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Abstract 

By increasing environmental pollution and the energy crisis, the development of renewable energy sources 

(RESs) has become an essential option to ensure a sustainable energy supply. However, the inherent 

uncertainty of RESs poses significant technical challenges for independent system operators (ISOs). 

Transmission line congestion has become one of the significant challenges for ISOs to use the maximum 

power of RESs. The mobile battery-based energy storage systems can provide a promising solution for the 

transportation of the generated energy from RESs to load centers to mitigate the effects of line congestion 

on the power network operation. Hence, this paper evaluates the impact of battery-based energy storage 

transport by a train called BESTrain in a unit commitment model from the economic, environmental, and 

technical aspects under a multi-objective mixed-integer linear programming framework. The uncertainties 

associated with wind power and electric demand are also handled through a two-stage stochastic technique. 

The main aim of the introduced model is to minimize the carbon emission and operational cost 

simultaneously by determining the hourly location and optimal charge/discharge scheme of the BESTrain, 

and optimal scheduling of power plants. The numerical results exhibit the reduction of operation cost and 

carbon emission by 6.8% and 19.3%, respectively, in the presence of the BESTrain. 

Keywords: Railway transport network, battery-based energy storage transport, multi-objective 

optimization, vehicle routing problem, stochastic programming, wind energy. 



NOMENCLATURE 

Index 

,b b ′  Buses 

i Power plants 
j Loads  

,k n Train station  

m Production blocks 

t Time periods  

ts Time spans 

tr Trains  

s Scenarios 
wp Wind power plants 

Constant 

,i tCE Carbon emission coefficient of power plants 

/ch dis
tr trη η  Charge/discharge efficiency of trains 

,j tvoll Cost of lost load  

, ,j t sD Electrical demands 

, ,
E
i t mC Energy prices offered by power plants 

,0trE Initial energy level of trains 

',b b
X Line reactance  

max
LinePF Maximum thermal capacity of the transmission line 

min max/tr trE E Min/max capacity for trains 
,min ,max/ch ch

tr trP P  Min/max charge power of trains 
,min ,max/dis dis

tr trP P  Min/max discharge power of trains 
min max/i iP P Min/max power produced by power plants 

,i tME Minimum carbon emission produced by plants 

/i iMUT MDT Minimum down/up times for power plants 

,i tMC Minimum operation cost of power plants 

sπ Scenario probability  



/SU SD
i iC C Start-up/shut-down costs for power plants 

A Sum of arcs for time-space network 

kA+ Sum of arcs in a time-space that starts from k station 

kA− Sum of arcs in TSN that end at k station 

J Sum of electrical loads  

M Sum of generation blocks 
NJ Sum of loads  
U Sum of power plants  
N Sum of power plants 
S Sum of second stage scenarios  

T Sum of time intervals  

TS Sum of time-spaces 

TR Sum of train  

TR Sum of trains  
WP Sum of wind power plants  

,wp tP The produced wind power 
ch
trC Trains operation cost in charging mode 
dis
trC Trains operation cost in discharging mode 

trC Transportation cost for trains 

/up down
i iR R Up and down ramp of power plants 

Variable 

, ,
ch

tr t sP∆ Adjusted charging power by BESTrains 

, ,
dis

tr t sP∆ Adjusted discharging power by BESTrains 

, ,i t sPE∆ Adjusted carbon emission by power plants 

, , ,i t m sP∆ Adjusted power of power plants 

,b tθ Angle magnitude of bus b at time t  

,i tPE Carbon emission of power plants 

, ,/ch dis
tr t tr tP P Charge/discharge power of trains 

, ,/i u i uTU TD Number of successive ON/OFF hours for power plants 

', ,b b t
PF Power flow of lines between buses  

,i tP Power production of  power plants 

, ,/i t i tSU SD Start-up/shut-down cost of power plants 



,tr tE The energy capacity of trains 

,j tLsh Value of lost load at t time  

, ,j t sΘ Variable amount { },D LshΘ∈ in the second stage 

, ,tr t sΘ Variable amount { }, ,, ,r ch r dis rE P PΘ∈ in the second stage 

, ,i t sΘ Variable amount { },r rP PEΘ∈ in the second stage

, ,b t sΘ Variable amount { },r rPFΘ∈ θ in the second stage

Binary variables 

,i tY / ,i tZ Binary variable for start-up/shut -down of power plants 

,i tI Binary variable for the status of power plants 

, , ,tr k n tsF Status of route k-n of train tr at time span ts 

,
ch
tr tI / ,

dis
tr tI Binary variable of charge/discharge operation mode of trains 

1. Introduction

A. Motivation

The total global share of wind energy is projected to reach 36% by 2030 [1]. The unpredictable power

generated by wind energy could expose adverse effects on the optimal operation of power systems. In

addition to power fluctuations, the most important challenge in developing wind power plants is the transfer

of power generated by such power plants from production to consumption through high-cost transmission

lines [2]. Therefore, keeping a balance between generation and consumption with high wind energy

penetration in the power grid is fundamental. Battery energy storage systems (BESSs), as flexible emerging

technologies with unique features such as mobility and high efficiency, can present an appropriate solution

to mitigate challenges associated with wind power variability [3, 4]. Mobility can be considered as one of

the unique features of BESS. This feature makes it easy to carry BESS across the network under different

conditions. The mobile BESSs provide an appropriate solution to transport the generated wind energy from

wind farms sides to load centers all over the power system. The rail transport networks  (RTNs) cover a

large part of the transportation system worldwide for daily passengers traveling. However, installing BESS

in train carriages provides a suitable opportunity to take advantage of battery mobility. The battery-based

energy storage transport via a train called BESTrain can overcome wind power transmission challenges



from the generation side to consumption centers by relieving congestion difficulties in transmission lines 

during peak hours. 

B. Literature review

Several studies focused on  renewable energy sources integration management using flexible emerging 

technologies. A two-stage stochastic unit commitment (UC) model was presented in [5] to evaluate the bulk 

energy storage (BES) capacity incorporated with wind energy on the daily operation cost. In [6], a UC 

model incorporated with the large-scale BESS and renewable energy resources was proposed by 

considering the degradation cost of BESS and load uncertainty. A new model for calculating the technical 

and economic flexibility criterion of the power grid was proposed in [7] by considering BESS and demand 

response (DR) resources. The economic-emission evaluation of DR and parking-lot electric vehicle (PEV) 

was studied in [8] under a multi-objective UC model. In [9], a bi-level optimization problem was proposed, 

where the BESS is considered as a price-maker player in the power market. A comprehensive study of the 

role of DR in energy and storage markets was conducted in [10] as a multi-objective optimization 

framework to reduce wind energy fluctuations and minimize operating costs. A new model for optimal 

energy and reserve scheduling of the modern power systems considering BES, DR, and wind energy was 

investigated in [11]. In [12], the relationship between wind curtailment value and operation cost using multi-

objective UC integrated with BESS was evaluated, where the impacts of BESS on the uncertainty 

management and load shedding are evaluated. A probabilistic UC model combined with BESS was studied 

by [13], where the Benders decomposition method is applied to solve it and reduce the computational 

burden. A stochastic UC problem for a hybrid micro-grid in the presence of wind and solar energies and 

BESS considering load forecasting error was developed by [14], aiming to minimize total operation cost.  

The authors of [15] introduced an emerging BESS as part of the set of control measures in a corrective form 

of the UC model under a two-stage MILP formulation applying the Benders decomposition approach. 

The energy storage system has been studied as a fixed technology (static storage) in renewable-based power 

grids in the mentioned literature. Meanwhile, one of the most obstacles of wind power is too much distance 



between distribution networks and wind farms. Hence, the high value of wind power inevitably interrupted 

to prevent the congestion of lines. For example, the curtailment rate of wind energy has grown up to 5% in 

Germany and 6% in Britain (for offshore and onshore Scottish wind farms) [16]. BESS mobility provides 

a convenient solution for transferring wind energy from production (wind farms or coastal farms) to 

consumption, thereby reducing the challenges of integrating wind farms into the power grid.  However, 

providing the necessary infrastructures for the BESS transferring has rarely been developed in the literature. 

A UC model incorporated with the BESS transportation was studied by [17], where the role of BESTrain 

on the daily operation cost and congestion of lines is investigated without considering system uncertainties. 

In [18], the restoration of joint post-disaster scheduling of the distribution system, including neighboring 

micro-grids incorporated with the transportable BESS, was extended. The shipping, trains, and trunks 

infrastructures for extending the potential of the BESTrain to mitigate congestion challenges related to the 

transmission system was developed by [19], where a UC model coordinated with BESTrain is solved. The 

effect of BESTrain on the optimal scheduling of power plants under a UC model was studied in [20], where 

a stochastic time-space network (TSN) model is adopted to handle the stochastic nature of the railway 

system. A multi-agent system-based strategy for service restoration in a distribution network with power 

plants and mobile energy storage systems was proposed in [21], where a three-layer structure is introduced 

to consider cyber, physical, and transportation layers. The authors of [22] investigated the effect of the 

mobile battery storage system in distribution networks, where the optimal location and charge and discharge 

scheme of the battery storage system are determined during the scheduling period. The authors of [23] 

evaluated the effect of EVs on the transmission-constraints UC model to mitigate the wind power 

fluctuation in the power system. The scenario-based stochastic UC model incorporated with EV fleet 

capturing load, wind output, and arrival/departure times of EV uncertainties was studied in [24]. The 

probabilistic UC model coordinated with the EV fleet in the presence of wind power was proposed in [25], 

where the traffic system is modeled by EVs traveling. 

The need to utilise green and pollution-free technologies, such as hybrid BESS and wind energy, is critical 

due to the increasing carbon emission and climate change challenges. Techno-economic analysis of BESS 



for wind energy integration, considering both technical and environmental constraints, was developed by 

[26]. Multi-objective optimization of BESS with large-scale integration of renewable energy considering 

economic and environmental constraints was investigated by [27]. The stochastic multi-objective 

economic/environmental operation of a micro-grid in the presence of BESS was studied in [28], where a 

hybrid meta-heuristic algorithm based on differential evolution (DE) and modified particle swarm 

optimization (PSO) is applied to solve the proposed problem. The multi-objective operation of multi-energy 

micro-grids in the presence of the BESS and DR program, aiming to minimize total operation cost and 

emission pollution, was developed by [29]. Techno-economic and environmental evaluation of BESS under 

multiple time scales capturing price variation was investigated by [30]. The energy management of smart 

homes incorporated with small-scale wind turbines and BESS under the techno-economic assessment was 

investigated by [31], where the proposed model determines the optimal BESS capacity. The multi-objective 

MILP model of home energy management problem integrated with BESS to minimize electricity bid and 

peak demand for multiple residential consumers was developed by [32]. In [33], an 

environmental/economic assessment for optimal energy management of renewable-based micro-grid 

incorporated with battery and photovoltaic system, and wind energy under high-level uncertainty of power 

price and RES was investigated. A new two-step approach was presented in [34] for obtaining the optimal 

BESS sizing in a grid-connected micro-grid with the aim of total operation cost reduction. In [35], a mixed-

integer linear programming (MILP) model for BESS operation in distribution networks considering 

network losses and voltage magnitudes was developed, where the BESS exchange not only active power 

but also provides reactive power through inverter-based connection.  

C. Gaps and Contributions 

To the best knowledge of the authors, the studied works have not comprehensively explored the technical, 

environmental, as well as economic advantages of BESTrain in a multi-objective two-stage UC model. The 

remarkable gaps in the literature are outlined as follows: 



• In [5-15], BESSs have been applied as static sources into power systems for multiple goals, and 

the mobility capability of BESS in decreasing lines congestion and minimizing operational cost in 

the transmission-constrained scheduling has been neglected.  

• In [16-22], although the mobility capability of BESS has been deployed in the UC, they have not 

comprehensively investigated economic, technical environmental assessment of BESTrain under 

a multi-objective framework.  

• In [23-32], although power systems  operation has been incorporated with static or mobile BESS, 

the optimal UC model has not been achieved based on multi-objective approaches to capture both 

economic and environmental benefits. 

• In [26-36], although the optimal scheduling of energy storage in the power system has been 

evaluated from economic, technical, and environmental perspectives, the integration of the 

BESTrain in the UC model in the presence of high penetration of wind energy based on the multi-

objective approach have not been studied. 

This work presents a multi-objective two-stage stochastic UC model for coordinated power and railway 

transportation networks to cover the above gaps. The proposed model enhances the flexibility of the power 

system via BESTrain, aiming to minimize total operational cost and emission. The BESTrain facilitates the 

integration of wind power into the electricity grid by transferring power from generation to consumption 

through the train, thereby reducing the impact of lines congestion on the optimal scheduling of power plants 

during peak-hours. In the proposed model, the BESTrain owner sends the price-quantity values and 

technical specifications to the independent system operator (ISO). Then the ISO solves the multi-objective 

UC problem by considering the vehicle routing problem (VRP). In VRP, a TSN is adopted to model all 

RTN constraints and its interdependency on the power system to achieve a more realistic RTN and power 

network model. After solving the UC problem, the charge and discharge schedule of the BESTrain and its 

hourly location and state are determined in a day-ahead scheduling model, and the BESTrain owner acts 

according to the pre-specified schedule. The proposed two-stage UC multi-objective optimization 

framework is formulated as a MILP model to capture the technical, environmental, and economic 



advantages of BESTrain. Also, a scenario-based stochastic method is used to address uncertainties caused 

by load and wind power fluctuations. The novelty and contributions of this work are outlined as follows: 

• The VRP-based BESTrain model is incorporated into the UC problem, which combines rail 

transport and power network constraints for optimal scheduling of power and transport systems. 

• In this work, the influence of BESTrain on the hourly dispatch of power plants, locational marginal 

price (LMP), line congestion, operation cost, and carbon emission in the integrated power and 

transport systems is investigated.    

• A multi-objective two-stage stochastic UC optimization problem incorporated with the VRP-based 

BESTrain model is proposed to minimize the operation cost and carbon emission simultaneously by 

considering wind energy and power demand uncertainties in real-time. 

The remainder of the paper is organized as follows. In Section 2, the problem description containing RTN 

and the BESTrain model are presented. Section 3 represents the multi-objective two-stage stochastic UC 

formulation contains objective functions and corresponding restrictions. The solution method to solve the 

proposed multi-objective problem is described in Section 4. Numerical results are reported and discussed 

in Section 5. Finally, Section 6 concludes the paper. 

2. Railway transport network and BESTrain  

Railways are s safe land transport networks in the world for the daily movement of passengers or various 

objects. However, daily passenger transportation needs optimum scheduling for trains via a classic VRP 

model. Meanwhile, the BESTrain model through RTN needs more realistic modeling, by considering all 

transportation limitations, including rail station and railway conditions. The time-span network developed 

in [17], is implemented to model the railway stations and lines via VRP. Fig. 1 depicts a simple RTN 

network contains three train stations and railroads crossing. There are three neighboring stations{ }1,2,3 in 

Fig. 1, in which the number on each line that links two stations together denotes the travel time, stated in 

time spans. One time-span can be each number of periods stated as an input to RTN. In Fig. 1, the travel 

time between stations 3 and 1 is two time-spans and twice other stations. To alleviate the problem, a virtual 



station 4 is considered between stations 3 and 1; hence, the travel times between any two other stations 

equals a time span. The travel time, which is considered between any two stations in Fig. 1, is an important 

parameter in RTN. A small time span increases the elaboration of the RTN model with the assigned of 

different virtual stations, while a large time span will diminish the punctuality of the RTN modeling. 

The TSN for 4 stations is depicted in Fig. 2. All available hourly interconnections between the actual and 

virtual stations are given in Fig. 2. The vertical axis shows railway stations, and the horizontal axis denotes 

the hourly scheduling horizon. Nodes and arcs are two main components in TSN. Each node shows a 

railway station (virtual or real station) in the scheduling horizon, and an arc expresses a possible connection 

between two stations or connection between stations and power network in the given time horizon. 

Transporting arc (dashed line) and grid connecting arc (solid line) are defined as two kinds of arcs in a 

TSN. Grid connecting arc shows the BESTrain stop for power exchanged with the power network at each 

station. Transporting arc demonstrates the BESTrain transportation between stations in each given time 

period. It is clear that the actual stations can be connected to both transporting arcs and grid connecting, 

but the virtual station (station 4 in Fig. 1) can only be connected to transporting arcs. Discernibly, the 

BESTrain could not be connected to the grid in station number 4 because of the absence of 

charging/discharging devices.  



Station 4

1 1

1 1

Station 1 Station 3

Station 2  
Fig. 1. The RTN structure. 

 
Fig. 2. TSN of example RTN structure. 

3. Problem formulation  

Fig. 3 depicts the overall schematic of the proposed multi-objective two-stage stochastic UC model in 

incorporation with VRP. In the proposed model, the ISO receives offers from power plants and BESTrain 

before solving the UC problem. The ISO prefers to utilize both production and demand-side sources to 



realize the cost-effective hourly commitment of power plants. The BESTrain can be scheduled as a producer 

or consumer based on the ISO’s requirements. The offered package of conventional power plants and 

BESTrain not only includes submitted price-quantity values but also includes their environmental and 

technical characteristics. As the VRP is combined with the UC problem, the ISO solves a UC problem 

limited to the RTN and power grid to minimize the operation cost and carbon emission under a multi-

objective two-stage stochastic technique.  

 
Fig. 3. The schematic of the proposed two-stage framework 

The main objective of the proposed model is to minimize the carbon emission and total operational cost 

simultaneously, which is formulated as a multi-objective two-stage stochastic programming model to 

address the uncertainties associated with wind power production and electric demands in real-time. The 

objective function related to minimizing the total operating cost is defined as (1). The operational costs of 
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power plants in the first stage include the costs of no-load, start-up, and shut-down, as well as energy 

production costs, which are expressed by the first term of (1). The second term of (1) indicates transporting 

cost and charging and discharging costs of BESTrain in the first stage. It is assumed that the 

discharge/charge cost of BESTrain is a linear function of its discharge/charge energy [17]. In addition, the 

transportation cost of BESTrain is taken into account due to the train's fuel consumption on the way [17, 

20]. The operational costs of power plants and BESTrain, as well as the cost of load shedding in the second 

stage, are provided by the third, fourth, and fifth terms of (1), respectively. The objective function related 

to minimizing carbon emission is represented by (2). The objective function (2) consists of three terms. The 

first and second terms of (2) show the carbon emission of power plants in the first stage. The carbon 

emission of power plants in the second stage is defined by the third term of (2). 
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1)  First stage constraints 

The set of limitations that must be satisfied in the first stage includes UC, BESTrain model, and power grid 

limitations. The set of constraints related to UC in the first stage is represented by (3) -(14) [36]. Constraints 

(3) and (4) shows the hourly power generation by the power plants. The up and down ramp rate limits for 

continuous times are expressed in (5) -(8), respectively. Minimum up and downtimes limitations of power 



plants are defined by (9) -(12). The start-up and shut-down costs constraints are established by (11) and 

(12), respectively.  

min max
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The set of limitations associated with the operation of the BESTrain are expressed by (15) -(23) in the first 

stage [37]. The restriction related to the location of the BESTrain is represented by (15). Each train can be 

only on one route at any specified time span. Movement constraints for the BESTrain are expressed in (16) 

-(18). Let’s consider the location of BESTrain at time span s in specific routes ending in the k node; hence 

at time span s+1, the BESTrain will be located in another route that starts from the k node, as expressed in 

(16). The final and initial states of the BESTrain location limits are represented by (17) and (18), 

respectively. At a special moment, the BESTrain can be operated in one of the charging or discharging 

modes when it is connected to the network, as represented by (19). The charged and discharged power 

constraints for the BEST are given by (20) -(21). The state of charge (SoC) of BESTrain is defined in (22). 



BESTrain’s energy capacity is restricted by min and max values as (23). The initial and final SoC for the 

BESTrain is limited to the constraint (24). 
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The power balance and DC power flow limitations in the first stage are represented by (25) -(27) [38]. 

Constraint (25) expresses the power balance on each bus. The DC power flow equation is applied by (26). 

The thermal limit capacity for the transmission line is defined by (27).  
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2)  Second Stage Constraints 



Constraints related to the second stage and “wait and see” variables are represented in this sub-section. The 

limitations of the power plants operating in the second stage are described by (28) -(32), including the 

power generation and ramp rate limits.  
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The BESTrain model limitations in the second stage are expressed by (33)-(39). The real charged and 

discharged power value of BESTrain are calculated in (33) and (34), respectively. The charge and discharge 

power limits in the second stage are respectively represented by (35) and (36). The limitations associated 

with the energy capacity limits related to the BESTrain for this stage are provided in (37) -(39). 
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Similar to the power flow and power balance constraints in the first stage, the network's limitations in the 

second stage should be established. The power balance restriction in the second stage is established by (40). 

The DC power flow and line power capacity limitation for the second stage are respectively defined by (41) 

and (42). 
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4. SOLUTION METHOD: Ɛ-CONSTRAINT APPROACH 

The UC model integrated with VRP is formulated as a multi-objective optimization problem to minimize 

the operation cost and carbon emission at the same time. The ε -constraint approach is introduced to solve 

the suggested multi-objective problem [39], which is described as following. Considering an optimization 

problem that contains n conflicting objectives and the corresponding limitation as (43): 

{ }1 2 2 min ( ), ( ), ( ),......, ( )
 Subject to:
                

nW f x f x f x f x

x R

=

∈

 (43) 

Where R is defined as a feasible region for the multi-objective approach and x is considered as a set of 

decision variables in the introduced problem. In this approach, one of the objectives is considered as the 

main objective, and others are included as constraints. Hence, by applying the Ɛ-constraint, the multi-

objective problem in (43) is transferred to (44): 

1

2 2

3 3

 min ( )
Subject to:
                ( )
                ( )
                
                ( )
                

n n

W f x

f x
f x

f x
x R

ε
ε

ε

=

≤
≤

≤
∈



 (44) 

The members of Ɛ-set: { }2 3 4, , ,..., kε ε ε ε , are adjusted parametrically to obtain the best optimal solutions. 

The optimal solutions of Ɛ-set are obtained according to the n-1 objective functions. Different strategies are 

applied to determine a compromise solution in a set of the provided Pareto solutions. The fuzzy-based 

decision-making approach is one of the appropriate options to achieve the best compromise solution among 

all possible solutions in the set of Pareto [40]. Based on this approach, the membership function in the range 



[0,1] is assigned to all possible solutions in the Pareto set. In addition, for all of the objectives in (44), the 

fuzzy membership is provided as (45). 
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To designate the best reconciliation between generated solutions in the Pareto set, the min-max approach 

is applied based on calculating the smallest amounts of 1f and 2f , and choosing the optimal solutions as a 

max amount of minimum { }1 2
ˆ ˆ,f f . More details can be found in [29, 41]. Fig. 4 shows the overall schematic 

of the proposed multi-objective UC model of power system with the RTN, based on the fuzzy-based 

decision-making strategy. 



 

Fig. 4. The flowchart of the proposed multi-objective stochastic UC. 

5. Case study and numerical results 

1) Input data 

In this research, a linked power and rail transport network is considered as Fig. 5 to analyze the performance 

of the presented model. All characteristics related to the power and transport networks are provided by [17]. 

The maximum capacity of line 1-4 (between buses 1 and 4) is assumed to be 105MW. The forecasted load 

and wind energy are given in Fig. 6. Also, the carbon emission coefficients and other characteristics related 
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to power plants can be found in [40, 42]. Unit G1 offers its power to market at three blocks as $13.51, 

$14.39, and $15.27, respectively. Unit G2 also offers its power to market at three blocks as $32.62, $32.71, 

and $32.83, respectively. In addition, unit G3 offers its power to market at three blocks as $17.7, $17.8, and 

$17.9, respectively. The carbon emission coefficient of units G1, G2, and G3 are considered to be 353.2 

Ibs/MWh, 129.97 Ibs/MWh, and 137.41 Ibs/MWh, respectively. The cost of load shedding is assumed to 

be $400/MWh [43]. The proposed BESTrain is equipped with the sodium-sulfur (NaS) battery. The energy 

capacity, as well as the rated power of batteries, are 200 Wh/kg, and 50 W/Kg, respectively. Also, a standard 

50-feet railway is applied to carry 100 tons of burden; hence, each wagon transfers NaS batteries with 

100×103×200×10−6 =20 MWh capacity and 100 × 103 × 50× 10−6 = 5MW power. The BESTrain includes 

six railroad wagons and a locomotive. As a result, the power and energy capacity characteristics of the 

BESTrain are 30 MW and 120 MWh, respectively. There is a 2-hours transport time between any two 

stations. The charge and discharge cost of BESTrain is estimated at 1$/MWh [44]. The transport cost of the 

BESTrain equals $200 [17]. Wind power and energy demand forecasting errors follow Weibull and normal 

distribution functions, respectively. The data relating to distribution functions are given in [45]. The 1000 

scenarios are produced by the Monte-Carlo simulation, which are decreased to 10 probable scenarios by 

SCENRED. All the simulation and coding of the proposed MILP model is carried out in GAMS software 

and solved by CPLEX solver. 



 
Fig. 5. The integrated power and RTN test system. 

 
Fig. 6. The forecasted demand and wind power. 

  2) Numerical results 

  The following cases are studied to examine the effectiveness of the proposed model: 

Case 1: Evaluating the effect of the static BESS in a single-objective two-stage UC to minimize the 

daily operation cost. 
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Case 2: Evaluating the impact of the BESTrain in a single-objective two-stage UC to minimize the 

daily operation cost. 

Case 3: Evaluating the effect of the BESTrain in a multi-objective two-stage UC to minimize the daily 

operation cost and carbon emission. 

Case 1: Fig. 7 shows the optimal charge and discharge scheme of the static BESS. It can be seen that for 

periods between 1 and 3, the BESS is operated in charging mode, then in the hours between 3 and 7, it is 

operated in discharging mode. The BESS cannot be used in discharge mode during hours of peak demand 

(t=15 to t=18) due to the congestion of lines, which results in the lack of optimal use of the potential of the 

BESS in reducing operating costs and the congestion of transmission lines during peak demand hours. Fig. 

8 shows the hourly power dispatch of power plants with and without the BESS. Unit G1 is committed 

during the whole scheduling horizon as the cheapest power plants, and unit G3 is committed between hours 

9 and 24 as a more expensive unit. Unit G2 is also operated between hours 10 and 23 as a high-cost power 

plant to supply the rest of the power demand. Besides, the BESS is only scheduled in such a way to manage 

the power dispatch of unit G1 more appropriately  due to the congestion of lines during high-demand hours 

and its location on bus 1. Therefore, this leads to more efficient use of the generated power of unit G1. On 

the other hand, the BESS cannot be useful in reducing the power generation of units G2 and G3 due to line 

congestion, which leads to an insignificant decrease in total operating cost in the presence of the static 

BESS. The operating cost for this case is $86112.85, which is 0.9% less than it without the BESS.      

 
Fig. 7. The optimal charge and discharge scheme of the static BESS. 
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Fig. 8. The hourly power dispatch of power plants (G1, G2, and G3) with and without the BESS. 

Case 2: The hourly location and status of the BESTrain is demonstrated in Table 1. The BESTrain is placed 

initially on station A. It is observed that in the first time-span, BESTrain departs from station A and moves 

to station B. From the second to the tenth time span, the BESTrain is placed on station B (fourth bus), and 

it is operated in charging and discharging modes to reduce the effect of line congestion during high-demand 

hours. In the eleventh time-span, BESTrain comes back to station A, and in the final time-span, BESTrain 

is operated in discharging and charging modes, respectively. The hourly scheduling of BESTrain is 

represented in Fig. 9. It is observed that during off-peak demand hours, the BESTrain is operated in charging 

mode to increase the state of charge of the battery. The BESTrain is operated in the discharge mode to 

follow the power demand and reduce power generation of units G2 and G3.  
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Fig. 9. Hourly charging and discharging scheme of BESTrain in Case 2. 

In fact, during peak demand hours, the BESTrain can more effectively manage the effect of line congestion 

on power dispatch of unit G1 in comparison with the static BESS, as shown in more detail in Table 2 and 

Fig. 10. It is obvious from Table 2 that in low-demand hours, the power through the line 1-4 (between buses 

1 and 4) is more when the BESTrain is operated instead of static BESS. Also, the power transmitted from 

the line 1-4 mainly is decreased in peak hours since the BESTrain is moved from station A (bus 1) to station 

B (bus 4) to relieve the impact of congestion of line 1-4 on the power dispatch of unit G1. At hours 15, 16, 

20 and 21, although the maximum power is transmitted from the line 1-4, the power dispatch of unit G1 is 

increased by applying the BESTrain, which resulted in decreasing the participation of more expensive units 

(G2 and G3). Fig. 10 shows the hourly dispatch of units compared to case 1. It can be seen that the power 

generation of unit G1 significantly increases during peak hours in the presence of the BESTrain, which 

results in reducing power generation of units G2 and G3. Consequently, decrement of the power generation 

of units G2 and G3 and more efficient use of the power of the unit G1 in the presence of the BESTrain leads 

to a reduction in the average LMP during peak demand hours compared to case 1, which can be observed 

in Fig. 11. In this case, the daily operational cost equals $81,413.97, which is 5% less than case 1. 
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Fig. 10. The hourly power dispatch of power plants (G1, G2, and G3) for Case 2 in comparison with Case 1. 

 
Fig. 11. The average value of LMP with static BESS and with the BESTrain. 
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Case 3: In this case, a multi-objective optimization problem is solved to minimize the operation cost and 

carbon emission simultaneously. Pareto's optimal solutions obtained from solving the multi-objective 

optimization problem without BESS, with static BESS, and with BESTrain are given in Figures 12-14, 

respectively. It can be seen that in all three Figures, by decreasing carbon emissions, the operation cost 

increases. This phenomenon reveals that to achieve lower carbon emissions, the operator should face a 

higher operating cost. The best solution among sets of Pareto's solutions is achieved using the fuzzy method, 

which without BESS, with the fixed BESS, and with BESTrain are obtained in iterations 10, 11, and 12, 

respectively. It can be observed that the best operational cost and carbon emission are obtained in the 

presence of BESS equal to $88350.03 and 34281.42 lbs, respectively, while these results without BESS 

equal to $ 88936.73 and $ 34758.87 lbs, respectively. Therefore, BESS reduces the operational cost and 

emission of carbon by 0.6% and 1.3%, respectively, compared to no BESS installation. 

 
Fig. 12. Pareto's optimal solutions of the multi-objective optimization problem without BESS. 
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Fig. 13. Pareto's optimal solutions of the multi-objective optimization problem with BESS. 

 
Fig. 14. Pareto's optimal solutions of the multi-objective optimization problem with BESTrain 
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BESTrain, respectively. In peak hours, the power produced by G2 rises due to the lower carbon emissions 

than other units, which results in an increasing the total operational cost, consequently decreasing the daily 

carbon emission. Also, the optimal charge/discharge scheme of the BESTrain is dependent on the power 

generation by power plants. Therefore, the operator must apply a different operating strategy for the high-

efficiency use of BESTrain under a multi-objective optimization approach.  

 

 

 
Fig. 15. The comparison of the hourly power dispatch of power plants (G1, G2, and G3) for single and multi-

objective scheduling 
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Fig. 16. Comparison of the hourly charging/ discharging scheme of the BESTrain for single and multi-

objective optimization 

Table 3 provides a comprehensive comparison between BESTrain and static BESS under different 

optimization approaches. It can be seen that in the single-objective scheduling model, BESTrain has a 

significant impact on the operation cost, leads to a reduction in the operation cost up to 6.5%. However, 

according to this table, the static BESS cannot be a very suitable option for the ISO to reduce the operation 

cost when the network faces the transmission lines congestion issue during peak hours. It can also be found 

that under the multi-objective optimization approach, the BESTrain acts as a much more suitable option to 

reduce operating costs and carbon emission compared to static BESS. 

3) Discussion and main achievement 

In the results section, three cases were considered to evaluate the performance of BESTrain in multi-

objective UC, taking into account wind power and electricity demand uncertainties. In cases 1 and 2, we 

assessed the impact of static BESS and BESTrain from an economic and technical perspective, respectively. 

In case 3, we analyzed the static BESS and BESTrain from an economic and environmental perspective 

under a multi-objective optimization approach, where the objective was to minimize the operation cost and 

carbon emission simultaneously. The main achievements can be stated as follows: 

• The operation cost was decreased by 0.6% in the presence of static BESS, while the BESTrain 

could reduce the total operation cost by 6.8%.  
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• The carbon emission was reduced by 1.3% in the presence of the static BESS, while applying 

BESTrain could lead to a decrease in the carbon emission by 19.3%. 

• The static BESS could not significantly affect the reduction of transmission line congestion due 

to its low flexibility, while the BESTrain could reduce the transmission line congestion issue in 

peak hours by 10%. 

• The average LMP was decreased by 8% in the presence of the BESTrain, while static BESS failed 

to reduce the average LMP due to line congestion issues in peak hours. The operation cost was 

decreased by 0.6% in the presence of static BESS, while the BESTrain could reduce the total 

operation cost by 6.8%.  

6. Conclusion  

This work investigated the technical, environmental, and economic influences of the BESTrain in a two-

stage multi-objective UC model. To model the RTN and corresponding constraints, the time-space network 

was applied that linked the UC problem with the VRP. Besides, a two-stage scenario-based stochastic 

strategy was introduced to overcome the uncertainties caused by load and wind energy in real time. The 

presented model determined the power dispatch of power plants, the LMP in each bus, as well as hourly 

location and optimal charge/discharge schemes of the BESTrain by solving a multi-objective optimization 

problem. The optimal solution among all Pareto's solutions was determined using the fuzzy technique. The 

obtained results showed that the BESTrain could reduce the total operation cost and carbon emission by 

6.8% and 19.3%, respectively. In contrast, the BESS could reduce the total operation cost and carbon 

emission by 0.6% and 1.3%, respectively. 

The proposed model will be extended in our future works by considering the uncertainty related to forced 

outages of RTN and power system components under a contingency-based BESTrain UC model. Moreover, 

distributed optimization methods like the alternating direction method of multipliers will be applied in our 

future research to solve the model. 
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Table 1. Status and location of the BESTrain 
Daily operation cost= $81,413.97 

Time span 1 2 3 4 
BESTrain location A to B B B B 

BEST state Transportation -/Charge 
Charging 

/Discharging 
Charging 

Time span 5 6 7 8 
BESTrain location B B B B 

BEST state 
Discharging 
/Charging 

Discharging Discharging Discharging 

Time span 9 10 11 12 
BESTrain location B B B to A A 

BESTrain state Discharging Discharging Transportation Charge/Discharge 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. The effect of BESTrain on the congestion of line 1-4 

Time (h) Hourly demand (MW) 
Power flow of line 1-4 (MW) 

Static BESS BESTrain 
1 183.949 86.676 86.676 
2 173.407 81.709 81.709 
3 166.603 78.503 92.081 
4 162.467 76.553 91.726 
5 162.813 76.717 74.188 
6 168.504 79.398 94.571 
7 182.059 85.785 96.296 
8 199.92 94.201 91.672 
9 215.838 101.702 105.000 

10 228.06 98.643 104.932 
11 240.04 104.939 104.939 
12 247.905 104.130 105.000 
13 254.289 105.000 104.274 
14 255.78 105.000 102.641 
15 261.303 105.000 105.000 
16 268.58 105.000 105.000 
17 268.8 105.000 104.881 
18 259.077 105.000 103.050 
19 258.269 105.000 104.963 
20 249.217 105.000 105.000 
21 249.175 105.000 105.000 
22 238.497 103.260 98.512 
23 211.103 94.756 99.470 
24 206.588 97.343 97.343 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Comprehensive comparison of BESTrain with static BESS 

Optimization model Single-objective 
(operation cost) Multi-objective 

Storage model Static 
BESS BESTrain Static BESS BESTrain 

Operation cost ($) 86,112.85 81,413.97 88,350.03 83,169.27 

Carbon emission (lbs) - - 34,281.42 29,048.91 

Cost-saving compared without 
storage (%) 0.9 6.5 0.6 6.8 

 


