Aalborg Universitet AALBORG

UNIVERSITY

Spatio-temporal graph convolutional network for stochastic traffic speed imputation

Cuza, Carlos Enrique Muniz; Ho, Nguyen; Zacharatou, Eleni Tzirita; Pedersen, Torben Bach;
Yang, Bin

Published in:
30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM
SIGSPATIAL GIS 2022

DOl (link to publication from Publisher):
10.1145/3557915.3560948

Creative Commons License
CCBY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Cuza, C. E. M., Ho, N., Zacharatou, E. T., Pedersen, T. B., & Yang, B. (2022). Spatio-temporal graph
convolutional network for stochastic traffic speed imputation. In M. Renz, M. Sarwat, M. A. Nascimento, S.
Shekhar, & X. Xie (Eds.), 30th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ACM SIGSPATIAL GIS 2022 (pp. 1-12). Article 14 Association for Computing Machinery
(ACM). https://doi.org/10.1145/3557915.3560948

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 16, 2025

https://doi.org/10.1145/3557915.3560948
https://vbn.aau.dk/en/publications/ab9aafdd-c5b9-44df-9ece-edd0771070a6
https://doi.org/10.1145/3557915.3560948

L)
Py Spatio-Temporal Graph Convolutional Network for Stochastic

Traffic Speed Imputation

Carlos Enrique Muniz Cuza Nguyen Ho Eleni Tzirita Zacharatou
Aalborg University Aalborg University IT University of Copenhagen
cemc@cs.aau.dk ntth@cs.aau.dk elza@itu.dk
Torben Bach Pedersen Bin Yang
Aalborg University Aalborg University
tbp@cs.aau.dk byang@cs.aau.dk

ABSTRACT

The rapid increase of traffic data generated by different sensing sys-
tems opens many opportunities to improve transportation services.
An important opportunity is to enable stochastic routing that com-
putes the arrival time probabilities for each suggested route instead
of only the expected travel time. However, traffic datasets typically
have many missing values, which prevents the construction of sto-
chastic speeds. To address this limitation, we propose the Stochastic
Spatio-Temporal Graph Convolutional Network (SST-GCN) archi-
tecture that accurately imputes missing speed distributions in a
road network. SST-GCN combines Temporal Convolutional Net-
works and Graph Convolutional Networks into a single framework
to capture both spatial and temporal correlations between road
segments and time intervals. Moreover, to cope with datasets with
many missing values, we propose a novel self-adaptive context-
aware diffusion process that regulates the propagated information
around the network, avoiding the spread of false information. We
extensively evaluate the effectiveness of SST-GCN on real-world
datasets, showing that it achieves from 4.6% to 50% higher accu-
racy than state-of-the-art baselines using three different evaluation
metrics. Furthermore, multiple ablation studies confirm our design
choices and scalability to large road networks.

CCS CONCEPTS

« Computing methodologies — Neural networks.

KEYWORDS

data imputation, spatio-temporal, graph convolutional networks

ACM Reference Format:

Carlos Enrique Muniz Cuza, Nguyen Ho, Eleni Tzirita Zacharatou, Torben
Bach Pedersen, and Bin Yang. 2022. Spatio-Temporal Graph Convolutional
Network for Stochastic Traffic Speed Imputation. In The 30th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL °22),
November 1-4, 2022, Seattle, WA, USA. , 12 pages. https://doi.org/10.1145/
3557915.3560948

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGSPATIAL °22, November 1-4, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9529-8/22/11.
https://doi.org/10.1145/3557915.3560948

Routes on the Road Network Graph Representation

Ambulance

i. » Route R, o 2 M1
= Route R,
Hospital i S 0 < r23
B © = |

Figure 1: Example of shortest routes to the hospital.

Table 1: Arrival time and road segments speed distributions.

(a) Arrival time distributions (b) Speed distributions of route R;

Arrival Probability Road Speed range (m/s)
time (mins) | R1 | R2 segment [0-10 10-20 20-30 30-40
ig gg gz i 0.4 0.3 0.2 0.1
40 0.1 0.4 12 0.5 0.3 0.2 0.0
50 o2 | oo rs |02 02 03 03
Expected Time | 31 31 14 02 02 02 04

1 INTRODUCTION

Optimal routing algorithms can improve the efficiency of public
transport, reduce costs, and prevent accidents in road networks.
Current navigation systems generate a route between an origin
and destination point based on the least expected travel time [17].
However, only considering the expected travel time is often unre-
liable, as it fails to capture the uncertainty of the travel duration
and the traveler’s delay tolerance [30]. The example in Figure 1
illustrates the situation where an ambulance needs the best route to
the hospital. Here, R; and Rz have the same expected arrival time,
i.e., 31 minutes, but different arrival time distributions, as shown
in Table 1a. Route Ry offers the shortest travel duration with the
highest probability, i.e., 20 mins with 0.4 chance, but there is also a
0.2 chance the travel duration will be the longest, i.e., 50 mins. In
contrast, route Ry offers a lower probability to be the fastest but
guarantees the travel takes at most 40 mins. If the ambulance has
to arrive within 40 minutes to guarantee the patient’s life, route
Ry is the best option. Such a high-resolution routing service would
enable the end-users to make better decisions.

High-resolution routing services often rely on time-dependent
stochastic traffic data representing the speed distributions of vehi-
cles in a road network [11, 25, 30]. Specifically, a speed distribution
captures the probability that a vehicle travels at a certain speed

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3557915.3560948&domain=pdf&date_stamp=2022-11-22

SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

on a road segment. Table 1b shows an example of the speed distri-
butions for each road segment of R;. Here, the speed distribution
of r11 indicates that vehicles traveling in this segment are in the
[0 — 10) (m/s) speed range with 0.4 probability, in the [10 — 20)
(m/s) speed range with 0.3 probability, and so on. Given the speed
distribution and distance of each road segment, we can derive the
arrival time distribution of each route, as shown in Table 1a.

To construct traffic speed distributions for road segments, we
can use vehicle tracking data obtained from GPS and loop detectors.
However, data collected from these sensors are often incomplete
due to technical reasons such as loop detectors malfunctioning or
temporarily unavailable GPS data. This data sparseness problem [11]
prevents the construction of time-dependent stochastic speeds for
each road segment.

The present paper aims to alleviate this problem by designing
a deep learning model to accurately estimate the missing speed
distributions in a road network. However, achieving a highly ac-
curate estimation model is a challenging task as traffic speeds in
a road network exhibit complex spatial correlations between road
segments and temporal correlations between time intervals. Specif-
ically, spatial correlations occur since traffic conditions at nearby
locations, either in consecutive or bidirectional road segments, im-
pact each other. For instance, in Figure 1, the traffic flow in road
segment r11 impacts the flow in rq2. In turn, traffic speeds between
consecutive time intervals are temporally correlated as the vehicle
speeds traveling on a road segment at time interval ¢ + 1 are likely
to be similar to the speeds at time interval ¢.

Several prior studies have attempted to estimate missing traffic
speed values in a road network. However, they either fail to capture
both spatial and temporal correlations, e.g., [11] only considers
spatial correlations, or focus solely on estimating the average speed
values rather than stochastic speeds [24, 29].

Contributions. This paper proposes a Stochastic Spatio-Temporal
Graph Convolutional Network (SST-GCN) model that accurately es-
timates the missing speed distributions in a road network. Our key
contributions are the following. (1) We design the SST-GCN frame-
work that automatically captures both spatial and temporal correla-
tions in a road network. Our framework integrates Graph Convolu-
tional Networks (GCNs) to capture spatial correlations among road
segments and Temporal Convolutional Networks (TCNs) to cap-
ture temporal correlations among time intervals in a graph-based
road network model. (2) To cope with datasets with many missing
values, we propose a novel self-adaptive context-aware GCN that
prioritizes the propagation of the observed information in the graph
while estimating the missing values. Furthermore, we show that
our context-aware GCN is generic and thus, can be applied to any
graph-based structure to learn context-aware spatial correlations
efficiently. Experimental results show that our context-aware GCN
improves the accuracy of SST-GCN by 3% on average. (3) We con-
duct an extensive experimental evaluation on real-world datasets
showing that SST-GCN outperforms the baselines on estimation
accuracy. In particular, SST-GCN has from 36% to 50% higher accu-
racy than the state-of-the-art stochastic speed estimation baseline
[11]. We also compare against modified deterministic state-of-the-
art baselines, achieving from 4.6% to 34%, and from 12% to 71%
accuracy improvement over the modified deep learning and non
deep learning baselines, respectively. Additionally, we perform a

Carlos Enrique Muniz Cuza, Nguyen Ho, Eleni Tzirita Zacharatou, Torben Bach Pedersen, and Bin Yang

Table 2: Traffic data imputation and forecasting methods.

Deterministic Stochastic
} ICLR’18 [16], JCAT'19 [24]
Spatgﬂ frn‘; fierzporal SIGKDD’16 [6], °19 [7], *20 [8] (f}iT GCI‘;
orrelations TR_C’20 [4], AAAL'20 [29] S pape
Only Spatial AAAT'11 [12], TKDE'13 [27] ICDE'19 [11]
Correlations

comprehensive study to evaluate the resilience, efficiency, and scal-
ability of SST-GCN on different missing value patterns and graph
sizes. The code is available at https://github.com/cmcuza/sst-gen.

2 RELATED WORK

Learning from spatio-temporal traffic data has been extensively
studied in the literature, where the main research focus has been on
forecasting future traffic speeds and imputing missing speed values.
Two main groups of techniques exist: deep learning [1, 7, 16, 24, 29]
and matrix factorization [3, 4, 6, 19]. While matrix factorization
approaches have been commonly used, they are often transduc-
tive, i.e., applied to specific datasets, thereby difficult to generalize
and extend to other datasets. Recently, deep learning approaches,
mostly relying on Graph Convolutional Networks (GCNs), have
been widely used to solve different tasks in the traffic domain. The
GCNs popularity is due to their efficiency in capturing complex
graph structures and finding dependencies among nodes and edges
in road networks. Consequently, deep learning approaches are not
only inductive but also provide highly accurate models for traffic
forecasting and imputation. Table 2 shows the most representative
work in both tasks classified in two categories: deterministic and
stochastic. Deterministic methods estimate the average speeds on
road segments, while stochastic ones estimate the stochastic speeds.
The majority of the existing deep learning models are determinis-
tic, i.e., they forecast average traffic speeds for future time intervals.
The deterministic category is further divided into spatial and tem-
poral correlations and only spatial correlations. The former includes
methods that capture both spatial and temporal correlations in
road networks. For example, MTGNN [8] and GraphWaveNet [24]
combine GCNs and Temporal Convolution Networks (TCNs) into
a single framework. ST-MetaNet [7] proposes three stacked RNNs
within a sequence-to-sequence architecture. GMAN [29] uses atten-
tion mechanisms to capture spatial correlations between nodes and
temporal correlations between time intervals. However, all these
methods require available data for all road segments and are thus
unsuitable for sparse data. The latter subcategory contains meth-
ods that only consider spatial correlations. In particular, [12, 27]
apply regression-based loss functions to minimize the difference
between traffic speed values of adjacent nodes. However, reducing
the dissimilarity between adjacent nodes alone is not sufficient to
capture complex spatial correlations among road segments.
Although there is no straightforward way to extend determin-
istic deep learning methods, they can be adapted to impute speed
distributions instead of only average values. We select representa-
tive deterministic methods, i.e., MTGNN [8], GraphWaveNet [24],
ST-MetaNet [7], and GMAN [29], and modify them to work in our
stochastic setting. Specifically, we change their input layers such
that they accept stochastic speed values as input features, and the

Spatio-Temporal Graph Convolutional Network for Stochastic Traffic Speed Imputation

output layers so that they produce a valid speed distribution. We
also adapt the non-deep learning general imputation and forecast-
ing methods MICE [22] and VAR [20] to work in the stochastic
setting. However, as we show in Section 6, these simple adaptations
are not sufficient for the stochastic speed imputation problem, as
they fail to capture the dependencies among different speed ranges
and ignore the missing information in the road network.

As Table 2 shows, only GCWC [11] performs stochastic speed
estimation. GCWC uses GCNs to encode the road network’s topol-
ogy and estimate missing speed distributions. To cope with graphs
with many missing values, it applies a graph pooling layer that
reduces the graph dimensionality. Compared with modified deter-
ministic baselines such as [6], GCWC shows that GCNs are better at
capturing complex spatial correlations. However, GCWC does not
consider temporal correlations, preventing the model from achiev-
ing high accuracy. In SST-GCN, we overcome this limitation by
introducing a temporal component based on TCNs to learn tempo-
ral correlations between consecutive time intervals. Furthermore,
we propose a novel diffusion process to handle road networks with
many missing values, thereby providing a more accurate solution
for stochastic speed estimation.

3 PRELIMINARIES
3.1 Stochastic Spatio-Temporal Traffic Data

Road Network (RN): A road network is a system of intercon-
nected road segments. It is typically modeled as a directed graph
Gr = (WR, Er), where the edge set ER represents road segments and
the vertex set VR represents road intersections. Each road segment
(edge) has the vehicle’s speed information. Since we aim to estimate
the missing speed distributions on road segments, capturing the cor-
relation between nearby road segments, especially those that share
the same traffic flow is important. To achieve this, we transform
the road network graph into an equivalent edge graph [11].

Edge Graph (EG): We obtain the edge graph G = (V,E) by
transforming the edges Er of Gg into the vertices V of G, i.e., we
transform each edge e; € ER into a vertex v; € V, so that V = Ep.
We add an edge between vertices v;,0; € V if it is possible to
travel from edge e; € Eg to ej € Eg (or vice versa) via a single
vertex v € VR. The EG can be represented by the adjacency matrix
A€ {0, 11NN where N = |V] s.t. Ajj = Aj; = 1if there is an edge
between vertices v; and v, and A; j = 0 otherwise.

Like in prior work [11], the edge graph is undirected, allowing
to capture the correlation between two consecutive road segments
regardless of the traffic flow direction. This is intuitive, as traffic
flows of consecutive road segments, even if they are one-way streets,
always have an impact on each other in both directions. Figure 2
shows a road network (left) and its equivalent edge graph (right).
The EG has an edge between nodes e; and ez because we can travel
from edge e; to e in the RN via a single vertex. The red edges in
the RN indicate road segments with missing speed distributions.
They are correspondingly transformed into the red nodes in EG.

Notation convention: Hereafter, we use the notation v; to denote
anode in an EG in formal definitions and equations, but use e; to
denote a node in an EG when giving examples to be consistent with
the example in Figure 2.

SIGSPATIAL °22, November 1-4, 2022, Seattle, WA, USA

Road Network Graph ———) Edge Graph

»@@ﬁg\,@

OL e NI
es & e S e[2]2]2]>
&1 s el2)2]2]~
e;[03]04 0102
ey %4 € ’
Oey e,|02]02[04]02
[2 I 2
€6 (J % es |01 [05]02]02

Figure 2: A road network graph, its edge graph, and the SSM.

Speed Histogram: The speed distribution of a node in the EG is
represented as a histogram of the speed values in the form {(b;, pi)},
where b; = [I;,u;) is the speed range, and p; is the probability that
vehicle speeds fall into that range. Since we fix the histogram’s
intervals, there is no need to explicitly store the speed ranges,
which allows to simply store the probabilities in a vector. This
vector is used as a graph signal on the nodes of the EG.

Stochastic Speed Matrix (SSM): Given an edge graph, a sto-
chastic speed matrix is a matrix representation of all graph signals
at a specific time interval ¢, denoted as W; € RNXM where N is
the number of nodes, M is the number of speed ranges (or buckets)
in the speed histogram, and ¢ is the time interval during which
the vehicle speeds are measured. Each row W; y, stores the vector
representation of the speed distribution on node v; at time interval
t. To construct W;, we first divide the observation temporal gran-
ularity into equal-size time intervals. For example, we divide one
day (i.e., 24 hours) into 96 time intervals of 15 minutes each. Then,
for each time interval t and each node v; € V, we construct a speed
histogram from vehicle speeds that pass through v; during t. An
example SSM is shown in Figure 2.

We initialize the missing value of node v; at time interval ¢
using the average stochastic speed, which is computed using all
the observed speed values of v; at t from other days in the training
set. Furthermore, for each time interval t, we subdivide the nodes
in V into two groups: V, containing nodes with observed speed
distributions, and V;;, containing nodes with missing distributions.
For example, in Figure 2 and at time interval ¢, we have V, =
{es, e4, €6} and V;,, = {eq, €2, e5}. Next, we formulate the stochastic
speed estimation problem that aims to reconstruct the missing
distributions of the nodes in V;;, using the information in Vj,.

3.2 Stochastic Speed Estimation

Given a road network graph Gg = (VR, Eg), let G = (V,E), W;, and
Vim be the corresponding edge graph, stochastic speed matrix, and
sets of nodes with missing speed distributions, respectively. The
stochastic speed estimation problem aims to estimate a new matrix
W, € RV*M gych that the missing values in V;;, at time interval ¢
are replaced by stochastic values that are as close as possible to the
ground truth in Wg, . This is equivalent to learning an estimation
function g(-) that minimizes the distance between the estimated
SSM W and the ground truth SSM Wg,. ie.

argmin d(W;, Wg,) where:
W (1)
Wy — g([Weet. WeT1, ... Wee1, W21 G)
In Eq. (1), the estimation function ¢(-) takes as input the array
of the SSMs [W;_r, ..., W;| associated with T past time intervals

Stochastic Speed Matrix W,

SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

from t and the edge graph G to estimate W;. To obtain an accurate
estimation of the missing stochastic speed, g(-) should capture the
temporal correlations of the speeds in consecutive time intervals
and the spatial correlations of neighboring nodes in G.

4 STOCHASTIC SPATIO-TEMPORAL GRAPH
CONVOLUTIONAL NETWORK

4.1 Architecture Overview

The Stochastic Spatio-Temporal Graph Convolutional Network can
be represented as an Encoder-Decoder model, illustrated in Fig-
ure 3. The Encoder transforms the input matrix W; into a high-
dimensional tensor . € RN*MXD \where each probability value
Wh,0;,2 of the speed range z at node v; and time interval ¢ is trans-
formed into a feature vector of size D. These feature vectors are
used by the Decoder to estimate the missing speed distributions.

Input: The model receives 3 main inputs: (1) The list of stochastic
speed matrices W = [W;_, .., W;] € RPNXM where each W;_;
represents the SSM at time interval (t — i), i € [0,...,T]. (2) The
adjacency matrix A € {0, 1}N*N representing the topology of the
edge graph. (3) The vector ¢; € {0, 1}V that provides the context
information in the edge graph: ¢;[i] = 1 if the speed distribution of
node v; at time interval ¢ is available, and ¢/ [i] = 0 otherwise. For
instance, in the example of Figure 2, ¢; = [0,0,1, 1,0, 1] indicates
that the speed distributions of nodes e3, e4 and e are available,
while those of e1, e and e5 are missing.

Encoder: This component learns a high-dimensional represen-
tation of the SSM W; where each probability W; o, » is represented
as a feature vector that captures spatio-temporal correlations. To
capture the spatio-temporal correlations among nodes in the edge
graph, the Encoder uses convolutional filters to learn how the speed
distribution of node v; at time interval ¢ is influenced by the speed
distribution of its neighboring nodes N (v;), and by the speed distri-
bution of node v; itself at the past time intervals at (t — 1), (t — 2), ...,
(t —T). Intuitively, the probability a vehicle travels at a certain speed
range at node v; is spatially correlated with the probability that the
vehicle travels at that same speed in the neighboring nodes. The
same intuition applies for temporal correlation, where the vehicle’s
speed at time interval t is temporally correlated with its speed in
the preceding time intervals. Overall, the Encoder consists of: (1) A
Linear Transformation layer that projects the speed distributions
into a high-dimensional space. (2) Multiple spatio-temporal blocks
(ST-Blocks) that combine a Temporal Convolutional Network (TCN)
and a Context-Aware Graph Convolutional Network (CGCN) to
jointly learn temporal and spatial correlations.

Decoder: The last component of the architecture is the Decoder,
which receives the tensor . € RN*MXD 35 input, and generates the
estimated SSM W; as output where the missing speed distributions
are replaced with newly estimated distributions. This is achieved
by applying two Feed Forward Neural Networks and a Softmax layer
to decode the feature vectors into valid probability distributions.

4.2 Linear Transformation

The Linear Transformation (LT) is the first layer in the Encoder. It
projects the list of stochastic speed matrices W = [W;_T, ..., W]
into a high-dimensional space. Specifically, it transforms each prob-
ability value in the SSM W; into a new representation Hg oz =

Carlos Enrique Muniz Cuza, Nguyen Ho, Eleni Tzirita Zacharatou, Torben Bach Pedersen, and Bin Yang

Wr.0,z ¥/, where t is the considered time interval, v isanode in V, z is
the considered speed range, and i € RP is a shared vector of learn-
able parameters. Applying this transformation to each SSM in W
outputs a new hidden representation HY = [H?_T, H?—T+1’ e H?]

that is called the stochastic feature vector. Stochastic feature vectors
serve as the input for the ST-Block and can be understood as scaling
up each speed range’s probability into a high-dimensional space to

differentiate each speed range better.

4.3 Spatio-Temporal Block

The Spatio-Temporal Block (ST-Block) applies Temporal Convolu-
tional Networks and Context-Aware Graph Convolutional Net-
works to learn the temporal and spatial correlations in an edge
graph, thereby enriching the feature representation H® obtained
from the Linear Transformation layer. It does so by first splitting
HO to obtain the feature vectors for each speed range z separately.
Then, for each range z, it feeds the selected feature vectors to the
respective TCNs and CGCNss layers, e.g., z1,..., z4 in Figure 3, and
explicitly learns the feature representation for each speed range.
Section 5 describes in detail the TCNs and CGCNs components.

To split the tensor HY, a slicing operation is applied to obtain
the feature vectors H, € RTXNXD 7 ¢ [1,.., M]. The feature
vectors HY, are then used as the initial input for the ST-Block.
Through the splitting, the dimensionality of H® is also reduced
which in turn helps optimize the convolutional filter learning. In
addition, the ST-Block applies a residual connection that helps the
network focus only on the missing values by learning the function
h(x) = g(x) + x, where +x brings back the original values and
g(x) learns how to estimate the missing values. Next, Dropout
and Batch Normalization (BN) is applied to avoid overfitting. After
applying multiple ST-Blocks in the Encoder, we obtain the tensor
L € RNXMXD ith the spatio-temporal information encoded in the
feature representation of each speed range.

4.4 Stochastic Speed Matrix Generation

The high-dimensional tensor L € RN*MXD output by the Encoder is

sent to the Decoder to generate the final SSM W;. Before estimating
W;, we take another step to capture the dependencies between
different speed ranges. This is because consecutive speed ranges
in a speed histogram also exhibit a certain degree of correlation,
i.e., the probabilities of two consecutive speed ranges can be highly
positively correlated, while the probabilities of speed ranges that
are further apart are typically negatively correlated. For example, a
vehicle traveling between [10-20) (m/s) is likely to move to [20-30)
(m/s), and thus, the probabilities of [10-20) and [20-30) speed ranges
are more positively correlated. In contrast, the vehicle is unlikely
to move from [10-20) to [30-40) (m/s), and thus, the probabilities of
[10-20) and [30-40) speed ranges are more negatively correlated.
To capture this type of correlation, we transform the tensor L by
concatenating the feature representation of each histogram bucket
and obtain a combined feature representation for each node v; as

M
Lo, = [Lojt Loz o Logu] = || {Loyz})

z=1
where Ly, € RP represents the hidden representation learned for
the z-th speed range on node v;, and || represents the concatenation

Spatio-Temporal Graph Convolutional Network for Stochastic Traffic Speed Imputation

SIGSPATIAL °22, November 1-4, 2022, Seattle, WA, USA

I
;
f bias
= coth e ==
15 <= 0.1]0.3 (02 |04
@ 91e 03]0.1]03]03
5 =3 |—CGCN2 =3 513 g o.a o.-t Ual? o.z
o B .4). »
2 e d B] Z 2 a §
2 c] =3 El 0202|0402
E CGCNs =4 7 |2 g
3 g 0.403]0.2 0.1
= 2|2 01|o0s|02]o02
] CGCNe = W
residual ST-Block/|] L L t
Encoder | L Le RV *MxD | Decoder | | Output |

Figure 3: General architecture of our framework given an input example.

operator. Eq. (2) can be seen as the inverse of the previously de-
scribed slicing operation. Once I = [Ly,, Ly, ..., Loy | € RNVX(M*D)
is obtained, we apply two Fully Connected Layers (FCs) that con-
sider all speed ranges at once to finally obtain the intermediate
matrix Z € RN*M defined as Z = /(LW + bger) Wieo + bfen, where
Wiey € RIMsD)X(MD/2) and W, € RIM*D/2)XM gre the parame-
ter matrices and [bg.q, bgeo| are the bias vectors.

Finally, to generate the estimated SSM W;, the Softmax function
is applied to each row of the matrix Z to obtain the probability
distribution for each node v; at time interval ¢. The Softmax layer
ensures that the obtained distribution is valid, i.e., each value w;; €
W is between [0, 1], and 2?4:1 wij =1 withi € [1,N].

4.5 Loss Function

The loss function measures the distance between the estimated
SSM W; and the ground truth SSM W, using the Kullback-Leibler
(KL) divergence [15], which is defined as

M «
wj+e
KL(w|[w) =) w; - log(—~ 3
(wll) ;w, o8(L))
where wj and w; are the actual and estimated probabilities at the j-
th histogram bucket. The small positive number € in Eq. (3) prevents
a division by zero. Finally, the general loss function is obtained by
applying Eq. (3) to all graph nodes:

N
L(W,, Wp) = > I - KL(wi.|[Wi.))
i=1
where I € {0,1}" is an indicator vector with I; = 1 if the i-th node
is covered by the traffic data in the considered time interval, and
I; = 0 otherwise. This indicator vector I allows estimating the error
only for nodes with available ground truth.

In summary, the main novelty of our SST-GCN architecture lies
in two key features: (1) the explicit learning of spatio-temporal
correlations for each speed range in an SSM, and (2) the use of the
context vector ¢; that distinguishes between nodes with observed
speed distributions and nodes with missing ones. Both these fea-
tures are combined into a single stochastic framework to estimate
the missing speed distributions without using any annotated data.

5 SPATIO-TEMPORAL CONVOLUTIONAL
NETWORK

Our ST-Block learns two different kinds of convolutional kernels to
capture spatio-temporal correlations in the edge graph. Specifically,

we use a modified Graph Convolutional Network to learn spatial
correlations, and a Temporal Convolutional Network to learn tem-
poral correlations between edges. We describe them below.

5.1 Temporal Convolutional Network

The Temporal Convolutional Network applies Dilated Convolu-
tional Networks (DCNs) [28] to learn temporal correlations between
the current time interval ¢ and its preceding T time intervals. To
capture this temporal dependency, DCNs compute the dot product
(i.e., the convolution operation) between the feature vectors of Q
different time intervals, and the parameters vector ¢ of size Q (¢
is also called a convolutional filter and is updated during training).
Compared to 1D-CNNs, DCNs can capture temporal dependencies
of more preceding time intervals using fewer hidden layers thanks
to the dilation factor I. Formally, given a feature representation H",
of the speed range z (or the z-th histogram’s bucket), the temporal
convolution operation is defined as

Qo
Hio v ¢V =) Hyo(t=1-1)© ¢"() (5)
=0

where [is the dilation factor, and H',, (¢ — [- i) is the feature vector
of the speed range z at node v at the preceding (¢ — [- i)-th time
interval. Besides, ¢V € RO*D ig the learnable convolutional filter
that is independent of the size of the edge graph and different
for each speed range z. Eq. (5) is computed independently (i.e., in
parallel) for each node v avoiding memory overflow and enabling
efficient training as N increases. Finally, *; and ® denote the dilated
convolution operation and the dot product, respectively.

Similar to traditional convolutional neural networks, we apply
multiple convolutional filters @ = {¢], $,, ¢, } to generate the

output of each TCN as b

HYI' = ReLU(|| HY, 1 ¢)) (6)
j=1

where is the new feature representation of
the speed range z for all nodes and time intervals obtained at the
(v+1)-th ST-Block, (;5]" € @Y, and || denotes the concatenation of the
results obtained from applying D convolutional filters. Compared
with TCNs used in other methods [24], we learn a different set of
convolutional kernel parameters for each histogram bucket.

HVH ¢ RT"”XNXD
iz

5.2 Context-Aware GCN

We propose a novel Context-Aware Graph Convolutional Network
(CGCN) to learn the spatial correlations between nodes in an edge

SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

graph, considering the context around them. Typically, a stan-
dard Graph Convolutional Network (GCN) finds localized patterns
around a given node v; by aggregating information from its neigh-
boring nodes v = N (v;). However, using a standard GCN poses a
challenge in road networks with many nodes with missing infor-
mation. Aggregating information from such nodes could propagate
nonsensical information around the network, resulting in an incor-
rect estimation. Replacing the missing information with the average
values, as we did in the initial phase (Section 3), is still insufficient,
as those do not represent the true state of the road network.

As an example, consider node e3 of the edge graph in Figure 2
which has a speed distribution constructed from the available his-
torical data. The neighboring nodes of e3 are N'(e3) = {e1, e4, €5}, 1in
which e; and e5 have missing information and thus, their speed dis-
tributions are initialized with the average stochastic values. Using
a standard GCN, the features of e3 are combined with the aggre-
gated information of neighboring nodes, resulting in the loss of the
true speed distribution of node e3. Specifically, during the training,
the new vector representation of e3 obtained from the aggregation
will converge to the average speed distribution, which is the naive
estimation initially assigned to unobserved neighboring nodes.

Context-Aware Adjacency Matrix: To address this problem,
we propose a novel aggregation function that allows only the ob-
served node’s information to be propagated around the network.
We achieve this by using a context vector ¢; € {0, 1} to distinguish
between observed and unobserved nodes: ¢;[i] = 1 if the node v;
is observed and its speed distribution is available, and c¢;[i] = 0
otherwise. Given the context vector c¢;, we modify the topology of
the edge graph through its adjacency matrix to ensure that only
the observed nodes can propagate information to their neighbors.
This new adjacency matrix is called the context-aware adjacency
matrix A¢, and is defined as

Ac=DA+IT (7)

where D, is the diagonal matrix obtained from c;, A is the adjacency
matrix of the original edge graph, and I is the identity matrix.

Context-Aware Aggregation: Using the context-aware adja-
cency matrix A., we can define an aggregation function that only
combines information from the observed nodes as

1 R
Y = . ZH_‘;Z) =P ()H", ®)

"0z in
dU uENAC(ZJ)

where di" is the in-degree of node o (i.e., the number of in-going
edges of v), N, (v) is the set of neighboring nodes of v in A., and
PT(v) is the transpose of b(v), returning only the row associated
with node v in PT. In Eq. 8, the product of the row vector P (0) €
RN and HY, € RN*D is applied for each time interval ¢ in parallel.

Moreover, the transition matrix P € RN*N is computed as
b= ! A)
~ colsum(Ac) €

where colsum(A;) performs the sum through the columns in A,
to compute the in-degree of the node as a normalizing factor. In-
tuitively, given a node v in an edge graph, the Eq. (8) updates the
feature representation of v by computing the normalized linear com-
bination of the feature vectors from observed neighboring nodes
2ueNa, (v) Huz, and of the central node itself H.o;. This simple,

Carlos Enrique Muniz Cuza, Nguyen Ho, Eleni Tzirita Zacharatou, Torben Bach Pedersen, and Bin Yang

but effective, change in the diffusion process filters out unobserved
information when estimating the missing values.

Self-Adaptive Context-Aware Diffusion: To capture the spa-
tial correlation among nodes at k-hop distance, we can apply the
aggregation function in Eq. (8) successively k times. However, this
can result in a situation where the observed information does not
reach distant nodes because unobserved nodes in the transition
matrix are absorbing information from their neighbors without
propagating it. Thus, a pair of nodes at k-hop distance cannot share
information if there are unobserved nodes in the path connecting
them. We address this problem by making the context vector ¢; and
the respective context-aware adjacency matrix A, self-adaptive, i.e.,
they automatically update after each aggregation. Specifically, we
keep track of nodes that receive information in each aggregation
and update the context vector ¢;. The new context vector c; will
have the value 1 for all observed nodes, and also the unobserved
nodes which have just received information after the aggregation.
Once the new vector cj is obtained, we apply Eq. (7) to update A,
and use the updated A to obtain the new transition matrix P’. This
process is repeated for every aggregation. Let Py, be the transition
matrix obtained after k aggregations. We define P}, recursively as

Py = P P’ (10)

where P._; is the transition matrix obtained after (k — 1) aggre-
gations, and P’ is the newly updated transition matrix with the
new context vector c;. From pk, we can observe how information
is aggregated among nodes within k-hop distance. For instance,
applying the second aggregation on node ez renders:

He = Bl (B2~ [0 250051 OH. (1)
Here, the vector [%, % 4—11, é 0.0, %] shows the weights of nodes
within a 2-hop distance when transmitting their information to
ez2. Note that ey is receiving information from all nodes, except
from node es. This is because e5 is an unobserved node, and does
not propagate information in the first aggregation. Thus, the infor-
mation from es will only reach e after the third aggregation. In
contrast, the unobserved node e; already sends information to e; in
the second aggregation since they are direct neighbors. Moreover,
the weight of e; is %, less than the weights ‘—11, % and % of observed
ones es, e4, and eg respectively. This indicates that the context-
aware diffusion process puts more weight on observed nodes, i.e.,
making them more important than unobserved ones. We further
analyze this behavior in section 5.2. Finally, given an upper bound
K, we define the K-hop distance convolution operation as

K
HY, = ReLU(Z PrHY 0! (12)
k=1
where qo;c’ € RPXD s the learnable convolution filter to capture

spatial correlation among k-hop distance nodes. The operation
updates the feature representation in the v-th ST-Block.
Context-Aware GCN Generalization: As discussed in Eq. (11),
the context-aware diffusion process puts more weight on observed
nodes than unobserved ones, e.g., e4 has higher weight than e;.
Without the context vector, a standard aggregation function will
assign a higher weight on e; than on e4 since it is closer to e;.
In general, without considering the context information, one can

Spatio-Temporal Graph Convolutional Network for Stochastic Traffic Speed Imputation

expect that within a k-hop distance, node weights only depend on
the number of possible paths through which they can reach the
central node after k steps. However, this behavior is not desirable
for estimating missing values, since it ignores the validity of the
information held by the neighboring nodes. Instead, it is better to
consider both the number of paths and the information validity of
the neighboring nodes when assigning weights to them. Below, we
show that the context-aware diffusion process can be applied to
any graph-based structure to obtain better weight assignments.
Consider an edge graph G = (V, E), and a GCN diffusion pro-
cess P applied on G. Let ¢; € {0, I}N be the context vector of G,
representing the observable state of each node v € V:¢;[v] =1ifo
is observed, and c;[v] = 0 otherwise. We consider two scenarios:
(1) the diffusion process P applies the context vector ¢; during its
aggregation, denoted as P ¢, and (2) P does not use the context
vector ¢; but only a standard aggregation function, denoted as .

LEMMA 1. Within a K-hop distance in G, let Px and Py be the
transition matrix obtained after K aggregations from the context-
aware diffusion process P ¢ and the standard diffusion process Pz,
respectively. Then, for any node u € Nk (v) where Nx (v) represents
the set of neighboring nodes of v within the K-hop distance, we have:

Pxlu;0] = Pxlu;0], Yu € Ni(0) s.t. i [u] =1 (13)

where P [u;v] (P [u;0]) returns the weight associated with the ob-
served neighboring node u of the central node v, representing the
fraction of information node u is transmitting to v using P ¢ (Pz)-

Lemma 1 states that the context-aware diffusion process places
more importance (i.e., higher weights) on observed nodes than
the standard diffusion process (see proof in Appendix A.1). The
experiments in Section 6 show that this better captures the spatial
correlations between nodes, improving the accuracy of SST-GCN
by 3% on average.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

Datasets: We use two real-world traffic datasets: Highway Tollgates
Network [14], and City Road Network [10]. The Highway Tollgates
Network (HT) dataset records vehicle speeds using loop detectors
deployed on 24 roads of a highway in China. During preprocessing,
we partition each day into 96 15-min intervals. The dataset has a
speed range of [0 — 40) (m/s), which we divide into 4 equal-width
buckets, i.e., [0—10), [10—20), [20—30), [30—40), following [11]. We
set the number of buckets M = 4 after trying different values as it
generates histograms where each bucket has a non-zero probability.
For M = 8, we obtain histograms with zero probability in many
buckets. We set the number of preceding time intervals T = 3, i.e.,
we look back 45 minutes.

The City Road Network (CR) dataset contains 3.01 billion GPS
records produced by taxis in Chengdu, China during 5 representa-
tive time horizons: 3:00-5:00, 8:00-10:00, 12:00—14:00, 17:00—19:00,
and 21:00-23:00, which involve rush, normal, and night hours. The
data granularity is 2 mins, so we divide a day into 72 20-min in-
tervals. Similar to HT, we set M = 4 and T = 3, i.e, we look back
1 hour. Note that the time horizons limit the number of past time
intervals we can consider. The CR graph has 1902 nodes and 5943

SIGSPATIAL °22, November 1-4, 2022, Seattle, WA, USA

Table 3: Main characteristics of the edge graphs.

Dataset #Samples Time Nodes Edges Average
Interval Degree
HT 3093 15 24 24 2.0
CRy73 675 20 173 904 5.2
CR1026 675 20 1026 6558 5.4

directed links, so we extract two subgraphs using the Quasi-Cliques
[21] dense subgraph extractor. The extractor uses a parameter «
to control the degree of density in the subgraph. Modifying «, we
obtain one subgraph with 173 nodes (@ = 0.02) and one with 1,026
nodes (¢ = 0.004). We note that the largest road network used
in all baselines contains at most 1024 nodes. Therefore, we chose
a = 0.004 to obtain a similar graph size, while @ = 0.02 gives us a
similar graph size as the one used in our closest baseline [11]. Table
3 summarizes the main characteristics of the edge graphs.
Ground Truth and Input Data: We construct the ground truth
matrix Wg, from the available traffic data. Specifically, we construct
the speed histogram for nodes having at least 5 speed records and
compute the historical average speed distribution for the remaining
nodes. To simulate nodes with missing information, we randomly
select a subset of nodes from the edge graph and remove their
true speed distributions. This allows us to evaluate the accuracy
of SST-GCN by comparing the estimated values with the ground
truth. We control the amount of missing-information nodes using a
ratio p =|V;u|/N, where |V;,| is the number of nodes with missing
speed distributions and N is the total number of nodes in the edge
graph. We conduct experiments with p € {0.5,0.6,0.7,0.8}. When
p = 0.5 (p = 0.8), 50% (20%) of the nodes with ground truth are
used to estimate the other 50% (80%) with missing information.

6.2 Baselines and Training Configurations

We compare our approach with the following baselines: (1) Graph
Multi-Attention Network (GMAN) [29] uses an encoder-decoder
model with multi-head transformer-based attention to forecast the
average speed. (2) Temporal Convolutional Network (TCN) uses
TCNs [23] to encode the temporal correlations, and two Feed For-
wards Networks to forecast the average speed. (3) Graph MetaNet
(ST-MetaNet)[7] applies three stacked RNNs combined with an
attention mechanism and meta-knowledge to forecast the average
speed. (4) Graph Wavenet (GWaveNet) [24] combines TCNs and
GCNs to learn spatio-temporal correlations in a road network and
forecasts the average speed. (5) Multivariate Time Series Graph Neu-
ral Network (MTGNN) [8] combines TCNs and GCNss to forecast
future values of the target time series. We adapt the above deter-
ministic baselines to estimate the stochastic speeds as discussed
in Section 2. (6) Graph Convolutional Weight Completion (GCWC)
[11] uses GCNss to capture spatial dependencies between the sto-
chastic speed values and estimate the missing speed distributions.
(7) SST-GCNyy is a modification of our SST-GCN that estimates
the mean and variance of the speed distribution. To compare it with
the other baselines, we estimate the probability for each histogram
bucket from the obtained mean and variance using the Cumulative
Density Function of the Gaussian distribution. (8) Vector Autore-
gression (VAR) [20] is a non-deep learning method that extends

SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

the univariate auto-regressive model to multivariate time series. (9)
MICE [22] is a widely used non-deep learning method that imputes
incomplete multivariate data by chained equations. We use MICE
and VAR to estimate the missing values for each histogram bucket
independently. For example, if we have 4 buckets, we use 4 different
VAR/MICE models to estimate a value for each bucket. Finally, we
normalize the values to sum one.

Training: We use 5-fold cross-validation in all experiments: every
run uses 4 folds for training and validating, and 1 fold for testing.
We use the average results in the test set for comparison between
the baselines and our method. We found that the best values of
hyper-parameter K, number of kernels, learning rate and dropout
for our method do not change much per dataset. In particular, K = 2
for HT and CR;73, while K = 3 for CRy¢2¢. The number of kernels
is 32 for all the datasets, and the dropout is either 0.05 or 0.1 for
HT or CRs datasets. The best learning rate is 0.003 for HT and CRs.
Appendix A.3 provides more detail about the hyper-parameters.

Hardware Configuration: The experiments are performed on a
machine with an Intel Xeon CPU @2.50GHz and a Tesla V100-SXM3
32Gb GPU running Ubuntu 16.04.

6.3 Evaluation Metrics

To evaluate the accuracy of SST-GCN, we measure the distance
between the ground truth SSM W, and the estimated SSM Wr.
Since we estimate probability distributions, standard regression
metrics such as MAE and MAPE are not applicable. Thus, we use
three well-known distance metrics for probability distributions:
Kullback-Leibler Divergence (KLD) [15], Jensen-Shannon Diver-
gence (JSD) [9], and Earth Mover’s Distance (EMD) [18]. A lower
distance indicates a more accurate estimation. The KLD metric is
defined in Eq. (3), whereas the details of the JSD and EMD metrics
are provided in Appendix A.2.

Since KLD and EMD are unbounded metrics, i.e., their values
range from 0 to oo, we perform a normalization using the average
distribution HA built from historical data to provide an easier in-
terpretation. Here, we interpret HA; as the worst estimation of the
speed distribution for the j-th road segment [11]. We normalize all
three metrics using HA as

Sy T Bf(wh |IHA;)

where f{.) is the distance metric, w; the ground truth distribution,

Df (14)

w} the estimated distribution, HA;. the average distribution, Q
the total number of time intervals, N the number of nodes in the
edge graph, and ;; is an indicator matrix. D¢ < 1.0 indicates that
the estimated distribution is closer to the ground truth distribution
than the average distribution, and Dy > 1.0 indicates the opposite.
Thus, a smaller D r value indicates a more accurate estimation.

6.4 Accuracy Evaluation

Table 4 shows the accuracy comparison of SST-GCN with the base-
lines, using the normalized KLD, JSD, and EMD metrics (boldface
denotes the best results). As seen, SST-GCN has the highest accu-
racy among all baselines and settings. Compared to GCWC, the
only existing stochastic speed estimation baseline, SST-GCN im-
proves the accuracy by 49.5%, 50.22% and 36.73% on average for

Carlos Enrique Muniz Cuza, Nguyen Ho, Eleni Tzirita Zacharatou, Torben Bach Pedersen, and Bin Yang

KLD, JSD, and EMD, respectively. This confirms our hypothesis
that both spatial and temporal correlations are crucial factors for
an accurate stochastic model, and by capturing both, we gain an
advantage over GCWC that only considers spatial correlations. The
other deep learning baselines also outperform GCWC, except for
GMAN in HT. Considering that HT has only 24 nodes with an
average degree of 2, we believe that the attention mechanism is not
as effective as in CR where the average degree is 5. Other factors,
such as a high missing information rate, could negatively affect the
attention mechanism, making GMAN underperform compared to
the rest of the baselines. Among all baselines originally designed to
forecast average speeds, GWaveNet, after being modified to forecast
stochastic values, achieves the closest accuracy to our SST-GCN.
SST-GCN improves the accuracy by 4.6%, 7.7% and 5.5% on aver-
age over GWaveNet for KLD, JSD and EMD, respectively. In some
cases, SST-GCN outperforms GWaveNet by a very high margin. For
example, for HT, when p = 0.7 and 0.8, SST-GCN is up to 14.9%
and 13% better than GWaveNet using the JSD metric. We note that
although MTGNN outperforms GWavenet in forecasting tasks [8],
this is not the case in our experiments. This is because MTGNN
relies on a self-learning adjacency matrix, which does not perform
as well in the presence of many nodes with missing values.

Compared to the mean-variance baseline SST-GCNpy, our solu-
tion has from 18% to 42% higher accuracy. This confirms previous
studies [5, 26] showing that in practice, the traffic speed does not
follow a Gaussian distribution. Therefore, to correctly model the
real traffic behavior, it is necessary to use more precise representa-
tions, such as histograms, that can model arbitrary distributions.
Compared to the rest of the baselines, SST-GCN has significantly
higher accuracy with an average improvement from 11% to 35%.
Note that GWaveNet, MTGNN, and ST-MetaNet have better results
than TCN, since they can capture spatial correlations. Surprisingly,
MICE performs very well in HT dataset, especially when using
the EMD metric. However, our SST-GCN is still better than MICE
when using JSD and KLD in HT and it is always much better in
the CR datasets. These results suggest that MICE can only be ap-
plied in small road networks like HT. Overall, SST-GCN improves
the accuracy over MICE by 45.6%, 43.62% and 12.38% on average
for KLD, JSD, and EMD, respectively. Finally, VAR has the worst
performance of all.

Statistical significance test: To determine the statistical signif-
icance of our accuracy results, we conduct a paired sample t-test [2].
For all accuracy measures KLD, JSD, and EMD, we achieve a p-value
less than 0.01, rejecting the null hypothesis that SST-GCN and the
baselines have the same average performance. Thus, the accuracy
improvement of SST-GCN is statistically significant. We attribute
this improvement to the context-aware diffusion process and the
explicit learning of spatio-temporal correlations for each speed
range. In Sections 6.5 and 6.6 we evaluate further this hypothesis.

6.5 Context-Aware Diffusion Process Evaluation

To measure the impact of the context-aware diffusion process, we
evaluate the accuracy of SST-GCN without the context informa-
tion. We name this version SST-GCNyc (NC stands for No Context).
Furthermore, we modify GWaveNet (the best performing base-
line) by incorporating the context-aware diffusion process, named
GWaveNetc. Table 5 shows the results of these four methods for

Spatio-Temporal Graph Convolutional Network for Stochastic Traffic Speed Imputation

SIGSPATIAL °22, November 1-4, 2022, Seattle, WA, USA

Table 4: Accuracy evaluation of SST-GCN and the baselines. Boldface denotes the best results.

. HT CRy73 CRyg26

Metrics | Methods 05 06 0.7 08 05 06 0.7 08 05 06 07 08
VAR 08616 08562 08574 08593 | 08097 08470 0.8897 0.8994 | 11517 L1318 11105 11224
MICE 02135 03402 04785 06990 | 03948 04892 0.6080 07458 | 04267 05268 06276 0.7306
GMAN | 04161 04193 04936 06059 | 02742 03134 03539 03911 | 02563 03043 03447 0.3860

- GCWC | 03948 04488 04964 05777 | 05183 05483 05788 06079 | 0.6123 0.6513 0.6607 0.6762
TCN 0.2569 03559 04305 05325 | 0.2393 02797 03203 03559 | 02497 02954 03375 0.3750
ST-MetaNet | 0.2177 0.2009 03738 04993 | 02320 02798 03201 0357 | 02339 02902 03254 03688
MTGNN | 02195 03709 04798 05896 | 02278 02679 03081 03450 | 0.2415 02807 03242 0.3666
GWaveNet | 01748 02799 03556 04768 | 0.2194 02612 03038 03410 | 0.2266 02692 03141 03576
SST-GCNpy | 05705 06294 06752 07548 | 03240 03679 04038 04526 | 0.3574 0413 0464 05014
SST-GCN | 0.1662 02619 03319 0.4458 | 0.2081 0.2494 0.2938 0.3358 | 0.2119 0.2589 03041 0.3491
VAR 08780 0.8737 08737 08737 | 08537 08873 09251 09504 | 12232 12082 11965 11931
MICE 0.2237 03500 04963 07184 | 04710 05728 0.6981 0.8562 | 04875 05987 07048 0.8043
GMAN | 05605 06289 07079 08974 | 03507 03987 04601 05130 | 03018 03411 03888 0.4398
GCWC | 05158 05763 06316 07105 | 05963 0.6308 0.6653 0.6871 | 07074 07132 07291 0.7441
TCN 03368 04395 05421 06921 | 02742 03255 03726 04214 | 02834 03194 03662 0.4130

Djsp | ST-MetaNet | 03105 04026 05026 0.6474 | 02750 03499 03877 04340 | 02651 03161 03570 0.4156
MTGNN | 02579 04316 05632 0.6921 | 02582 03078 03608 04087 | 0.2550 02968 03512 0.4013
GWaveNet | 02184 03579 04579 06158 | 0.2540 03045 03625 04138 | 0.2453 02043 03448 0.3938
SST-GCNmy | 05868 06579 07158 0.8237 | 03650 04163 04693 05265 | 0.3896 0.4390 0.4916 0.5435
SST-GCN | 0.1974 03053 0.3895 05342 | 0.2422 0.2902 0.3474 0.3970 | 0.2408 02776 03319 0.3829
VAR 10457 10481 10555 L0841 | 16112 1.6100 1.6246 16378 | 22520 22280 22118 2.219%
MICE 02402 03803 05133 07292 | 04168 05114 06235 07479 | 04165 05101 0.6045 0.7018
GMAN | 07038 07472 08267 09298 | 04865 05243 05648 05959 | 04508 04832 05231 0.5622
GCWC | 07274 07740 08068 08655 | 0.6482 0.6689 06912 07146 | 0.7286 07358 07438 0.7530
TCN 05065 0.6442 07135 08323 | 04519 05000 05434 05792 | 04386 04779 05209 0.5530

Demp | ST-MetaNet | 0.4792 05841 0.6844 0.8073 | 04360 04819 05128 05450 | 04061 04612 04985 0.5445
MTGNN | 03304 05018 06197 07671 | 03983 04475 04958 0.5333 | 03985 0.4427 04950 0.5400
GWaveNet | 03651 05342 06423 07717 | 04016 0.4486 04947 05351 | 0.3475 04073 0.4640 0.5196
SST-GCNmy | 0.6063 06497 0.6872 07528 | 0.4491 04901 05254 05704 | 0.4686 05061 05499 0.5875
SST-GCN | 03364 04681 05591 0.7130 | 0.3668 04235 04786 0.5245 | 0.3570 0.4014 0.4602 0.5101

Table 5: Effect of Context-Aware Diffusion Process.

Datasets / p | SST-GCN SST-GCNnyc GWaveNet GWaveNetc
0.5 0.1974 0.2000 0.2184 0.2105
HT 0.6 0.3053 0.3184 0.3579 0.3395
0.7 0.3895 0.4105 0.4579 0.4421
0.8 0.5342 0.5658 0.6158 0.5947
0.5 0.2422 0.2498 0.2540 0.2473
CRyzs 0.6 0.2902 0.2986 0.3045 0.3003
0.7 0.3474 0.3549 0.3625 0.3532
0.8 0.3970 0.4071 0.4138 0.4003
0.5 0.2408 0.2542 0.2453 0.2458
CRyome 0.6 0.2776 0.2910 0.2943 0.2885
0.7 0.3319 0.3420 0.3448 0.3403
0.8 0.3829 0.3972 0.3938 0.3905

the normalized JSD. The results for KLD and EMD have similar
behavior, thus we omit them due to space limitations.
Table 5 shows that the context-aware diffusion process improves

the accuracy of both SST-GCN and GWaveNet by approximately
3% and 2.6% on average. Moreover, the context-aware diffusion pro-
cess has a higher impact on the estimation accuracy as p increases.
For example, on HT, the accuracy of SST-GCN is improved by 1.3%
over SST-GCNnc when p = 0.5, and by 5.5% when p = 0.8. Based
on this analysis, we conclude that our proposed context-aware dif-
fusion process better captures the spatial correlations between the
road segments when the graph contains many nodes with missing
information. Finally, although the context-aware diffusion process
improves the accuracy of GWaveNet, it is still not better than our
SST-GCN. This is because GWaveNet cannot capture the spatio-
temporal correlations among the speed ranges.

Table 6: Effect of considering separate speed ranges.

Datasets / Methods / p = 0.5 0.6 0.7 0.8
HT SST-GCN 0.1974 0.3053 0.3895 0.5342
SST-GCNnu 0.2105 0.3263 0.4132 0.5658
CRy7 SST-GCN 0.2422 0.2902 0.3474 0.3970
SST-GCNNH 0.2498 0.2986 0.3583 0.4146
CRyozs SST-GCN 0.2408 0.2776 0.3319 0.3829
SST-GCNNH 0.2458 0.2901 0.3353 0.3888

6.6 Speed Range Feature Vectors Evaluation

To better understand the effect of learning different convolutional
kernels for each speed range, we implement a new model, SST-
GCNnp (NH stands for non-histogram). SST-GCNny does not con-
sider the features of each histogram bucket separately but combines
them into a single representation. Table 6 shows the results for the
normalized JSD. As can be seen, SST-GCN improves the accuracy
by 4% over SST-GCNnpy, indicating the effectiveness of our design
decision to learn convolutional kernels for each speed range sepa-
rately in the ST-Block. The results for the KLD and EMD measures
also show a similar improvement.

6.7 Model Efficiency Analysis

Table 7 compares the space and time efficiency of SST-GCN against
the deep learning baselines on the biggest CR1926 graph. In terms of
both time and space efficiency, SST-GCN is well-positioned w.r.t the
baselines. The inference and training time is faster than ST-MetaNet
and GMAN, and only slightly slower than the remaining baselines.
Having the lowest number of parameters, TCN has the lowest
training and inference times. However, SST-GCN is from 16% to

SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

Table 7: Efficiency analysis on CRjg2¢ dataset.

Parameters Inference Training

Methods (x10%) time (s/b) time (s/b)
GCWC ~ 20000 ~0.004 ~0.01
GMAN ~ 380 ~0.08 ~0.21
TCN ~28 ~0.001 ~0.01
ST-MetaNet ~ 18 ~0.10 ~0.30
MTGNN ~ 135 ~0.01 ~0.13
GWaveNet ~ 192 ~0.01 ~0.05
SST-GCN ~ 45 ~0.03 ~0.14

18% more accurate than TCN. In contrast, both GWaveNet and
GCWC have from 4 to 400 times more parameters, which increases
their space complexity. This is because GCWC’s decoder component
utilizes a fully connected layer to reconstruct the stochastic speed
matrix for all nodes in the graph. Therefore, as the number of
nodes increases, the number of parameters in this last layer also
increases. GWavenet uses 256 kernels in the skip connection as
suggested in [24], making the number of parameters also higher
than SST-GCN. Nevertheless, in both cases, the layer with the high
number of parameters requires only a single matrix multiplication
that is computed very fast when the data fits in the GPU memory.
Finally, although ST-MetaNet has the second fewest parameters,
its inference and training times are much higher due to the use of
three stacked RNNs which cannot be parallelized.

6.8 Other Experiments

We conduct further experiments to evaluate two aspects of our
SST-GCN: 1) resilience to spatially localized missing values and 2)
scalability to bigger graphs. Due to space limitations, we include the
detailed description and results for these experiments in Appendices
A.5 and A.6. In the first experiment, we generate a new dataset
where the nodes with missing values are clustered and compare
SST-GCN against GWaveNet. The results show that the accuracy
of SST-GCN gets only slightly affected and is still better than
GWaveNet. In the second experiment, we show that estimating
the missing stochastic speed in a large road network (3064 nodes)
simply requires partitioning the graph into smaller subgraphs and
applying SST-GCN on those subgraphs independently. Finally, we
also study in more detail the intermediate representation learned
by our Encoder in Appendix A.7. Overall, the experiments show
that our Encoder can differentiate the speed ranges and capture the
similarities between adjacent nodes in the edge graph.

7 CONCLUSION AND FUTURE WORK

This paper introduces a novel deep learning architecture, SST-GCN,
to impute missing speed distributions in a road network. Unlike
prior work, SST-GCN efficiently captures both spatial and tempo-
ral correlations and uses a novel context-aware diffusion process
that effectively prioritizes the observed nodes in the graph while
estimating the missing values. This context-aware diffusion pro-
cess is generic, and thus can be applied to any graph-based model
for efficient learning. Extensive experiments show that SST-GCN

outperforms the state-of-the-art on estimation accuracy from 4.6%
up to 50% while being competitive in terms of time and space com-

plexity. Furthermore, multiple ablation studies confirm our design

Carlos Enrique Muniz Cuza, Nguyen Ho, Eleni Tzirita Zacharatou, Torben Bach Pedersen, and Bin Yang

choices and scalability to large road networks. In future work, we
plan to extend SST-GCN to simultaneously estimate the missing
distributions of current time intervals and forecast the distributions
of future time intervals, paving the path toward even more efficient
routing services.

ACKNOWLEDGMENTS

This paper was supported in part by the MORE project funded by
the EU Horizon 2020 program under grant agreement no. 957345.

REFERENCES

[1] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive Graph
Convolutional Recurrent Network for Traffic Forecasting. NeurIPS (2020).

[2] Michael George Bulmer. 1979. Principles of statistics. Courier Corporation.

[3] Xinyu Chen, Zhaocheng He, and Jiawei Wang. 2018. Spatial-temporal traffic
speed patterns discovery and incomplete data recovery via SVD-combined tensor
decomposition. Transportation Research Part C (2018).

[4] Xinyu Chen, Jinming Yang, and Lijun Sun. 2020. A nonconvex low-rank tensor
completion model for spatiotemporal traffic data imputation. Transportation
Research Part C (2020).

[5] Jian Dai, Bin Yang, Chenjuan Guo, Christian Sendergaard Jensen, and Jilin Hu.
2016. Path cost distribution estimation using trajectory data. VLDB 7. (2016).

[6] Dingxiong Deng et. al. 2016. Latent Space Model for Road Networks to Predict
Time-Varying Traffic. In SIGKDD.

[7]1 Zheyi Pan et. al. 2019. Urban Traffic Prediction from Spatio-Temporal Data Using
Deep Meta Learning. In SIGKDD.

[8] Zonghan Wu et. al. 2020. Connecting the Dots: Multivariate Time Series Fore-
casting with Graph Neural Networks. In SIGKDD.

[9] Bent Fuglede and Flemming Topsge. 2004. Jensen-Shannon divergence and
Hilbert space embedding. In ISIT.

[10] Feng Guo, Dongqing Zhang, Yucheng Dong, and Zhaoxia Guo. 2019. Urban link

travel speed dataset from a megacity road network. Scientific Data (2019).

Jilin Hu, Chenjuan Guo, Bin Yang, and Christian S Jensen. 2019. Stochastic weight

completion for road networks using graph convolutional networks. In ICDE.

Tsuyoshi Idé and Masashi Sugiyama. 2011. Trajectory regression on road net-

works. In AAAL

Tan T Jolliffe. 1986. Principal components in regression analysis. In Principal

component analysis. Springer.

Nathaniel J. Kendall, Alex Risner, and Harry saxophone Allen. 2017. Highway

Tollgates Traffic Flow Prediction. In SIGKDD.

Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.

The annals of mathematical statistics (1951).

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional

Recurrent Neural Network: Data-Driven Traffic Forecasting. In ICLR.

[17] Simon Aagaard Pedersen, Bin Yang, and Christian S Jensen. 2020. Fast stochastic
routing under time-varying uncertainty. VLDB J. (2020).

[18] Ofir Pele and Michael Werman. 2009. Fast and robust earth mover’s distances. In
Iccev.

[19] Matthew Roughan, Yin Zhang, Walter Willinger, and Lili Qiu. 2012. Spatio-
Temporal Compressive Sensing and Internet Traffic Matrices. IEEE/ACM Trans-
actions on Networking (2012).

[20] James H Stock and Mark W Watson. 2001. Vector autoregressions. JEP (2001).

[21] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,
and Maria Tsiarli. 2013. Denser than the densest subgraph: extracting optimal
quasi-cliques with quality guarantees. In SIGKDD.

[22] Stef Van Buuren and Karin Groothuis-Oudshoorn. 2011. mice: Multivariate
imputation by chained equations in R. Journal of statistical software (2011).

[23] Aédron Van Den Oord et. al. 2016. WaveNet: A generative model for raw audio.
SSW (2016).

[24] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.

Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In IJCAL

Bin Yang, Jian Dai, Chenjuan Guo, Christian S. Jensen, and Jilin Hu. 2018. PACE:

a PAth-CEntric paradigm for stochastic path finding. VLDB 7. (2018).

Bin Yang, Chenjuan Guo, Christian S. Jensen, Manohar Kaul, and Shuo Shang.

2014. Stochastic skyline route planning under time-varying uncertainty. In ICDE.

[27] Bin Yang, Manohar Kaul, and Christian S Jensen. 2013. Using incomplete infor-

mation for complete weight annotation of road networks. TKDE (2013).

Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Context Aggregation by Dilated

Convolutions. In ICLR.

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. GMAN:

A Graph Multi-Attention Network for Traffic Prediction. In AAAL

Wanzheng Zheng, Pranay Thangeda, Yagiz Savas, and Melkior Ornik. 2021. Op-

timal Routing in Stochastic Networks with Reliability Guarantees. In 24th IEEE

International ITS.

e e e e
& v

=
o)

&
2

IS
2

S
&

[29

[30

Spatio-Temporal Graph Convolutional Network for Stochastic Traffic Speed Imputation

A APPENDIX
A.1 Context-Aware GCN Generalization

In this section, we provide formal proof of Lemma 1.

Proor. We prove Eq. (13) using induction in k.

Base case: when k = 1, let m > 0 be the number of unobserved
nodes within 1-hop distance. From Eq. (9), we obtain the transition
matrix P; for P ¢, and the transition matrix P; for PE as

N 1 1
- colsum(A.) Aci P = colsum(A)A (15)
From Eq. (15), we obtain the weights of the observed neighboring
node u of v as

« 1
Pylu;v] =

1
- Aclu;o] > Prlusv] = —Alu;o 16
el 2 Piliel = Jpaleel - (9)
where di" > 0 is the in-degree of node v and ¢; [u] = 1. Thus, Eq.
(13) hold for k = 1.
Induction hypothesis: assume that Eq. (13) holds for some

positive k. Thus, we have :
Pr[u;0] = Prlu;0], Yu € Ni(v) Ace[u] =1 (17)

Induction step: we prove that Eq. (13) also holds for k + 1. Let
m’ > 0 be the number of nodes that are still unobserved after k
aggregations. From Eq. (10), we obtain the transition matrices for
P c and P after k + 1 aggregations as

Pryt = PkP’s Py = PP’ (18)

The weight of the observed neighboring node u of v is therefore
computed as

ﬁk+1[u;v]= Z ﬁk[u;i]f’/[i;o]
i€ Nk (v)

(19)
Pralusol = 3 PelusilP'[i0]
i€ Nk (v)
where .)
P’[i;v]:mzP[i;v]:@ (20)
Since we have Py [u;i] > Py [u;i] by the induction hypothesis, we
obtain Eq. (13) from Egs. (19), (20) QED. O
A.2]JSD and EMD Metrics
The Jensen-Shannon Divergence (JSD) is computed as
L w) + KL(w]||w
15Dty — KLCI®) + KLG13) o

2
where w = 0.5 X (w + w) and KL is the textitKullback-Leibler
Divergence (KLD), shown in Eq. (3). The JSD measure is symmetric,
bounded, and satisfies the triangle inequality property.

The Earth Mover’s Distance (EMD) measures the distance be-
tween two probability distributions (w, w) as the minimum cost to
transform w into w. The cost is defined as the product of two fac-
tors: the difference between the probability values of histogram’s
buckets, e.g., Wi — wj, and the measuring distance between the
buckets themselves, e.g., |i — j| + 1. Formally, EMD is defined as

Y 3 FiyCij

EMD(w, w) =
M M
2ic Zj=1 Fij

(22)

SIGSPATIAL °22, November 1-4, 2022, Seattle, WA, USA

where Fj; is the optimal flow that minimizes the transformation
cost from w; to wj, and Cj; is the pairwise distance between bucket
i and bucket j.

A.3 Hyper-Parameters Searching

All deep learning models are trained using the mini-batch Adam
optimizer, with batch size 32, the learning rate (Ir) is searched from
{0.001, 0.002, ..., 0.01}, the dropout (dp) ratio is tuned in {0.05, 0.1,
0.15, 0.2, ..., 0.5}, and the number of diffusion processes (K) per
layer is searched from {2, 3, 4, 8}. For MTGNN, we set the number
of neighbors parameter k = 20 for the CR-derived datasets as
suggested in [8], and k = 5 for HT since it has only 24 nodes. For
GMAN, we search for the best results using several attention heads,
ie., {2, 3, 4}, and set the node embedding size to 64. The number of
kernels for graph convolution and size of the hidden layer of RNN
is searched from {8, 16, 32}. The regularization term is fixed to 0.001
for SST-GCN, while for the baselines we use the value suggested
by the authors. In SST-GCN, the number of ST-Blocks is set to 2,
and we maintain the same number of kernels for each layer. Grid
search is used for all methods.

A.4 Edge Graph Visualization

Figure 4 shows the HT and CR;73 edge graphs. The CRyo2¢’s edge
graph is too big for visualization but, in general, it follows the same
topology as CRy73. Note that the topology of the two graphs is
completely different. HT is a dispersed graph with few connections
between nodes, while CR has many connections, i.e., a higher aver-
age degree. This clearly has an impact on all baselines, as well as our
SST-GCN. Note that the results deteriorate faster in HT than in the
CR datasets as the number of missing values increases. Intuitively,
since CR datasets have more connections, observed information
can reach the rest of the nodes faster than in HT.

HT

Figure 4: Visualization of HT and CR;73 edge graphs.

A.5 Spatially Localized Missing Values

In this section, we evaluate the resilience of SST-GCN by artifi-
cially generating missing values that are concentrated in the same
region. We note that in all other experiments, the missing values
are randomly distributed in the road network. To generate such
concentrated missing regions, we randomly choose a starting node
v and perform a Breadth-First Search starting from v, labeling every
node reached on the way as missing. We repeat this process to cre-
ate multiple missing clusters in the tested road network, using the

SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

missing values rate p to control the cluster size. In this experiment,
we use the CRyg26 graph and the average cluster size is 58 nodes.

Table 8 shows the results of SST-GCN compared to the best
baseline GWaveNet for all metrics. We can see that the accuracies
of SST-GCN and GWaveNet are only slightly affected. Specifically,
SST-GCN experiences only from 0.98% to 3.8% (2.7% on average)
accuracy reduction for all the metrics. Intuitively, this is attrib-
uted to the highly connected road networks (cf. Table 3) that allow
the observed information to reach many missing nodes in just a
few hops. In comparison, GWavenet experiences from 0.95% to
4.2% (2.2% on average) accuracy reduction for all the metrics. Ad-
ditionally, our SST-GCN still obtains better results overall with
an average accuracy improvement of 2% over GWaveNet. Finally,
we would like to emphasize that, in general, the random missing
node scenario is more realistic as GPS or sensor malfunctioning is
highly unlikely to follow a specific pattern like in this experiment.
Nevertheless, with this set of experiments, we show that even if
such a pattern occurs, our method can still achieve higher accuracy
than the closest baseline.

Table 8: Impact of spatially localized missing values.

Metric | Method/p = 0.5 0.6 0.7 0.8
Dein SST-GCN | 0.2253 0.2677 0.3138 0.3545
GWaveNet | 0.2311 0.2743 03201 0.3605
b SST-GCN | 0.2508 0.2960 0.3428 0.3913
JSD | GWaveNet | 0.2478 0.2971 0.3484 0.3938
Deat SST-GCN | 0.3547 0.4109 0.4641 0.5176
GWaveNet | 0.3685 04262 0.4848 0.5336

A.6 Scalability by Partitioning

As discussed in Section 5.2, to estimate the missing value of a
node v, SST-GCN only needs to propagate information from the
neighboring nodes that are within its K-hop distance. Therefore,
applying SST-GCN to a very big road network simply requires
partitioning the graph into smaller subgraphs and applying the
method on those subgraphs independently. The scalability of SST-
GCN is thus guaranteed if the estimation results obtained from the
subgraphs are similar to the estimation results obtained from the
full big graph.

Table 9: Accuracy over partitions.

Datasets/p = ‘ 0.5 0.6 0.7 0.8
CRi1522 0.2387 0.2847 0.3324 0.3811
CRi542 0.2604 0.3175 0.3728 0.4256
CR3064 0.2511 0.3010 0.3508 0.4007

Carlos Enrique Muniz Cuza, Nguyen Ho, Eleni Tzirita Zacharatou, Torben Bach Pedersen, and Bin Yang

We validate this approach by comparing the results of SST-GCN
on a bigger graph that consists of 3064 nodes extracted from the
CR dataset (CR3p64) with the results on two disjoint subgraphs of
CR3064, CRy522 and CRys542. The results are shown in Table 9 using
the JSD metric. We can see that SST-GCN obtains similar accu-

racy when training and testing on the full graph CR3p64, and when
training and testing on the two subgraphs separately. This shows

that using this partitioning strategy, SST-GCN can be applied to
very big road networks and can still obtain high accuracy while
maintaining the training and inference times that grow linearly to
the number of partitions. We also believe that more advanced parti-
tioning strategies such as those that consider overlapping between
different partitions can further improve the results.

A.7 Intermediate Representation Visualization

To gain more intuition about the learned intermediate represen-
tation L € RNVXMXD of SST-GCN, we use Principal Component
Analysis (PCA) [13] to analyze the feature vectors associated with
each speed range and node in the graph. Figure 5 visualizes the
feature vectors of two adjacent nodes using the first two principal
components. Here, different colors represent different histogram
buckets. First, we observe that the histogram buckets of two adja-
cent nodes have similar feature representations. This confirms our
intuition that the probability of driving at a certain speed range is
similar in adjacent road segments. However, this does not apply
to all speed ranges, as there are other factors, such as traffic lights,
that also affect the vehicle’s speed. For example, the features of the
bucket [20-30) are slightly different. Second, we observe that the
feature vectors of different buckets form relatively independent clus-
ters, and the features of consecutive speed ranges (adjacent buckets)
are closer to each other than the features of non-consecutive speed
ranges. This helps explain the better performance of SST-GCN
over the baselines, as SST-GCN explicitly learns the feature repre-
sentation of each bucket separately, and thus can capture distinct
features that are representative for each speed range.

2 s o n Bins Bins
ol * (010 "1 * (010
, . s o o * [10-20) s * * [10-20)
. .Q, °> e [20-30) e e [20-30)
~ & - [30-40) e ® [30-40)
o . o . .
e — “he
*e,
-1 e ¢ e
- o LY
2 .
3 W 1 -
-3 -2 1 o 1 X 3 4 -2 -1 0 1 2 3 4 5
PC, PC,

Figure 5: Feature vectors of two adjacent nodes.

