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Abstract—Nowadays, the need for a more sustainable power
system is leading to the utilization of power-electronic converter
technology (eg. in wind and PV applications); however, stabil-
ity issues in converter-based power systems have been under
discussion for a while. In this paper, a small-signal model is
developed to analyze the control dynamics of grid-connected
power converters and investigate the impact of control gains on
the system stability. The dynamics are expressed using a non-
linear state-space modeling system and the sensitivity level of this
model is studied in details. Linearization is implemented around
the equilibrium points of the system and stability is assessed
through its eigenvalue analysis. Time-domain simulations are
performed to verify the accuracy of the model and corresponding
FFT analysis are obtained when instability occurs in order to
validate the small-signal analysis model.

Index Terms—power electronics, small-signal modelling, grid-
following converter, vector current control, eigenvalue analysis,
stability analysis, time-domain analysis, FFT analysis

I. INTRODUCTION

In the last years, there has been a large increase in the
volume of wind turbines installed in power systems. Europe
had 236 GW of wind energy capacity in 2021, the energy
generated by wind power was equal to 437 TWh in 2021 and
accounted for 15% of the EU-28 consumed electricity [1]. This
high level of renewable penetration to the main grid is leading
the evolution of power systems, moving from synchronous ma-
chines dominated system to become converter-based system.
In that way more flexibility is achieved and maybe also higher
efficiency can be obtained; however, challenges to the stability
of the system will also arise as more components are connected
to the power system [2].

In case of analyzing small disturbances, small-signal mod-
eling is applied and a state-space model of the whole system
can be developed for evaluating the robustness and the dy-
namic phenomena caused by the system’s control structures
[3]. The state-space model of a grid-connected inverter is
developed and analyzed in [4] based on proportional-integral
(PI) controllers of the current and Park’s transformation, but
the system is not linearized around its equilibrium points and
eigenvalue analysis results are not provided. The eigenvalue
trajectories of the system can be observed in [5]–[9] and [12],
as a linearization of the state-space model is implemented. In
[5] and [7]–[9] though, a digital time delay is not considered,

whereas in [6] and [12] the phased-locked loop (PLL) coupling
to the grid and the corresponding dynamics are not investigated
either. In [10], a 1st order Padé approximation is used to
model the time delay, but a higher order of this approximation
is more accurate [11]. Therefore, this paper presents the
development of a linearized small-signal model of a Voltage
Source Converter (VSC) connected to the grid with an LC
filter, where the dynamic relations between the PLL and the
grid, as well as the impact of time delay, are considered. In
this work, the sensitivity of control gains for the small-signal
model’s stability is emphasized for different grid strength
cases. The analysis is validated by simulations in the time
domain as well as in the frequency domain through Fast-
Fourier Transformation (FFT).

II. MODEL DESCRIPTION

In state-space modeling, the model developed should rep-
resent all the dynamics of the converter in the frequency
range of interest and also allow coupling models of the
distribution network. A complete small-signal wind turbine
model should also include the control system for the power
electronic converter circuit. This consists of the PLL, the Park
(abc–dq) transformations, the current and voltage controllers,
the digital time delay in sampled systems as well as any low-
pass filters applied to feedback or to the control signals.

Fig. 1. Control structure of an LC-filtered grid-following converter connected
to the grid.



A state-space model of the system is developed then; it
is described by (1) and consists of nonlinear state equations
that describe the different control dynamics. These equations
correspond to different components of the system, and the
state-space model of the system is the result of combining the
individual state-space models of the system components.

ẋ = Ax+R(x, u)

y = S(x, u)
(1)

The structure of the system addressed in this work is
depicted in Fig. 1. It entails a grid-following converter, which
adopts vector current control. The synchronization of the
converter to the grid is achieved by a PLL. The active and
reactive power – from which the reference output current
is calculated – are regulated to follow the corresponding
reference values through open-loop control; this is a sufficient
method, because an ideal converter is assumed. In addition,
the inverter is assumed to be provided with a stable DC link
voltage in this case.

A. Phase-Locked Loop (PLL)

The control structure of PLL is shown in Fig. 2. The q-axis
component voltage VPCCq at the Point of Common Coupling
(PCC) is selected as the input to the PLL, and the PI controller
outputs the angular speed of the PCC voltage ωPLL. The
voltage VPCCq is regulated to zero due to the PI control; thus,
the PCC voltage can be aligned with the d-axis.

Fig. 2. Control structure of the used PLL in Fig. 1

The state variable of the PLL are

x1 =
[
θPLL ΦPLL

]
(2)

where ΦPLL=
∫

VPCCqdt.
The differential equations of the PLL are the following

θ̇PLL = K I,PLLΦPLL +KP,PLLV PCCq + ωn (3)

Φ̇PLL = V PCCq (4)

B. Current Controller

The Current Control loop, which is shown in Fig. 3,
regulates the converter output current by generating a proper
output voltage reference. From Fig. 3, the following equations
regarding the output of the current controller can be obtained
as:

V normd =
1

V DC
(V PCCd − ωPLLLFILq

+KP,dIerrd +K I,dqerrd)
(5)

V normq =
1

V DC
(V PCCq + ωPLLLFILd

+KP,qIerrq +K I,qqerrq)
(6)

where qerrdq represents the integrators of the current con-
troller.

Fig. 3. Control structure of the current controller (PIcc) in Fig. 1

The error current is derived by the d- and q- axis current
references from which the measured converter currents are
subtracted. The reference currents can be calculated from the
desired active and reactive power, as shown in the following
equations, where VS is the nominal voltage of the grid.

ILdref =
P ref

1.5V S
(7)

ILqref = − Qref

1.5V S
(8)

The state variables of the current controller are

x2 =
[
qerrd qerrq

]
(9)

The differential equations of the current controller are the
following

q̇errd = ILdref − ILd (10)

q̇errq = ILqref − ILq (11)

C. Time Delay

The time delay plays an important role on the digital
control system. It is here designed based on a 3rd order Padé
approximant, which approximates the delay in the plant by
utilizing the following transfer function.

e-Tds =

(
b0 + b1T ds+ ...+ bl (T ds)

l
)(

a0 + a1T ds+ ...+ ak (T ds) k
) (12)

where l and k are the order of Padé approximation, aj =
(l+k−j)!k!
j!(k−j)! , j = 0, ..., k and bi = (−1) i (l+k−i)!l!

i!(l−i)! , i = 0, ..., l.
Also, T d is the delay time which is typically 1.5 times the
sampling period.

The state variables of the time delay are

x3 =
[
xdel,1d xdel,2d xdel,3d xdel,1q xdel,2q xdel,3q

]
(13)

The differential equations of the digital time delay are the
following

ẋdel,1dq = 0xdel,1dq + 1xdel,2dq + 0xdel,3dq (14)

ẋdel,2dq = 0xdel,1dq + 0xdel,2dq + 1xdel,3dq (15)



ẋdel,3dq =− 120

T 3
d

xdel,1dq −
60

T 2
d

xdel,2dq

− 12

T 1
d

xdel,3dq + V normdq

(16)

D. LC Filter and Grid-Side Impedance

The model entails an LC filter - as shown in Fig. 4 - to sup-
press harmonics from the PWM modulation of the converter
as well as high harmonics originated by the converter. The
corresponding state-space subsystem also includes the grid
impedance dynamics, and its state variables are

x4 =
[
ILd ILq V PCCd V PCCq Iod Ioq

]
(17)

Fig. 4. LC filter and grid impedance circuit in Fig. 1

The VSC bridge voltage VI is the output of the time delay
subsystem, and it is calculated as given below

V Id = V DC

(
240

T 3
d

xdel,1d + 0xdel,2d

+
24

T 1
d

xdel,3d − V normd

) (18)

V Iq = V DC

(
240

T 3
d

xdel,1q + 0xdel,2q

+
24

T 1
d

xdel,3q − V normq

) (19)

Thus, the differential equations that describe the dynamics
of the LC filter and grid impedance are given below

İLd = −RF

LF
ILd+

(
− 1

LF
VPCCd

)
+ωPLLILq+

1

LF
V Id (20)

İLq = −RF

LF
ILq+

(
− 1

LF
VPCCq

)
−ωPLLILd+

1

LF
V Iq (21)

V̇ PCCd =
1

CF
ILd +

(
− 1

CF
Iod

)
+ ωnVPCCq (22)

V̇ PCCq =
1

CF
ILq +

(
− 1

CF
Ioq

)
− ωnVPCCd (23)

İod =
1

LS
VPCCd+

(
−RS

LS
Iod

)
+

(
− 1

LS
VSd

)
+ωnIoq (24)

İoq =
1

LS
VPCCq+

(
−RS

LS
Ioq

)
+

(
− 1

LS
VSq

)
−ωnIod (25)

III. SMALL-SIGNAL LINEARIZATION AND STABILITY
ANALYSIS

The main type of small-signal instability seen in a grid-
following converter is the sideband oscillation of the grid
fundamental frequency. The stability of the converter-based
system will be evaluated after the possible equilibrium points
are obtained from the linearized state-space model. The local
stability of the system is assessed by a linear approximation
of the state-space model system which is:

ẋ = Ax (26)

where A is the Jacobian matrix that entails the partial
derivatives of the system at fixed points. The fixed points are
determined by solving ẋ = 0 for all state equations of the
system. In this work, the eigenvalue sensitivity is applied to
evaluate the small-signal stability. This sensitivity is based on
the control parameters of the system’s control structures, which
are varied to identify the magnitude which is correlated to
instability. The small-signal model is first tested for the current
controller’s model accuracy and for different grid strength
cases, starting from a strong grid case scenario where Short-
Circuit Ratio (SCR) is equal to 15 and ending up with a weak
grid case scenario where SCR is equal to 1.5.

TABLE I
SYSTEM AND DEFAULT CONTROL PARAMETERS

Description Value
VS Grid Phase Voltage 311 V
VDC DC Link Voltage Reference 800 V
LF Filter Inductance 3 mH
RF Filter Resistance 0.1 Ω
CF Filter Capacitance 10 µF
fsw Switching Frequency 20 kHz
fS Sampling Frequency 20 kHz
Pref Nominal Active Power 30 kW
Qref Reactive Power 0 kVAR
KI0 Default Integral Gain of Current Control 666.7
KP0 Default Proportional Gain of Current Control 33.3
KI,PLL0 Default Integral Gain of PLL 4.1672
KP,PLL0 Default Proportional Gain of PLL 0.1637

In Fig. 5, the eigenvalue analysis of the small-signal model
is presented for the system and the current control parameters
given in Table I. The design target of the default PI current
controller is to regulate the bandwidth of the current closed
loop at 1/20 of the switching frequency; the default bandwidth
of PLL is 11.77 Hz. The grid inductance LS is specified to
give the corresponding SCR, and the grid resistance RS is
assumed equal to zero The controller gains are varied from
0.1 (deep blue) to 10 (red) times the default value of the
controller and the eigenvalues pair of instability are shown,
where the corresponding critical gain and critical frequency
are underlined. Based on the movements of the eigenvalue
trajectories, the system becomes unstable as the proportional
gain of the current controller increases. The critical frequency
is equal to approximately 1/6 of the switching frequency f sw
in all test cases.

Then the weak grid case is selected for analysis (SCR equal
to 1.5) to perform the eigenvalue analysis for the PLL control



(a) SCR equal to 15 (b) SCR equal to 10

(c) SCR equal to 5 (d) SCR equal to 1.5

Fig. 5. Eigenvalue trajectories for variations in proportional gain of current controller (KP) for different grid strength cases. KP is varied from 0.1 (blue) to
10 (red) times KP0. Green arrow means instability.

(a) KP,PLL is varied from 0.1 (blue) to 10 (red) times KP,PLL0 (b) KI,PLL is varied from 0.1 (blue) to 100 (red) times KI,PLL0

Fig. 6. Eigenvalue trajectories for variations in PLL gains (KP,PLL and KI,PLL) for weak grid case scenario (SCR equal to 1.5). Green arrow means instability.

parameters and the eigenvalues pair where instability is first
observed is pointed out. KP,PLL and KI,PLL are varied and the
eigenvalue trajectories are shown in Fig. 6; both controller
gains lead to instability as being increased, since the PLL
bandwidth is also increased.

IV. SIMULATION RESULTS

In order to validate the small-signal model dynamic re-
sponse, time-domain simulations have been carried out by
using MATLAB Simulink and PLECS Blockset. The circuit
and control parameters are the same as in the small-signal
model and they are shown in Table I. Step changes are applied
to the current control parameters at t = 2 seconds while the

system is stable. The controller gains then obtain the values
that critically impact the system’s stability, and the inductor
current in the dq-frame is utilized to demonstrate the instability
cases in Fig. 7. FFT analysis is implemented when the system
becomes unstable in order to identify the dominant frequency
and compare it with the critical frequency of the corresponding
small-signal model.

The simulation results show that there is a close match
between them and the corresponding stability analysis results
of the small-signal analysis shown in Fig. 5. Then, the time
domain simulation regarding the sensitivity of the PLL control
parameters was implemented when the SCR is equal to 1.5;
the PLL bandwidth is increased from 11.77 Hz (default PLL



(a) SCR equal to 10 - Time domain analysis (b) SCR equal to 10 - FFT Analysis

(c) SCR equal to 5 - Time domain analysis (d) SCR equal to 5 - FFT Analysis

(e) SCR equal to 1.5 - Time domain analysis (f) SCR equal to 1.5 - FFT Analysis

Fig. 7. Time-domain simulations - inductor current for different grid strength cases and changes in KP at t=2 sec

design) to 22.6 Hz and 34.1 Hz for step change in KP,PLL and
KI,PLL respectively. The simulation results that correspond to
the stability analysis results of the small-signal model in Fig. 6
are shown in Fig. 8 and verify the eigenvalue trends shown in
the small-signal model results with a high accuracy.

V. CONCLUSION

The large penetration of converter-based generation leads
to a need of further study of the converter control in order to
understand the stability trends. This paper implements state-
space modelling of the non-linear system of a VSC connected

to the grid with an LC filter. The impacts of the PLL dynamics,
current control dynamics, LC filter and digital time delay are
considered in the structure of the small-signal model and a
detailed small-signal model using state equations is analyzed
for all system components in detail. The eigenvalue trajectories
are obtained, and the eigenvalue trends are assessed based
on the time-domain simulations and FFT analysis when the
system becomes unstable. Based on this assessment, there is a
close match between the obtained small-signal, time-domain
and FFT analysis results for the different grid strength test
cases, and this provides the developed small-signal model



(a) Step change of KP,PLL (b) FFT Analysis after a step change of KP,PLL

(c) Step change of KI,PLL - figure is maximized on the right side (d) FFT Analysis after a step change of KI,PLL

Fig. 8. Time-domain simulations - output current when changes in the PLL control gains are applied at t=2 sec. FFT Analysis is used after the step change
is implemented.

high validity. Therefore, this study analyzes the sensitivity of
vector current control and PLL structure in a non-linear grid-
following converter model with high accuracy; it can be the
basis for future research on more complex control topologies
as well as on studying the sensitivity analysis of small-signal
model in different operating conditions.
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