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Abstract: Counting of droppings is often, with great effect, used as an indirect method to monitor
the appearance and usage of an area by a population covering longer time spans. However, manual
detecting and counting of droppings can be time-consuming and tedious, and with a risk of resulting
in course estimations. In this context, we studied the use of imaging from unmanned aerial vehicles
(UAVs) as a novel and enhanced tool to estimate the dropping densities and distributions of field
foraging Arctic migratory geese, such as pink-footed goose Anser brachyrhynchus and barnacle goose
Branta leucopsis. Aided by analysis in geographical information systems (GIS), we sought to detect
and use fine-scale changes in the within-field dropping densities to evaluate avoidance distance to
selected landscape elements. Data in the form of aerial photos from farmed grassland and pastures
were collected in areas adjacent to Limfjorden, Northern Jutland, Denmark. The UAV proved usable
for detecting droppings from field foraging geese, but with the applied UAV technology only at a low
flying altitude (≤3 m), which rendered traditional methods for georeferencing inapplicable. A revised
protocol for georeferencing of single aerial photos triggered from low altitudes was successfully
developed, which was considered suitable for future use. Analyses based on the performed UAV
data sampling allowed for an unprecedented fine-scale estimation of distribution patterns of the
goose droppings and further for determination of optimal sampling frequencies (≤12 × 12 m spacing
between photo samples) for calculation of density patterns, which reflected differences in foraging
activity of geese across whole fields. Contagious dispersions in dropping densities were detected in
the majority of fields indicating local, within-field displacements of the geese, which were illustrated
by interpolated heatmaps. Additionally, avoidance distances were assessed for four landscape
elements and detected with consistent results for windbreaks (100 m), roads (175 m) and wind
turbines (1100 m) throughout the ten surveyed fields.

Keywords: drone; migratory arctic geese; defecation counts; GIS; revised georeferencing; sampling
frequency; asymmetric distributions; avoidance distance; landscape elements

1. Introduction

A substantial conservational concern is the increasing number and sizes of landscape
elements, often anthropogenic in character, such as wind turbines and roads [1,2]. The
placement of such elements often coincides with farmland in close proximity to nature-
protected wetlands, which constitute important feeding grounds for staging migratory
geese [3,4]. These elements may cause the geese to alter behaviour and create possible
barrier zones around the anthropogenic structures avoided by the foraging geese, which
may decrease the field utilisation and cause displacement effects, ultimately reducing the
carrying capacity of the areas [3,5,6].

Denmark internationally plays an important role as a stopover site and wintering
ground for several Arctic migratory populations of geese, accommodating at times up
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to 70% of the Svalbard population of pink-footed geese (Anser brachyrhynchus) and up to
20% of the Baltic population of barnacle geese (Branta leucopsis) [2,7]. With this follows a
responsibility for monitoring and implementing appropriate conservation planning and
strategies to mitigate possible conflicts between geese and human interests, and simultane-
ously ensure suitable stopover sites and feeding grounds to sustain the populations during
the non-breeding season [3,8].

Different methods have been developed for monitoring and analysing the distribution
and trends in bird populations with the aim of optimising the accuracy and usability
of the collected data [9,10]. With respect to migratory waterfowl species, such as geese,
the methods applied include direct visual observations of birds, either by optical means
from the ground [11,12], manned aircraft [13,14] or, more recently, by unmanned aerial
vehicle (UAV) imaging [6,15–18]. Another approach is the more indirect method of manual
counts of bird dropping densities, which enables monitoring of the activity of a population
covering a longer timespan [4,19].

Ground counts with telescopic optics or counts with a laser rangefinder are used to
gather reliable information on the relative position of individual geese at a given point in
time [20]. The drawbacks of this method are a high workload, and for laser rangefinders, the
resulting data often include only a few individuals out of a flock of many [20,21]. Manned
aerial counts are typically more accurate but are costly and pose substantial personal
risks of accidents [22,23]. More recently, aerial photos obtained by UAV imaging of the
foraging geese have been explored, which give precise data on the exact location of all the
birds contained in a flock and typically yield a higher number of birds in comparison to
ground counts [24–27]. Further, monitoring with UAVs is often less costly and generally
reduces the hours spent working in the field [28,29]. Together with the development of
improved geographical information systems (GIS), UAV imaging techniques and software
development create new, game-changing opportunities to assess and improve wildlife
monitoring [23,30–32]. However, as with manual ground counts, the drawbacks of UAV
imaging are that the method only gives data on the actual and momentary position of
the individual geese at a given point in time in the field. Additionally, the method poses
the risk of disturbing the birds [23,33,34]. Counteracting these mentioned drawbacks,
gathering information on dropping densities gives the ability to estimate the foraging
activity of all birds occurring over a longer timespan throughout the field and with a
minimal risk of disturbing the birds. The dropping count method is suitable to estimate the
distribution of geese, as they are herbivores and produce droppings at short time intervals
(of about 5 min) during feeding and, further, they feed on open areas with typically low
vegetation [19,26,35]. This renders the detection of droppings possible with a timespan
of 3–4 weeks before disintegration in conditions with intermittent precipitation, such as
in Denmark [4]. However, the conventional process of sampling dropping densities in
transects in the field is labour intensive, time-consuming and, further, is typically only
performed at low sampling frequencies, with the resulting risk of uncertain detection of
dropping densities.

The aim of this study was to explore and evaluate a novel approach to gathering
information on field utilization of foraging geese by using UAV imaging in combination
with an optimized GIS-based workflow to measure dropping density in the field. By
applying UAV imaging, it was possible to reduce the time needed for both the collection
and georeferencing of the droppings. Furthermore, using UAV imaging would allow for
information on the dropping density and goose distribution in the field to be gathered,
covering a longer foraging time span than possible with direct observations of the geese by
either a manual ground count or UAV imaging. In the present study, we investigated (i) if it
was possible to detect droppings from foraging geese by UAV imaging of farmland pastures
and at which flight heights, (ii) whether it was possible to georeference UAV photos of
detectable droppings, and (iii) to find an optimal spatial positioning and sampling frequency
for the aerial photos, thereby enabling fine-scale estimation of distribution patterns in
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farmland fields. Finally, (iv) we investigated if dropping densities obtained with UAV can
allow for fine-scale evaluation of avoidance distances to landscape elements.

2. Materials and Methods
2.1. Study Area

Data were collected from 10 March to 18 April 2019 within three areas in northern
Jutland, Denmark (Figure 1): Klim Fjordholme (57◦04′40.8′′ N 9◦07′11.9′′ E), Nibe Bredning
(57◦00′50.4′′ N 9◦43′39.7′′ E) and Store Vildmose (57◦14′22.3′′ N 9◦44′30.1′′ E). During this
period, the two focus species of the study, pink-footed goose (Anser brachyrhynchus) and
barnacle goose (Branta leucopsis), still frequented the area on a regular basis before migrating
north [8] and the weather allowed for longer consecutive dry field periods. The collecting
areas were all important and regularly used as foraging areas for the spring staging geese
and were located adjacent to wetland areas protected by the Ramsar convention, Vejlerne,
Ulvedybet and Nibe Bredning [36–38]. Ten specific fields from these candidate areas,
varying from 2.8–15.2 hectares (in total 58 ha), were chosen, which had the characteristics
of cultivated grassland or pastures, allowing for the collection of data.
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Figure 1. Study area in the northern part of Jutland, Denmark. Red shaded areas indicate the
investigated arable foraging sites in connection to important roost sites and Ramsar protected
wetlands (green shaded areas). The fields surveyed with unmanned aerial vehicles (UAV) were
distributed according to manual pre-counts of geese in the three foraging areas.

2.2. Maximum Flying Altitude

All aerial photos of goose droppings were collected using two similar consumer-grade
UAVs, DJI Phantom 4 Pro and DJI Phantom 3 Pro Quadcopter (DJI Technology Co. Ltd.,
Shenzhen, China) [39], both of which are popular platforms for monitoring purposes [40,41].
Prior to data collection, the possibility of detecting and accuracy of counting droppings
were tested by flying over a randomly chosen test field within the study area. Early in
the study period, flights at altitudes of 5–10 m were performed but failed to produce
useable results with respect to acceptable accuracy of dropping counts. A regular test of
the maximum flying altitude was hence confined to the interval of altitudes between 2–5 m
(Figure S1a,b). The UAV was flown over randomly placed visible circles of 40 cm in radius
(0.53 m2). The number of droppings inside these circles was manually counted from the
ground, and then photos were shot with the UAV at altitudes every meter from 2–5 m
above the circles. For each altitude, 15 circle replicates were made. The visible number of
droppings on all UAV photos was counted and compared to identify differences.
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Due to confirmed normality (Shapiro-Wilk’s test) and homogeneity of variance (Bartlett’s
test) for the different altitudes [42,43], a one-way analysis of variance (ANOVA) and a
Tukey post-hoc test were used to test for significant differences in mean percent accuracy
compared to the ground count. To visualise the results, 95% confidence intervals (CI) for
the counting mean were determined for each altitude. Furthermore, in this study, it was
considered an acceptable accuracy to the ground count if the entire 95% CI for the mean of
a given flying altitude was located above 80% accuracy.

2.3. Data Collection

All UAV surveys of the ten selected fields were performed using the Pix4Dcapture
application (version 4.5.0, Pix4D S.A., Prilly, Switzerland) with the integrated Free Flight
mode, which was applied following the instructions described in a study from 2019 [44]. In
the Free Flight mode, single photos were set to be triggered with the camera in a vertical
position at intervals every time the UAV was moved three meters in any horizontal direction.
These short intervals were kept to counteract the inevitable irregularity of the manual free
flight and to ease the following data processing by allowing a thinning procedure with the
purpose of creating regularly spaced sampling grids to enable the detection of fine-scale
density alterations (Figure 2 and Supplementary Material, step ii). The fields were covered
by flying in parallel lines running across the full length of the field, approximately 5–10 m
distance apart. With the DJI GO application (version 3.1.52 and 4.0.6, DJI Technology Co.
Ltd., Shenzhen, China), the camera shutter was set at a minimum of 1/150 of a second and
the contrast was set to vivid in order to minimise image blur and enhance image details,
respectively. The flying altitude above the ground, measured as the barometric altitude at
take-off, was kept between 2–3 m, resulting in a photo covering an area on the ground of
approximately 5 m2. The maximum forward aircraft speed was 3 m/s. Airtime in the field
surveyed by the UAV was approximately 30 min per hectare.
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Figure 2. Flowchart reflecting the protocol for the georeferencing workflow for single aerial photo
sampling (step-by-step details in Supplementary Material S2). (a) Unmanned aerial vehicle (UAV)
surveys of the targeted fields were conducted, thereby yielding individual aerial photo samples with
embedded metadata. (b) The metadata were extracted and used to calculate the image footprint on
the field and orientation against north. (c) From spatial transformations derived from the metadata,
an Esri world file was generated for each photo sample, and subsequent automated recognition and
georeferencing in GIS software were obtained. Detection and counting of droppings on the aerial
photos were performed in GIS software, which enabled fine-scale spatial annotations.

2.4. General Precision of Dropping Counts

As a precautionary measure, the precision of the dropping counts on the obtained
UAV photo samples was blind-tested by comparing counting results from three different
operators among the authors of this study. This was achieved by counting the areas of
two test fields with different dropping densities, one with an observed high density of
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droppings (test field 1) and one with an observed low density of droppings (test field 2).
The area covered by all three operators for test fields 1 and 2 was 389 m2 distributed
on 86 aerial photos and 107 m2 distributed on 35 aerial photos, respectively. The photo
samples collectively constituted an area of 496 m2. The general counting precision was
tested for significant differences using the non-parametric Kruskal Wallis test, as Bartlett’s
test showed significant heterogeneity of variances (p < 0.05) [45]. Boxplots were made to
illustrate the counting results for each person for the two fields, respectively.

2.5. Revised Georeferencing Workflow

By flying at altitudes below 10 m, it was not possible to automatically create ortho-
mosaics via software such as DroneDeploy (DroneDeploy, Inc., San Francisco, CA, USA)
or Pix4DMapper (Pix4D S.A., Prilly, Switzerland) of the aerial photos [46]. Consequently,
it was necessary to develop a suitable practical procedure for georeferencing the UAV
photos to obtain usable results, which would also be applicable for similar future stud-
ies (Figure 2). The revised georeferencing workflow was derived from descriptions in
previous studies [31,47] but with several important modifications (detailed description in
Supplementary Material S2). The method involved the retrieval of metadata contained in
the aerial photos and generation of the Environmental Systems Research Institute (Esri)
world file image extension in order to enable georeferencing in GIS software [48]. Following
georeferencing of the aerial photos from the 10 fields, the single photos were then loaded
into QGIS (version 3.16.14, QGIS Development Team 2022, Mountain View, CA, USA) as
raster layers (Figure S3a–h). Finally, goose droppings on each of the 10 fields were manually
identified and individually marked in QGIS using a shapefile point layer.

2.6. Sampling Frequency

Having georeferenced the aerial photos, an estimate of the upper limit for the spacing
of the photos was performed to obtain an optimal spatial positioning in the surveying
grid, applicable also for the future use of the method. The Free Flight mode, with manual
horizontal piloting of the UAV, resulted in densely packed photos unequally scattered
across the field. In order to create a grid of regularly spaced photo samples, thinning
by the global positioning system (GPS) location of the photo centroid contained in the
metadata was necessary (the protocol is described in Supplementary Material S2, step i, ii).
Finding an applicable procedure to obtain a representative spacing and resulting sampling
frequency of the aerial photos was an essential part of the methodology used in this study.
This would minimize the working efforts of the method while simultaneously yielding a
stable estimation of the dropping density (Figure 3).

The upper limit for spacing was examined by two different approaches (approaches
1 and 2) (Figure 3a,b). These approaches were tested on the two previously used test
fields, which were chosen to represent the whole dataset; test field 1 had a relatively low
density of droppings and a presumed low-density variation and skewness (later estimated
as averaging 0.77 (0.58; 0.97 CI95%) droppings/m2 compared with a median of 0.39 (0.11;
0.50 CI95%) droppings/m2), and test field 2 had a relatively high density of droppings
with a presumed high-density variation (later estimated as averaging 6.77 (6.24; 7.22 CI95%)
droppings/m2 compared to a median of 4.48 (3.99; 4.97 CI95%) droppings/m2) (Table 1).
The discrepancy between the mean and median densities was due to the asymmetrical
distribution, which was confirmed for both fields by significant values of skewness (all;
p < 0.05). Initially, both test fields were thinned to approximately 5 m of spacing between
each photo centroid. This was considered to represent the highest acceptable concentration
of photos, as higher concentrations of photos would render the counting method practically
unsuitable. This sampling corresponded to 7–9% coverage of the total area of the field, with
each photo covering an average area of 4–5 m2. All droppings visible on the photos were
then manually counted in QGIS.
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stable estimation of dropping densities in the field. In approach 1 (a), the objective was to determine
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and comparing the results across different thinning regimes (5–20 m spacing between samples).

Table 1. Properties of the 10 surveyed fields based on the 10 m sampling frequency. Listed are area
(ha), number of photo samples (Ph. Samp.) from the 10 m thinning (n), median dropping density (M)
per m2 and mean dropping density (x) per m2. The 95% confidence intervals ([95% CI]) are specified
for both M and x. Further, the calculated index of dispersion (s2/x) and chi-square (x2) for each field
are shown. Lastly, calculations of skewness (D’Agostino) and kurtosis (Anscombe-Glynn) are shown
for each field and the corresponding significance levels (sign.) are specified (ns = nonsignificant,
“*” < 0.05, “**” < 0.01 and “***” < 0.001).

Field
(No.)

Area
(ha)

Ph. Samp.
(n)

Dropping
Density (M)

Dropping
Density (

–
x)

Dispersion
Index (s2/

–
x)

Chi-Square
(x2)

Skewness
(Sign.)

Kurtosis
(Sign.)

1 (test field) 2.7 106 0.31 [0.11; 0.50] 0.77 [0.58; 0.97] 1.38 144.90 1.82 (***) 6.59 (**)
2 (test field) 8.1 340 4.48 [3.99; 4.97] 6.77 [6.24; 7.22] 9.31 3156.36 2.89 (***) 14.80 (***)

3 3.3 215 1.01 [0.75; 1.28] 1.88 [1.61; 2.14] 2.93 884.48 2.01 (***) 7.43 (***)
4 7.8 282 0.60 [0.31; 0.89] 1.59 [1.30; 1.89] 2.94 629.19 1.95 (***) 6.89 (***)
5 3.9 155 0.15 [0.05; 0.26] 0.56 [0.45; 0.66] 1.46 410.32 2.14 (***) 7.47 (***)
6 5.0 181 1.19 [1.01; 1.36] 1.53 [1.36; 1.71] 0.80 122.76 0.78 (*) 2.85 (ns)
7 2.8 108 1.69 [1.42; 1.97] 2.22 [1.95; 2.50] 1.62 292.31 1.67 (***) 5.91 (*)
8 3.8 117 0.51 [0.39; 0.64] 0.67 [0.58; 0.82] 0.61 65.09 2.03 (***) 8.45 (***)
9 5.4 302 0.91 [0.43; 1.40] 1.79 [1.31; 2.27] 3.94 457.25 3.60 (***) 18.88 (***)

10 15.2 717 0.65 [0.52; 0.78] 1.30 [1.17; 1.42] 2.35 1682.77 2.27 (***) 9.80 (***)

Approach 1 was performed by randomly sampling the initial photo layer of 5 m
spacings with bootstrapping [49]. The goal was to determine the minimal aerial photo
sampling necessary for a stable estimation of the average dropping density of the whole
field (Figure 3a). The optimal spatial positioning was analysed with non-parametric boot-
strapping, which was performed by randomly resampling 100 repeats of a given percentage
ranging from 1–100% of the initial dataset, thereby yielding the corresponding spacing of
photos (Spacingoptimal =

Spacinginitial data
% resampling o f initial data ). The mean value of the repeated samples

at every percentage of the dataset was calculated together with 95% bias-corrected and
accelerated (BCa) bootstrapped CI [49,50] in R [51].

In approach 2, the aim was, again, by thinning the aerial photos to determine the
minimum photo sampling necessary while now simultaneously yielding a stable estimation
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of the differences in densities across the field (Figure 3b). In this approach, all photos with
assigned numbers of droppings from the initial 5 m spacing layer were firstly binned at
intervals of 5 m distances to fixed points on the two test fields. In both instances, the
landscape elements were in the form of water ditches. The distances were calculated using
the NNJoin plugin (version 1.3.1) in QGIS. Afterwards, the individual photos were thinned
one meter at a time, starting from the initial 5 m distance and ending at 20 m, resulting in
16 thinning samples. The dropping density was then measured for each thinning sample for
each distance interval to the fixed point. The differences between all 16 thinning samples
(5–20 m) were determined by 95% CI of the mean, calculated as the differences in density
between the thinning samples in every 5 m interval. Furthermore, to stabilise the variance
and analyse 95% CI for the variance of the mean differences between comparisons, four
thinning samples at a time were grouped together. The upper limit in differences for the
photo thinning procedure was in the present study determined as a difference in variance
not exceeding 40% relative to the mean of the grouped comparisons of 5–8 m.

2.7. Analysis of Dropping Densities and Distribution Patterns

The distribution patterns of dropping densities in the fields were calculated by creating
an index of dispersion (indexdisp = s2

x ) to differentiate between randomly (<1), uniformly
(≈1) or contagiously (clumped) (>1) dispersion [52]. Further, chi-square (χ2) values were
calculated to support the evaluation of dispersion patterns, where higher values indi-
cate a higher likelihood of clumped dispersions (χ2 = indexdisp ∗ (n− 1)). Calculations
of median density estimations and 95% confidence intervals (CIs) were performed for
each field. Next, to perform an assessment of density distributions and field utilization,
Shapiro–Wilk tests were initially performed, which showed non-normality (p = ns; all
fields), allowing for calculations of skewness by the D’Agostino test [53] and kurtosis by
the Anscombe–Glynn test [54].

Interpolated heatmaps over dropping densities were generated by the interpolation
tool in QGIS with the TIN (triangulated irregular network) option applied. The counted
dropping density for each photo position was used to interpolate with the closest other
photo position. Areas covered by each photo position buffer were calculated as the area in
m2 of the smallest aerial photo in the field. The heatmaps were used to illustrate differences
and distribution patterns of dropping densities in the surveyed fields.

Distances to all four chosen landscape elements, windbreaks, roads, water ditches and
wind turbines, were measured from each of the aerial photos in the fields. Datasets for the
chosen landscape elements were retrieved from the Danish Agency for Data Supply and
Efficiency (SDFE), updated in 2019 [55,56]. The indexed dropping densities for all fields
(consisting of 2523 aerial photos) were thinned in 25 m interval distances with respect to
the three landscape elements, windbreaks, roads and water ditches, and 100 m intervals
for wind turbines. Subsequently, the mean density and 95% confidence intervals were
calculated for all intervals found in the combined fields.

Alterations in dropping densities were compared with the distances to the four differ-
ent landscape elements, windbreaks, roads, water ditches and wind turbines. The densities
for all aerial photos from all 10 fields were compared by creating a relative density index,
which was achieved by dividing all dropping densities observed (obsdens) in the field by the
highest measured value for dropping density (maxdens) in the particular field. This yielded
an index ranging from 0 to 1: Density index = obsdens

maxdens
. Mean densities were calculated

based on 5% percentile distance intervals in the dataset and for each interval 95% boot-
strapped (BCa) CI were calculated. Furthermore, to investigate the relationship between
distance to landscape element and dropping density, Spearman’s rank sum correlation tests
were used, and linear regressions were additionally performed.
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3. Results
3.1. Maximum Flying Altitude

Accuracy in the detection of droppings of 93% and 88% compared to the manual
control count from the ground could be seen when flying in altitudes ranging from 2 to
3 m above the field, respectively (Figure 4a). With further increased altitude, the accuracy
dropped to 66% at 4 m and 58% at 5 m. A Tukey post-hoc test, computed based on
an ANOVA, showed non-significant differences between altitudes of 2 and 3 m when
compared to the ground count, whereas the altitudes of 4 and 5 m significantly differed
(Figure S4 and Table S3). The flying altitudes of both 2 m and 3 m yielded 95% CI above
80%, thus qualifying both altitudes to be considered valid for the calculations of dropping
densities in this study.
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Figure 4. Detection of droppings on aerial photos (a) and accuracy of counting droppings between
different operators (b,c). (a) The accuracy of detection of droppings at flying altitudes of 2, 3, 4 and
5 m compared with the corresponding ground count. All tests were performed in circles of 40 cm in
radius (0.53 m2). The number of replications was 15 (n = 15). Vertical lines represent 95% confidence
intervals (CIs). The horizontal line represents the lower limit of 80% accuracy from the ground
count, wherein all of the 95% CI of the mean should be located to be considered valid in this study.
(b,c) Boxplots for counting precision among three different operators (Op. 1, Op. 2 and Op. 3) on the
two test fields 1 (b) and 2 (c). The density was measured as droppings per m2 of the total counted
area of test fields 1 and 2, of 389 m2 and 107 m2, respectively.

3.2. General Precision of Dropping Counts

No significant differences were observed when comparing the individual counting
results from the three test operators for either of the two test fields chosen for validation of
counting precision (both test fields with p-values > 0.05, Kruskal Wallis). This was further
illustrated in boxplots showing similar values for the median, upper and lower quartiles
(Figure 4b,c).

3.3. Revised Georeferencing of Aerial Photos

In this study, the development of a practical procedure for georeferencing aerial photos
obtained by low altitude UAV imaging proved successful. Through the creation of Esri
world files, the aerial photos could automatically be recognised and georeferenced by GIS
software, which was tested in both QGIS and ArcMap (Supplementary Material S2, step
i, iii and Figure S3). An important element for reliable georeferencing in this study was
precise measurements of flight altitude. The occurrence of deviations in the readings of the
barometric altitude during UAV flights was measured in the field up to ±0.3 m, which, at
the lowest altitude of 2 m, corresponded to a possible 15% divergence in results.
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3.4. Sample Frequency of Aerial Photos

High reliability of the calculated mean dropping density for the whole field
(approach 1) was observed with bootstrap resampling down to 25% of the data contained in
the initial sample of 5 m spacing between aerial photos, which was equivalent to a thinning
of up to 20 m spacings between the photos (Figure 5a). Resampling below 25% of the
dataset resulted in increasing variations in estimated mean densities and with varying CI.
At 5% of the resampled data, equivalent to thinning of 100 m spacing between the aerial
photos, the CI varied by up to 40%.
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Figure 5. Results for approaches 1 (a) and 2 (b) to determine an optimal sampling frequency. For
approach 1 (determination of median density of the whole field), the results, as median differences
(∆), are shown for the bootstrapped resampling of the median density per m2 for test fields 1 and 2.
Vertical lines represent 95% bias-corrected and accelerated (BCa) confidence intervals (CIs), and the
red dashed vertical line indicates 25% resampling of the data. The resampling percentage resulted in
high reliability for the calculated median dropping density. For approach 2 (determination of density
patterns across the field), the relative difference in dropping density per m2 for test fields 1 and 2 were
tested at intervals of 5 m from 0–80 m to the nearest fix point (water ditch). Each of the 16 thinning
samples (5–20 m spacings of aerial photos) was then compared with each other, and the median
difference was calculated. In order to allow for a more stable comparison, the thinning samples were
grouped four at a time (5–8, 9–12, 13–16 and 17–20 m). The grouped interval of 5–8 m was used as
the base with which the other grouped intervals were compared. Vertical lines represent 95% CI. The
total number of registered droppings was 1316 for test field 1 and 41,191 for test field 2 at 5 m spacing
of photos. The area of the tested fields was 2.7 and 8.1 hectares for test fields 1 and 2, respectively.

Thinning the aerial photos resulted, for both test fields, in increasing difference and
variability in the observed distribution patterns of dropping densities across the field when
compared with the initial thinning sample of 5 m spacings between the aerial photos
(Figure S5, part 1–2). Subsequently, a comparison (approach 2) of the thinning samples
5–8 m against 9–12 m showed a difference of 25% for test field 1 and 35% for test field 2,
both below the limit of 40% difference in dropping density and considered acceptable in
this study (Figure 5b). In contrast, comparisons of 5–8 m thinning samples against 13–16 m
and 17–20 m thinning samples both showed variations in dropping densities higher than
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40%. Thus, a 10 m thinning of the aerial photos was henceforth applied as an acceptable
spacing (Figure S6).

3.5. Dropping Density and Distribution Patterns

All estimations of the distribution patterns were based on the 10 m spacing of the
aerial photos. This corresponded to an area of 2–4% out of the total field area covered by
the aerial photos. The calculated index of dispersion showed that the dropping densities
were contagiously distributed across the field for eight of the ten surveyed fields, with
index values exceeding 1 (Table 1). For two of the fields, the dispersal could be considered
randomly distributed, with values of dispersion being 0.61 and 0.80, respectively (Table 1).

Interpolation of the dropping densities by heatmaps illustrated the tendency to a conta-
gious distribution pattern in the fields (Figures 6a,b and S7). Low dropping densities could
be seen at the edges for contagious distributed fields (e.g., fields 3 and 4), whereas more
evenly distributed densities across the field could be seen on fields with non-contagious
dropping densities (e.g., field 8).
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Figure 6. Map sections extracted from QGIS show examples of interpolated heatmaps for the drop-
ping densities of (a) two contagiously distributed fields with possible disturbance from surrounding
landscape elements, windbreaks and roads, and (b) one field with a more randomly distributed
density and only water ditches surrounding the field in a radius of +200 m. (c) The possible effects of
landscape elements on the complete study area at Klim Fjordholme, in proximity to several landscape
elements, including wind turbines, roads and windbreaks. Closest wind turbines to the investigated
fields are circled with radiating shading. The heatmap values span from zero droppings (white colour)
to the maximum number of droppings per aerial photo of the particular field (dark red colour).
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3.6. Avoidance Distances to Landscape Elements

Avoidance distances were detected for the three landscape elements, windbreaks,
roads and wind turbines, with significant differences when comparing the indexed drop-
ping densities across all surveyed fields (Figure 7). For windbreaks, a consistently lowered
dropping density was observed up to 110 m with significant decreases below 75 m. For
roads, the dropping density was affected up to 125 m with significant decreases below
100 m. Lastly, for wind turbines, the dropping density was significantly affected up to
1100 m (Figure 6c). For distances to water ditches, alternations in dropping density were
detected with a significant tendency towards lowered density with decreased distance to
the element, but no clear avoidance distances could be determined. Furthermore, for wind-
breaks, roads and wind turbines, local peaks appeared right after the avoidance distance
ceased to influence the densities, which indicated a tendency to a skewed distribution of
the dropping density.
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Figure 7. Alterations in dropping densities compared with distances to the four different landscape
elements, windbreaks, roads, water ditches and wind turbines. The densities are shown for all aerial
photos from all 10 fields, which were compared by creating a relative density index, where one is
the aerial photo with the highest density per m2 in a particular field, and zero is the aerial photo
with the lowest density. Median densities are calculated based on 5% percentile distance intervals
in the dataset. Vertical and horizontal lines represent 95% bias-corrected and accelerated (BCa)
bootstrapped confidence intervals (CI). For each landscape element, linear regression is depicted
(dotted line), adhering to standard error (SE) for R2 and p-values for the regression slope. Spearman’s
rank sum correlation values are depicted (Rs). Consistently decreased densities at lowered distances
are denoted for three of the four landscape elements (dashed red vertical lines). Tests were performed
and denoted for each landscape element (Rs). The total number of aerial photos for all fields was
2523, and the number of individual droppings was 35,385 in total.
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4. Discussion
4.1. Detection of Droppings from Foraging Geese by UAV Imaging

This study showed that with UAV imaging, it was possible to detect droppings
from foraging geese with acceptable accuracy, but only at low altitudes (≤3 m). It was
demonstrated that flying altitude is an essential factor for reliable surveying of goose
droppings with the present imaging technology available for lightweight and consumer-
level UAVs with standard optical equipment [30]. To obtain acceptable results at higher
altitudes, enhanced and more specialized camera equipment should be applied, exceeding
that of the two quadcopters used in this study.

With flying at a low altitude came several challenges and limitations to the practical
use of UAVs for the dropping count method. Certain conditions should be met, such as
even surfaces in the surveyed fields, low vegetation, no protruding obstacles and keen
visual observance of the UAV at all times with respect to deviations in altitude and ground
levels. This imposes a substantial limit on the areas and fields applicable for surveying in
general. Fortunately, the target species of geese in this study, the pink-footed goose and
barnacle goose, prefer feeding in farmed areas where these conditions are often met, and
such sites, in turn, were plentiful in the studied areas. The fieldwork further indicated that
the most reliable results were obtained in fields with farmed grassland or pastures and
that fields with winter cereals produced less accurate results, as gravel and small stones
could be misidentified as droppings. Furthermore, March 2019 was particularly wet, with a
precipitation rate reaching 106 mm for the month compared with the average of 45 mm [57].
This resulted in fields with newly sown crops or bare soil, which have a high washout of
material, thus lowering the persistence time of goose droppings in general and on fields
with bare soil in particular. On the other hand, cultivated grassland had a capacity to absorb
precipitation at a higher rate beneath the mat of vegetation, leaving the goose droppings
more or less unaffected [58].

The blinded counting precision test revealed a high coherence in density estimations
between the three operators, all of whom had no previous experience with respect to drop-
ping counts. This study, therefore, showed that the obtained results for dropping counts on
aerial photos collected with UAVs did not depend on specific personal qualifications or
previous experiences among the operators.

4.2. Successful Establishment of Revised Georeferencing Workflow

The procedure for georeferencing was time-consuming to establish but was, in the
end, successful and proved afterwards to be readily applicable to the dataset. Followingly,
the protocol for this revised georeferencing procedure was considered universal and thus
usable for future studies requiring a similar approach and where the creation of ortho-
mosaics is not possible. However, precautions must be taken, especially with respect to
occurring deviations in the barometric altitude of the used UAVs with the potential to affect
the resulting ground sample distance (GSD) and subsequent calculations of the covered
m2. This would not have posed a problem if the rendering of orthomosaics had been possi-
ble [31]. For use in this study, though, the measured altitude deviations of ±0.3 m during
the fieldwork corresponded to ≤15% divergent results and were considered acceptable.
This was acceptable as the deviations appeared equally frequent as an increase or decrease
in altitude resulting in fluctuations being random with a following non-skewed sampling.

4.3. Optimal Sampling Frequencies

The results for the sampling frequency of the aerial photos firstly suggested that the
average dropping density for the whole field could be highly accurately estimated with
up to 20 m spacing between the photo samples and with an acceptable accuracy with
spacing up to around 100 m. However, density estimations between the different parts of
the field suggested that the maximum spacing between samples should not exceed 12 m.
A separation of 10 m between the photo samples, corresponding to 2–4% coverage of the
field, was therefore accepted as sufficiently accurate for purposes such as determining
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field utilisation and avoidance distances to different landscape elements. These results
challenged the methodology used in other studies investigating avoidance distances by
measuring dropping densities of foraging geese, where manual ground counts inside circles
have been done in grids with frequencies ranging from spacings between the samples of
25 × 200 m in a study from 2000 [4] and up to 150 × 150 m in a study from 2014 [59]. Such
spacings will most likely produce inconsistent results if accurate estimations of gradients
in dropping density across the field are the desired outcome. However, the 5 m distance
intervals to fixed points used in this study could be too fine a scale if more crude estimations
are sufficient.

4.4. Assessment of Distribution Patterns and Avoidance Distances

The detection of varying distribution patterns in dropping densities on the surveyed
fields in relation to the presence of external landscape elements (Figure 6) indicated that the
use of UAV surveys is a useful tool to analyse and assess the behaviour of foraging geese by
the indirect method of dropping counts. The highly contagious, skewed and asymmetrical
dispersion patterns detected in almost all fields indicated that the behaviour of the foraging
geese was likely influenced by external factors, which is in accordance with previous
studies investigating dropping densities [4,60]. These factors could be stress-related effects
from the surrounding landscape elements or human activities, such as possible hunting or
recreational activities, which potentially can reduce the field utilisation by the geese [4,5,61].
Additionally, foraging preferences and unevenly scattered food sources on the investigated
fields, perhaps resulting from some fields being partially water covered during periods
of heavy precipitation earlier this spring, might also have played an important role in the
fine-scale and within-field habitat selection of the geese [60].

The interpolated heatmaps further illustrated differences in density gradients with
respect to both types of and distance to different landscape elements (Figures 6 and 7). On
the heatmaps, fields surrounded by windbreaks and roads showed a pronounced clustering
away from these elements and often towards the middle of the field. In contrast to this,
fields only surrounded by water ditches and no other elements nearby showed the least
contagious distribution patterns (Figure 6b). This supports our assumption that water
ditches can be considered the least disturbing landscape element (authors’ observations
and notes). Consequently, in our study, water ditches were primarily used as a reference
to check the robustness of the estimation of avoidance distances to the other landscape
elements. The finding of minor decreases in density close to water ditches could be an effect
of narrow buffer stripes of less nutrient-rich grass, reducing the value and attractiveness
for foraging and thus should not be considered as a direct avoidance effect [3].

The significant decreases in densities for the remaining three investigated elements,
wind turbines, windbreaks and roads, suggest pronounced avoidance distances to these.
The results for windbreaks and roads were consistent with results found in previous studies
using manual ground counts of droppings for Arctic migratory geese (pink-footed goose,
greater white-fronted goose (Anser albifrons) and red-breasted goose (Branta ruficollis)) with
affected dropping densities of up to 110 m for windbreaks [4,5]. For roads, the result
of avoidance distances up to 125 m again corresponded well to a study from 2000 [4],
which reported a 50% decrease in dropping densities of up to 150 m from larger roads.
However, the results deviated from a study from 2018 [5], which found no observable
avoidance distances to roads. Reasons for such inconsistencies might be due to differing
usage and type of road, possibly provoking differing responses and creating varying levels
of habituation.

For wind turbines, the lack of observable droppings on the UAV photos up to a radius
of 600 m and further significant lowered densities up to 1100 m far exceeded the 200 m
avoidance distance for clustered windfarms previously reported in 2000, despite the fact
that this study [4] investigated one of the same areas as in our study, namely the Vattenfall
windfarm at Klim Fjordholme. However, the wind turbines have since been replaced, and
their size has increased from 67 m to more than twice the height, now reaching 150 m [62].
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This increased height has most likely affected the avoidance distance to the wind turbines
and very possibly in a nonlinear pattern. Another study [5] found in their study area of
Bulgaria affected dropping densities at distances reaching 900 m to wind turbines of 125 m
in height, suggesting that avoidance behaviour is possible at these larger distances.

General uncertainties and complications connected to dropping counts as a method to
estimate avoidance distances must, however, be considered. Firstly synergistic effects of
multiple landscape elements must be considered together with season and activities such
as hunting [4,7]. Consequently, the variation in dropping densities indicating behavioural
instabilities may also be influenced by factors, such as positive or negative spatial autocor-
relations, which might occur in the study area depending on the number and character of
disturbing landscape elements [63]. Also, factors such as the distribution of feeding items
and standing water in the fields can possibly influence the dispersion of geese. Furthermore,
it has been argued that the detection of uneven distribution patterns of the geese may be
partly due to periods of roosting in the middle of the field after feeding rather than avoiding
feeding at the edges because of disturbance effects [60].

Interestingly, some general and convergent tendencies were observed between the
telescopic bird counts and the measured dropping densities, indicating that both the
number of days with foraging geese and the number of geese present per visit determine
dropping densities in the fields (authors’ notes). A combination of the two methods is
therefore reasonable and will provide a broader understanding of field utilisation, where
bird counts offer information on species, flock size and behaviour and where dropping
counts more accurately reflect the long-term dispersion of the geese and possible avoidance
distances to landscape elements.

4.5. Fields of Application

This study demonstrated that UAV imaging of dropping densities could be used
as a novel and improved approach in nature management to monitor field utilisation of
foraging geese. By combining UAV flights for data collection and GIS-based analysis,
our method showed great potential for effective and precise detection and monitoring of
shifting patterns and asymmetrical distributions, the applicability of which we evaluated
for the detection of avoidance distances to landscape elements.

By using UAV imaging, improvements were demonstrated in several aspects of the
fieldwork. The improvements included a quicker semi-automatic data collection with
highly accurate and possible extensive photo sampling and with a reduced workload of
man-hours in the field. Analyses based on the performed UAV data sampling showed
that it was possible to gain unprecedented precise and realistic fine-scale estimates of
density patterns for field foraging spring staging geese, pink-footed goose and barnacle
goose. Furthermore, the method proved to be less invasive in terms of disturbance of the
geese than manual counting in the field, as the fields can be readily surveyed with the
geese absent. Additionally, during data sampling, geese foraging on adjacent fields were
observed to habituate quickly to the UAV and would often forage close by and within 30 m
while the data collection was performed.

However, the data processing was time-consuming as the counts on the aerial photos
had to be done manually due to the existing technology of UAV and computer software
available for this study. Because of the high heterogeneity of the fields, thresholding and
automatic counting of droppings on the photos by existing software such as ImageJ (ImageJ,
U. S. National Institutes of Health, Bethesda, MD, USA) [64] or GSA ImageAnalyser (GSA
GmbH, Rostock, Germany) [65] were not applicable. To enable an easier and computer-
based recognition of goose droppings for future monitoring, the camera technology of
the UAV would have to be improved. This could be achieved by applying specialized
filters allowing for certain wavelengths of near ultraviolet light (NUV) to be detected [66].
As animal faeces can be detected by the use of NUV light [67,68] this could, for future
studies, possibly lead to far easier detection of animal faeces and, in this case, goose
droppings. Additionally, it can be argued that dropping counts with UAV is best applied
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for estimations of the relative density in the field and not measurements of the absolute
density, as the results may vary according to different conditions in the field, including the
type of crops and freshness of the droppings. Finally, it was difficult to distinguish between
species-specific droppings, which, however, was of minor importance in this study as the
fields were predominately used by the target goose species.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/sym14102175/s1, Figure S1: Test of maximum flying altitude;
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single UAV images; Figure S3: Examples of photo points and the georeferenced photos in
the fields [30,31,46–48,51,69–71]; Figure S4 and Table S3: Accuracy with different flying altitudes;
Figure S5: Comparison of droppings per m2 for 5 and 10 m spacings between the photo samples for
test field 1 and test field 2 at binned intervals across the field; Figure S6: Upper limit for thinning of
aerial photos; Figure S7: Interpolated heatmaps for all 10 surveyed fields.
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