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Abstract 11 

Quinones represent an important group of highly structurally diverse, mainly polyketide derived secondary 12 

metabolites widely distributed among filamentous fungi. Many quinones have been reported to have 13 

important biological functions such as inhibition of bacteria, or repression of the immune response in insects. 14 

Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many 15 

quinones are known to protect their producing organisms from exposure to sunlight. 16 

Most recently, quinones have also attracted a lot of industrial interest, since their electron donating and 17 

accepting properties makes them good candidates as electrolytes in redox flow batteries, like their often 18 

highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones 19 

are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by 20 

fungal cultivation has great prospects, since fungi can often be grown in industrially scaled bioreactors, 21 

producing valuable metabolites on cheap substrates. 22 

In order to give a better overview of the secondary metabolite quinones produced by and shared between 23 

various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium and Arthrinium, 24 

this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones and 25 

xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from 26 

which they are derived, whenever applicable. The production of these quinone families are compared 27 

between the different genera, based on recently revised taxonomy. 28 

Key points: 29 

Quinones represent an important group of secondary metabolites widely distributed in important fungal 30 

genera such as Aspergillus, Penicillium, Talaromyces, Fusarium and Arthrinium. 31 
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Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as 1 

electrolytes in redox flow batteries.  2 

Quinones are grouped into families and compared between genera according to revised taxonomy. 3 

Key words: quinones, benzoquinones, anthraquinones, naphtoquinones, Aspergillus, Penicillium, 4 

Talaromyces, Fusarium, Arthrinium 5 

Introduction 6 

Quinones and quinols are widespread natural products in invertebrates, plants, algae, fungi, and lichens 7 

(Nohl et al. 1986; Medentsev and Akimenko 1998; Donner 2015; Futuro et al. 2018; García et al. 2018, 8 

Sunasse et al. 2018; Feng and Wang 2020). They are of interest to mankind because of their redox 9 

characteristics and they can be used as antioxidants, antibacterials, antifungals and battery components 10 

among other things (Ito et al. 1973, Kawai et al. 1978; Kawai and Nozawa 1979; Kawai and Cowger 1981; Xu 11 

et al. 2019; Kristensen et al. 2020; Masi and Evidente 2020). Quinones are present as ubiquinones (coenzyme 12 

Q, 6) in mitochondria of all fungi, where they are considered primary metabolites (Kurasihi, 1985; Nohl et al. 13 

1986; Sugiyama et al. 1988; Kurasihi et al. 1990), but other quinones are typical secondary metabolites, being 14 

small molecules produced during chemical differentiation of organisms and of restricted taxonomical 15 

distribution. 16 

The main purpose of this review is to investigate whether quinones and quinols are widespread in the 17 

chemical arsenal of filamentous fungi, focusing on the genera Aspergillus, Penicillium and Talaromyces and to 18 

a lesser extent Fusarium, Arthrinium and Alternaria. The genera Aspergillus, Penicillium and Talaromyces 19 

have recently been revised and subdivided into formal sections, and for Aspergillus and Penicillium also into 20 

formal series based on phylogeny (cladification) and taxonomy (classification) (Houbraken et al. 2020). 21 

Aspergillus contains 446 species, Penicillium contains 483 species, and Talaromyces contains 171 species 22 

(Houbraken et al. 2020) and we follow this taxonomy, and have revised species designations accordingly 23 

when deciding on the species name of quinone producers. In Fusarium there is still a debate on whether to 24 

include most former species called Fusarium in that genus (O’Donnell et al. 2020; Geiser et al. 2021) or to 25 

subdivide Fusarium in Fusarium sensu stricto and other fusaroid genera such as Neocosmospora, Bisifusarium 26 

and others (Crous et al. 2021). We have chosen to mention both options, when mentioning these species, for 27 

example by mentioning both Neocosmospora solani and Fusarium solani. 28 

Structural diversity of quinones 29 

Quinones are an important class of small molecules that are widely distributed in nature and possess various 30 

natural functions as well as biotechnological applications. The most basic quinoid structure is the 31 

benzoquinone (BQ, 1) structure, which consists of a fully conjugated six carbon ring with two keto-groups in 32 

ortho- or para-position. Other frequently observed core structures are naphthoquinones (NQ, 2) and 33 

anthraquinones (AQ, 3) in which the quinoid ring is merged with one or two benzene rings, respectively 34 

(Thomson 1971) (Fig. 1). Most often, fungal quinones are para-quinones, but ortho-quinones are also 35 

observed, such as spathullin C (55) (Thomson 1971, Nord et al. 2019). While BQs, NQs and AQs constitute the 36 
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most commonly observed quinone core structures in biological samples, several other core structures exist. 1 

Notable examples include the four ring tetracenequinone (4) carbon skeleton of the several anthracyclines 2 

produced by Streptomyces (Thomson 1971) and the highly aromatic perylenequinones (5) produced by some 3 

fungi, such as Cercospora and Alternaria sp. (Wu et al. 1989; Daub et al. 2013; Chagas et al. 2016). 4 

Most fungal quinones such as xanthomegnin (81), terreic acid (59), fumigatin (37) and emodin (98) are 5 

biosynthesised by polyketide synthases (PKSs) (Turner 1971; Turner and Aldridge 1983; Frisvad et al. 2020). 6 

These are usually non-reducing or partially reducing, and their biosynthesis often involves several additional 7 

oxidation steps, resulting in highly oxygenated compounds. Interestingly, only a few examples of non-PKS 8 

derived fungal quinones exist. These include nonribosomal peptide synthetase (NRPS) derived BQs such as 9 

asterriquinone (29) and atromentin (31) which are dimers of modified amino acids, often with further 10 

modifications, such as prenylations, as is the case with terrequinone A (30) (Balibar et al. 2007). 11 

Further structural diversity arises with modifications of the core structure of the quinone with functional 12 

groups. In addition to oxidations another common modification in naturally derived quinones are 13 

methylations as is the case with the AQ emodin (98). However, many other modifications occur, including 14 

prenylation (e.g. stemphone B, 56), halogenation (e.g. nalgiolaxin, 119), amination (e.g. 2-aminoemodin, 110) 15 

and acetylation (e.g. fumiquinone A, 42) as well as almost any combination of these. Furthermore, some 16 

quinones are dimers (e.g. phoenicin (=phoenicine, phenicin, 47) and skyrin (95) (Thomson 1971). Another 17 

example of quinone diversity is found in terreic acid (59), produced by Aspergillus terreus, which contains an 18 

epoxy-group on its core quinoid ring (Sheehan et al. 1958). It can be argued whether epoxy-containing 19 

quinone structures like this can be considered true quinones, however, for the purpose of this review, they 20 

are included. Thus, quinones possess a vast structural diversity based on the core carbon structure as well as 21 

the addition of a host of different functional groups. 22 

Biological function of quinones 23 

Quinones can undergo electron transfer reactions, resulting in three possible quinone states; the fully 24 

reduced hydroquinone (or quinol) state (QH2), the fully oxidized quinone state (Q) and the intermediate 25 

semi-quinone radical state (QH•) (Uchimiya and Stone 2009; El-Najjar et al. 2011). Collectively, molecules in 26 

any of these states are occasionally referred to as quinones in the literature. 27 

The vast diversity in structure enables quinones to have a broad spectrum of applicability in biological 28 

systems. The quinones involved in membrane bioenergetics, such as ubiquinone (6, Fig. 2), all possess a 29 

hydrophobic chain, which assist in membrane anchoring. The quinones involved in anaerobic respiration are 30 

primarily NQs, as these are more susceptible to reactions with oxygen compared to BQs, which have a higher 31 

standard reduction potential (Berry 2002). Some bacteria such as Shewanella oneidensis use quinols in 32 

electron transfer to reduce insoluble metal outside the cell in an anaerobic respiration process (Newman and 33 

Kolter 2000; Tikhonova and Popov 2014). 34 

Some quinones are allelochemicals that inhibits or kills competing organisms (Uchimiya and Stone 2009). An 35 

example of such are the dimeric BQ oosporein (48), which increases virulence of the fungus Beauveria 36 

bassiana, by repressing the host immune response of insects (Feng et al. 2015; Mc Namara et al. 2019). In 37 

This version of the article has been accepted for publication,  
after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,  

but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. 
The Version of Record is available online at: https://doi.org/10.1007/s00253-021-11597-0



   
 

4 
 

addition, oosporein (48) shows anti-bacterial effect in insect cadavers indicating that it might help the fungus 1 

to avoid microbial competition after the insect host is dead (Fan et al. 2017). In fact, in an attempt to discover 2 

chemicals for pest controls, a total of 41 BQs (both synthetic and non-synthetic) were tested for their toxic 3 

effect on the subterranean termite Coptotermes formosanus (Mozaina et al. 2008). It was discovered that 4 

BQs with no substitutions, or only methyl or methoxy substitutions, showed none to very low termiticidal 5 

activity, while BQs which had one or two hydrophobic substitutions on one side of the ring, and one to two 6 

electron donating substitutions on the other side of the ring showed the highest toxicity (Mozaina et al. 7 

2008). Similar experiments against C. formosanus with 17 natural NQs showed that NQs with no or a non-8 

polar substitution in the quinoid ring, e.g. juglone (75), showed higher activity that the other NQs. The 24 9 

natural AQs studied, generally had little activity against the termites (Osbrink et al. 2005). Mozaina et al. 10 

(2008) lists several references in which quinones are tested for the toxicity towards other agricultural pests.  11 

Another example of allelochemical quinones are the perylenequinones (5) made by some plant-pathogenic 12 

fungi. These quinones act as photosensitizers, generating reactive oxygen species by reactions with sunlight, 13 

which causes cellular damage of the target plant (Daub et al. 2013). Few studies have investigated the mode 14 

of action of allelochemical quinones, but it is known that some BQs and AQs disrupt electron transfer in 15 

plants. A notable example is the plant derived BQ sorgoleone (7), which have a long acyl chain resembling the 16 

terpenoid chain seen in ubiquinones and plastoquinones. It is produced by sorghum and have been shown to 17 

inhibit photosystem II of other plants (Czarnota et al. 2001; Vyvyan 2002). Another example is juglone (75), 18 

produced by black walnut, which have been shown to affect both photosynthesis and respiration of plants 19 

(Hejl et al. 1993). 20 

Some fungal bis-naphthopyrones have been shown to repel anthropod predation on fungal tissue, but the 21 

quinones involved did not show any particular toxicity towards the insects. This was also the case for 22 

aurofusarin (145), produced by several Fusarium species. Likewise, activity was shown for the structurally 23 

related quinones xanthomegnin (81) and viomellein (83) which have been observed in other ascomycetes, 24 

e.g. Penicillium and Aspergillus species (Xu et al. 2019). 25 

Some AQs have been proposed to protect organisms from exposure to sunlight. An evolutionary study, 26 

showing that lichens, which have evolved to live in habitats with high sun exposure, were more likely to 27 

produce AQs, compared to lichen evolved to live in other, less exposed niches (Gaya et al. 2015). It has also 28 

been shown that synthesis of physcion (102), which is produced by many fungal species, is induced under UV-29 

B radiation (app. 280-320 nm) in some lichens (Solhaug et al. 2003; Solhaug and Gauslaa 2004). 30 

Quinones produced by basidiomycetes have been shown to be involved in the degradation of plant material 31 

by generating reactive oxygen species through a process called quinone redox cycling (Kerem et al. 1999; 32 

Jensen et al. 2002; Baldrian and Valášková 2008). Kerem et al. (1999) found that 2,5-dimethoxy-1,4-33 

benzoquinone (DMBQ, 8) produced by brown rot fungus Gloeophillum trabeum, is used to degrade 34 

polyethylene glycol (PEG), a model for wood polymers: DMBQ (8) is reduced by the fungus to its 35 

hydroquinone-form, 2,5-dimethoxthydroquinone (DMHQ, 9), which in turn reduces iron(III) to iron(II). The 36 

resulting semi-quinone radical reacts with oxygen, producing reactive oxygen species such as 37 
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hydrogenperoxide. Hydrogenperoxide and iron(II) then function as Fenton reagents in the depolymerization 1 

of PEG (Kerem et al. 1999). 2 

Biotechnological uses of quinones 3 

Quinones can be used in many aspects of technology, including in supramolecular chemistry (Fang et al. 4 

2020), in microbial fuel cells (Kracke et al. 2015; Kisieliute et al. 2019), in pest control (Segaran and Sathiavelu 5 

2019), as dyes and colorants (Hyde et al. 2019), as drugs (Nweze et al. 2020) and even as electrolytes in redox 6 

flow batteries (Huskinson et al. 2014; Kristensen et al. 2020). On an industrial level, quinones such as AQs and 7 

NQs are synthesized from raw components in coal tar (Vogel 2000; Collin et al. 2003), but the possibility of 8 

producing them by fungal cultivation has great prospects as a more environmentally viable alternative. Many 9 

filamentous fungi and yeasts can grow in industrially scaled bioreactors, producing valuable metabolites on 10 

cheap substrates (Sen et al. 2019). Additionally, the high structural diversity of fungal quinones is desirable 11 

for industries where chemical diversity is an advantage, for example in the search of new antibiotics, cancer 12 

drugs, food colorants and textile dyes. Below, the prospects of using quinones as pigments and drugs on an 13 

industrial level, are highlighted. When possible, examples of fungal quinones are used, but also studies where 14 

quinones are plant-derived are referenced. 15 

Quinones as dyes and colorants 16 

Pigment production from natural sources is increasing in popularity with concerns of the adverse effects of 17 

synthetic dyes (Oplatowska-Stachowiak and Elliott 2017). Traditionally, naturally occurring pigments are 18 

derived from insects and plants but production is limited on an industrial scale due to factors such as 19 

seasonal variability (Mapari et al. 2005; Sen et al. 2019). In contrast, microorganisms such as fungi can grow 20 

in industrially scaled bioreactors with relatively cheap substrates and industrial waste products (Panesar et al. 21 

2015). Additionally, many fungal pigments are secreted under submerged fermentation, improving down-22 

stream processing compared to traditional pigment sources such as plants (da Costa Souza et al. 2016; 23 

Hernández et al. 2019; Suwannarach et al. 2019). 24 

Fungal pigments are very diverse in structure, and besides quinones, include chemical classes such as 25 

carotenoids, melanins, flavins, phenazines and azaphilones (Dufossé et al. 2014; Dufossé 2018). When 26 

considering the quinoid class, AQs are the most investigated for food colorants and textile dyes (Mapari et al. 27 

2005; Dufossé 2018; Räisänen 2019; Suwannarach et al. 2019) with the industrially available fungal pigment 28 

Arpink Red™ as an often cited example. Arpink Red™ is pH- and heat stable and is assumedly produced by 29 

Penicillium oxalicum, although this identification has been miscredited by Mapari et al. (2005) (Dufossé et al. 30 

2005; Mapari et al. 2005). Another example is bostrycin (148), produced by Nigrospora aurantiaca 31 

(Suwannarach et al. 2019) and Arthrinium phaeospermum (van Eijk 1975). This NQ was found to be very 32 

promising as a textile dye and showed no toxicity towards human embryonic kidney cell (HEK 293T) 33 

(Suwannarach et al. 2019). 34 

Microbial pigments still present challenges that needs to be addressed before they can completely 35 

outcompete synthetic alternatives. Most notably are issues regarding toxicity, production cost and chemical 36 

stability. There are many ways to improve pigment production and thus reduce the cost of microbial 37 

pigments and a lot of work is put into strategies such as growth condition optimization, effective downstream 38 
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processing and genetic engineering, all substantially increasing the potential of fungal derived quinoid 1 

pigments for industrial use (Sen et al. 2019). For example, the low chemical stability of some fungal quinones 2 

in the food colorant industry have been addressed by innovative solutions such as micro- and nano-3 

emulsions (Özkan and Bilek 2014; Gupta et al. 2016). 4 

Quinones as pharmaceuticals 5 

Quinones have found their use as important pharmaceuticals most noticeably as laxative agents, cancer-6 

therapy drugs and microbiotics. 7 

Laxative agents: AQs have been widely used as laxative agents. Especially plant-derived glycosylated ones are 8 

preferred as they are non-active in the small intestine, but upon deglycosylation by bacterial activity in the 9 

large intestine, they become active and induce diarrhea by altering the excretion by epithelial cells (Gorkom 10 

et al. 1999). A well documented example is emodin (98) which is produced by many plant and fungal species 11 

(Srinivas et al. 2007). 12 

Anti-cancer: Much research have been made on the anti-tumor effects of quinones and the effects have been 13 

shown for both NQs and AQs (Malik and Müller 2016; Futuro et al. 2018; Pereyra et al. 2019). These quinones 14 

target cancer cells by a host of different mechanisms, for example by generating reactive oxygen species 15 

(ROS), which damages proteins, lipids, DNA as well as RNA. Both NQs and anthracyclines have also shown to 16 

interfere with the function of topoisomerase II, which is required for DNA synthesis and repair in mammalian 17 

cells (Malik and Müller 2016; Pereyra et al. 2019). As in the case of laxitative agents, emodin (98) is also a well 18 

studied anti-cancer agent (Srinivas et al. 2007). Some quinones have shown promise as photosentitizers in 19 

photodynamic light therapy. Here, the quinone is injected intravenously into the patient before being excited 20 

by a laser directed at the area of the tumor. The excited quinones react with oxygen to generate ROS, leading 21 

to tumor cell necrosis (Diwu and Lown 1994; Diwu et al. 1996; Rajendran 2016). 22 

Anti-microbial: Many quinones have anti-bacterial, anti-fungal and/or anti-parasiticidal effects. When 23 

regarding Penicillium and Aspergillus-derived quinones, especially AQs have been investigated for their anti-24 

microbial effects against gram-positive and gram-negative bacteria (Masi and Evidente 2020). Examples 25 

include iso-rhodoptilometrin-1-methyl ether (10), averantin (134) and nidurufin (133) isolated from A. 26 

versicolor, which all showed anti-bacterial activity against gram-positive bacteria (Lee et al. 2010; Hawas et al. 27 

2012). Other examples include juglanthraquinone A triglycoside (116) from A. fumigatus and versicolorin C 28 

(130) and isoversicolorin C from A. nidulans, which targets both gram-positive and gram-negative bacteria 29 

(Abdel-Aziz et al. 2018; Yang et al. 2018). AQs from Penicillium with anti-bacterial effect include 2’-acetoxy-7-30 

chlorocitreorosein (109) from P. citrinum which showed effect against Vibrio parahaemolyticus (He et al. 31 

2017) and penicillanthranin A (113) (also from P. citrinum) which showed activity against Staphylococcus 32 

aureus (Khamthong et al. 2012). Additionally, the AQ dimers 6,6′-oxybis(1,3,8-trihydroxy-2-((S)-1-33 

methoxyhexyl)-anthracene-9,10-dione (122) and 6,6′-oxybis(1,3,8-trihydroxy-2-((S)-1-hydroxyhexyl) 34 

anthracene-9,10-dione (123) isolated from A. versicolor and rugulosin A (11) isolated from P. radicum 35 

(=Talaromyces radicus) showed activity against S. aureus (Yamazaki et al. 2010; Li et al. 2019). Mostly, AQs 36 

have been tested for their antibacterial effects, but there are examples of other types of quinones: 37 

stemphone C (57) isolated from an Aspergillus species, showed strong synergistic effects with other 38 
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antibiotics in the inhibition of methicillin-resistant S. aureus (Koyama et al. 2005). From P. spathulatum, 1 

spathullin A (53), an 1,2-hydrobenzoquinol, showed activity against several bacteria, including S. aureus 2 

(Nord et al. 2019). Quinones from Fusarium with antibiotic effects include aurofusarin (145) and bivakerin 3 

(146) (Sondergaard et al. 2016). Furtermore, several BQs isolated from plants have been shown to have 4 

antibacterial effects (Guntern et al. 2001; Yang et al. 2001; Drewes et al. 2005). 5 

Few studies have tested the anti-fungal activity of quinones from Penicillium and Aspergillus but there are 6 

some. Examples include the AQs 6,8,1’-tri-O-methyl averantin (135), aversin (131) and 6,8-di-O-methyl 7 

versiconol (12) from a fungus identified as Penicillium purpurogenum which showed moderate inhibitory 8 

activity towards Botrytis cinerea (Li et al. 2014) and juglanthraquinone A triglycoside (116) from A. fumigatus, 9 

which showed activity against yeast and filamentous fungi (Candida albicans and A. niger) (Abdel-Aziz et al. 10 

2018). Quinones isolated from plants also showed to have anti-fungal activity, including both BQs (Suzuku et 11 

al. 1998; Guntern et al. 2001; Drewes et al. 2005) and NQs (Sasaki et al. 2002). 12 

Several quinones have anti-viral effects. Ióca et al. (2016) found that naphthoquinoneimine (13) isolated from 13 

an Aspergillus strain and emodin (98) and ω-hydroxyemodin (=citreorosein) (104) isolated from Penicillium 14 

strains had moderate to strong activity against several vira (Avian metapneumovirus (AMPV), Bovine diarrhea 15 

virus (BVDV), Herpes Simplex Virus Type 1 (HSV-1)). Additionally, Huang et al. (2017) found anti-viral effect 16 

against HSV-1 with the AQs aspergilol H (137) and I (138) isolated from A. versicolor. 17 

Some fungal derived quinones have also been shown to be affective against parasites. Although not isolated 18 

from Aspergillus or Penicillium sp., anti-malarial effects have been shown from fungal AQs and BQs 19 

(Tansuwan et al. 2007; Kornsakulkarn et al. 2012). Furthermore, emodin (98) has been shown to possess 20 

inhibitory effect against the gut-parasite Giardia lamblia (Chabra et al. 2019). 21 

Emodin (98) has also been cited as a mycotoxin (Wells et al. 1975; Hasan, 1998), but most data indicated that 22 

it is only marginally toxic (Izkaki, 2002; Gruber-Dorninger et al. 2017). However, other quinones such as the 23 

NQs xanthomegnin (81) and viomellein (83) have been shown to be toxic (Carlton et al. 1973, Carlton et al. 24 

1976, Zimmermann 1977, Hald et al. 1983, Scudamore 1986, Mills et al. 1995). 25 

Taxonomic distribution of quinones and hydroquinones 26 

Ubiquinones 27 

Ubiquinones (6) are present in the mitochondria in all eukaryotic organisms, but also in bacteria, as an 28 

essential part of the electron transport chain and are examples of primary metabolites (Nohl et al. 1986). 29 

Despite being primary metabolites, the type of ubiquinone present in fungi has a certain taxonomical value in 30 

Aspergillus classification (Kurasihi 1985; Sugiyama et al. 1988; Kurasihi et al. 1990; Chang et al. 1991; Kuraishi 31 

et al. 2000) and Penicillium classification (Kurasihi et al. 1991). Ubiquinones are named by the number of 32 

isoprene units and whether one or more isoprene units have had a double bond reduced, e.g. Q-10(2H) 33 

denotes a ubiquinone with 10 isoprene units, where one isoprene unit is reduced (Itoh et al. 1988). In Table 34 

1, where species of Aspergillus have been re-classified according to an updated taxonomy and phylogeny 35 

(corrected according to Houbraken et al. (2020)), it can be seen that ubiquinone isoprenoid number and type 36 
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is section specific to a certain extent and in most cases follow the phylogeny of the large genus Aspergillus. 1 

An interesting exception is Aspergillus subgenus Circumdati section Nigri that is different from the other 2 

sections in subgenus Circumdati having ubiquinone Q-9. According to phylogenomic analysis of Aspergillus by 3 

Steenwyk et al. (2019), section Nigri is a sister section to subgenus Nidulantes in contrast to the phylogeny 4 

presented by Kocsubé et al. (2016) and Houbraken et al. (2020), but also in contrast to phenotypic characters 5 

in the classification of Aspergillus (Frisvad and Larsen 2015; Chen et al. 2016b; Vesth et al. 2018; Barrett et al. 6 

2020). A comparison of mitochondrial and nuclear genome data may help solving this taxonomic and 7 

phylogenetic dilemma. 8 

In the large genus Penicillium, all species have ubiquinone Q-9 as the main mitochondrial quinone (Kurasihi et 9 

al. 1991; Kreisel and Schubert (1990), taxon names corrected according to Houbraken et al. 2020). However, 10 

depending on the chemical analytical method used, the profiles of ubiquinones may be more complex 11 

containing also some Q-10(H2), Q-12 and traces of Q-10 (Paterson and Buddie 1991; Paterson 1993). The 12 

main ubiquinone system in Talaromyces and Trichocoma is Q-10(H2) sometimes with a relative smaller 13 

amount of Q-10(H4), while the dominant ubiquinone system in Evansstolkia, Hamigera, Monascus, 14 

Pseudohamigera, Pseudopenicillium, Warcupiella and Xeromyces is Q-10 and the dominant ubiquinone 15 

system in Ascospirella, Penicilliopsis, Phialomyces, Sclerocleista, and Thermoascus is Q-9 (Kuraishi et al. 1985; 16 

Kuraishi et al. 1990; Kuraishi et al. 1991; Kuraishi et al. 2000; Ogawa et al. 1997). 17 

Quinones involved in conidum and sclerotium formation 18 

Most dark coloured fungi are protected by melanin, including black yeasts, Alternaria, Cladosporium, 19 

Curvularia, and other dematiaceous filamentous fungi (Bell and Wheeler 1986). In dematiaceous fungi, and 20 

many species of Aspergillus, Penicillium and Talaromyces with dark green conidia, melanin is derived from a 21 

pathway involving 1,8-dihydroxynaphthol (DHN, 14) (Wheeler and Stipanovic 1985; Bell and Wheeler 1986; 22 

Wheeler and Hocking 1995; Sapmak et al. 2015; Perez-Cuesta et al. 2020). Certain groups of species within 23 

the genus Aspergillus, however, have another type of melanin, or even two types of melanin. For example, in 24 

addition to DHN-derived melanin, A. nidulans produces melanin derived from the tyrosine-derived DOPA-25 

pathway that involves the quinol L-3,4-dihydroxyphenylalanine (L-DOPA, 15) and the corresponding BQ DOPA 26 

quinone (16) as intermediates. A. fumigatus (and other species from section Fumigati) has both DHN-derived 27 

melanin and the tyrosine-derived pyomelanin, which involves the BQ benzoquinoacetate (17) as intermediate 28 

(Geib et al. 2016; Chang et al. 2019; Blachowicz et al. 2020; Chang et al. 2020; Perez-Cuesta et al. 2020). In 29 

Aspergillus section Flavi with yellow green conidia, the DHN-derived melanins are not present, but the 30 

melanin produced is based on the AQ asparasone A (18) which after dehydration and being processed with 31 

laccases is converted into melanin (Chang et al. 2020). In Aspergillus section Terrei, melanin (called Asp-32 

melanin) is also derived from tyrosine, but in that case quinones do not seem to be involved, but rather 33 

aspulvinone E (19) (Chang et al. 2020). 34 

In most Aspergillus and Penicillium species with green conidia, DHN-derived melanins are involved, where 35 

flaviolin (151) is a shunt product, however some Aspergilli with green conidia have an additional pathway in 36 

order to produce DOPA-derived melanin (Chang et al. 2020). In Aspergillus section Circumdati with yellow 37 

conidia, melanin is based on the NQ viomellein (83) and the non-quinone vioxanthin (20), while in section 38 
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Candidi, melanin is only present in the black sclerotia (Varga et al. 2007). The conidia of the Candidi species 1 

are protected by terphenyllin (21) and similar secondary metabolites (Rahbæk et al. 2000; Varga et al. 2007; 2 

Kjærbølling et al. 2018; Houbraken et al. 2020). In general, most filamentous fungi and some yeasts can 3 

produce melanin, if not always in the conidia or the mycelium, then in sclerotia and ascomata (Butler et al. 4 

2009; Chang et al. 2020). Therefore quinones may be produced by most melanin producing fungi, but it may 5 

require genetic manipulation in order to have the quinones accumulated in sufficient amounts. 6 

Secondary metabolite quinones in Aspergillus, Penicillium and 7 

Talaromyces 8 

In the following part of this review, we investigate the quinones produced as secondary metabolites in the 9 

genera Aspergillus, Penicillium and Talaromyces. In Table 2, 3 and 4, quinones observed in these genera are 10 

listed. The genera is organized into formal sections based on recently revised phylogeny and taxonomy 11 

(Houbraken et al. 2020). To better compare quinone production within and between genera, we have 12 

grouped quinones in what we describe as quinone families. Quinone families are based on structural 13 

similarity, as argued below, occationally including information from known biosynthetic pathways, when 14 

applicable. In cases where only one quinone is present in a family, the quinone name is also used as the 15 

family name. Representative structures are shown for the BQ, NQ and AQ families (Fig. 3, Fig. 4 and Fig. 5). 16 

Benzoquinones 17 

Aculeatusquinones are a relatively small family of BQs. They are characterized by a para-dimethylated BQ 18 

moiety fused to a polysubstituted benzene ring. They have been observed in both Penicillium section Citrina 19 

and Aspergillus section Nigri and include aculeatusquinone A (22), B (23) and D (24). 20 

Anserinones have been isolated from species in Penicillium section Citrina. The family includes anserinone A 21 

(25), anserinone B (26), formylanserinone B (27) and hydroxymethylanserinone B (28), all sharing a unique 22 

carbon scaffold consisting of an O-methylated BQ ring, attached to an oxygenated three-carbon side chain. 23 

Asterriquinones are an unusual family of BQs in that they are derived from single module NRPS enzymes, 24 

rather than from a non reducing PKS (Balibar et al. 2007). They are derived from fusion of two de-aminated 25 

tryptophan molecules and consist of a dihydroxybenzoquinone fused to two prenylated indoles and are 26 

observed in Aspergillus sections Terrei and Nidulantes. It is a large family with many known quinones and 27 

include at least 25 asterriquinone derivatives, such as asterriquonine A-D, isoasterriquinone, and 28 

asterriquinone monoacetate, as well as terrequinone A. Asterriquinone (29) and terrequinone A (30) are 29 

shown as examples of the family. 30 

Atromentins are, like asterriquinones, derived from NRPS enzymes but uses two tyrosine molecules as starter 31 

units (Geib et al. 2019), and differ by the lack of prenylation. They are produced by both Aspergillus section 32 

Nigri as well as Penicillium section Chrysogena and includes atromentin (31) and cycloleucomelone (32). 33 

Citrinoids are BQs associated with the citrinin (33) biosynthetic pathway and includes citrinin H1 (34) and its 34 

stereoisomer 1-epi-citrinin H1. Citrinin (33) itself is not a quinone, but citrinin H1 (34) can be synthesized by 35 
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heating molecules of citrinin in water (Trivedi et al. 1993), and has also been discovered in P. citrinum 1 

(section Citrina) along with 1-epi-citrinin H1 (Wang et al. 2019). 2 

Citriquinones consists of the structurally similar BQs citriquinone A (35) and B (36), isolated from P. citrinum 3 

(Ranji et al. 2013) (Section Citrina), and contain a characteristic butan-2-yl formate side chain. Citriquinone A 4 

(35) has shown antibacterial and anticancer activity (Ranji et al. 2013). 5 

Fumigatins consists of a large group of BQs observed in Aspergillus section Fumigati and Penicillium sections 6 

Aspergilloides, Exilicaulis, Gracilenta and Canescentia. They appear heavily decorated, from several oxidation 7 

steps and are all O-methylated. They include fumigatin (37), spinulosin (38), 3,6-dihydroxytoluquinone (39), 8 

fumigatin oxide (40), fumigatin chlorohydrin (41), fumiquinone A (42), fumiquinone B (43), and potentially 9 

many others. Frisvad et al. (2009) defined the fumigatin family to also include less decorated BQs such as 10 

toluquinone (61). In this work however, we argue that fumigatins and toluquinones are kept as separate 11 

families, as members of the toluquinone family have been observed in other biosynthetic pathways as well, 12 

such as the patulin and yanuthone pathways (Ali et al. 2017; Frisvad et al. 2020). 13 

Macrophorinquinones include 4’-oxo-macrophorin A (45) and D (46) due to their structural similarity to 14 

macrophorin D (44), which itself is not a quinone (Fujimoto et al. 2001). Their prenylation makes them highly 15 

similar to yanuthones (see below), although macrophorinquinones distinguish themselves by having cyclized 16 

terpenoid moieties rather than the linear one observed for yanuthones. Macrophorinquinones are observed 17 

in Penicillium section Chrysogena. The quinones in this family further carries an epoxy group in the quinoid 18 

moiety and have shown immunosuppressive effects (Fujimoto et al. 2001; Marcos et al. 2010). 19 

Phoenicin (47) is a BQ dimer constructed from two 2-hydroxy-6-methyl-benzoquinones. It is structurally 20 

related to the even more oxygenated oosporein (48), which has been shown to act immunosuppressive 21 

towards insects (Feng et al. 2015). Phoenicin (47) is observed in Penicillium sections Charlesia, Citrina and 22 

Exilicaulis, while oosporein (48) has been observed in Beuveria and never in Penicillium (Posternak 1938; 23 

Reilly et al. 1940; Feng et al. 2015). 24 

Sorbicillinoids are a large family of molecules structurally related to sorbicillin (49). Sorbicillin itself is not a 25 

quinone, however several derivatives are. These include 3-acetonyl-2,6-dimethyl-5-hydroxy-1,4-26 

benzoquinone (ADH-BQ, 50), 2-(2’,3’-dihydrosorbyl)-3,6-dimethyl-5-hydroxy-1,4-benzoquinone (DDH-BQ, 51) 27 

and sorrentanone (52) produced by P. chrysogenum. 28 

Spathullins appear in Penicillium section Brevicompacta and were isolated from P. spathulatum (Nord et al. 29 

2019). Spathullin A (53) and spathullin B (54) are both quinols, while spathullin C (55) is an ortho-quinone. 30 

Spathullin A (53) and B (54) has shown antibacterial activity, and the compounds in the family is are proposed 31 

to be NRPS derived, originating from tyrosine and cysteine (Nord et al. 2019). 32 

Stemphones include stemphone B (56), stemphone C (57) and cochlioquinone D (58), isolated from an 33 

unknown Aspergillus sp. These meroterpenoid BQs all share a unique cyclised sesquiterpenoid moiety as well 34 

as a five-carbon side chain, both with various modifications, on either side of the quinoid part. 35 
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Terreic acid (59) is a BQ with an epoxy group in the quinoid ring. It is produced by Aspergillus sections Terrei 1 

and Cervini. Its biosynthetic pathway begins from 6-MSA (Turner 1971; Frisvad et al. 2020).  2 

Toluquinones are simple BQs which appear in several biosynthetic pathways, including the patulin and 3 

yanuthone pathways (Ali et al. 2017; Frisvad et al. 2020). They include toluquinone (61), gentisylquinone (62) 4 

and chlorogentisylquinone (63). As toluquinones are known precursors/shunt products of the patulin 5 

pathway (Ali et al. 2017), in the context of this review, sections able to produce patulin were deduced to also 6 

have the capacity to produce toluquinones. Thus, toluquinones are observed in Aspergillus sections Cremei 7 

and Clavati and Penicillium sections Gracilenta, Lanata-Divaricata, Canescentia, Fasciculata, Formosana, 8 

Osmophila, Penicillium, Robsamsonia and Roquefortorum. 9 

Variecolorquinone B (64) is an O-methylated BQ merged to a substituted benzoic acid moiety via a methylene 10 

bridge. It does not appear to be related to its namesake variecolorquinone A (115) which is an AQ belonging 11 

to the emodin family (see below). Variecolorquinone B (64) is observed in Aspergillus section Aspergillus. 12 

Violaceoids include violaceoid A-C (65, 66, 67) observed in Aspergillus section Nigri. They consist of a 13 

gentisylquinone (62) in its quinol form, substituted with a seven-carbon chain with various degrees of 14 

oxidation. 15 

Yanuthones are a large family of polyketide derived molecules fused to terpenoid moieties (Holm et al. 2014; 16 

Frisvad et al. 2020). While not all yanuthones are quinones, some examples from this family includes 17 

yanuthone B (68) and yanuthone D (69) produced by Aspergillus section Nigri and peniginsengin B (70) and 5-18 

farnesyl-methylquinone (71) and produced by Penicillium section Chrysogena. 19 

Naphthoquinones 20 

Aspetritones includes aspetritone A (72) and aspetritone B (73), which are produced by species in Aspergillus 21 

section Candidi (Wang et al. 2017). They are both tricyclic NQs containing two O-methyl groups on the 22 

naphtoquinoid part, which is attached to a cyclohexanol carrying two hydroxyl and a methyl group. The 23 

quinoid moiety is on opposite rings between aspetritone A (72) and B (73). 24 

Griseusins are a family of NQs having a 20-carbon backbone and includes many members and some of them 25 

have shown antibacterial and anticancer activity (Tsuji et al. 1975, He et al. 2007, Li et al. 2007). Although 26 

most griseusins have been isolated from bacteria, Li et al. (2006) discovered griseusin C (74) from an 27 

unknown Penicillium sp. 28 

Juglones are simple, scarcely decorated NQs. They include 6-ethyl-7-methoxy-juglone (76) observed in 29 

Aspergillus section Cervini, 2-hydroxy-3-methyl-1,4-naphthoquinone (77) from Penicillium section Chrysogena 30 

and juglone (75) from Talaromyces section Talaromyces. They might not be in the same biosynthetic 31 

pathway, but as their structures are so similar, we choose to group these as one family in the context of this 32 

review.  33 

Naphthgeranines includes napthgeranines A-D and others as well as naphthoquinone C (78). They all contain 34 

a 20-carbon backbone, including two distinct methyl groups. While most of the naphthgeranines have been 35 
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isolated from Streptomyces sp., naphtoquinone C (78) have been observed in an unknown Penicillium sp. 1 

(Wessels et al. 1991; Li et al. 2006). 2 

Purpurogenone (79) is a naphthoquinone observed in Taleromyces section Trachyspermi. 3 

Thysanone (80) is a naphtopyrone with a NQ fused to a pyrone. Unlike the xanthomegnins, the pyrone is 4 

fused to the quinoid rather than the benzene ring in thysanone (80). It is produced by Penicillium section 5 

Thysanophora. 6 

Xanthomegnins are a large group of naphthopyranones and include xanthomegnin (81), semixanthomegnin 7 

(82) viomellein (83), rubrosulphin (84) and viopurpurin (85). With the exception of semixanthomegnin (82), 8 

these compounds are dimers, consisting of two naphthopyrones, with at least one being a quinone. They are 9 

produced in Aspergillus section Circumdati, Penicillium sections Fasciculata and Penicillium and Talaromyces 10 

section Islandici. 11 

Xanthoviridicatins are structurally similar to xanthomegnins but instead of two naphthopyrones, they consist 12 

of a naphthopyrone coupled to a NQ. They include xanthoviridicatin D-G (86, 87, 88, 89) and xanthoradone A-13 

C (90, 91, 92), which differ by the orientation of the NQ. Xanthoviridicatin D-G (86, 87, 88, 89) has been 14 

observed in Penicillium sections Chrysogena and Fasciculata, while xanthoradone A-C (90, 91, 92) has been 15 

observed in Talaromyces section Talaromyces. 16 

Anthraquinones 17 

1,3-dihydroxy-6-hydroxymethyl-7-methoxyanthraquinone (DHM-AQ) (93) is an AQ closely related to the 18 

emodins (see below). However, while the emodins have an OH or OMe group at position 8, this position is 19 

non-substituted in DHM-AQ (93), suggesting that the polyketide backbone is reduced at this position, and 20 

thus that the PKS related to this biosynthetic pathway of DHM-AQ (93) is different from the one for emodins, 21 

by being partly reducing. DHM-AQ (93) is produced by Penicillium section Citrina. 22 

Biemodins are composed of two AQs related to the emodin pathway, fused together via a likely radical 23 

coupling. In this review, we have decided to keep biemodins separate from what we call the O-biemodins, 24 

which are also composed of two emodins, but fused with an ether bond (see below). Besides the method of 25 

fusion, the biemodins are observed in Talaromyces sections Islandici and Talaromyces, while the O-biemodins 26 

are observed in Aspergillus section Nidulantes. Examples of the biemodins flavoskyrin (94), skyrin (95), 27 

dicatenarin (96) and rhodoislandin (97) are shown in Fig. 5., but many other known biemodins exist, including 28 

aurantioskyrin, auroskyrin, deoxyluteoskyrin, deoxyrubroskyrin, iridoskyrin, luteoskyrin, 4a-oxyluteoskyrin, 29 

oxyskyrin, punicoskyrin, roseoskyrin, rubroskyrin, skyrinol and rugulosin A (11). 30 

Emodins are a large AQ family with a core structure similar to emodin (98). Besides emodin, this family 31 

includes many compounds, such as catenarin (99), erythroglaucin (100), fallacinol (101), physcion (102), 32 

questin (103), chrysophanol (105), rubrocristin (106), carviolin (107) and others (108, 109, 110, 111, 112, 139, 33 

140, 113, 114, 115). In this family we also include penicillanthranins A (113) and B (114) which are emodins 34 

attached to citrinin moieties. Emodins are produced in Aspergillus, Penicillium and Talaromyces across 35 

multiple sections and have also been observed in Arthrinium sp. (Elissawy et al. 2017). 36 
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Juglanthraquinone A triglycoside (116) is an AQ isolated from A. fumigatus (section Fumigati). It is interesting 1 

as it is fused with three glycoside units (Abdel-Aziz et al. 2018). 2 

MT81 (117) is an AQ resembling the emodins, however as was the case for DHM-AQ (93), the polyketide 3 

backbone is reduced differently in MT81 (117) than in the emodins (position 3). This suggests that the 4 

biosynthetic pathway is different from that of the emodins. The molecule is decorated with a unique patulin-5 

like moiety through an acetal. It is observed in Penicillium section Canescentia.  6 

Nalgiovensins are AQs with similar structures to the emodins, although with a key difference in that they 7 

contain an additional two carbon atoms in the polyketide backbone. Nalgiovensins are observed in 8 

Penicillium sections Brevicompacta and Chrysogena and in Aspergillus section Flavi and include nalgiovensin 9 

(118), as well as the two chlorinated compounds nalgiolaxin (119) and 2-chloro-6-[2’(S)-hydroxypropyl]-1,3,8-10 

trihydroxyanthraquinone (CHT-AQ, 120). 11 

O-biemodins are dimers of emodin-like AQs that include ascoquinone A (121), 6,6′-oxybis(1,3,8-trihydroxy-2-12 

((S)-1-methoxyhexyl) anthracene-9,10-dione (122) and 6,6′-oxybis(1,3,8-trihydroxy-2-((S)-1-hydroxyhexyl) 13 

anthracene-9,10-dione (123). They differ from the biemodins (see above) by being fused via an ether bond, 14 

rather than a C-C bond. They are observed in Aspergillus section Nidulantes. 15 

Pachybasin (124) is a heavily reduced AQ, compared to the emodins, that only contains a single phenol group. 16 

It is observed in Penicillium section Paradoxa. 17 

Talaromannins are oxidised AQ derivatives of the dimeric non-quonine flavomannin (125). They include 18 

talaromannin A and B (126) that are observed in Talaromyces section Islandici. 19 

Topopyrones are AQs fused with a 1,4-pyrone ring. Topopyrone C (127) and D (128) were discovered in an 20 

unknown Penicillium sp. 21 

Versicolorins include the AQ precursors of aflatoxin and sterigmatocystine such as versicolorin A (129), 22 

versicolorin C (130), aversin (131), averufin (132), nidurufin (133) and averantin (134) (Caceres et al. 2020). 23 

Aspergilol A (136), B, G, H (137) and I (138), observed in Aspergillus versicolor are also included in this family 24 

due to structural similarity (Wu et al. 2016; Huang et al. 2017). Aspergilol A (136) and B have been proposed 25 

to use averantin (134) as a precursor (Wu et al. 2016). Although the end products of the versicolorins, the 26 

aflatoxins are very toxic, some of the precursors, such as versicolorin A (129) have also shown toxicity to 27 

humans (Gauthier et al. 2020). 28 

Viocristins are the only 1,4-AQs among the AQs described in this review, and include viocristin (139) and 29 

isoviocristin (140), that only differ by the position of a single O-methylation. The viocristins have been 30 

observed in Aspergillus section Aspergillus. 31 

 32 

Quinone families in Aspergillus 33 

Table 2 lists the secondary metabolite quinones observed in the genus of Aspergillus, which is composed of 34 

446 species in total divided across 26 known sections. The quinones from one unknown Aspergillus spp. are 35 
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also listed. Eighteen quinone families are produced by this genus. Of the five subgenera, Polypaecilum is not 1 

known to produce any quinones, although only three species from this subgenus have been investigated. The 2 

other four subgenera all include quinone-producers. In those subgenera, emodins are present in all. 3 

Subgenus Aspergillus is the only section able to produce variecolorquinone B (64) and viocristins, while 4 

Nidulantes is the only subgenus to produce O-biemodins. Subgenus Circumdati is most varied in its 5 

production, and is able to produce 12 quinone families, seven of them only observed within that subgenus, 6 

namely aspetritones, xanthomegnins, aculeatusquinones, atromentins, violaceoids, yanuthones and 7 

nalgiovensins. In Fumigati the quinone families shared with other subgenera are emodins, toluquinones and 8 

terreic acid (59), while juglones, fumigatins and juglanthraquinone A triglycoside (116) are unique for this 9 

subgenus. Nidulantes produces emodins, versicolorins, asterriquinones and O-biemodins which are unique 10 

for the subgenus. An Aspergillus sp. from an unknown section is able to produce stemphones. 11 

There is a high variability in quinone production at the section level. Of the 26 examined sections, 16 are 12 

known quinone producers. It must be said, however, that for most non-producing sections, only few species 13 

have been investigated. The sections able to produce the most quinone families are Nigri, Terrei and 14 

Nidulantes, producing five, four and four families, respectively. 15 

Most quinone families are observed within one section only and include variecolorquinone B (64), 16 

aspetritones, xanthomegnins, aculeatusquinones, atrometins, violaceoids, viocristins, yanuthones, juglones, 17 

fumigatins, O-biemodins, juglanthraquinone A triglycoside (116) and stemphones. Emodins are on the other 18 

hand observed across 11 out of the 26 investigated sections. 19 

 20 

Quinone families in Penicillium 21 

Table 3 lists the known secondary metabolites in Penicillium. The genus consists of 483 species. The analysis 22 

covers 28 sections from the subgenera Aspergilloides and Penicillium. Of the known sections, 18 are known to 23 

produce at least one quinone family. Across the genus, 24 quinone families are produced. 24 

Toluquinones are the most frequently observed quinone family in Penicillium, observed in nine sections. The 25 

second largest family is emodins, which is observed in eight sections. Fumigatins, phoenicin (47), 26 

nalgiovensins, xanthomegnins and xanthoviridicatins also appear in more than one section, while the 27 

remaining 17 families appear in only one section each. Only three families are observed in both known 28 

subgenera (fumigatins, emodins and toluquinones), while the rest appear in either one subgenus or the 29 

other. 30 

Ten of the known sections were able to produce more than one family, while eight sections where able to 31 

produce one family only. Sections Chrysogena and Citrina represent by far the most diverse quinone 32 

producers, able to make eight and seven families, respectively. 33 

 34 
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Quinone families in Talaromyces 1 

Table 4 lists the known secondary metabolite quinones in Talaromyces. The genus includes 171 known 2 

species across 7 sections. Across the genus, seven quinone families are produced: emodins, xanthomegnins, 3 

xanthoviridicatins, juglones, biemodins, purpurogenone (79) and talaromannins. This makes Talaromyces the 4 

genus with the least diversity in quinone production compared to Aspergillus and Penicillium. Emodins are 5 

observed in five different sections and biemodins are observed across two sections. The other families are 6 

observed in only one section each. The two sections Islandici and Talaromyces are the most diverse, able to 7 

produce five and three families, respectively. Trachyspermi produces two quinone families, while sections 8 

Helici and Purpurei each produce compounds from only one family. 9 

 10 

Comparison of quinone families across Aspergillus, Penicillium and 11 

Talaromyces. 12 

When comparing the secondary metabolite quinone production between the three genera Aspergillus, 13 

Penicillium and Talaromyces, some clear differences are apparent. Fig. 6 shows a Venn diagram comparing 14 

the quinone families observed across these genera. Only three quinone families are shared between all three 15 

genera: emodins, juglones and xanthomegnins. Six families are observed both in Aspergillus and Penicillium: 16 

aculeatusquinones, atromentins, fumigatins, nalgiovensins, toluquinones and yanuthones. Only 17 

xanthoviridicatins are shared between Penicillium and Talaromyces and no families are shared only between 18 

Aspergillus and Talaromyces. The families that only appear in Aspergillus are O-biemodins, aspetritones, 19 

asterriquinones, terreic acid (59), variecolorquinone B (64), versicolorins and violaceoids, viocristins and 20 

juglanthraquinone A triglycoside (116). In Penicillium the unique families are DHM-AQ (93), anserinones, 21 

citrinoids, citriquinones, grieusins, MT81 (117), macrophorinquinones, naphthgeranines, pachybasin (124), 22 

phoenicin (47), sorbicillinoids, spathullins, thysanone (80) and topopyrones. The only unique quinone families 23 

in Talaromyces are biemodins, purpurogenone (79) and talaromannins. 24 

Quinone production and pigmentation of Fusarium and related fusaroid 25 

genera  26 

The genus Fusarium and related fusaroid genera produce a large number of mycotoxins and other bioactive 27 

secondary metabolites, of which several are quinones (Nesic et al. 2014; Munkvold, 2017; Li et al. 2020; Wei 28 

and Wu, 2020). Most of the quinones from fusaroid taxa known are NQs.  29 

Quinone pigmentation in the genera Fusarium, Albonectria and Neocosmospora is dictated by four polyketide 30 

gene clusters: fusarubins (143) (PKS3), bikaverin (146) (PKS16), aurofusarin (145) (PKS12) and an 31 

uncharacterized red pigment (PKS35) (Fig. 7). Members of Fusarium are capable of producing two of these 32 

non-reducing polyketide synthase (NR-PKS) derived pigments; one produced during mycelial growth and the 33 

other during perithecial development. F. acuminatum and F. avenaceum are the exception, each carrying 34 

four pigment biosynthetic gene clusters encoding the aurofusarin (145), fusarubin (143) and two bikaverin-35 

like NR-PKSs (Brown & Proctor 2016; Hansen et al. 2015).  36 
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Aurofusarin (145) was originally described as a golden pigment in 1937 (Ashley et al. 1937), but was first 1 

structurally elucidated in 1966 (Baker and Roberts 1966; Shibata et al. 1966). The compound is produced by a 2 

cluster (PKS12) of at least ten genes of which the PKS shares high sequence similarity to wA, found in several 3 

Aspergilli. The two PKSs have also been shown to produce the same entry compound, YWA1 (Watanabe et al. 4 

1998; Frandsen et al. 2011). Aurofusarin (145) is a product of dimerization of the intermediary compound 5 

rubrofusarin (142), containing two naphthopyrones. It is structurally semilar to xanthomegnin (81), using 4-6 

pyrones instead of 2-pyrones. Despite the pigmented properties of aurofusarin (145), it has not been linked 7 

to UV-protection or, as other secondary metabolites, to pathogenicity, however it does affect the chemical 8 

composition of quail eggs (Brown et al. 2012a;b; Brown and Proctor, 2016; Coleman 2016). Rubrofusarin 9 

(142) can be converted into a quinone form. This quinone product is sometimes observed at higher 10 

concentrations than rubrofusarin (142) in grain (Wang et al. 2018). 11 

Bikaverin (146) and norbikaverin (147) are heterotetracyclic quinones, which were originally isolated from F. 12 

fujikuroi as a red pigment (Kjaer et al. 1971). These compounds are produced primarily by members of the F. 13 

fujikuroi, F. verticillioides, F. proliferatum, F. agapanthi and F. oxysporum species (Edwards et al. 2016; Kohut 14 

et al. 2010; Lazarro et al. 2012), where the responsible gene cluster consists of at least six genes (Niehaus et 15 

al. 2016). Other related pigments can also be produced (Lebeau et al. 2019). The responsible PKS (bik1 = 16 

PKS16) starts the biosynthetic pathway by producing prebikaverin which is subsequently oxygenated and O-17 

methylated to yield bikaverin (146) (Wiemann et al. 2009). Interestingly, disruption of the terminal release 18 

domains of bik1 and aur1 results in production of the isocoumarins, bikisocoumarin (SMA93) and 19 

citreoisocoumarin, respectively (Ma et al. 2008; Sørensen et al. 2012). Bikaverin (146) has been shown to 20 

affect a wide variety of organisms, including various human cell lines (Fuska et al. 1975), nematodes (Kwon et 21 

al. 2007), protozoa (Balan et al. 1970), bacteria (Deshmukh et al. 2014; Sondergaard et al. 2016), and fungi 22 

(Cornforth et al. 1971).  23 

The fusarubin (143) gene cluster is identified in all sequenced members of Fusarium and Neocosmospora and 24 

is associated with black/dark purple pigmentation of perithecia (Proctor et al. 2007, Brown 2012a,b, Frandsen 25 

et al. 2016), except for species within Neocosmospora (the F. solani species complex (FSSC)) where fusarubins 26 

and its derivative NQs accumulate in the mycelium (Medentsev and Akimenko 1998, Short 2013). The 27 

production of fusarubins in Fusarium spp., Neocosmospora (N. solani, N. virguliformis and N. ambrosia) and 28 

Albonectria rigidiuscula is therefore widespread, and the class of fusarubins also encompass a range of 29 

different compounds containing quinone-structures, such as anhydrofusarubin, bostrycoidin, 9-30 

desmethylherbarine, javanicin, karuquinones, lucilactaenes, norjavanicin, novarubin, solaninaphthoquinones, 31 

and (+)-solaniol (Arnstein & Cook 1947; Arsenault 1968; Roos, 1977; Kimura et al. 1981; Kurobane et al. 1989; 32 

Kornsakulkarn et al. 2011; Takemoto et al. 2014; Tadpetch et al. 2015; Kehelpannala et al. 2018; Choi et al. 33 

2020; Maharjan et al. 2020). All exhibit the hallmark red pigmentation and are a result of the same 34 

heptaketide scaffold-compound from PKS3, but differentiates between the many Fusarium species due to the 35 

large genetic variation found within the PKS3 gene-cluster (Harvey 2018; Kim 2019; Proctor 2007; Short et al. 36 

2013). 37 

In addition, members of the FSSC carry the PKS35 gene cluster that is not present in other Fusaria (Coleman 38 

2016). PKS35 contribute to the red/orange pigmentation of perithecia in FSSC. This conclusion is based on the 39 
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fact that deletion of pksN in N. pisi (=F. solani f. pisi) (Graziani et al. 2004) and PKS35 in N. vasinfecta (= F. 1 

neocosmosporiellum) (Kim 2019) resulted in albino perithecia. Five genes within the PKS35 gene cluster have 2 

homologs in the Penicillium herquei gene cluster responsible for the formation of herqueinone (141) (Gao et 3 

al. 2017). Another homologous gene cluster, pks23 from the lichen-forming Endocarpon pusillum, produces 4 

the herqueinone precursor prephenalenone when expressing the cluster in Saccharomyces cerevisiae (Harvey 5 

et al. 2018). Thus, herqueinone (141) or a closely reassembling molecule likely causes the red pigmentation in 6 

perithecia in members of the FSSC. The related NQ marticin (144) is an octaketide and produced by 7 

Neocosmospora cucurbitae, N. martii, N. pisi and N. vasinfecta (Pfiffner 1963; Ross 1977; Kurobane et al. 8 

1980; Holenstein et al. 1983). 9 

Quinone production in Arthrinium  10 

The genus Arthrinium has been reported in various environments worldwide including terrestrial and marine 11 

ecosystems (Crous and Groenewald 2013; Heo et al. 2018). It exists as an endophyte in different plant 12 

(Sharma et al. 2014; Pansanit and Pripdeevech 2018; Astuti et al. 2021) and lichen species (Yunzhe 2012) but 13 

also as a plant pathogen (Martinez-Cano 1992; Mavragani et al. 2007). The literature contains several 14 

examples of cutaneous infections in humans caused by A. phaeospermum (Hoog et al. 2021; Rai 1989; Zhao, 15 

Deng, and Chen 1990) and food poisoning with fatal outcome caused by A. saccharicola (Birkelund et al. 16 

2021). Furthermore, many natural products are produced by Arthrinium spp., which possess a variety of 17 

industrial and pharmacological applications (Tsukada et al. 2011; Bao et al. 2018). 18 

The NQ bostrycin (148) was first isolated from A. phaeospermum in 1975 as a red pigment (van Eijk 1975) 19 

(Fig. 6). Morushita et al. (2019) proposed that bostrycin (148) is biosynthesized via emodin (98) through an O-20 

methylation step and multiple steps of oxidation in A. sacchari. Emodin has also been extracted from a 21 

marine Arthrinium sp. along with endocrocin (112) and chrysophanol (105) (Elissawy et al. 2017). 22 

A. saccharicola KUC21221 and Arthrinium sp. 10 KUC21332 are both marine Arthrinium spp., reported to 23 

produce gentisyl alcohol (152) (Heo et al. 2018), the quinol form of gentisylquinone (62). In addition, 24 

arthrinone (149) extracted from Arthrinium sp. FA 1744 (Qian-Cutrone et al. 1994) is structurally related to 25 

the quinone cerdarin (150) (Uchiyama et al 2000). 26 

Three genome sequences from the Arthrinium genus are available in NCBI: A. phaeospermum 27 

(ASM650353v1) (Li et al. 2020), A. malaysianum (ASM650811v1), and Arthrinium sp. KUC21332. 28 

(ASM1716395v1) (Heo et al. 2018). Four, six, and ten gene clusters containing NR-PKSs were found in A. 29 

phaeospermum, A. malaysianum, and Arthrinium sp. KUC21332, respectively, when analyzed by antiSMASH. 30 

These might potentially encode different kinds of known or novel quinones. For example, the gene cluster 31 

encoding 1,3,6,8-tetrahydroxynaphthalene (153) was found in all three genomes and the compound can be 32 

converted to the NQ flaviolin (151) by a monooxygenation step (Funa et al. 2005). Even though the 33 

Arthrinium genus is less studied compared to other filamentous fungi, it definitely has a vast biosynthetic 34 

potential for secondary metabolites including quinones. 35 
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Quinone production in Alternaria and other dematiaceous fungi 1 

Alternaria (incl. Ulocladium), Cercospora, Nigrospora, Stemphylium, Phoma and similar common genera 2 

produce a large number of quinones, including altersolanols (154), dothistromin (155), alterporriols (156), 3 

astropaquinone (157), macrosporin (158), lentiquinone A, nigrisporin, neoanthraquinone, phomarin, 4 

stemphylin, cercosporins and many other AQs and NQs (Fig. 6) (Turner, 1971; Turner and Aldridge, 1983; 5 

Dalinova et al. 2020; Xu et al. 2021). Some of them are toxic to both animals and plants, but are in some 6 

cases interesting candidates for production of biotechnologically relevant secondary metabolites. 7 

Widely observed quinones 8 

While many quinones appear to be uniquely associated with a certain species or section, some appear across 9 

many. A well studied example is emodin (98), which is produced cross-kingdom in both fungi and plants. In a 10 

review, Izhaki (2002) argues that the reason this quinone is observed broadly in plants is because it is 11 

multifunctional. It provides the plant with several benefits such as antipredation towards both vertebrates 12 

and invertebrates, inhibition of growth of competing plants, decreasing the availability of certain nutrients in 13 

soil, broad antimicrobial effects and protection from free radicals due to UV exposure. It is likely that a 14 

metabolite with such varied functionality would be beneficial across kingdoms. It is also interesting to note 15 

that the many derivatives of emodin (98) are often observed together with the AQ (Table 2, 3 and 4), similarly 16 

to what is observed in plants (Izhaki 2002). 17 

While emodin (98) is a purposeful metabolite, it is also an intermediate of a host of other metabolites. In 18 

fungi, it is associated with the production of secalonic acid A, geodin and trypacidin to name a few (Frisvad 19 

and Larsen 2015). In this review, we have also reported that emodin-like AQs can be dimerized by certain 20 

fungi, like the ether bond linking the two monomers of the O-biemodins observed in Aspergillus section 21 

Nidulantes and the C-C bonds observed in the biemodins of Talaromyces. All of this reinforces the notion that 22 

the emodins are very purposeful metabolites, both by themselves and as intermediates, thereby having many 23 

functions in the producing organism. 24 

Another often observed quinone structure is the NQ dimer xanthomegnin (81), which is present in both 25 

Aspergillus, Talaromyces and Penicillium (Table 2, 3 and 4). Like the emodin family, xanthomegnin (81) is part 26 

of a large biosynthetic family with NQ dimers such as viomellein (83), rubrosulphin (84) and viopurpurin (85).  27 

Quinone methides 28 

Quinone methides are analogous to quinones with the exception that one of the carbonyl groups have been 29 

substituted with a methylidene group. Certain quinone methides may be useful for some of the applications 30 

discussed in this review, however, for other applications, such as in quinone redox flow batteries, they might 31 

be too reactive. For example hydroxyclavatol ortho-quinone methide from Penicillium crustosum is very 32 

reactive (Fan et al., 2019) and other quinone methides, both in their citrinin para-quinone methide and 33 

citrinin ortho-quinone methide forms, have also been reported to be very reactive and are furthermore 34 

considered mycotoxins (Appell et al., 2021; Silva et al., 2021; Zhang et al., 2021). In the citrinin biosynthetic 35 
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pathway there are also traditional quinones present such as citrinin H1 (34) (Silva at al. 2021), but because of 1 

potential toxicity they might not be suited in many applications as well. Some other azaphilones may also 2 

possess quinone-like properties, potentially applicable to some or more of the applications mentioned in this 3 

review (Pavesi et al., 2021; Williams et al., 2021). 4 

Production of fungal quinones 5 

Because of their vast structural diversity and the many different examples of biological uses of quinones, it is 6 

reasonable to assume that they do not serve one unifying biological purpose. As a result, it is impossible to 7 

propose a fermentation strategy that favors general quinone production, and production parameters must 8 

be fine tuned based on the fungus and the quinone. A large difference between quinones is whether they are 9 

secreted into the environment or accumulated inside fungal structures. For example, phoenicin (47) is readily 10 

secreted, darkening the growth media (Reilly et al. 1940) while fusarubin (143) has been shown to 11 

accumulate intracellularly (Medentsev and Akimenko 1998, Short 2013). For most production purposes, it 12 

would be of most benefit if the target quinone was secreted. This potentially narrows down the choice of 13 

fungal hosts and quinones available for production. 14 

If a biological purpose of a quinone is suspected, it can help guide the production optimization. For example if 15 

the quinone of interest is hypothesized to protect the organism against sunlight, using UV-light radiation 16 

might trigger production, as is the case with the AQ physcion (102) (Solhaug and Gauslaa 2004). Likewise, if 17 

the quinone is assumed to have allelochemical action, co-cultivating the fungus with another organism can 18 

trigger quinone production (Khalid and Keller 2021). For example, exposing Fusarium fujikuroi to 19 

ralsolamycin, produced by the bacterium Ralstonia solanacearum induced production of bikaverin (146), 20 

which is known to have antimicrobial effects (Deshmukh et al. 2014; Spraker et al. 2018). 21 

Many quinones are intermediates or shunt products of a pathway producing non-quinones, e.g. the 22 

toluquinones (Frisvad et al. 2020). Thus, if production of one of these intermediary quinones is desired, the 23 

discovery of a strain which stops the pathway mid-way is of great benefit. Alternatively, one could try to 24 

delete later parts of the biosynthetic pathway by genetic engineering. 25 

Even though a large number of fungi and plants can produce quinones, it is important that filamentous fungi, 26 

such as species of Aspergillus, Penicillium, Talaromyces and Fusarium, are often well suited for fermentation 27 

and these fungi have been used for production of secondary metabolites in numerous applications. The 28 

diversity of quinones in those genera shows that a number of species are potential candidates for production 29 

of large amounts of quinones. Several quinones from these genera are secreted, but those that are cell-wall 30 

bound may be produced heterologously, if a suitable host is used and manipulated to secrete such quinones. 31 

For many quinone applications, such as as electrolytes in batteries, bulk production is necessary, and some 32 

species of the large genera mentioned above have been shown to be efficient producers of large amounts of 33 

at least some secondary metabolites. Optimization of secondary metabolite biosynthesis in the fungi, of 34 

fungal growth media and of physiological and technical fermentation conditions will probably allow bulk 35 

production, especially in Aspergillus, Penicillium, Talaromyces and Fusarium. (van der Beek and Roels 1984; 36 

Barrios-González and Miranda 2010; Zhai et al. 2016). 37 
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Figure captions 1 

 2 

Fig. 1 Structural diversity of naturally occourring quinones. A quinone typically consist of one of several core 3 

structures, such as (1), (2), (3), (4) and (5) and a number of additional functional groups such as methylations, 4 

oxidations, prenylations, halogenations, aminations, acetylations and carboxylations 5 
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Fig. 2 Some of the quinones and related molecules mentioned in the introduction 2 
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Fig. 3 Representative BQs and related molecules from the quinone families observed in Aspergillus, 1 

Penicillium and Talaromyces 2 

 3 

Fig. 4 Representative NQs and related molecules from the quinone families observed in Aspergillus, 4 

Penicillium and Talaromyces 5 
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Fig. 5 Representative AQs and related molecules from the quinone families observed in Aspergillus, 1 

Penicillium and Talaromyces 2 

 3 

Fig. 6 Venn-diagram showing the number of quinone families appearing in genera Aspergillus, Penicillium and 4 

Talaromyces 5 
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 1 

Fig. 7 Quinones and related molecules associated with Fusarium and related fusaroid genera, Arthrinium and 2 

Alternaria 3 
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Tables 1 

Table 1. Distribution of ubiquinones in the genus Aspergillus (Kuraishi et al. 1990; Matsuda et al. 1992; 2 

Houbraken et al. 2020: the species have been updated from Kurasihi et al. (1990); Chang et al. 1991) and 3 

listed in an order reflecting their phylogeny). 4 

Subgenus Section Number of species examined Ubiquinone system 

Circumdati Candidi 2 Q-10 (H2) 

Circumdati Petersoniorum 0 - 

Circumdati Nigri 7 Q-9 

Circumdati Terrei 5 Q-10 (H2) 

Circumdati Flavipedes 3 Q-10 (H2) 

Circumdati Janorum 1 Q-10 (H2) 

Circumdati Circumdati 9 Q-10 (H2) 

Circumdati Tannerorum 0 - 

Circumdati Robusti 1 Q-10 (H2) 

Circumdati Flavi 10 Q-10 (H2) (7 spp.), Q10 (3 spp.) 

Nidulantes Nidulantes 24 Q-10 (H2) (19 spp.) and mixed 
Q-10 (H2) and Q-10 (5 spp.) 

Nidulantes Aenei 2 Q-10 (H2) 

Nidulantes Usti 3 Q-10 (H2) 

Nidulantes Cavernicolarum 0 - 

Nidulantes Raperorum 2 Q-10 (H2) 

Nidulantes Silvatici 1 Q-10 (H2) 

Nidulantes Bispori 1 Q-10 (H2) 

Nidulantes Ochraceorosei 2 Q-10 (H2) 

Nidulantes Sparsi 3 Q-10 (H2) 

Fumigati Fumigati 12 Q-10 

Fumigati Clavati 5 Q-10 (one species Q10 and Q-9) 

Fumigati Vargarum 1 Q-10 

Fumigati Cervini 3 Q-9 

Aspergillus Aspergillus 14 Q-9 

Aspergillus Restricti 6 Q-9 

Cremei Cremei 8 Q-9 

Polypaecilum Polypaecilum 0 - 

 5 

 6 

Table 2. Quinones in the genus Aspergillus1-4 (Frisvad 20151; Frisvad and Larsen 20162; Samson et al. 20143; 7 

Houbraken et al. 20204; Chen et al. 20175; Du et al. 20145a; Wang et al. 20075b; Du et al. 20075c; Laatsch et al. 8 

19825d; Sklenář et al. 20176; Rahbæk et al. 20007; Varga et al. 20078; Hubka et al. 2018a9; Frisvad et al. 9 

200410; Visagie et al. 201411; Varga et al.  2011a12; Frisvad et al.  201913; Kjærbølling et al. 202014; Heathcote 10 

and Dutton 196914a; Chen et al.  201414b; Caceres et al.  202014c; Mandelare et al. 2018; Samson et al.  201115; 11 

Hubka et al.  201516; Arzanlou et al.  201617; Hubka et al.  2016a18; Varga et al.  2011b19; Samson et al.  12 

200420; Samson et al.  2007a21; Perrone et al.  201122; Vesth et al.  201823; Theobald et al.  201824; Chen et al. 13 

201325; Myobataka et al.  201425a; Holm et al.  201425b; Bugni, et al.  200025c; Jurjevics et al.  201526; Barros 14 

Correira et al.  202027; Samson et al.  2011a28; Balajee et al.  200929; Kiriyama et al. 197729a; Hubka et al. 15 

2016a30; Chen et al.  2016a31; Varga et al.  200732; Visagie and Houbraken 202033; Anslow and Raistrick 16 

193834; Samson et al.  2007b35; Larsen et al.  200736; Frisvad et al. 200937; Frisvad and Larsen 201638; Hubka et 17 

al. 201339; Hubka et al.  201740; Talbot et al. 201741; Hubka et al. 2018b42; Yang et al.  201342a; Lim et al.  18 

201242b; Yamamoto et al.  197442c; Hayashi et al. 200742d; Turner 197142e; Yamamoto et al. 196842f; Abdel-Aziz 19 
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et al. 2018; Steenwyk et al.  202043; Varga et al. 2010a44; Sun et al.  2020b45; Chen et al.  2016b46; Hubka et al.  1 

2016b47; Wu et al.  201647a; Huang et al.  201747b; Chiang et al.  201047c; Brown and Salvo 199447d; Li et al. 2 

201947e; Houbraken et al.  200748; Samson et al.  2011b49; Steyn and Vleggaar, 197449a; Tanney et al.  201750; 3 

Koyama et al. 2005. 4 

Section Subgenus Number of species 
examined (number 
of species known in 
section)  

Number of 
species 
producing 
quinone  
(percentage) 

Quinones produced Quinone families 
produced 

Aspergillus5, 5a, 5b, 5c,5d Aspergillus 30 (31) 27 (90%) Emodins including  
erythroglaucin (100), fallacinol 
(101), questin (103), questinol, 
rubrocristin (106), 
variecolorquinone A (115), 
viocristin (139), isoviocristin 
(140) and others*, 
variecolorquinone B (64) 

Emodins (AQ), 
variecolorquinone 
B (BQ), viocristins 
(AQ) 

Restricti6 Aspergillus 20 (21) 1 (5%) Emodin (98) Emodins 

Candidi7,8,9 Circumdati 7 2 (29%) Aspetritone A (72) and B (73), 
emodin 

Aspetritones (NQ), 
emodins 

Circumdati10,11 Circumdati 27 (28) 21 (78%) Emodin, xanthomegnins (81) Emodins (AQ), 
xanthomegnins 
(NQ) 

Flavi12,13,14,14a,14b,14c,14d Circumdati 35 (37) 22 (63%) Versicolorins**, nalgiovensin 
(118), nalgiolaxin (119) 

Versicolorins (AQ), 
nalgiovensins (AQ) 

Flavipedes15,16,17,18 Circumdati 15 4 (27%) Emodin (98) Emodins 

Janorum16 Circumdati 4 0 (0%) - - 

Nigri19,20,21, 22, 23, 

23,24,25,25a,25b,25c 
Circumdati 28 24 (86%) Aculeatusquinone B (23) and D 

(24), atromentin (31), emodin 
(98) (secalonic acid BF), 
violaceoid A-C (65, 66, 67), 
yanuthone B (68) and D (69) 

Aculeatusquinones 
(BQ), atromentins 
(BQ), emodins, 
violaceoid (BQ), 
yanuthones (BQ) 

Petersoniorum26 Circumdati 4 0 (0%) - - 

Robusti11 Circumdati 1 0 (0%) - - 

Tannerorum11 Circumdati 1 0 (0%) - - 

Terrei27,28,29, 29a Circumdati 17 5 (29%) Asterriquinones***, 3,6-
dihydroxytoluquinone (39), 
emodin (98), questin (103), 
terreic acid (59) 

Asterriquinones 
(BQ), fumigatins 
(BQ), emodins, 
terreic acid (BQ) 

Cremei30 Circumdati 17 8 (47%) Emodin (98) (bisanthrons are 
end-products), patulin**** 

Emodins, 
toluquinones (BQ) 

Cervini31 Fumigati 10 6 (60%) Terreic acid (59), 6-ethyl-7-
methoxy-juglone (76) 

Terreic acid, 
juglones (NQ) 

Clavati32,33 Fumigati 6 (8) 3 (50%) Patulin**** Toluquinones 

Fumigati34,35,36,37,38,39,40,41,42,42a, 

42b,42c,42d,42e,42f, 42g 
Fumigati 52 (59) 11 (21%) 3,4-dihydroxytoluquinone, 

emodin (98), 2-chloroemodin, 
(chloroanthrones are end 
products), emodin 1,6-
dimethylether, endocrocin 
(112), fumigatin (37), fumigatin 
chlorhydrin, fumiquinone A (42) 
and B (43),  1-methylemodin, 
physcion (102), questin, 
spinulosin (38), 
juglanthraquinone A 
triglycoside (116) 

Fumigatins, 
emodins, 
juglanthraquinone 
A triglycoside 

Vargarum43 Fumigati 1 0 (0%) - - 

Aenei44 Nidulantes 11 8 (73%) Emodin (98), versicolorins** Emodins, 
versicolorins 

Cavernicolarum45 Nidulantes 5 0 (0%) - - 
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Nidulantes46,47,47a,47b, 47c,47d,47e Nidulantes 71 (75) 59 (83%) 2-aminoemodin (110), 2-amino-
ω-hydroxyemodin, ascoquinone 
A (121), asperthecin, emodic 
acid (108), emodin (98) 
(monodictyphenone BF), 
endocrocin (112), 2-
hydroxyemodin, ω-
hydroxyemodin (104), 2-ω-
hydroxyemodin, methyl 2-
hydroxyemodin, terrequinone 
(30), versicolorins** including 
aspergilol A (136), B , G , H (137) 
and I (138), 
6,6′-oxybis(1,3,8-trihydroxy-2-
((S)-1-
methoxyhexyl)anthracene-9,10-
dione (122), 6,6′-oxybis(1,3,8-
trihydroxy-2-((S)-1-
hydroxyhexyl) anthracene-9,10-
dione (123) 

Emodins, O-
biemodins (AQ), 
asterriquinones, 
versicolorins 
 

Ochraceorosei46 Nidulantes 3 2 (66%) Versicolorins** Versicolorins 

Raperorum46 Nidulantes 2 1 (50%) Unknown AQ - 

Silvatici46 Nidulantes 1 0 (0%) - - 

Sparsi47 Nidulantes 9 0 (0%) - - 

Usti 45,46,48,49,49a Nidulantes 25 5 (20%) Versicolorins** Versicolorins 

Polypaecilum50 Polypaecilum 3 (16) 0 (0%) - - 

Unknown section51    Stemphone B (56) and C (57), 
cochlioquinone D (58) 

Stemphones 

*Emodins including emodin (98), 2-ω-hydroxyemodin, physcion (102), caternarin (99) and others (the 1 

biosynthetic end products can be derived secondary metabolites that are not quinones (i.e. aspergiolide A, 2 

bisanthrons, chloroanthraquinones, secalonic acids, trypacidin, sulochrin). 3 

**Versicolorins and related decaketide precursors and end- or shunt-products of sterigmatocystins, 4 

aflatoxins or austocystins (averufin (132), averantin (134), averantin-1’-butylether, aversin (131), averythrin, 5 

7-chloroaverantin, (1’S)-7-chloroaverantin, deoxyversicolorin A, (1’S)-6,1’-O,O-dimethylaverantin, (1‘S)-6,1’-6 

O,O-dimethyl-7-bromoaverantin, (1’S)-6,1’-O,O-dimethyl-7-chloroaverantin, hydroxyaverufin, 1-O-7 

methylaverantin, 6-O-methylaverantin, (1’S)-6-O-methyl-7-bromoaverantin, (1’S)-1’-O-8 

methylchloroaverantin, (1’S)-1’-O-methyl-7-chloroaverantin, 6-O-methyl-7-chloroaverantin, 8-O-9 

methylnidurufin, norsolorinic acid, 1,3,6,8-tetrahydroxy-2,2’-(6’-methyltetrahydrofuran)anthraquinone, 10 

versicolorin A (129), B, C (130), versiconol, and others). 11 

***Asterriquinones include asterriquinone (29), asterriquinone monoacetate, asterriquinone A, A-1, A-2, A-3, 12 

A-4, B-1, B-2, B-3, B-4, C-1, C-2, B, C, D, CT5, demethylasterriquinone B1, isoasterriquinone, 13 

neoasterriquinone, and terreiquinone A (30) (Yamamoto et al. 1976; Arai et al. 1981a,b; Kaji et al. 1994; 14 

Mocek et al. 1996).  15 

****Patulin is not itself a quinone but quinones such as toluquinone (61), gentisylquinone (62), 16 

chlorogentisyl quinone (63) and hydroxychlorogentisyl quinone have been reported from patulin producers, 17 

as precursors or shunt products in the biosynthetic pathway (Ali et al.  2017). 18 

 19 
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Table 3. Distribution of quinones in the genus Penicillium (1Frisvad and Samson, 2004; 2Frisvad et al.  2004a;b; 1 
3Visagie et al.  2014; Houbraken et al.  4Houbraken et al.  2010a: 5Houbraken et al. 2011; 6Houbraken et al.  2 

2014; 7Houbraken et al.  2020; 8Mahmoodian and Stickings, 1964; 9Anslow and Raistrick, 1938; 10Friedheim, 3 

1938; 11Curtin et al.  1940, 12Posternak et al.  1943; 13Peterson et al.  2015; 14Shang et al.  2016;15Ranji et al.  4 

2013;16Abdelwahab et al.  2018; 17Gautschi et al.  2004; 18Smetanina et al.  2016; 19Sun et al.  2013; 20Ngan et 5 

al.  2017;  21Luo et al.  2019; 22Zhan et al.  2004; 23Aly et al.  2011; 24Morehouse et al.  2020; 25Hind, 1940; 6 
26Elbanna et al.  2021; 27Christensen et al.  1998; 28Ngan et al.  2017; 28aKhamthong et al. 2012; 28bHe et al. 7 

2017; 29Janso et al.  2005; 30Visagie et al.  2016; 31Unpublished observations; 32Frisvad and Filtenborg, 1990; 8 
33Bao et al. 2014, 34Wang et al.  2014; 35Li et al.  2018; 36Singh et al.  1991; 37Del Valle et al.  2016; 38Nord et al.  9 

2019; 39Visagie et al.  2021; 40Gupta et al, 1997; 41Wei et al.  2009; 42Hawas et al.  2013; 43Gutarowska et al.  10 

2014; 44Fujimoto et al.  2001; 45Singh et al.  2003; 46Raistrick & Ziffer, 1951; 47Birch & Massy-Westropp, 1957; 11 
48Birch & Stapleford, 1967; 49Liu et al.  2005; 50Cheng et al.  2018; 51Yang et al.  2016; 52Li et al.  2003; 53Miller 12 

& Huang, 1995; 54Stack et al.  1979; 55Lund and Frisvad  2004; 56Hallas-Møller et al.  2018; 57Nicolaisen et al.  13 

1996, 58Frisvad et al.  1994; 59Houbraken et al.  2016; 60Raper & Fennell, 1965; 61Frisvad et al.  2016; 62Ali et 14 

al.  2017; 63Houbraken et al.  2010b; 64Li et al.  2006; 65Kanai et al.  2000).  15 

Section Subgenus Number of 
species 
examined 
(number of 
species 
known in 
section in all) 

Number of species 
producing quinone  
(percentage) 

Quinones produced Quinone families 
produced 

Alfrediorum Aspergilloides 1 (1) 0 (0%) - - 

Aspergilloides8,9 Aspergilloides 11 (53) 2 (18%) Endocrocin (112), questins 
(103), spinulosin (38) 

Emodins (AQ), fumigatins 
(BQ) 

Charlesia10, 11, 12 Aspergilloides 4 (9) 2 (50%) Phoenicin (47) Phoenicin (BQ) 

Cinnamopurpurea13 Aspergilloides 9 (20) 1 (11%) Unknown BQ - 

Citrina14,15,16,17,18, 19, 

20, 21, 22, 23, 24, 25, 26, 27, 

28, 28a, 28b 

Aspergilloides 39 (42) 15 (38%) Aculeatusquinone B (23), 
anserinones (25), emodins 
including emodin (98), 
chloroemodins, carviolins 
(107), chlorocarviolins, 
chrysophanol (105), ω-
hydroxyemodin (104) 
(=citreorosein) and 
citreorosein-3-O-sulfate, 
citrinin H1 (34), 
citriquinone A and B (35, 
36), DHM-AQ (93), 
phoenicin (47), 
penicillanthranins A and B 
(113, 114), 2’-acetoxy-7-
chlorocitreorosein (109) 

Aculeatusquinones (BQ), 
anserinones (BQ), 
emodins, citrinoids (BQ), 
DHM-AQ (AQ), phoenicin 
 

Crypta Aspergilloides 0 (1) 0 (0%) - - 

Eremophila Aspergilloides 0 (1) 0 (0%) - - 

Exilicaulis27, 29, 30 Aspergilloides 36 (58) 9 (25%) Carviolins, emodin (98), 
fumigatin (37), spinulosin 
(38), phoenicin (47), 
unknown AQ 

Emodins, fumigatins, 
phoenicin 

Gracilenta31 Aspergilloides 4 (6) 2 (50%) Emodin (98), toluquinone 
(39), spinulosin (38), 
unknown AQs 

Emodins, toluquinones 
(BQ), fumigatins 

Griseola Aspergilloides 1 (1) 0 (0%) -  

Inusitata Aspergilloides 0 (2) 0 (0%) -  
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Lanata-
Divaricata32, 33, 34 

Aspergilloides 43 (76) 13 (30%) Aloe-emodin, 
chrysophanol (105), ω-
hydroxyemodin (104), 
emodin (98), toluquinone 
(39), unknown AQs, 
xanthomegnin (81) 

Emodins, toluquinones, 
xanthomegnins (NQ) 

Lasseniorum Aspergilloides 1 (1) 0 (0%) - - 

Ochrosalmonea31 Aspergilloides 2 (2) 1 (50%) 1 unknown BQ and 1 
unknown AQ 

- 

Ramigena Aspergilloides 6 (6) 0 (0%) - - 

Sclerotiorum35 Aspergilloides 24 (35) 2 (8%) Physcion (102) Emodins 

Stolkia Aspergilloides 7 (7) 0 (0%) - - 

Thysanophora36 Aspergilloides 2 (8) 1 (50%) Thysanone (80) Thysanone (NQ) 

Torulomyces Aspergilloides 0 (15) 0 (0%) - - 

Brevicompacta37, 38 Penicillium 11 (11) 1 (10%) CHT-AQ (120), spathullin C 
(55) 

Nalgiovensins (AQ), 
spathullins (BQ), 

Canescentia39, 40 Penicillium 19 (21) 7 (37%) Spinulosin (38) or 
fumigatin (37), MT81 
(117), patulin*, unknown 
AQ 

Fumigatins, MT81 (AQ), 
toluquinones 

Chrysogena41, 42, 43, 

44, 45, 46, 47, 48, 49, 50, 51, 

52, 53  

Penicillium 18 (19) 8 (44%) ADH-BQ (50), 
cycloleucomelone (32), 
DDH-BQ (51), emodin (98), 
5-farnesyl-methylquinone 
(71), 2-ω-hydroxyemodin, 
2-hydroxy-3-methyl-1,4-
naphthoquinone (77), 
nalgiovensin (118), 
nalgiolaxin (119), 4’-oxo-
macrophorin A (45) and D 
(46), peniginsengin B (70), 
sorrentanone (52), 
xanthoviridicatin E (87) 
and F (88) 

Sorbicillinoids (BQ), 
atromentins (BQ), 
emodins, yanuthones 
(BQ), juglones (NQ), 
nalgiovensins, 
macrophorins (BQ), 
xanthoviridicatins (NQ) 

Eladia Penicillium 2 (2) 0 (0%) - - 

Fasciculata1,2, 54, 55, 

56, 57, 58 
Penicillium 30 (32) 8 (21%) Emodin (98), physcion 

(102), patulin*, unknown 
AQs, rubrosulphin (84), 
viomellein (83), 
viopurpurin (85), 
xanthomegnin (81), 
xanthoviridicatin D (86) 
and G (89) 

Emodins, xanthomegnins, 
toluquinones, 
xanthoviridicatins 

Formosana2 Penicillium 1(1) 1 (100%) Patulin* Toluquinones 

Osmophila59 Penicillium 2 (2) 1 (50%) Patulin* Toluquinones 

Paradoxa60 Penicillium 4 (9) 1 (25%) Pachybasin (124) Pachybasin (AQ) 

Penicillium1,2 Penicillium 7 (8) 4 (57%) Patulin*, viomellein (83), 
xanthomegnin (81) 

Toluquinones, 
xanthomegnins 

Ramosum59, 61 Penicillium 12 (17) 1 (8%) Unknown AQ - 

Robsamsonia1,2, 59, 

62 
Penicillium 11 (14) 8 (73%) Gentisyl quinone (62), 

hydroxychlorogentisyl 
quinone62, patulin* 

Toluquinones 

Roquefortorum1,2,63 Penicillium 4 (5)  Patulin* Toluquinones 

Turbata Penicillium 3(4) 0 (0%) - - 

Unknown section64 - - - Griseusin C (74), 
naphthoquinone C (78) 

Griseusins (NQ), 
naphthgeranines (NQ) 

Unknown section65 - - - Topopyrone C (127) and D 
(128) 

Topopyrones (AQ) 

*Patulin is not itself a quinone but quinones such as toluquinone (61), chlorogentisyl quinone (63) and 1 

hydroxychlorogentisyl quinone have been reported from patulin producers, as precursors or shunt products 2 

in the biosynthetic pathway (Ali et al.  2017). 3 

 4 
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Table 4. Distribution of quinones in the genus Talaromyces (1Frisvad et al.  1990; 2Samson et al.  2011c; 1 
3Yilmaz et al.  2014; 4Frisvad, 2015; 5Houbraken et al.  2020: 6Sun et al.  2020a; 7Zhai et al.  2016; 8Lan and 2 

Wu, 2020; 9Chen et al.  2016c; 10Takeda et al.  1973; 11Howard & Raistrick, 1954; 12Yamazaki et al.  2010; 3 
13Yamazaki et al.  2009; 14Breen et al.  1955; 15Yilmaz et al.  2016; 16Sedmera et al. 1978; 17Mondal et al.  4 

2020; 18Hussain et al. 2015; 18aBara et al. 2013; 19Samson et al.  1989; 20Seifert et al.  2004; 21Frisvad et al.  5 

1990; 22 van-Reenen Hoekstra et al.  1990; 23van Eijk, 1973; 24Fuska et al.  1991; 25Proksa et al.  1994; 6 
26Fujimoto et al.  1986; 27Roberts and Thompson, 1971; 28Wang et al.  2011; 29Kalansuryia et al.  2019).  7 

Section Number of 
species 
(number 
of species 
known in 
section in 
all) 

Number of species 
producing 
quinone  
(percentage) 

Quinones produced Quinone families produced 

Bacillispori 2 (7) 0 (0%) - - 

Helici9 4 (13) 1 (25%) Emodin (98) (secalonic acid BF) Emodins (AQ) 

Islandici9,10,11,12,13,14,15, 

16,17,18, 18a 
17 (34) 11 (65%) Emodins and biemodins10,11 

(emodins: catenarin (99), 
chrysophanol (105), chrysophanic 
acid, emodin (98), endocrocin 
(112), ω-hydroxyemodin (104), 
islandicin, biemodins: (+)-
aurantioskyrin, (+)-auroskyrin, (+)-
deanhydrorugulosin, (-)-
deoxyluteoskyrin, (-)-
deoxyrubroskyrin, dicatenarin (96), 
(-)-flavoskyrin (94), (+)-iridoskyrin, 
(-)-luteoskyrin, (-)-4a-
oxyluteoskyrin, (+)-4a-
oxyluteoskyrin, (+)-oxyskyrin, (+)-
punicoskyrin, (+)-rhodoislandin A & 
B, (+)-roseoskyrin, (-)-rubroskyrin, 
rugulin, (-)-rugulosin, rugulosin B, 
rugulosin C, (+)-skyrin (95), 
skyrinol) (luteoskyrin BF), 
xanthoradone A-C (90, 91, 92), 
xanthomegnin (81) & viomellein 
(83), talaromannin A and B (126) 

Emodins, biemodins (AQ), 
xanthoviridicatins (NQ), 
xanthomegnins (NQ), 
talaromannins (AQ) 

Purpurei19, 5 (13) 2 (40%) Emodin (98) (secalonic acid BF) Emodins 

Subinflati19,20 2 (6) 0 (0%) -  

Talaromyces21,22,23,24,25, 26 42 (78) 8 (19%) Catenarin (99), emodin (98) 
(secalonic acid BF), erythroglaucin 
(100), juglone (75), rugulosine, 
skyrin (95) 

Emodins, juglones (NQ), biemodins 
(AQ) 

Tenues 0 (1) 0 (0%) -  

Trachyspermi7,8,27,28 12 (28) 2 (17%) Emodin (98), ω-hydroxyemodin 
(104) (secalonic acid BF), 
purpurogenone (79) 

Emodins (AQ), purpurogenone (NQ) 

Unknown section and 
species29 

  Talaroquinone28*  

*Potentially an artificial oxidation product. 8 
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