Based on the aforementioned details, shadow detection and compensation, and the
correction of spectral features in shaded areas are essential. In coarse spatial resolution
images, shaded surfaces are usually combined with sunlit surfaces, whereas in fine spatial
resolution images, shadows are more problematic. Therefore, the detection, correction
and removal of shadows is an even greater challenge for unmanned aerial vehicle (UAV)
images which generally have a much finer spatial resolution [9].

Various methods have been presented for shadow detection, and their discrimination
from areas without shadow, using satellite sensor images. The choice of method for shadow
detection affects the accuracy of results. Most studies are focused on recovering information



Land 2022, 11, 2025 3 of 30

or minimizing shadow effects in satellite sensor images, because valuable information
exists in shadow areas [50]. Moreover, information in adjacent areas can be used for
shadow areas [51]. Shadow correction methods can be divided broadly into four categories
according to the origin of the shadow: topographic shadow correction, urban shadow
correction, cloud shadow correction, and composite shadow correction [6,15]. Typically,
the resolution of the sensor affects the de-shadowing procedure applied to satellite sensor
images. The common topographic de-shadowing methods are: multisource classification
and Digital Elevation Models (DEMs)-based and band ratio [15,52]. Urban shadow is
more difficult to remove than other shadows [53,54]. In previous studies, techniques such
as Gamma correction [55], object-based approach [28,56,57], invariant color model [58],
and machine learning methods [59–61] have been used to correct, or reduce, the effect of
shadow. Clouds and their shadows affect the spectral characteristics of features in optical
and thermal RS [62,63] and, hence, reduce the quality of RS data. In previous studies,
different models including semi-physical fusion approach [64], robust nonlinear wavelet
regression [65], and wavelet image fusion were applied for correction of shadow effects in
satellite sensor images [66].

In recent years, a few critical review articles such as Shahtahmassebi, et al. [15] and
Mostafa [67] have presented several methods of shadow detection and compensation in
satellite sensor imagery. Shadow correction algorithms are the main subject of these review
articles. Considering the direct and indirect effects of shadow on information extraction
from satellite sensor images, studying the algorithms for shadow detection and their
potential for restoring information in both the optical and thermal bands of satellite sensor
images is of significant importance. Hence, this review considers the effects of shadows on
RS-driven surface biophysical variables and outputs of RS processes. Moreover, the types
of both shadow detection and de-shadowing methods are reviewed. The main contribution
of this review is the exploration of shadow effects on optical and thermal indices of surface
biophysical variables.

2. Materials and Methods

This review employed a systematic approach to search for the most relevant papers
and select papers based on a rigorous set of evaluation criteria. The selected papers were
classified and investigated based on the study objectives. The systematic review was
conducted in three systematic steps to achieve the study objectives. In this study, the
methods introduced and developed by [68,69] were used.

2.1. Papers Search

In the first step, to identify the papers that met our criteria set, the search focused on
the effect of shadow on surface biophysical variables derived from RS. To perform this,
scientific and academic electronic databases such as Scopus, Science Direct, Web of Science,
and Google Scholar were searched. Searches were conducted from the date of publication
of the first relevant paper until December 2021 in these databases. To find the most
relevant papers, the following keywords were used: “shadow”, “effect of shadow”, “cloud
shadows”, “shadows from topography”, “shadows from urban structures”, “combined
shadows”, “effect of shadow on environmental variables”, “effect of shadow on surface
biophysical variables”, “effect of shadow on vegetation index”, “effect of shadow on
impervious surface cover”, “effect of shadow on LST”, “effect of shadow on the vegetation
index”, “effect of shadow on water and water stress indices”, “effect of shadow on snow
mapping”, “effect of shadow on albedo”, “effect of shadow on soil moisture”, “effect of
shadow on evapotranspiration”, “effect of shadow on urban heat island(s)”, and “effect of
shadow on LULC classification”. The initial search found 2555 papers within 1975 to 2021
using the search keywords. That is, these papers contained at least one of the keywords.
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2.2. Selection of Papers

In the second step, peer reviewed articles and conference papers that dealt with the
effect of shadow on surface biophysical variables derived from RS were selected, excluding
book chapters and conference abstracts. To eliminate irrelevant papers, several criteria
were applied. For example, redundant papers (n = 420) found in different databases were
eliminated. Non-English papers (n = 180) were excluded. Finally, 1955 papers of the
2555 papers were selected for this review (Figure 1).
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Figure 1. The number of papers selected for this review based on the selection criteria plotted
against year.

The following details were collected into a database as part of the evaluation process
for the selected papers: main objective of the paper, authors, country of affiliation, year
of publication, scope, and name of the journal, spatial resolution of utilized data, shadow
type, methodology and methods, assessment of results, and relevance of the paper with
respect to our study objectives.

2.3. Information Extraction and Integration

The assembled database was used to extract important information about the effect
of shadow on various surface biophysical variables such as albedo, evapotranspiration,
impervious surface cover (ISC), SM, LST, and urban heat islands (UHIs), spectral indices
such as vegetation, water and snow covers, and LULC classification, separately. These
variables are among the most relevant and common variables that can be extracted from
remote sensing data, which are important in various environmental applications. Therefore,
studying the effect of shadow on these variables is of great importance. Afterwards, the
redundant information was integrated and described in a specific section related to a
specific parameter. Additionally, valuable information was extracted from the assembled
papers about shadow detection and de-shadowing methods. At the end of this paper,
a comprehensive overview of different methods for identifying and removing shadow
is presented.

The de-shadowing methods developed in previous studies are different for urban,
cloud and topographic shadows. Therefore, in this study, de-shadowing methods are
presented separately for each shadow type. Hence, the information from ‘shadow type’
and ‘year of publication’ was used to analyze the annual growth and temporal distribution
of papers (Figure 2). This analysis grouped the papers to help support the main objective
of the study.
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3. Results
3.1. Effect of Shadow on RS-Driven Variables and Outputs

The shadow problem is obvious in fine, moderate, and coarse spatial resolution images,
and in the extraction of biophysical variables [70]. In a satellite sensor image, some areas
may be shaded by clouds, mountains, hills, trees, and urban objects. A decrease in radiance
in the shaded target is the main negative effect of shadow. It may also affect biophysical
variables, including albedo, evapotranspiration, impervious surface cover (ISC), SM, LST,
and urban heat islands (UHIs), spectral indices (vegetation, water, and snow), and LULC
classification. These are discussed, in turn, below.

3.1.1. Albedo

Albedo depends on the atmosphere and land surface properties. Surface topography
causes changes in solar illumination geometry and land surface properties derived from RS
data [71]. Therefore, the effects of shadow on albedo over a rough surface are linked to the
properties’ variation in the subpixel topography, azimuth, and zenith angles [72–74].

Overall, the Lambertian assumption ignores canopy structure and shadows that impact
adjacent areas, which significantly affect the values of albedo. Due to these geometric
optical effects, surfaces appear brighter when the source of light is behind the sensor
(backscattering) or darker when the source of light is in opposition to the viewing angle
of the sensor (forward scattering). This significantly affects the retrieval of surface albedo.
As a result of the shadow effect of skyscraper buildings, Lee, et al. [75] found that densely
built-up areas have an estimated albedo that is 17% lower than other areas.

Albedo becomes more sensitive to aspect as slope increases. Furthermore, diffused
radiation and terrain shadowing from adjacent surfaces significantly affect the albedo
values [76]. Shadows due to neighboring topography significantly affect the black-sky
albedo. However, the white-sky albedo is independent of shadow and solar illumination
geometry effects [71]. Topographic impacts on albedo over rough surfaces are commonly
attributed to the integrated effects of subpixel slopes and aspects within each pixel of
an image [73,77]. Neglecting the topography, spatial variation within pixels in albedo
calculations on a rough surface can lead to remarkable error [72–74], for example, 33%
relative error in albedo estimation for a slope average of 40◦ [73]. Cherubini, et al. [42]
showed that albedo estimation is also extremely sensitive to topography of subpixels in



Land 2022, 11, 2025 6 of 30

MODerate resolution Imaging Spectroradiometer (MODIS) images, and the albedo on a
rough surface can change up to 100% for vegetation in a pixel of MODIS imagery.

3.1.2. Evapotranspiration

Evapotranspiration includes lost water from both plants and soil. Exact modeling of
evapotranspiration is helpful in many agricultural, ecological, water management, and
environmental applications [37,38,78]. There are, however, some challenges associated with
assessing vegetation-shading effects on estimating evapotranspiration, as the shadow zone
is usually difficult to measure and changes with the solar zenith angle throughout the day
and with the growth of the plant.

It is important for vegetation restoration to consider the water budget of semi-arid
regions, which is dominated by evaporation from the soil and transpiration from plants.
In sparsely vegetated areas, shadows cast by sparse vegetation reduce incoming solar
radiation, which can affect the biotic processes of plants and the transportation of land-
atmosphere flux. As a result of vegetation structure intercepting solar radiation and the
shadows cast by it, the LST varies spatially in shadow-free and shadow-affected areas,
resulting in spatial variation in evapotranspiration. Many traditional methods acknowledge
that the shadow reduces near-ground radiation. However, few estimate the direct impact
of shadows on LST, which is vital for calculating evapotranspiration, particularly in RS
because LST incorporates the effects of changes in ambient temperature, wind dynamics,
soil thermal conductivity, and soil moisture content induced by climate change [37].

3.1.3. Impervious Surface Cover (ISC)

Knowledge of the distribution, pattern, and geometry of ISC is important for a wide
range of topics in urban planning, ecological process modeling, environmental modeling,
and resource management globally, regionally, and locally [79–84]. However, shadows due
to mountains, trees, clouds, or tall buildings in satellite sensor images can dramatically
affect the accuracy of mapping ISC [70,85–87].

Mixing of ISC class with sand, soil, and shadow effects during the ISC prediction
process was reported as a major problem [85,88]. Shadows of trees and buildings have a
major influence on ISC prediction. Some shadows from buildings are mixed together, and
some roads are covered by trees or their shadows. The impact of building shadows on
ISC extraction is greater than for tree shadows. In fine spatial resolution images of urban
environments (i.e., the greatest source of ISC), shadows are generally induced by low Sun
elevation and tall buildings [29,30].

The spectral similarity between shaded ISC, shadows in other areas and water bodies
is a major challenge in mapping ISC automatically using fine and medium resolution
images in the urban environment [46,79,87]. In Figure 3a, for the Landsat Thematic Mapper
(TM) sensor, the spectra of ISC with low albedo are very similar to those of vegetation
shadows. Therefore, TM images cannot be used to readily distinguish these two surfaces
from each other. For Hyperion (Figure 3b), the spectra of vegetation shadow and ISC with
low albedo are sufficiently separated [89].

Some studies have tried to eliminate the effects of shadows by using thermal bands in
built-up indices such as the Enhanced Built-up and Bareness Index (EBBI) and Normalized
Difference Bareness Index (NDBaI) for built-up area mapping, because thermal bands
can detect albedo levels in built-up areas [90–92]. Moreover, the normalized difference
impervious index (NDII), which was developed based on thermal infrared and red bands,
is frequently used to extract ISC areas. Due to the fact that the shadows cast by vegetation
and mountains are generally cooler than those cast by tall buildings, the ISC extracted by
NDII was found to be not affected by shadows [93]. Another index in this domain is the
normalized difference impervious surfaces index (NDISI), which can remove shadow noise
and greatly reduce the background effects of sand and soil [94].
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In [86], linear spectral unmixing was applied in shadowed and non-shadowed regions.
Spectral characteristics of urban objects in shadowed regions differ greatly from those in
non-shadowed regions [86]. Moreover, a hierarchical classification strategy was used for
ISC extraction in shadowed and non-shadowed regions to overcome the shadow issue in
fine resolution images [95,96].

Object-Based Image Analysis (OBIA) is more efficient than conventional pixel-based
approaches for extracting ISC at fine resolution [70] because OBIA is able to deal with
spectral variability within classes [3,29,30]. Meanwhile, this model uses object-oriented
segmentation and establishes a multi-scale model, topology, and textures to establish
a hierarchical network. This model is efficient in dealing with the shadow in urban
environments [29,30].

3.1.4. Soil Moisture (SM)

SM is a key factor in land, atmosphere, and climate systems [97]. At different scales,
it impacts the water, energy, biophysical, and biogeochemical cycles [98,99]. In some
studies, the vegetation coverage shadow was found to affect spatial variation in SM. Hence,
SM was obtained based on the LST differences between sunlit surfaces and shadows.
Useful information on SM can be obtained from the LST difference between shadow and
sunlit areas [35].

Based on the thermal equilibrium equations, the comparison of shadow LST with
adjacent areas under direct sunlight contains valuable information. Practically, this is
because shadow areas receive only the sky components of radiation. Conversely, sunlit
areas receive direct radiation from the Sun in addition to the sky components, which causes
a difference in LST between them. This LST difference can be used as the basis for SM
calculation. The results indicated that a method based on shadow and sunlit areas was able
to estimate SM [35].

SM is commonly calculated based on a linear function between SM and thermal
inertia for different types of soil [100]. Therefore, in this method, the challenge is to
prepare two images with maximum thermal difference due to a change in environmental
conditions when the images were acquired: according to the thermal equilibrium equations,
temperature differences between shadow regions, and adjacent areas in direct sunlight
provide valuable information for calculating thermal inertia and SM [35].

3.1.5. LST and Urban Heat Islands (UHIs)

LST shows the amount of emitted radiation from the surface and subsurface and
dictates the exchange of energy between the Earth’s surface and atmosphere. Satellite-
derived LST is of paramount importance in various applications including energy bal-
ance [101–104], environmental monitoring [105], geological structure [106], climate change
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and urban studies [107–111], evapotranspiration surface moisture, and water resources
management [112–115].

Satellite-derived LST is a directional variable [32–34,116] because different viewing
and illumination angles create different shadows. Different viewing and illumination
angles would likely result in different LST values for LST estimations for the same scene
and the same sensor. These values would depend on variables such as Sun aspect, surface
cover, and soil properties. The LST is also greatly affected by surface structure due to
shadowing effects and dependence on azimuth and zenith view angles. However, these
effects are usually overlooked in many studies. When evaluating the accuracy of LST
estimations through comparisons with ground observations, or comparing LST products,
viewing angles and illumination geometries need to be considered [32,33,117]. The results
of the study by Ermida, et al. [117] indicated that the differences between LST derived
from Spinning Enhanced Visible and Infrared Imagers (SEVIRI) and MODIS sensors during
daytime were significant due to shadowing effects. Recently, the influence of shadows
on the calculation of LST from UAV images with fine spatial resolution before and after
shadow correction was evaluated. It was found that shadow correction is necessary to
retrieve vegetation and LST [118].

A model for estimating the impact of surface structure on LST was developed by
Ermida, et al. [119]. This model was used to calculate the temperature composite in the
field of view (FOV) of the SEVIRI and MODIS sensors. As a result, the bias in daytime
LST values derived from SEVIRI and MODIS was reduced by 1 to 2.5 ◦C compared with a
simpler method. A significant decrease in LST differences between MODIS and SEVIRI
was also observed when the effects of viewing geometry were corrected. The variations
in shadow, sunlit area, canopy, and near-surface air temperatures during a diurnal cycle
are illustrated in Figure 4. There is no direct incoming solar radiation in shaded areas, so
temperatures there are generally considered to be similar to near-surface air or tree canopy
temperatures [119]. Based on a similar study, the difference in soil surface temperature
between shaded and sunlit areas was found to be approximately 10 ◦C [120].
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On the other hand, surface topography and roughness can have major effects on
the LST. Some topography effects are surface shadow, contribution of surrounding sur-
face radiation, aspect angles, and slope that change solar radiative heating. These effects
cause a large discrepancy between directional brightness temperature (BT) and equiva-
lent BT [121,122]. Surface roughness leads to shadows and scattering of surface-emitted
radiation flux on surrounding surfaces [122].

The relationship between the shaded surface fraction and LST in urban areas was
studied by Kato, et al. [123]. Figure 5 shows the relationship between shaded surface
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fraction and LST in different surface covers in different seasons. LST is more affected by
vegetation types than the area of vegetation, so there is no clear relationship between LST
and the vegetation fraction. Furthermore, water body fraction is not clearly correlated with
LST. However, shaded areas influence LST. In areas with larger values of shaded fraction,
the deviation of LST caused by surface cover in sunlit areas was smaller.
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As shown in Figure 5, the scatterplots show a triangle shape characteristic of smaller
LST ranges with larger values of the shaded fraction. Based on these results, LST differences
largely depend on the thermal properties and evapotranspiration of sunlit areas. Despite
shaded fraction values, the smallest value of LST in shaded areas is smaller than the
air temperature in winter. Conversely, the smallest value of LST is larger than the air
temperature in spring and autumn. Accordingly, air temperature cannot be substituted for
LST in shaded areas.

The major reason for UHI intensification in cities is more radiation absorption by ISC,
because the vegetation density and the overall level of shadow are reduced [16,124,125].
Tall buildings and trees often cast shadows in urban areas. Their distribution indicates
intensive seasonal changes that significantly affect UHI [124]. Both the cooling and shadow
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effects of vegetation cover affect LST [126]. Some previous studies reported that the
shadows of buildings reduce the incoming solar radiance in summer [16,124]. Urban
thermal environments have been significantly influenced by building shadows, that is, by
preventing solar radiation from penetrating into the urban areas [127].

The LST of ISC pixels is more responsive to building shadows than vegetation pixels,
since vegetation’s self-regulation mechanism reduces the cooling effect of building shadows.
LST distribution is strongly affected by building shadows in winter. Despite the previous
studies, extensive analysis must be employed to determine the influence of building
shadows on seasonal variation in the UHI in urban areas [128]. Yu, et al. [128] concluded
that the cooling effects of building shadows must be considered to design suitable urban
forms to reduce the intensity of UHIs. This result was also suggested by Zhao, et al. [129],
who suggested that high buildings can mitigate UHI during the daytime.

3.1.6. Vegetation Indices

Vegetation indices (VIs) are of substantial utility in numerous environmental applica-
tions, so the recognition and study of factors affecting VIs is important. A canopy’s total
reflectance is largely influenced by shadows on its surfaces [130]. Some uncertainties may
occur in calculating vegetation variables using VIs, if shadow effects are ignored [131].
Thus, the shadow problem has been highlighted following the growth of different remote
sensing data. Several studies have examined the shadow effect on vegetation indices in
hyperspectral images [132,133]. As an example, Huemmrich [133] used hyperspectral data
to determine the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) by
considering the shadow effect on the Soil Adjusted Vegetation Index (SAVI) and NDVI.
Using hyperspectral data, Figure 6 illustrates the spectra from sunlit and shaded leaves [31].

Land 2022, 11, 2025 10 of 31 
 

The major reason for UHI intensification in cities is more radiation absorption by ISC, 
because the vegetation density and the overall level of shadow are reduced [16,124,125]. 
Tall buildings and trees often cast shadows in urban areas. Their distribution indicates 
intensive seasonal changes that significantly affect UHI [124]. Both the cooling and 
shadow effects of vegetation cover affect LST [126]. Some previous studies reported that 
the shadows of buildings reduce the incoming solar radiance in summer [16,124]. Urban 
thermal environments have been significantly influenced by building shadows, that is, by 
preventing solar radiation from penetrating into the urban areas [127]. 

The LST of ISC pixels is more responsive to building shadows than vegetation pixels, 
since vegetation's self-regulation mechanism reduces the cooling effect of building shad-
ows. LST distribution is strongly affected by building shadows in winter. Despite the pre-
vious studies, extensive analysis must be employed to determine the influence of building 
shadows on seasonal variation in the UHI in urban areas [128]. Yu, et al. [128] concluded 
that the cooling effects of building shadows must be considered to design suitable urban 
forms to reduce the intensity of UHIs. This result was also suggested by Zhao, et al. [129], 
who suggested that high buildings can mitigate UHI during the daytime. 

3.1.6. Vegetation Indices 
Vegetation indices (VIs) are of substantial utility in numerous environmental appli-

cations, so the recognition and study of factors affecting VIs is important. A canopy's total 
reflectance is largely influenced by shadows on its surfaces [130]. Some uncertainties may 
occur in calculating vegetation variables using VIs, if shadow effects are ignored [131]. 
Thus, the shadow problem has been highlighted following the growth of different remote 
sensing data. Several studies have examined the shadow effect on vegetation indices in 
hyperspectral images [132,133]. As an example, Huemmrich [133] used hyperspectral data 
to determine the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) by 
considering the shadow effect on the Soil Adjusted Vegetation Index (SAVI) and NDVI. 
Using hyperspectral data, Figure 6 illustrates the spectra from sunlit and shaded leaves 
[31]. 

 
Figure 6. Sunlit and shadowed leaf spectra in the range 400–1000 nm (adapted from [31]). 

The reflectance of sunlit leaves is much higher than for shaded leaves at all wave-
lengths. At visible wavelengths (400–700 nm), shaded leaves do not reflect much except 
at green wavelengths (540 nm). The reflectance of sunlit leaves was found to be five times 
more than for shadowed leaves at near-infrared wavelengths. In contrast to the shadowed 
leaves, the spectra of the sunlit leaves differed in both reflectance and shape, which may 
affect the calculation of VIs. 

Figure 6. Sunlit and shadowed leaf spectra in the range 400–1000 nm (adapted from [31]).

The reflectance of sunlit leaves is much higher than for shaded leaves at all wave-
lengths. At visible wavelengths (400–700 nm), shaded leaves do not reflect much except at
green wavelengths (540 nm). The reflectance of sunlit leaves was found to be five times
more than for shadowed leaves at near-infrared wavelengths. In contrast to the shadowed
leaves, the spectra of the sunlit leaves differed in both reflectance and shape, which may
affect the calculation of VIs.

NDVI is a key factor in the estimation of land surface emissivity (LSE) and LST, among
others [134]. Hence, correction of the shadow effect on NDVI for heterogeneous regions is
necessary. Some studies indicated that NDVI is not a suitable quantitative index in sparse
vegetation regions because of shadow effects on the surface (Figure 7) [1,135,136].
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Figure 8. Means of vegetation indices in shaded and sunlit areas [31].

The Modified Soil-Adjusted Vegetation Index (MSAVI) was the most affected by
shadows, followed by the Triangular Vegetation Index (TVI). The Greenness (G) and NDVI
indices differed slightly between shadowed and sunlit leaves. There was a significant
difference in the level of darkness between shadowed vegetation and sunlit vegetation,
except for the G and NDVI indices. Shadows significantly affected the MSAVI, TVI, and
Ratio Difference Vegetation Index (RDVI) indices, with smaller values in shaded areas. The
values of the Simple Ratio (SR) and NDVI indices were both larger in shaded areas [31].

Another shadow effect on vegetation studies is the influence on vegetation water
stress detection. In past studies, the performance of PRI and TCARI/OSAVI for vegetation
water stress detection was demonstrated in regions including low-albedo surfaces and
shadows [137,138]. Thus, some studies have documented certain problems with these
indices, such as shadow/sunlit fraction, viewing angles, and illumination geometry effects.

3.1.7. Water Indices

Remote sensing data are commonly applied to mapping water bodies and water
resources management [139–142]. Broadly, water surface extraction methods fail to separate
water surfaces from mountain shadows and low-albedo surfaces in natural environments
as well as shadows of buildings and clouds in urban areas [143]. For satellite sensor images,
it is generally challenging to separate shadows from water, especially in urban areas [36].

Several methods were employed to extract water surface information from satellite
sensor imagery [144,145], depending on the number of bands. Water indices are usually
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calculated using two bands from a multispectral image [146]. In these methods, a threshold
is determined for the index to separate water from other surfaces. As a result of threshold
value selection, estimated water surface information is often mixed with shadow informa-
tion [143]. The Modification of Normalized Difference Water Index (MNDWI) can reduce
the effect of shadow through simple procedures, but it is difficult to remove.

The shadow effect was considered in recent studies to develop water extraction indices.
Xie, et al. [147] introduced a newly developed the Hyperspectral Difference Water Index
(HDWI) for extracting water surfaces in regions with shadows over water and low albedo
surfaces. A significant source of misclassification in urban areas is shadows cast by tall
buildings, which can be reduced through the HDWI. In comparison with other water
indices, the HDWI has a high accuracy in identifying shadow pixels that are in the water
class and those that are not [147]. In addition, Feyisa, et al. [145] developed an automated
water extraction index (AWEI) to increase accuracy in shadow and dark areas on Landsat
TM. AWEIsh was introduced for areas that include shadows [145]. They concluded that for
narrow water extraction, MNDWI has problems due to cloud and its shadow, while AEWI
ameliorates these to some extent [145]. Similarly, another study reported that the Modified
Optimization Water Index (MOWI) performs more accurately in different conditions, such
as under cloudy conditions, in cloud shadows, and in mountain shadows [148].

3.1.8. Snow Indices

Snow surface mapping and monitoring using snow indices in mountainous regions
is an issue because at visible and near-infrared wavelengths, mountain shadows have
similar cloud and snow spectra [24,41]. Numerous reflectance and ratio-based methods
have tried to distinguish snow from other surface covers, but mountain shadows cause
them to fail. The Normalized Difference Snow Index (NDSI) has an advantage in contrast
with previous methods because it can detect snow cover under mountain shadows. Based
on field observations, the reflectance values and NDSI were determined for different types
of surfaces by Kulkarni, et al. [41], as shown in Figure 9.
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The results revealed a large difference in snow surface estimation between NDSI and
the supervised classification. Snow pixels under mountain shadow were not detectable
by supervised classifiers. Surfaces with snow have unique NDSI values, independent of
illumination. In other words, the NDSI can distinguish snow and non-snow pixels even
under different orientation and slope conditions or under mountain shadow [41].

Thermal bands were used in addition to reflective bands to minimize the nega-
tive effects of shadow and topography in mountainous areas. This was performed by
Kour, et al. [24] and the performance of different indices for extracting snow surfaces was
compared. The results indicated that indices that utilize thermal bands in addition to
reflective bands have greater efficiency.
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3.1.9. LULC Classification

LULC classification and object detection become problematic because of the shadowing
effect of natural phenomena [149,150]. Therefore, shadows are an important factor affecting
classification accuracy [27,28], especially in fine resolution images [9]. Surface covers under
shadows had a reduced reflectance value [149], and this effect differed with the shadow
level and hence influenced the LULC classification [46,70]. Shadow correction can increase
classification accuracy remarkably in vegetation cover mapping over shaded areas, as
demonstrated by Kumpumäki, et al. [40]; in their case the classification accuracy was
increased from 35.1 to 46.1%.

A major LULC classification error was caused by spectral confusion among dark ISC,
water bodies, and shadows from tree canopies among grassland or tall buildings in urban
areas [151,152]. It is difficult to separate ISC from water, wetland, and shadows based solely
on spectra, as shown in Figure 10 [153]. Spatial variation in the canopy caused by shadows
significantly impacts pixel-based classification compared with object-based methods in fine
resolution images [154].
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Shadows can have a negative impact on image classification results. It is important
to assess this potential and to plan ideal satellite overpass times because shadows are
extremely dependent on satellite overpass time and Sun angle [9,154].

3.2. Shadow Detection Methods

Shadow detection has always been relevant in image processing. This is because
it provides useful information for various applications such as change detection, object
extraction, classification, segmentation, and land monitoring [155]. Regarding this, many
methods and algorithms were developed for shadow detection in remote sensing images.
Based on these studies, shadow detection can be divided into four main categories: model-
based, feature-based, index-based, and temporal differences.

3.2.1. Model-Based Methods

To simulate shadow areas, the model-based method utilizes a mathematical concept
that relies on prior information. It applies information regarding the scene, moving objec-
tives, the Sun and its elevation and azimuth, and the sensor’s altitude to define shadow
models. Aerial image analysis and video monitoring are two examples of applications
where model-based methods are commonly used. The availability of prerequisite informa-
tion can be a limitation in these methods [15,53,55,156].

3.2.2. Feature-Based Methods

Feature-based methods use the shadow specifications for shadow detection. There are
some subtypes of this method: physical rule-based, object-based, invariant color spaces,
and classification methods. The physical rule-based method uses image geometry (central
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longitude and latitude), physical characteristics (altitude and temperature) and local time,
shadow length and the position of the Sun. This method is also very efficient for moving
shadow in video sequences [157]. F-mask is a rule-based method for detecting clouds and
cloud shadows and is based on the physical characteristics of clouds [158].

The object-based method was developed based on the spectral characteristics of
shadows (brightness and saturation) and texture. It is a widely used method for shadow
detection [86] and applied mostly for urban areas as it can detect the edges of building
shadow precisely [159]. The object-based method usually uses segmentation algorithms
and has different subtypes: thresholding and region growing-based.

Thresholding is a quick and easy method which uses threshold values to divide pixels
into different groups [15,28,87,160–164]. The threshold value is selected using different
methods: Gaussian mixture model [165], arbitrarily by visual inspection [166], the number
of peaks and valleys [87], and bimodal histogram splitting [159,164]. This method was
improved by combining other spectral and spatial information [167]. Ghandour et al. [168]
also introduced a method which is based on multi-thresholding. Their proposed model
is called shadow detection multi-thresholding segmentation (SMS). This method is very
accurate especially for building shadow detection

The region growing-based method uses the average and standard deviation of the
pixels for classification. Each pixel is allocated to a potential segment based on spatial and
spectral distance from that segment [169]. This method clusters the image iteratively and
finds the shadow and non-shadow regions. The lowest pixel values are assigned to shadow
and can be used as seeds for region growing. The method provides accurate segmentation
results and has good performance in noisy areas [162].

Invariant color spaces methods are based on the luminance and chromaticity of
invariant color space. Different color spaces with special properties (RGB, IHS, HSV,
XYZ, YIQ, Luv, Lab, etc.) have been used for shadow detection. Shadows with specific
characteristics such as larger saturation, larger hue values, and smaller brightness can be
detected using the appropriate color space [15,67,160,163,170].

Classification methods are based on the properties of shadow pixels. Different classifi-
cation methods were applied for shadow detection. Some of these methods are automatic
while some are semi-automatic [171–175].

The most important advantage of unsupervised classification or clustering is its ability
to be applied without human effort and automatic labeling [176]. Different unsupervised
classification algorithms were used for shadow detection. K-means clustering was used
widely in shadow detection. The initial number of classes must be determined based on
spectral characteristics of the objects and the scene geometry [149,157]. However, this
method is limited while using similar objects. A modified Gaussian mixture model was
developed in this regard. To complete the spatial background modeling, a random number
generation method was used to sample each pixel’s neighborhood [59]. Movia, et al. [150]
presented a method by using RGB color information for shadow detection. It might not be
appropriate to use this method on cast shadows that are visible and correctly identified.
Unsupervised machine learning is also very popular due to its quick and rough nature in
shadow detection. Classes with the smallest values are considered as shadow [166].

Other classification methods include supervised- and object-based. To use these meth-
ods, training samples with identified spectra must be chosen. In light of this, supervised
classification methods are usually costly and time-consuming [157]. Furthermore, super-
vised methods have some limitations, such as the lack of reference samples required for
classifier training. It is also possible for trained classifiers to be insufficient for another
scene [177]. Some methods were developed to overcome these problems [56,178].

Unlike unsupervised machine learning algorithm, training samples or ground ref-
erence data are used to build classifiers in supervised machine learning. This method,
especially, the typical support vector machine (SVM), has been widely used in shadow
detection [171–173]. Moreover, neural networks have been used for extracting spectral
features in multiple levels from different bands and shadow detection was performed



Land 2022, 11, 2025 15 of 30

based on these segmented features [179,180]. Deep learning methods, which are a subset of
machine learning, were demonstrated to be efficient in some shadow detection studies [181].
Methods based on deep learning are very accurate in image classification, and this accuracy
is continuously increasing with the development of new methods [182]. CNN [180,183],
PCNN [179,180,183], U-Net CNN [6], MSCFF [6], and many other modified models have
been introduced for shadow detection [184].

Recently, Yin, et al. [185] introduced a new self-supervised learning shadow detection
algorithm for RS imagery. In this method, a shadow ratio threshold is generated automat-
ically without human interaction. A self-supervised learning method was suggested by
combining both supervised and unsupervised shadow detection methods. According to
the results, this method is accurate and applicable for shadow detection.

3.2.3. Spectral Indices

Different methods have been developed based on various approaches to band selection.
The methods are easy to practice and do not need any parameters [186,187]. Different
indices were used for shadow detection. The Shadow Detection Index (SDI) is the most
popular index for shadow detection based on optical bands. This method can discriminate
shadow from dark objects and, therefore, is very accurate in shadow extraction. It is
possible to visually identify the shadowed pixels, which allows a trial-and-error process
to be used to determine the appropriate threshold value [157]. NDWI separates shadow
pixels from water [158] and NDVI [188] separates shadow pixels from vegetation. The
Combinational Shadow Index (CSI) can extract building shadows in urban areas. This
method is efficient in both cloudy and clear conditions with high precision and works well
on wide extent study areas. Shadows can be separated from water and low albedo features
using CSI [54]. Sun et al. [54] developed the Normalized Saturation value Difference Index
l (NSDVI) based on HSV color space for shadow detection. It chooses the area with greater
saturation and lower density. These indices can be used in conjunction with other methods
such as the support vector machine (SVM), maximum likelihood classifier (MLC), Otsus
method, and histogram equalization method [15,160,170,189].

3.2.4. Temporal Differences

The temporal differences method compares multi-temporal images, such that images
with different dates are used for shadow detection. Pixels with the largest differences
are shadow [190–193]. Some methods have been developed for a specific sensor. In radar
observations, shadows are mapped from modeled illumination with Mercury Dual Imaging
System (MDIS) imagery and Mercury Laser Altimeter (MLA) data. Low reflectance surfaces
can be detected using MLA reflectance at 1604 nm and radar bright deposits of MDIS. These
two methods are independent, but can detect shadow simultaneously [194].

3.2.5. Advantages and Disadvantages

Qualitative and quantitative estimation of shadow regions can be greatly influenced
by the method used. In previous studies, thresholding techniques were used widely for
shadow detection due to their simplicity. However, a common problem with shadow
detection methods based on thresholds is that shadow pixels are difficult to separate from
non-shadow pixels, such as water, due to their similarity. The second more common
method is modeling, which is simulates shadow regions based on prior information using
a mathematical concept.

In comparison with thresholding methods, nonlinear shadow detection is very sensi-
tive to shadow regions, but causes mixed pixels between shadow and non-shadow regions.
It is possible to avoid this problem by using shadow detection methods based on shaded
relief. However, these methods require highly accurate DEMs and they are unable to detect
cast shadows as well. In Table 1, we summarize the different methods reviewed and their
relative advantages and disadvantages.
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Table 1. An overview of shadow detection methods.

Method Brief Description Advantage Disadvantage

Thresholding Spectral values have the key
role in thresholding Simple and quick

Cannot discriminate between
non-shadow dark areas and

shadow areas

Modeling

Location of the sensors, the
light source direction and the
observed objects geometry are

the source of knowledge in
shadow areas

Identifying the shadow
regions with high accuracy

Source of light and scene
Geometry are not vivid

Invariant color model It is based on ratio of HSV or
RGB bands

Identifying shadow regions
from other dark objects

Misclassification which is due
to uncertainty in certain

color values.

Region
growing segmentation

Cluster the image iteratively
and find shadow and
non-shadow regions.

Provides good segmentation
results, performs well with

respect to noise
Time-consuming

Shade relief
Solar elevation, solar zenith,

and DEM are the key elements
of this technique

Simple nature
Not calculate shadow that is
cast by topographic features

onto surrounding surface

Radar observations
(MDIS) images and modelled

illumination with (MLA)
topographic data are used

Detecting low reluctance
surfaces at 1604 nm Poor spatial resolution

Shadow Detection
Index (SDI)

Three bands are utilized to
establish a new spectral index

Simple, distinguishing dark
object from shadows

Cannotextract the small
portion of shadow

MSS clear-view
mask (MSScvm)

A rule-based algorithm for
identifying shadow in MSS

data

Automatic, simple.
Commission and omission

errors are minimized
Customized only for MSS data

Sub-Pixel Shadow Mapping Sub-pixel method is used for
shadow detection

Mapping shadow with finer
resolution.

Preserving memory and fill
rate consumption

Aliasing problems can be
happened due to close-up on

the shadow

Blackbody Radiator Model Shadow is detected based on
the chromaticity values High accuracy Medium complexity

The automatic cloud/shadow
detection method

Use MRF method
for detection

It is a simple image
processing algorithm

Preprocessing is needed
for clouds

Neural network and Pulse
coupled neural

networks (PCNN)
Based on neural network Good shadow simulation

While hue and intensity of
shadow and non-shadow

region is similar, they can be
miss classified

Object-Based
shadow extraction

Shadow is detected as an
object

More accurate than
pixel-based methods spatially

for bright objects

Dependent on the radiometric
resolution of the sensor

Airborne Laser
Scanner (ALS)

DSM is used for
shadow simulation Accurate Data are rare, expensive,

requires aircraft use,

Visual interpretation Shadow is detected
by interpreter Easy to use Dependent on the

interpreter experience

Machine learning methods Uses machine
learning algorithms Efficient High computational cost

and time

3.3. De-Shadowing Methods

It is possible to restore the brightness difference between shadowed and non-shadowed
areas by de-shadowing. Although shadow degradation is easily detected by the human
visual system [184] shadows are a major problem in computer image processing for images
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with medium and fine spatial resolutions [27,55,195]. Research in recent years has focused
mainly on restoring shadow data, rather than eliminating or reducing its effects [28,196,197].
Shadow can be restored using the useful information from the weak recorded reflectance in
shadow regions [28,189,198] or using spatial information from non-shadow areas [196,199].

3.3.1. Urban Shadow Compensation

Five techniques were introduced in recent years for restoring shadow in urban envi-
ronments. These include gamma correction, linear correlation correction (LCC), ratioing
method, histogram matching, and multisource data fusion.

LCC defines shadow as the result of a combination of multiplicative and additive
noises. To enhance the brightness of shadows, a linear relationship was used. Different
pairs of pixels from similar surfaces have been used to obtain the function parameter in non-
shadow and shadow areas. This method is efficient and can provide good results despite
weak signals in shadow areas [67,118,166]. However, in the gamma correction method,
shadow is considered as a multiplicative noise source which can corrupt the underlying
pixel brightness. The gamma parameter was calculated from values of non-shadowed
and shadowed pixels. According to research, this method is helpful for precise land use
mapping especially when the image is split into smaller sections and more than one gamma
value is used [200]. However, if the shadow is large and different types of surfaces have
been applied, shadow classification and gamma value extraction is very difficult [197].

One common method used in many urban studies for shadow compensation is his-
togram matching. This method matches the histograms of shadowed and non-shadow
areas of the same class in a way that makes them as similar as possible [160,201]. In a
histogram matching area, window size is critical and must be taken into precise considera-
tion [67,189]. Moreover, urban shadow can be compensated by increasing the pixel values
of each spectral band via the band ratio method. Shadowed pixels are restored to their
original brightness based on the average intensity ratio of shadowed and non-shadowed
pixels for each class. Although very effective, spectral resolution is lost in this method [199].

In some studies, shadow pixels were simply replaced by non-shadow pixels of the
same area, but different dates through multi-source or multi-temporal data fusion [202].
Fine spatial resolution images can be used for this purpose with some limitations, due
to their coarse temporal resolution. Precise co-registration is of significant importance
when using this method as it can lead to major errors. Although no information in shadow
regions is missed, this method is not efficient for small cloudy regions [203].

3.3.2. Topographic Shadow Compensation

In high relief regions such as mountainous environments, topography blocks direct
solar radiation, causing cast shadows. Solar elevation and landscape topography can
change the amount of cast shadow at the acquisition time [67,160]. When using automated
classifiers, cast shadows may not be taken into account, leading to classification errors [204].
Three main methods have been applied for topographic or terrain shadow correction. The
simplest method is the band ratio. In this method, a single band is divided by another
band [67]. It is important to note that this method is very common for all spatial resolutions
(low, medium, and high) since it does not take into consideration varying illumination
conditions and shadowing effects that are caused by variations in solar and viewing angles.
Non-linear additive noise can affect the result as this method is not linear. Some vegetation
indices such as EVI may encounter error due to the effects of topography [15]. Jiang et al.
(2019) determined that the shadow-eliminated vegetation index (SEVI) can be calculated
with only the reflectance of red and near-infrared bands without further information. Using
SEVI, terrain shadow effects in both self and cast shadows can be eliminated with higher
accuracy than with DEM-based correction methods, particularly in cast shadows [205].

In another method for topographic shadow compensation, the Hyper-Spherical Direc-
tion Cosine Transformation (HSDC) transforms measurement vectors onto a hypersphere by
splitting pixel vectors into illumination/albedo and spectral components. HSDC transfor-



Land 2022, 11, 2025 18 of 30

mation is appropriate for removing topographic effects and has some limitations due to los-
ing information during transformation [67]. The third category of methods for topographic
shadow compensation are the Digital Elevation Model (DEM)-based methods. These
methods can be categorized into three general categories: Lambertian, non-Lambertian,
and empirical methods [206]. The most frequently DEM-based Lambertian methods intro-
duced by researchers are: the Sun-canopy-sensor method, C correction, variable empirical
coefficient algorithm (VECA), Minnaert correction, and Lambert cosine correction.

Cosine correction is a straightforward process that requires only terrain illumination
data and solar zenith angle. This method, however, does not take into account diffuse
illumination, which can account for a considerable amount of irradiance on slopes facing
away from the Sun and within the forest canopy [207,208]. The C correction is an im-
proved version of a cosine correction formulation [207,208]. Multitemporal images taken
in different illumination conditions can benefit from using this method for radiometric
correction [209,210].

Another DEM-based method is Minnaert correction. The Minnaert constant was
adopted by Smith et al. [211] for correcting topographic effects based on a formula proposed
by Minnaert [212]. It is possible to use this method to describe whether or not a surface is
near an ideal diffuse reflector. Minnaert constants change with the cosine of the incidence
angle [213]. This method not only yielded better results than the simple cosine correction
(e.g., Meyer et al. [214], Ekstand [213]), but also did not allow for parameterizing the
skylight irradiance.

A Sun-canopy-sensor (SCS) model was applied for de-shadowing in some studies. It
is extremely efficient in correcting terrain in forests because it preserves the position of
the Sun, sensor orientation, geometry, and canopy structure as well as normalizing the
amount of sunlight within each pixel [215]. As a means of accounting for diffuse radiation,
a semi-empirical moderator (C) was introduced to this method [13]. In addition, these
models cannot be used to classify vegetation surfaces in rugged terrain, nor can they fully
explain the relationship between crown structure, shadow, terrain, and mutual shadowing
within forest and tree canopies [216]. For each pixel, a method for determining the shadow
boundary and sky view factor (SVF) was developed. DEM and Sun position are used in
this model to reconstruct the geometric relationship between land surfaces. Based on the
SVF of each pixel, a ground radiative transfer model is then constructed to determine the
lost radiation of each shadow pixel. For this model, scattering and direct radiation are
used along with a ground multiple reflectance constant [217]. Furthermore, a variational
framework based on cast shadows (CSVF) was proposed by Li et al. (2016) for improving
the topographic correction of the above-mentioned models. Through the correction of the
radiometric distortion caused by cast shadows, which is neglected by the above-mentioned
topographic correction models, the topographic correction results are improved [218].

3.3.3. Cloud Compensation

Clouds are common in remote sensing images. Optical sensors cannot retrieve infor-
mation from underneath clouds because they do not receive any signal from the Earth.
Clouds can, thus, reduce the amount of information that can be obtained from remote sens-
ing images [219,220]. Sometimes, cloudy images are the only available data, so they must
be used. Two main methods have been applied for cloud compensation. One of them is
the multispectral-based method. Multispectral data are employed in this method to detect
and restore clouds. As no tuning parameter is used in this method, it can be automated.
Moreover, it is applied per pixel, so missed or contaminated pixels would not change the
result [64]. Ordinary co-kriging and standardized ordinary co-kriging techniques have
been proposed by Zhang, et al. [221] for intensity interpolation of cloud-contaminated
pixels. Although this method is efficient for small clouds in non-homogeneous landscape,
it is not appropriate for large size clouds. Another method is the multi-temporal-based
method. This method uses both the spectral and spatial coherence of images and has better
performance for large clouds [190]. This method can be used for replacing cloudy pixels
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with cloudless pixels in a reference image. It is assumed that both cloudy and cloud-free
image samples of each band have approximately the same average and standard deviation.
As a result of the large difference between the real average and standard deviation and the
estimated one, this method must be used with caution when using it for large clouds [222].
Wavelet image fusion was also applied in this regard and is rarely efficient for small clouds
as it cannot detect small cloud borders [66]. Solar geometry, sensor viewing computation,
and co-registration are the main challenges associated with this method [64].

3.3.4. Compound Shadow Compensation

Compound shadow compensation methods have been used when more than one
type of shadow is present in an image. Various cloud, topographic, and urban shadows
appearing simultaneously lead to new conditions for de-shadowing [57,195]. Because
of their unique characteristics, these methods are mostly used to correct certain types of
shadows [223]. Some methods, however, can correct shadows of more than one type [67].
Linear correlation correction (LCC) is one of these methods, which is based on linear rela-
tionships and is mainly designed for urban shadows. It can also be applied to compensate
for topographic and cloud shadows. Multisource data fusion is another method. This
method was developed to remove cloud shadows from coarse spatial resolution images,
but it can also be used on fine spatial resolution images of urban regions [191]. The Surface
Reflectance Equality-Based Method is another widely used model for compound shadow
compensation. In this method, a shadowed feature’s surface reflectivity is assumed to be
the same as a sunlit feature’s surface. This method can restore cloud shadows, topographic
shadows, and urban shadows.

While various types of shadows are present in the image, it is critical to know the first
type of shadow that should be corrected. Regarding this, the significance of each type of
shadow must be considered in compound shadow detection. Moreover, the affected area
of the potential shadow objects is important [46]. Therefore, shadows of small objects are
the last priority. On the contrary, cloud shadow is the first to be compensated [67].

3.3.5. Advantages and Disadvantages

The performance of various processes such as segmentation, classification, change
detection, time series analysis, and object detection is improved when shadows are removed
from images. As a preprocessing technique, shadow compensation can be applied to any
RS processing chain. With regards to shadow compensation methods, these approaches
vary depending on the kind of shadow and the type of sensor [28]. Several advantages and
disadvantages are associated with each method.

With the band ratio method, it is possible to remove shadows regardless of the type of
shadow [224]. Despite this, the method is not linear and can be affected by additive noise
such as atmospheric path radiance. Moreover, topographic factors such as shadow may
result in higher error rates for spectral indices with constant values [225]. Models based
on topography (for topographic shadows), recovery approaches (for urban shadows), and
wavelet transformations (for cloud shadows) appear to be the most promising options.
However, there are some challenges with them: recovery methods in fine resolution images
are time-consuming and manual, and models based on topography can be effective, but they
can be complex to implement. In Table 2, we summarize the advantages and disadvantages
of various de-shadowing methods.
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Table 2. An overview of de-shadowing methods.

Method Brief Description Advantage Disadvantage

Visual interpretation Visual analysis-based, Simple, quick, and
easy process Expensive, time-consuming

Band ratio indices Uses band ratio Very effective Spectral resolution is lost

Multisource classification Combination of DEM and
vegetation indices

Topographic component
is omitted

Accuracy and resolution of
DEM can affect the result

Topographic
correction models Mathematical models-based Normalizes area of

sunlit canopy
Relationship between terrain

and shadow is ambiguous

Recovery techniques Mathematical models-based. Simple
Cost efficient

Problems with mixed pixels in
complex landscapes

Data mining techniques
Recovering information from

shadow regions using
data mining

Information of shadow
regions can be restored
without removing them

Time-consuming and
background issue

Histogram matching Uses image
processing techniques

The values of pixels covered
by shadows can be recovered Sensitive to window size

Multisource data fusion Apply fusion techniques Use information of
two images

Limitation of image
acquisition

Time Image registration error

K-means clustering Clustering-based The edges of shadow can be
precisely detected

Depended on the point
distance measurement

inner outer outline profile
line (Ioopl)

Statistic and
thresholding-based

Use of Image
statistical features

Dark objects may be
misclassified as shadows

Microwave data Use passive microwave data Cloud-free imagery
Very low emitted energy,

low resolution,
large area should be imaged

Multisource fusion and
Multi-date imager Wavelet technique Fusion No information in shadow

regions is missed
Inefficient for small

cloudy regions

Unmixing Used concept of unmixing Using information of shadow
regions as endmember

Skylight diffusion is neglected
while collecting endmember

Gamma
correction techniques

Use gamma parameter for
shadow detection

Useful for accurate land
use mapping

A single gamma parameter
is used

Time-consuming

4. Discussion

Two processing operations are required to correct shadows: shadow detection and
de-shadowing. There are several factors that determine whether shadow correction is
successful. Some of these factors include the type of shadow, and the type and spatial
resolution of the sensor that was used for image acquisition. To create images that do not
contain shadows or at least minimize the impact of shadows, an appropriate method for
detecting and de-shadowing shadows is necessary.

Future Research Directions

The detection of shadow effects is rarely studied, despite the fact that many studies
have been undertaken to improve shadow detection methods. In future research, it should
be possible to distinguish between self-shadow and shadow effects on surface biophysical
variables measured by remote sensing. As part of this study, we attempted to provide a
better understanding of how shadows affect surface biophysical variables derived from
remote sensing. More research is needed in the future to quantify the shadow effects
on each of these variables. Moreover, in previous studies, the effect of different shadow
types including urban, cloud, and topography on the surface biophysical variables was
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not evaluated. It is suggested that the effect of the shadow type on the surface biophysical
variables and differences in their effects should be highlighted.

It is possible to enhance existing methods (or implement novel ones) based on the
advantages and drawbacks of shadow detection and compensation methods as discussed
earlier. In general, shadow correction methods (detecting and de-shadowing) must be
quick, reliable, and automatic. Moreover, it is worthwhile to note that most of these
methods should reduce the effect of mixed pixels between shadow regions and similar
classes such as buildings, water bodies, and forests to minimize the uncertainty of LULC
classification or other remote sensing applications due to shadows. In future developments,
it is recommended to purify the information in the shadows as much as possible rather
than remove or lose it completely.

Several aforementioned studies have indicated that shadow can be defined as ab-
normal/noisy areas within fine and medium resolution remote sensing data, specifically
topographic shadow and urban shadow. Therefore, integrating target/outlier detection
methods may be a more effective approach to detecting the location of shadow areas than
simply thresholding. However, several studies have referred to shadow regions as missing
areas within a remote sensing dataset. It is possible to fill shadow pixels in images using
traditional interpolation methods, for example bilinear interpolation, but these methods
may not be appropriate for this purpose. This is because these methods consider uniform
variation across the entire image. Despite this, remote sensing images contain spatial
structure and spectral information is commonly not uniform across a study area. Several
other approaches should be considered in future research, including spatial autocorrelation-
based geostatistical methods or feature correlation-based machine learning methods to
retrieve missing values in shadow areas and predict information in the corresponding
regions. Future research should also focus on developing effective methods for compound
shadow compensation.

5. Conclusions

Shadows can have a substantial undesirable effect on RS data. Therefore, recognizing
and modeling the effect of shadows on RS data and the information that may be extracted
from them is important for environmental analysis. Shadows were classified into four
categories: cloud shadows, topographic shadows, urban shadows, and a combination of
these effects. These shadows can complicate the analysis of coarse, medium, and fine spatial
resolution imagery. The effect of shadows on various variables is a function of the sensor
and Sun geometry, the satellite’s overpass time, and the spatial resolution of the images.

This review shows that shadows can affect a wide variety of properties including
those related to vegetation, ISC, water, snow, albedo, SM, transpiration, evaporation, LST,
urban heat island, LULC maps, and surface coatings. Shadows can reduce the quantity and
quality of information obtained from these various properties while increasing errors and
uncertainty in subsequent analyses. Considering these indirect and direct effects of shadows
on the extraction of properties from remote sensing images, developing effective algorithms
for identifying and correcting shadow effects is of paramount importance. Moreover,
the choice of the most suitable type of method to identify and correct shadow effects is
important in terms of the resulting effect on both qualitative and quantitative accuracy.

Most recent studies have attempted to retrieve information or to reduce the effects of
shadowed areas instead of omitting these areas in further analysis. This is especially true for
ultra-fine spatial resolution UAV images. Shadows in ultra-fine resolution data may have
a different character and heterogeneity to those in the more common fine, moderate, and
coarse spatial resolution satellite sensor imagery. There exist several ways to identify and
correct shadow effects in RS images, but there is no universal way to correct all shadows
(i.e., cloud shadows, shadows of urban phenomena, and topographical shadows). This
is because every shadow type has its own characteristics such that specific correction
techniques are required in each case. There is a growing demand for machine learning-
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based methods to reduce the effects of shadows with promising results, and this avenue
should be explored further for a range of shadow types and different contexts.
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