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ABSTRACT

The rapid increase of traffic data generated by different sensing sys-

tems opens many opportunities to improve transportation services.

An important opportunity is to enable stochastic routing that com-

putes the arrival time probabilities for each suggested route instead

of only the expected travel time. However, traffic datasets typically

have many missing values, which prevents the construction of sto-

chastic speeds. To address this limitation, we propose the Stochastic

Spatio-Temporal Graph Convolutional Network (SST-GCN) archi-

tecture that accurately imputes missing speed distributions in a

road network. SST-GCN combines Temporal Convolutional Net-

works and Graph Convolutional Networks into a single framework

to capture both spatial and temporal correlations between road

segments and time intervals. Moreover, to cope with datasets with

many missing values, we propose a novel self-adaptive context-

aware diffusion process that regulates the propagated information

around the network, avoiding the spread of false information. We

extensively evaluate the effectiveness of SST-GCN on real-world

datasets, showing that it achieves from 4.6% to 50% higher accu-

racy than state-of-the-art baselines using three different evaluation

metrics. Furthermore, multiple ablation studies confirm our design

choices and scalability to large road networks.
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Figure 1: Example of shortest routes to the hospital.

Table 1: Arrival time and road segments speed distributions.

(a) Arrival time distributions

Arrival
time (mins)

Probability
R1 R2

20
30
40
50

0.4
0.3
0.1
0.2

0.3
0.3
0.4
0.0

Expected Time 31 31

(b) Speed distributions of route 𝑅1

Road

segment

Speed range (m/s)

0-10 10-20 20-30 30-40

𝑟11 0.4 0.3 0.2 0.1

𝑟12 0.5 0.3 0.2 0.0

𝑟13 0.2 0.2 0.3 0.3

𝑟14 0.2 0.2 0.2 0.4

1 INTRODUCTION

Optimal routing algorithms can improve the efficiency of public

transport, reduce costs, and prevent accidents in road networks.

Current navigation systems generate a route between an origin

and destination point based on the least expected travel time [17].

However, only considering the expected travel time is often unre-

liable, as it fails to capture the uncertainty of the travel duration

and the traveler’s delay tolerance [30]. The example in Figure 1

illustrates the situation where an ambulance needs the best route to

the hospital. Here, 𝑅1 and 𝑅2 have the same expected arrival time,

i.e., 31 minutes, but different arrival time distributions, as shown

in Table 1a. Route 𝑅1 offers the shortest travel duration with the

highest probability, i.e., 20 mins with 0.4 chance, but there is also a

0.2 chance the travel duration will be the longest, i.e., 50 mins. In

contrast, route 𝑅2 offers a lower probability to be the fastest but

guarantees the travel takes at most 40 mins. If the ambulance has

to arrive within 40 minutes to guarantee the patient’s life, route

𝑅2 is the best option. Such a high-resolution routing service would

enable the end-users to make better decisions.

High-resolution routing services often rely on time-dependent

stochastic traffic data representing the speed distributions of vehi-

cles in a road network [11, 25, 30]. Specifically, a speed distribution

captures the probability that a vehicle travels at a certain speed
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on a road segment. Table 1b shows an example of the speed distri-

butions for each road segment of 𝑅1. Here, the speed distribution

of 𝑟11 indicates that vehicles traveling in this segment are in the

[0 − 10) (m/s) speed range with 0.4 probability, in the [10 − 20)

(m/s) speed range with 0.3 probability, and so on. Given the speed

distribution and distance of each road segment, we can derive the

arrival time distribution of each route, as shown in Table 1a.

To construct traffic speed distributions for road segments, we

can use vehicle tracking data obtained from GPS and loop detectors.

However, data collected from these sensors are often incomplete

due to technical reasons such as loop detectors malfunctioning or

temporarily unavailable GPS data. This data sparseness problem [11]

prevents the construction of time-dependent stochastic speeds for

each road segment.

The present paper aims to alleviate this problem by designing

a deep learning model to accurately estimate the missing speed

distributions in a road network. However, achieving a highly ac-

curate estimation model is a challenging task as traffic speeds in

a road network exhibit complex spatial correlations between road

segments and temporal correlations between time intervals. Specif-

ically, spatial correlations occur since traffic conditions at nearby

locations, either in consecutive or bidirectional road segments, im-

pact each other. For instance, in Figure 1, the traffic flow in road

segment 𝑟11 impacts the flow in 𝑟12. In turn, traffic speeds between

consecutive time intervals are temporally correlated as the vehicle

speeds traveling on a road segment at time interval 𝑡 + 1 are likely

to be similar to the speeds at time interval 𝑡 .
Several prior studies have attempted to estimate missing traffic

speed values in a road network. However, they either fail to capture

both spatial and temporal correlations, e.g., [11] only considers

spatial correlations, or focus solely on estimating the average speed

values rather than stochastic speeds [24, 29].

Contributions.This paper proposes a Stochastic Spatio-Temporal

Graph Convolutional Network (SST-GCN) model that accurately es-

timates the missing speed distributions in a road network. Our key

contributions are the following. (1) We design the SST-GCN frame-

work that automatically captures both spatial and temporal correla-

tions in a road network. Our framework integrates Graph Convolu-

tional Networks (GCNs) to capture spatial correlations among road

segments and Temporal Convolutional Networks (TCNs) to cap-

ture temporal correlations among time intervals in a graph-based

road network model. (2) To cope with datasets with many missing

values, we propose a novel self-adaptive context-aware GCN that

prioritizes the propagation of the observed information in the graph

while estimating the missing values. Furthermore, we show that

our context-aware GCN is generic and thus, can be applied to any

graph-based structure to learn context-aware spatial correlations

efficiently. Experimental results show that our context-aware GCN

improves the accuracy of SST-GCN by 3% on average. (3) We con-

duct an extensive experimental evaluation on real-world datasets

showing that SST-GCN outperforms the baselines on estimation

accuracy. In particular, SST-GCN has from 36% to 50% higher accu-

racy than the state-of-the-art stochastic speed estimation baseline

[11]. We also compare against modified deterministic state-of-the-

art baselines, achieving from 4.6% to 34%, and from 12% to 71%

accuracy improvement over the modified deep learning and non

deep learning baselines, respectively. Additionally, we perform a

Table 2: Traffic data imputation and forecasting methods.

Deterministic Stochastic

Spatial and Temporal

Correlations

ICLR’18 [16], IJCAI’19 [24]

SIGKDD’16 [6], ’19 [7], ’20 [8]

TR_C’20 [4], AAAI’20 [29]

SST-GCN

(this paper)

Only Spatial

Correlations
AAAI’11 [12], TKDE’13 [27] ICDE’19 [11]

comprehensive study to evaluate the resilience, efficiency, and scal-

ability of SST-GCN on different missing value patterns and graph

sizes. The code is available at https://github.com/cmcuza/sst-gcn.

2 RELATEDWORK

Learning from spatio-temporal traffic data has been extensively

studied in the literature, where the main research focus has been on

forecasting future traffic speeds and imputing missing speed values.

Two main groups of techniques exist: deep learning [1, 7, 16, 24, 29]

and matrix factorization [3, 4, 6, 19]. While matrix factorization

approaches have been commonly used, they are often transduc-

tive, i.e., applied to specific datasets, thereby difficult to generalize

and extend to other datasets. Recently, deep learning approaches,

mostly relying on Graph Convolutional Networks (GCNs), have

been widely used to solve different tasks in the traffic domain. The

GCNs popularity is due to their efficiency in capturing complex

graph structures and finding dependencies among nodes and edges

in road networks. Consequently, deep learning approaches are not

only inductive but also provide highly accurate models for traffic

forecasting and imputation. Table 2 shows the most representative

work in both tasks classified in two categories: deterministic and

stochastic. Deterministic methods estimate the average speeds on

road segments, while stochastic ones estimate the stochastic speeds.

The majority of the existing deep learning models are determinis-

tic, i.e., they forecast average traffic speeds for future time intervals.

The deterministic category is further divided into spatial and tem-

poral correlations and only spatial correlations. The former includes

methods that capture both spatial and temporal correlations in

road networks. For example, MTGNN [8] and GraphWaveNet [24]

combine GCNs and Temporal Convolution Networks (TCNs) into

a single framework. ST-MetaNet [7] proposes three stacked RNNs

within a sequence-to-sequence architecture. GMAN [29] uses atten-

tion mechanisms to capture spatial correlations between nodes and

temporal correlations between time intervals. However, all these

methods require available data for all road segments and are thus

unsuitable for sparse data. The latter subcategory contains meth-

ods that only consider spatial correlations. In particular, [12, 27]

apply regression-based loss functions to minimize the difference

between traffic speed values of adjacent nodes. However, reducing

the dissimilarity between adjacent nodes alone is not sufficient to

capture complex spatial correlations among road segments.

Although there is no straightforward way to extend determin-

istic deep learning methods, they can be adapted to impute speed

distributions instead of only average values. We select representa-

tive deterministic methods, i.e., MTGNN [8], GraphWaveNet [24],

ST-MetaNet [7], and GMAN [29], and modify them to work in our

stochastic setting. Specifically, we change their input layers such

that they accept stochastic speed values as input features, and the
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output layers so that they produce a valid speed distribution. We

also adapt the non-deep learning general imputation and forecast-

ing methods MICE [22] and VAR [20] to work in the stochastic

setting. However, as we show in Section 6, these simple adaptations

are not sufficient for the stochastic speed imputation problem, as

they fail to capture the dependencies among different speed ranges

and ignore the missing information in the road network.

As Table 2 shows, only GCWC [11] performs stochastic speed

estimation. GCWC uses GCNs to encode the road network’s topol-

ogy and estimate missing speed distributions. To cope with graphs

with many missing values, it applies a graph pooling layer that

reduces the graph dimensionality. Compared with modified deter-

ministic baselines such as [6], GCWC shows that GCNs are better at

capturing complex spatial correlations. However, GCWC does not

consider temporal correlations, preventing the model from achiev-

ing high accuracy. In SST-GCN, we overcome this limitation by

introducing a temporal component based on TCNs to learn tempo-

ral correlations between consecutive time intervals. Furthermore,

we propose a novel diffusion process to handle road networks with

many missing values, thereby providing a more accurate solution

for stochastic speed estimation.

3 PRELIMINARIES

3.1 Stochastic Spatio-Temporal Traffic Data

Road Network (RN): A road network is a system of intercon-

nected road segments. It is typically modeled as a directed graph

𝐺R = (𝑉R, 𝐸R), where the edge set 𝐸R represents road segments and

the vertex set 𝑉R represents road intersections. Each road segment

(edge) has the vehicle’s speed information. Since we aim to estimate

the missing speed distributions on road segments, capturing the cor-

relation between nearby road segments, especially those that share

the same traffic flow is important. To achieve this, we transform

the road network graph into an equivalent edge graph [11].

Edge Graph (EG): We obtain the edge graph 𝐺 = (𝑉 , 𝐸) by
transforming the edges 𝐸R of 𝐺R into the vertices 𝑉 of 𝐺 , i.e., we

transform each edge 𝑒𝑖 ∈ 𝐸R into a vertex 𝑣𝑖 ∈ 𝑉 , so that 𝑉 = 𝐸R.
We add an edge between vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 if it is possible to

travel from edge 𝑒𝑖 ∈ 𝐸R to 𝑒 𝑗 ∈ 𝐸R (or vice versa) via a single

vertex 𝑣 ∈ 𝑉R. The EG can be represented by the adjacency matrix

𝐴 ∈ {0, 1}𝑁×𝑁 where 𝑁 = |𝑉 | s.t.𝐴𝑖, 𝑗 = 𝐴 𝑗,𝑖 = 1 if there is an edge

between vertices 𝑣𝑖 and 𝑣 𝑗 , and 𝐴𝑖, 𝑗 = 0 otherwise.

Like in prior work [11], the edge graph is undirected, allowing

to capture the correlation between two consecutive road segments

regardless of the traffic flow direction. This is intuitive, as traffic

flows of consecutive road segments, even if they are one-way streets,

always have an impact on each other in both directions. Figure 2

shows a road network (left) and its equivalent edge graph (right).

The EG has an edge between nodes 𝑒1 and 𝑒2 because we can travel

from edge 𝑒1 to 𝑒2 in the RN via a single vertex. The red edges in

the RN indicate road segments with missing speed distributions.

They are correspondingly transformed into the red nodes in EG.

Notation convention: Hereafter, we use the notation 𝑣𝑖 to denote

a node in an EG in formal definitions and equations, but use 𝑒𝑖 to
denote a node in an EG when giving examples to be consistent with

the example in Figure 2.

Figure 2: A road network graph, its edge graph, and the SSM.

Speed Histogram: The speed distribution of a node in the EG is

represented as a histogram of the speed values in the form {(𝑏𝑖 , 𝑝𝑖 )},
where 𝑏𝑖 = [𝑙𝑖 , 𝑢𝑖 ) is the speed range, and 𝑝𝑖 is the probability that

vehicle speeds fall into that range. Since we fix the histogram’s

intervals, there is no need to explicitly store the speed ranges,

which allows to simply store the probabilities in a vector. This

vector is used as a graph signal on the nodes of the EG.

Stochastic Speed Matrix (SSM): Given an edge graph, a sto-

chastic speed matrix is a matrix representation of all graph signals

at a specific time interval 𝑡 , denoted as𝑊𝑡 ∈ R𝑁×𝑀 where 𝑁 is

the number of nodes, 𝑀 is the number of speed ranges (or buckets)

in the speed histogram, and 𝑡 is the time interval during which

the vehicle speeds are measured. Each row𝑊𝑡,𝑣𝑖 stores the vector

representation of the speed distribution on node 𝑣𝑖 at time interval

𝑡 . To construct𝑊𝑡 , we first divide the observation temporal gran-

ularity into equal-size time intervals. For example, we divide one

day (i.e., 24 hours) into 96 time intervals of 15 minutes each. Then,

for each time interval 𝑡 and each node 𝑣𝑖 ∈ 𝑉 , we construct a speed

histogram from vehicle speeds that pass through 𝑣𝑖 during 𝑡 . An
example SSM is shown in Figure 2.

We initialize the missing value of node 𝑣𝑖 at time interval 𝑡
using the average stochastic speed, which is computed using all

the observed speed values of 𝑣𝑖 at 𝑡 from other days in the training

set. Furthermore, for each time interval 𝑡 , we subdivide the nodes
in 𝑉 into two groups: 𝑉𝑜 containing nodes with observed speed

distributions, and 𝑉𝑚 containing nodes with missing distributions.

For example, in Figure 2 and at time interval 𝑡 , we have 𝑉𝑜 =
{𝑒3, 𝑒4, 𝑒6} and 𝑉𝑚 = {𝑒1, 𝑒2, 𝑒5}. Next, we formulate the stochastic

speed estimation problem that aims to reconstruct the missing

distributions of the nodes in 𝑉𝑚 using the information in 𝑉𝑜 .

3.2 Stochastic Speed Estimation
Given a road network graph𝐺𝑅 = (𝑉𝑅, 𝐸𝑅), let𝐺 = (𝑉 , 𝐸),𝑊𝑡 , and

𝑉𝑚 be the corresponding edge graph, stochastic speed matrix, and

sets of nodes with missing speed distributions, respectively. The

stochastic speed estimation problem aims to estimate a new matrix

𝑊̂𝑡 ∈ R
𝑁×𝑀 such that the missing values in 𝑉𝑚 at time interval 𝑡

are replaced by stochastic values that are as close as possible to the

ground truth in𝑊𝐺𝑡 . This is equivalent to learning an estimation

function 𝑔(·) that minimizes the distance between the estimated

SSM 𝑊̂𝑡 and the ground truth SSM𝑊𝐺𝑡 , i.e.

argmin
𝑊̂𝑡

d(𝑊̂𝑡 ,𝑊𝐺𝑡 ) where:

𝑊̂𝑡 ← 𝑔( [𝑊𝑡−𝑇 ,𝑊𝑡−𝑇+1, ...,𝑊𝑡−1,𝑊𝑡 ];𝐺)

(1)

In Eq. (1), the estimation function 𝑔(·) takes as input the array
of the SSMs [𝑊𝑡−𝑇 , ...,𝑊𝑡 ] associated with 𝑇 past time intervals
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from 𝑡 and the edge graph 𝐺 to estimate 𝑊̂𝑡 . To obtain an accurate

estimation of the missing stochastic speed, 𝑔(·) should capture the

temporal correlations of the speeds in consecutive time intervals

and the spatial correlations of neighboring nodes in 𝐺 .

4 STOCHASTIC SPATIO-TEMPORAL GRAPH
CONVOLUTIONAL NETWORK

4.1 Architecture Overview
The Stochastic Spatio-Temporal Graph Convolutional Network can

be represented as an Encoder-Decoder model, illustrated in Fig-

ure 3. The Encoder transforms the input matrix 𝑊𝑡 into a high-

dimensional tensor L ∈ R𝑁×𝑀×𝐷 , where each probability value

𝑊𝑡,𝑣𝑖 ,𝑧 of the speed range 𝑧 at node 𝑣𝑖 and time interval 𝑡 is trans-
formed into a feature vector of size 𝐷 . These feature vectors are
used by the Decoder to estimate the missing speed distributions.

Input: The model receives 3 main inputs: (1) The list of stochastic

speed matrices W = [𝑊𝑡−𝑇 , ...,𝑊𝑡 ] ∈ R𝑇×𝑁×𝑀 , where each𝑊𝑡−𝑖

represents the SSM at time interval (𝑡 − 𝑖), 𝑖 ∈ [0, ...,𝑇 ]. (2) The
adjacency matrix 𝐴 ∈ {0, 1}𝑁×𝑁 representing the topology of the

edge graph. (3) The vector 𝑐𝑡 ∈ {0, 1}𝑁 that provides the context

information in the edge graph: 𝑐𝑡 [𝑖] = 1 if the speed distribution of

node 𝑣𝑖 at time interval 𝑡 is available, and 𝑐𝑡 [𝑖] = 0 otherwise. For

instance, in the example of Figure 2, 𝑐𝑡 = [0, 0, 1, 1, 0, 1] indicates
that the speed distributions of nodes 𝑒3, 𝑒4 and 𝑒6 are available,

while those of 𝑒1, 𝑒2 and 𝑒5 are missing.

Encoder: This component learns a high-dimensional represen-

tation of the SSM𝑊𝑡 where each probability𝑊𝑡,𝑣𝑖 ,𝑧 is represented

as a feature vector that captures spatio-temporal correlations. To

capture the spatio-temporal correlations among nodes in the edge

graph, the Encoder uses convolutional filters to learn how the speed

distribution of node 𝑣𝑖 at time interval 𝑡 is influenced by the speed

distribution of its neighboring nodesN(𝑣𝑖 ), and by the speed distri-
bution of node 𝑣𝑖 itself at the past time intervals at (𝑡 − 1), (𝑡 − 2), ...,

(𝑡−𝑇 ). Intuitively, the probability a vehicle travels at a certain speed
range at node 𝑣𝑖 is spatially correlated with the probability that the

vehicle travels at that same speed in the neighboring nodes. The

same intuition applies for temporal correlation, where the vehicle’s

speed at time interval 𝑡 is temporally correlated with its speed in

the preceding time intervals. Overall, the Encoder consists of: (1) A

Linear Transformation layer that projects the speed distributions

into a high-dimensional space. (2) Multiple spatio-temporal blocks

(ST-Blocks) that combine a Temporal Convolutional Network (TCN)

and a Context-Aware Graph Convolutional Network (CGCN) to

jointly learn temporal and spatial correlations.

Decoder: The last component of the architecture is the Decoder,

which receives the tensor L ∈ R𝑁×𝑀×𝐷 as input, and generates the

estimated SSM 𝑊̂𝑡 as output where the missing speed distributions

are replaced with newly estimated distributions. This is achieved

by applying two Feed Forward Neural Networks and a Softmax layer

to decode the feature vectors into valid probability distributions.

4.2 Linear Transformation

The Linear Transformation (LT) is the first layer in the Encoder. It

projects the list of stochastic speed matrices W = [𝑊𝑡−𝑇 , ...,𝑊𝑡 ]

into a high-dimensional space. Specifically, it transforms each prob-

ability value in the SSM 𝑊𝑡 into a new representation 𝐻0
𝑡,𝑣,𝑧 =

𝑊𝑡,𝑣,𝑧 ·𝜓 , where 𝑡 is the considered time interval, 𝑣 is a node in𝑉 , 𝑧 is
the considered speed range, and𝜓 ∈ R𝐷 is a shared vector of learn-

able parameters. Applying this transformation to each SSM inW

outputs a new hidden representation 𝐻0 = [𝐻0
𝑡−𝑇 , 𝐻

0
𝑡−𝑇+1, ..., 𝐻

0
𝑡 ]

that is called the stochastic feature vector. Stochastic feature vectors

serve as the input for the ST-Block and can be understood as scaling

up each speed range’s probability into a high-dimensional space to

differentiate each speed range better.

4.3 Spatio-Temporal Block

The Spatio-Temporal Block (ST-Block) applies Temporal Convolu-

tional Networks and Context-Aware Graph Convolutional Net-

works to learn the temporal and spatial correlations in an edge

graph, thereby enriching the feature representation 𝐻0 obtained

from the Linear Transformation layer. It does so by first splitting

𝐻0 to obtain the feature vectors for each speed range 𝑧 separately.

Then, for each range 𝑧, it feeds the selected feature vectors to the

respective TCNs and CGCNs layers, e.g., 𝑧1,..., 𝑧4 in Figure 3, and

explicitly learns the feature representation for each speed range.

Section 5 describes in detail the TCNs and CGCNs components.

To split the tensor 𝐻0, a slicing operation is applied to obtain

the feature vectors 𝐻0
· ·𝑧 ∈ R𝑇×𝑁×𝐷 , 𝑧 ∈ [1, ..., 𝑀]. The feature

vectors 𝐻0
· ·𝑧 are then used as the initial input for the ST-Block.

Through the splitting, the dimensionality of 𝐻0 is also reduced

which in turn helps optimize the convolutional filter learning. In

addition, the ST-Block applies a residual connection that helps the

network focus only on the missing values by learning the function

ℎ(𝑥) = 𝑔(𝑥) + 𝑥 , where +𝑥 brings back the original values and

𝑔(𝑥) learns how to estimate the missing values. Next, Dropout

and Batch Normalization (BN) is applied to avoid overfitting. After

applying multiple ST-Blocks in the Encoder, we obtain the tensor

L ∈ R𝑁×𝑀×𝐷 with the spatio-temporal information encoded in the

feature representation of each speed range.

4.4 Stochastic Speed Matrix Generation

The high-dimensional tensorL ∈ R𝑁×𝑀×𝐷 output by the Encoder is

sent to the Decoder to generate the final SSM 𝑊̂𝑡 . Before estimating

𝑊̂𝑡 , we take another step to capture the dependencies between

different speed ranges. This is because consecutive speed ranges

in a speed histogram also exhibit a certain degree of correlation,

i.e., the probabilities of two consecutive speed ranges can be highly

positively correlated, while the probabilities of speed ranges that

are further apart are typically negatively correlated. For example, a

vehicle traveling between [10-20) (m/s) is likely to move to [20-30)

(m/s), and thus, the probabilities of [10-20) and [20-30) speed ranges

are more positively correlated. In contrast, the vehicle is unlikely

to move from [10-20) to [30-40) (m/s), and thus, the probabilities of

[10-20) and [30-40) speed ranges are more negatively correlated.

To capture this type of correlation, we transform the tensor L by

concatenating the feature representation of each histogram bucket

and obtain a combined feature representation for each node 𝑣𝑖 as

L̂𝑣𝑖 = [𝐿𝑣𝑖1, 𝐿𝑣𝑖2, ..., 𝐿𝑣𝑖𝑀 ] =
𝑀�

𝑧=1

{L𝑣𝑖𝑧 } (2)

where 𝐿𝑣𝑖𝑧 ∈ R𝐷 represents the hidden representation learned for

the 𝑧-th speed range on node 𝑣𝑖 , and
�
represents the concatenation
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Figure 3: General architecture of our framework given an input example.

operator. Eq. (2) can be seen as the inverse of the previously de-

scribed slicing operation. Once L̂ = [𝐿𝑣1 , 𝐿𝑣2 , ..., 𝐿𝑣𝑁 ] ∈ R𝑁×(𝑀∗𝐷)

is obtained, we apply two Fully Connected Layers (FCs) that con-

sider all speed ranges at once to finally obtain the intermediate

matrix 𝑍 ∈ R𝑁×𝑀 defined as 𝑍 = 𝜎 (L̂𝑊fc1 +𝑏fc1)𝑊fc2 +𝑏fc2, where
𝑊fc1 ∈ R(𝑀∗𝐷)×(𝑀∗𝐷/2) and𝑊fc2 ∈ R(𝑀∗𝐷/2)×𝑀 are the parame-

ter matrices and [𝑏fc1, 𝑏fc2] are the bias vectors.
Finally, to generate the estimated SSM 𝑊̂𝑡 , the Softmax function

is applied to each row of the matrix 𝑍 to obtain the probability

distribution for each node 𝑣𝑖 at time interval 𝑡 . The Softmax layer

ensures that the obtained distribution is valid, i.e., each value 𝑤̂𝑖 𝑗 ∈

𝑊̂ is between [0, 1], and
∑𝑀

𝑗=1 𝑤̂𝑖 𝑗 = 1 with 𝑖 ∈ [1, 𝑁 ].

4.5 Loss Function

The loss function measures the distance between the estimated

SSM 𝑊̂𝑡 and the ground truth SSM𝑊𝐺𝑡 using the Kullback–Leibler

(KL) divergence [15], which is defined as

KL(𝑤 | |𝑤̂) =
𝑀∑

𝑗=1

𝑤̂ 𝑗 · log(
𝑤̂ 𝑗 + 𝜖

𝑤 𝑗 + 𝜖
) (3)

where𝑤 𝑗 and𝑤 𝑗 are the actual and estimated probabilities at the 𝑗-
th histogram bucket. The small positive number 𝜖 in Eq. (3) prevents
a division by zero. Finally, the general loss function is obtained by

applying Eq. (3) to all graph nodes:

𝐿(𝑊𝐺𝑡 ,𝑊̂𝑡 ) =
𝑁∑

𝑖=1

𝐼𝑖 · KL(𝑤𝑖 · | |𝑤𝑖 · ) (4)

where 𝐼 ∈ {0, 1}𝑁 is an indicator vector with 𝐼𝑖 = 1 if the 𝑖-th node

is covered by the traffic data in the considered time interval, and

𝐼𝑖 = 0 otherwise. This indicator vector 𝐼 allows estimating the error

only for nodes with available ground truth.

In summary, the main novelty of our SST-GCN architecture lies

in two key features: (1) the explicit learning of spatio-temporal

correlations for each speed range in an SSM, and (2) the use of the

context vector 𝑐𝑡 that distinguishes between nodes with observed

speed distributions and nodes with missing ones. Both these fea-

tures are combined into a single stochastic framework to estimate

the missing speed distributions without using any annotated data.

5 SPATIO-TEMPORAL CONVOLUTIONAL
NETWORK

Our ST-Block learns two different kinds of convolutional kernels to

capture spatio-temporal correlations in the edge graph. Specifically,

we use a modified Graph Convolutional Network to learn spatial

correlations, and a Temporal Convolutional Network to learn tem-

poral correlations between edges. We describe them below.

5.1 Temporal Convolutional Network

The Temporal Convolutional Network applies Dilated Convolu-

tional Networks (DCNs) [28] to learn temporal correlations between

the current time interval 𝑡 and its preceding 𝑇 time intervals. To

capture this temporal dependency, DCNs compute the dot product

(i.e., the convolution operation) between the feature vectors of 𝑄
different time intervals, and the parameters vector 𝜙 of size 𝑄 (𝜙
is also called a convolutional filter and is updated during training).

Compared to 1D-CNNs, DCNs can capture temporal dependencies

of more preceding time intervals using fewer hidden layers thanks

to the dilation factor 𝑙 . Formally, given a feature representation𝐻 𝜈
· ·𝑧

of the speed range 𝑧 (or the 𝑧-th histogram’s bucket), the temporal

convolution operation is defined as

𝐻 𝜈
·𝑣𝑧 ∗𝑙 𝜙

𝜈 =
𝑄∑

𝑖=0

𝐻 𝜈
·𝑣𝑧 (𝑡 − 𝑙 · 𝑖) ⊗ 𝜙𝜈 (𝑖) (5)

where 𝑙 is the dilation factor, and 𝐻 𝜈
·𝑣𝑧 (𝑡 − 𝑙 · 𝑖) is the feature vector

of the speed range 𝑧 at node 𝑣 at the preceding (𝑡 − 𝑙 · 𝑖)-th time

interval. Besides, 𝜙𝜈 ∈ R𝑄×𝐷 is the learnable convolutional filter

that is independent of the size of the edge graph and different

for each speed range 𝑧. Eq. (5) is computed independently (i.e., in

parallel) for each node 𝑣 avoiding memory overflow and enabling

efficient training as 𝑁 increases. Finally, ∗𝑙 and ⊗ denote the dilated

convolution operation and the dot product, respectively.

Similar to traditional convolutional neural networks, we apply

multiple convolutional filters Φ𝜈 = {𝜙𝜈
1 , 𝜙

𝜈
2 , ..., 𝜙

𝜈
𝐷 } to generate the

output of each TCN as

𝐻 𝜈+1
· ·𝑧 = 𝑅𝑒𝐿𝑈 (

𝐷�

𝑗=1

𝐻 𝜈
· ·𝑧 ∗𝑙 𝜙

𝜈
𝑗 ) (6)

where 𝐻 𝜈+1
· ·𝑧 ∈ R𝑇

𝜈+1×𝑁×𝐷 is the new feature representation of

the speed range 𝑧 for all nodes and time intervals obtained at the

(𝜈 +1)-th ST-Block, 𝜙𝜈
𝑗 ∈ Φ𝜈 , and

�
denotes the concatenation of the

results obtained from applying 𝐷 convolutional filters. Compared

with TCNs used in other methods [24], we learn a different set of

convolutional kernel parameters for each histogram bucket.

5.2 Context-Aware GCN

We propose a novel Context-Aware Graph Convolutional Network

(CGCN) to learn the spatial correlations between nodes in an edge
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graph, considering the context around them. Typically, a stan-

dard Graph Convolutional Network (GCN) finds localized patterns

around a given node 𝑣𝑖 by aggregating information from its neigh-

boring nodes v = N(𝑣𝑖 ). However, using a standard GCN poses a

challenge in road networks with many nodes with missing infor-

mation. Aggregating information from such nodes could propagate

nonsensical information around the network, resulting in an incor-

rect estimation. Replacing the missing information with the average

values, as we did in the initial phase (Section 3), is still insufficient,

as those do not represent the true state of the road network.

As an example, consider node 𝑒3 of the edge graph in Figure 2

which has a speed distribution constructed from the available his-

torical data. The neighboring nodes of 𝑒3 areN(𝑒3) = {𝑒1, 𝑒4, 𝑒5}, in
which 𝑒1 and 𝑒5 have missing information and thus, their speed dis-

tributions are initialized with the average stochastic values. Using

a standard GCN, the features of 𝑒3 are combined with the aggre-

gated information of neighboring nodes, resulting in the loss of the

true speed distribution of node 𝑒3. Specifically, during the training,

the new vector representation of 𝑒3 obtained from the aggregation

will converge to the average speed distribution, which is the naive

estimation initially assigned to unobserved neighboring nodes.

Context-Aware Adjacency Matrix: To address this problem,

we propose a novel aggregation function that allows only the ob-

served node’s information to be propagated around the network.

We achieve this by using a context vector 𝑐𝑡 ∈ {0, 1}𝑁 to distinguish

between observed and unobserved nodes: 𝑐𝑡 [𝑖] = 1 if the node 𝑣𝑖
is observed and its speed distribution is available, and 𝑐𝑡 [𝑖] = 0

otherwise. Given the context vector 𝑐𝑡 , we modify the topology of

the edge graph through its adjacency matrix to ensure that only

the observed nodes can propagate information to their neighbors.

This new adjacency matrix is called the context-aware adjacency

matrix 𝐴𝑐 , and is defined as

𝐴𝑐 = 𝐷𝑐𝐴 + 𝐼 (7)

where𝐷𝑐 is the diagonal matrix obtained from 𝑐𝑡 ,𝐴 is the adjacency

matrix of the original edge graph, and 𝐼 is the identity matrix.

Context-Aware Aggregation: Using the context-aware adja-

cency matrix 𝐴𝑐 , we can define an aggregation function that only

combines information from the observed nodes as

𝐻 𝜈+1
·𝑣𝑧 =

1

𝑑𝑖𝑛𝑣
(𝐻 𝜈

·𝑣𝑧 +
∑

𝑢∈N𝐴𝑐 (𝑣)

𝐻 𝜈
·𝑢𝑧) = 𝑃T (𝑣)𝐻 𝜈

· ·𝑧 (8)

where 𝑑𝑖𝑛𝑣 is the in-degree of node 𝑣 (i.e., the number of in-going

edges of 𝑣), N𝐴𝑐 (𝑣) is the set of neighboring nodes of 𝑣 in 𝐴𝑐 , and

𝑃T (𝑣) is the transpose of 𝑃 (𝑣), returning only the row associated

with node 𝑣 in 𝑃T. In Eq. 8, the product of the row vector 𝑃T (𝑣) ∈
𝑅1×𝑁 and𝐻 𝜈

𝑡 ·𝑧 ∈ 𝑅𝑁×𝐷 is applied for each time interval 𝑡 in parallel.

Moreover, the transition matrix 𝑃 ∈ R𝑁×𝑁 is computed as

𝑃 =
1

colsum(𝐴𝑐 )
𝐴𝑐 (9)

where colsum(𝐴𝑐 ) performs the sum through the columns in 𝐴𝑐

to compute the in-degree of the node as a normalizing factor. In-

tuitively, given a node 𝑣 in an edge graph, the Eq. (8) updates the

feature representation of 𝑣 by computing the normalized linear com-

bination of the feature vectors from observed neighboring nodes∑
𝑢∈N𝐴𝑐 (𝑣)

𝐻 ·𝑢𝑧 , and of the central node itself 𝐻 ·𝑣𝑧 . This simple,

but effective, change in the diffusion process filters out unobserved

information when estimating the missing values.

Self-Adaptive Context-Aware Diffusion: To capture the spa-

tial correlation among nodes at 𝑘-hop distance, we can apply the

aggregation function in Eq. (8) successively 𝑘 times. However, this

can result in a situation where the observed information does not

reach distant nodes because unobserved nodes in the transition

matrix are absorbing information from their neighbors without

propagating it. Thus, a pair of nodes at 𝑘-hop distance cannot share
information if there are unobserved nodes in the path connecting

them. We address this problem by making the context vector 𝑐𝑡 and
the respective context-aware adjacency matrix𝐴𝑐 self-adaptive, i.e.,

they automatically update after each aggregation. Specifically, we

keep track of nodes that receive information in each aggregation

and update the context vector 𝑐𝑡 . The new context vector 𝑐 ′𝑡 will
have the value 1 for all observed nodes, and also the unobserved

nodes which have just received information after the aggregation.

Once the new vector 𝑐 ′𝑡 is obtained, we apply Eq. (7) to update 𝐴𝑐 ,

and use the updated𝐴𝑐 to obtain the new transition matrix 𝑃 ′. This

process is repeated for every aggregation. Let 𝑃𝑘 be the transition

matrix obtained after 𝑘 aggregations. We define 𝑃𝑘 recursively as

𝑃𝑘 = 𝑃𝑘−1𝑃
′ (10)

where 𝑃𝑘−1 is the transition matrix obtained after (𝑘 − 1) aggre-

gations, and 𝑃 ′ is the newly updated transition matrix with the

new context vector 𝑐 ′𝑡 . From 𝑃𝑘 , we can observe how information

is aggregated among nodes within 𝑘-hop distance. For instance,

applying the second aggregation on node 𝑒2 renders:

𝐻 ·𝑒2𝑧 = 𝑃T2 (𝑒2)𝐻 · ·𝑧 ≈ [
1

8
,
2

25
,
1

4
,
1

5
, 0.0,

1

3
] ⊗ 𝐻 · ·𝑧 (11)

Here, the vector [ 18 ,
2
25 ,

1
4 ,

1
5 , 0.0,

1
3 ] shows the weights of nodes

within a 2-hop distance when transmitting their information to

𝑒2. Note that 𝑒2 is receiving information from all nodes, except

from node 𝑒5. This is because 𝑒5 is an unobserved node, and does

not propagate information in the first aggregation. Thus, the infor-

mation from 𝑒5 will only reach 𝑒2 after the third aggregation. In

contrast, the unobserved node 𝑒1 already sends information to 𝑒2 in
the second aggregation since they are direct neighbors. Moreover,

the weight of 𝑒1 is
1
8 , less than the weights 1

4 ,
1
5 , and

1
3 of observed

ones 𝑒3, 𝑒4, and 𝑒6 respectively. This indicates that the context-

aware diffusion process puts more weight on observed nodes, i.e.,

making them more important than unobserved ones. We further

analyze this behavior in section 5.2. Finally, given an upper bound

𝐾 , we define the 𝐾-hop distance convolution operation as

𝐻 𝜈
· ·𝑧 = 𝑅𝑒𝐿𝑈 (

𝐾∑

𝑘=1

𝑃T𝑘𝐻
𝜈
· ·𝑧𝜑

𝜈
𝑘 ) (12)

where 𝜑𝜈
𝑘

∈ R𝐷×𝐷 is the learnable convolution filter to capture

spatial correlation among 𝑘-hop distance nodes. The operation

updates the feature representation in the 𝜈-th ST-Block.

Context-Aware GCN Generalization: As discussed in Eq. (11),

the context-aware diffusion process puts more weight on observed

nodes than unobserved ones, e.g., 𝑒4 has higher weight than 𝑒1.
Without the context vector, a standard aggregation function will

assign a higher weight on 𝑒1 than on 𝑒4 since it is closer to 𝑒2.
In general, without considering the context information, one can
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expect that within a 𝑘-hop distance, node weights only depend on

the number of possible paths through which they can reach the

central node after 𝑘 steps. However, this behavior is not desirable

for estimating missing values, since it ignores the validity of the

information held by the neighboring nodes. Instead, it is better to

consider both the number of paths and the information validity of

the neighboring nodes when assigning weights to them. Below, we

show that the context-aware diffusion process can be applied to

any graph-based structure to obtain better weight assignments.

Consider an edge graph 𝐺 = (𝑉 , 𝐸), and a GCN diffusion pro-

cess P applied on 𝐺 . Let 𝑐𝑡 ∈ {0, 1}𝑁 be the context vector of 𝐺 ,

representing the observable state of each node 𝑣 ∈ 𝑉 : 𝑐𝑡 [𝑣] = 1 if 𝑣
is observed, and 𝑐𝑡 [𝑣] = 0 otherwise. We consider two scenarios:

(1) the diffusion process P applies the context vector 𝑐𝑡 during its

aggregation, denoted as P𝑪 , and (2) P does not use the context

vector 𝑐𝑡 but only a standard aggregation function, denoted as P𝑪 .

Lemma 1. Within a 𝐾-hop distance in 𝐺 , let 𝑃𝐾 and 𝑃𝐾 be the

transition matrix obtained after 𝐾 aggregations from the context-

aware diffusion process P𝑪 and the standard diffusion process P𝑪 ,

respectively. Then, for any node 𝑢 ∈ N𝐾 (𝑣) where N𝐾 (𝑣) represents
the set of neighboring nodes of 𝑣 within the 𝐾-hop distance, we have:

𝑷𝑲 [𝒖; 𝒗] ≥ 𝑷𝑲 [𝒖; 𝒗], ∀𝑢 ∈ N𝐾 (𝑣) s.t. 𝑐𝑡 [𝑢] = 1 (13)

where 𝑃𝐾 [𝑢; 𝑣] (𝑃𝐾 [𝑢; 𝑣]) returns the weight associated with the ob-

served neighboring node 𝑢 of the central node 𝑣 , representing the

fraction of information node 𝑢 is transmitting to 𝑣 using P𝑪 (P𝑪 ).

Lemma 1 states that the context-aware diffusion process places

more importance (i.e., higher weights) on observed nodes than

the standard diffusion process (see proof in Appendix A.1). The

experiments in Section 6 show that this better captures the spatial

correlations between nodes, improving the accuracy of SST-GCN

by 3% on average.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

Datasets:Weuse two real-world traffic datasets: Highway Tollgates

Network [14], and City Road Network [10]. The Highway Tollgates

Network (HT) dataset records vehicle speeds using loop detectors

deployed on 24 roads of a highway in China. During preprocessing,

we partition each day into 96 15-min intervals. The dataset has a

speed range of [0 − 40) (m/s), which we divide into 4 equal-width

buckets, i.e., [0−10), [10−20), [20−30), [30−40), following [11].We

set the number of buckets 𝑀 = 4 after trying different values as it

generates histograms where each bucket has a non-zero probability.

For 𝑀 = 8, we obtain histograms with zero probability in many

buckets. We set the number of preceding time intervals 𝑇 = 3, i.e.,

we look back 45 minutes.

The City Road Network (CR) dataset contains 3.01 billion GPS

records produced by taxis in Chengdu, China during 5 representa-

tive time horizons: 3:00–5:00, 8:00–10:00, 12:00–14:00, 17:00–19:00,

and 21:00–23:00, which involve rush, normal, and night hours. The

data granularity is 2 mins, so we divide a day into 72 20-min in-

tervals. Similar to HT, we set 𝑀 = 4 and 𝑇 = 3, i.e, we look back

1 hour. Note that the time horizons limit the number of past time

intervals we can consider. The CR graph has 1902 nodes and 5943

Table 3: Main characteristics of the edge graphs.

Dataset #Samples
Time

Interval
Nodes Edges

Average

Degree

HT 3093 15 24 24 2.0

𝐶𝑅173 675 20 173 904 5.2

𝐶𝑅1026 675 20 1026 6558 5.4

directed links, so we extract two subgraphs using the Quasi-Cliques

[21] dense subgraph extractor. The extractor uses a parameter 𝛼
to control the degree of density in the subgraph. Modifying 𝛼 , we
obtain one subgraph with 173 nodes (𝛼 = 0.02) and one with 1, 026
nodes (𝛼 = 0.004). We note that the largest road network used

in all baselines contains at most 1024 nodes. Therefore, we chose

𝛼 = 0.004 to obtain a similar graph size, while 𝛼 = 0.02 gives us a
similar graph size as the one used in our closest baseline [11]. Table

3 summarizes the main characteristics of the edge graphs.

Ground Truth and Input Data:We construct the ground truth

matrix𝑊𝐺𝑡 from the available traffic data. Specifically, we construct

the speed histogram for nodes having at least 5 speed records and

compute the historical average speed distribution for the remaining

nodes. To simulate nodes with missing information, we randomly

select a subset of nodes from the edge graph and remove their

true speed distributions. This allows us to evaluate the accuracy

of SST-GCN by comparing the estimated values with the ground

truth. We control the amount of missing-information nodes using a

ratio 𝜌 =|𝑉𝑚 |/𝑁 , where |𝑉𝑚 | is the number of nodes with missing

speed distributions and 𝑁 is the total number of nodes in the edge

graph. We conduct experiments with 𝜌 ∈ {0.5, 0.6, 0.7, 0.8}. When

𝜌 = 0.5 (𝜌 = 0.8), 50% (20%) of the nodes with ground truth are

used to estimate the other 50% (80%) with missing information.

6.2 Baselines and Training Configurations

We compare our approach with the following baselines: (1) Graph

Multi-Attention Network (GMAN) [29] uses an encoder-decoder

model with multi-head transformer-based attention to forecast the

average speed. (2) Temporal Convolutional Network (TCN) uses

TCNs [23] to encode the temporal correlations, and two Feed For-

wards Networks to forecast the average speed. (3) Graph MetaNet

(ST-MetaNet)[7] applies three stacked RNNs combined with an

attention mechanism and meta-knowledge to forecast the average

speed. (4) Graph Wavenet (GWaveNet) [24] combines TCNs and

GCNs to learn spatio-temporal correlations in a road network and

forecasts the average speed. (5) Multivariate Time Series Graph Neu-

ral Network (MTGNN) [8] combines TCNs and GCNs to forecast

future values of the target time series. We adapt the above deter-

ministic baselines to estimate the stochastic speeds as discussed

in Section 2. (6) Graph Convolutional Weight Completion (GCWC)

[11] uses GCNs to capture spatial dependencies between the sto-

chastic speed values and estimate the missing speed distributions.

(7) SST-GCNmv is a modification of our SST-GCN that estimates

themean and variance of the speed distribution. To compare it with

the other baselines, we estimate the probability for each histogram

bucket from the obtained mean and variance using the Cumulative

Density Function of the Gaussian distribution. (8) Vector Autore-

gression (VAR) [20] is a non-deep learning method that extends
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the univariate auto-regressive model to multivariate time series. (9)

MICE [22] is a widely used non-deep learning method that imputes

incomplete multivariate data by chained equations. We use MICE

and VAR to estimate the missing values for each histogram bucket

independently. For example, if we have 4 buckets, we use 4 different

VAR/MICE models to estimate a value for each bucket. Finally, we

normalize the values to sum one.

Training:Weuse 5-fold cross-validation in all experiments: every

run uses 4 folds for training and validating, and 1 fold for testing.

We use the average results in the test set for comparison between

the baselines and our method. We found that the best values of

hyper-parameter 𝐾 , number of kernels, learning rate and dropout

for our method do not change much per dataset. In particular,𝐾 = 2

for 𝐻𝑇 and 𝐶𝑅173, while 𝐾 = 3 for 𝐶𝑅1026. The number of kernels

is 32 for all the datasets, and the dropout is either 0.05 or 0.1 for
𝐻𝑇 or𝐶𝑅𝑠 datasets. The best learning rate is 0.003 for 𝐻𝑇 and𝐶𝑅𝑠 .
Appendix A.3 provides more detail about the hyper-parameters.

Hardware Configuration: The experiments are performed on a

machine with an Intel Xeon CPU@2.50GHz and a Tesla V100-SXM3

32Gb GPU running Ubuntu 16.04.

6.3 Evaluation Metrics

To evaluate the accuracy of SST-GCN, we measure the distance

between the ground truth SSM 𝑊𝐺𝑡 and the estimated SSM 𝑊̂𝑡 .

Since we estimate probability distributions, standard regression

metrics such as MAE and MAPE are not applicable. Thus, we use

three well-known distance metrics for probability distributions:

Kullback-Leibler Divergence (KLD) [15], Jensen-Shannon Diver-

gence (JSD) [9], and Earth Mover’s Distance (EMD) [18]. A lower

distance indicates a more accurate estimation. The KLD metric is

defined in Eq. (3), whereas the details of the JSD and EMD metrics

are provided in Appendix A.2.

Since KLD and EMD are unbounded metrics, i.e., their values

range from 0 to∞, we perform a normalization using the average

distribution HA built from historical data to provide an easier in-

terpretation. Here, we interpret HAj as the worst estimation of the

speed distribution for the 𝑗-th road segment [11]. We normalize all

three metrics using HA as

D𝑓 =

∑Ω
𝑖=1

∑𝑁
𝑗=1 𝐼𝑖 𝑗 f(𝑤

𝑖
𝑗 · | |𝑤̂

𝑖
𝑗 · )

∑Ω
𝑖=1

∑𝑁
𝑗=1 𝐼𝑖 𝑗 f(𝑤

𝑖
𝑗 · | |HA𝑗 · )

(14)

where f(.) is the distance metric,𝑤𝑖
𝑗 · the ground truth distribution,

𝑤̂𝑖
𝑗 · the estimated distribution, HA𝑗 · the average distribution, Ω

the total number of time intervals, 𝑁 the number of nodes in the

edge graph, and 𝐼𝑖 𝑗 is an indicator matrix. D𝑓 < 1.0 indicates that
the estimated distribution is closer to the ground truth distribution

than the average distribution, and D𝑓 > 1.0 indicates the opposite.
Thus, a smaller D𝑓 value indicates a more accurate estimation.

6.4 Accuracy Evaluation

Table 4 shows the accuracy comparison of SST-GCN with the base-

lines, using the normalized KLD, JSD, and EMD metrics (boldface

denotes the best results). As seen, SST-GCN has the highest accu-

racy among all baselines and settings. Compared to GCWC, the

only existing stochastic speed estimation baseline, SST-GCN im-

proves the accuracy by 49.5%, 50.22% and 36.73% on average for

KLD, JSD, and EMD, respectively. This confirms our hypothesis

that both spatial and temporal correlations are crucial factors for

an accurate stochastic model, and by capturing both, we gain an

advantage over GCWC that only considers spatial correlations. The

other deep learning baselines also outperform GCWC, except for

GMAN in HT. Considering that HT has only 24 nodes with an

average degree of 2, we believe that the attention mechanism is not

as effective as in CR where the average degree is 5. Other factors,

such as a high missing information rate, could negatively affect the

attention mechanism, making GMAN underperform compared to

the rest of the baselines. Among all baselines originally designed to

forecast average speeds, GWaveNet, after being modified to forecast

stochastic values, achieves the closest accuracy to our SST-GCN.

SST-GCN improves the accuracy by 4.6%, 7.7% and 5.5% on aver-

age over GWaveNet for KLD, JSD and EMD, respectively. In some

cases, SST-GCN outperforms GWaveNet by a very high margin. For

example, for 𝐻𝑇 , when 𝜌 = 0.7 and 0.8, SST-GCN is up to 14.9%
and 13% better than GWaveNet using the JSD metric. We note that

although MTGNN outperforms GWavenet in forecasting tasks [8],

this is not the case in our experiments. This is because MTGNN

relies on a self-learning adjacency matrix, which does not perform

as well in the presence of many nodes with missing values.

Compared to the mean-variance baseline SST-GCNmv, our solu-

tion has from 18% to 42% higher accuracy. This confirms previous

studies [5, 26] showing that in practice, the traffic speed does not

follow a Gaussian distribution. Therefore, to correctly model the

real traffic behavior, it is necessary to use more precise representa-

tions, such as histograms, that can model arbitrary distributions.

Compared to the rest of the baselines, SST-GCN has significantly

higher accuracy with an average improvement from 11% to 35%.

Note that GWaveNet, MTGNN, and ST-MetaNet have better results

than TCN, since they can capture spatial correlations. Surprisingly,

MICE performs very well in 𝐻𝑇 dataset, especially when using

the EMD metric. However, our SST-GCN is still better than MICE

when using JSD and KLD in 𝐻𝑇 and it is always much better in

the 𝐶𝑅 datasets. These results suggest that MICE can only be ap-

plied in small road networks like 𝐻𝑇 . Overall, SST-GCN improves

the accuracy over MICE by 45.6%, 43.62% and 12.38% on average

for KLD, JSD, and EMD, respectively. Finally, VAR has the worst

performance of all.

Statistical significance test: To determine the statistical signif-

icance of our accuracy results, we conduct a paired sample t-test [2].

For all accuracy measures KLD, JSD, and EMD, we achieve a 𝑝-value
less than 0.01, rejecting the null hypothesis that SST-GCN and the

baselines have the same average performance. Thus, the accuracy

improvement of SST-GCN is statistically significant. We attribute

this improvement to the context-aware diffusion process and the

explicit learning of spatio-temporal correlations for each speed

range. In Sections 6.5 and 6.6 we evaluate further this hypothesis.

6.5 Context-Aware Diffusion Process Evaluation

To measure the impact of the context-aware diffusion process, we

evaluate the accuracy of SST-GCN without the context informa-

tion. We name this version SST-GCNNC (NC stands for No Context).

Furthermore, we modify GWaveNet (the best performing base-

line) by incorporating the context-aware diffusion process, named

GWaveNetC. Table 5 shows the results of these four methods for
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Table 4: Accuracy evaluation of SST-GCN and the baselines. Boldface denotes the best results.

Metrics Methods
𝐻𝑇 𝐶𝑅173 𝐶𝑅1026

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

DKLD

VAR 0.8616 0.8562 0.8574 0.8593 0.8097 0.8470 0.8897 0.8994 1.1517 1.1318 1.1105 1.1224
MICE 0.2135 0.3402 0.4785 0.6990 0.3948 0.4892 0.6080 0.7458 0.4267 0.5268 0.6276 0.7306
GMAN 0.4161 0.4193 0.4936 0.6059 0.2742 0.3134 0.3539 0.3911 0.2563 0.3043 0.3447 0.3860
GCWC 0.3948 0.4488 0.4964 0.5777 0.5183 0.5483 0.5788 0.6079 0.6123 0.6513 0.6607 0.6762
TCN 0.2569 0.3559 0.4305 0.5325 0.2393 0.2797 0.3203 0.3559 0.2497 0.2954 0.3375 0.3750

ST-MetaNet 0.2177 0.2909 0.3738 0.4993 0.2320 0.2798 0.3201 0.357 0.2339 0.2902 0.3254 0.3688
MTGNN 0.2195 0.3709 0.4798 0.5896 0.2278 0.2679 0.3081 0.3450 0.2415 0.2807 0.3242 0.3666
GWaveNet 0.1748 0.2799 0.3556 0.4768 0.2194 0.2612 0.3038 0.3410 0.2266 0.2692 0.3141 0.3576
SST-GCNmv 0.5705 0.6294 0.6752 0.7548 0.3240 0.3679 0.4038 0.4526 0.3574 0.413 0.464 0.5014
SST-GCN 0.1662 0.2619 0.3319 0.4458 0.2081 0.2494 0.2938 0.3358 0.2119 0.2589 0.3041 0.3491

VAR 0.8789 0.8737 0.8737 0.8737 0.8537 0.8873 0.9251 0.9504 1.2232 1.2082 1.1965 1.1931
MICE 0.2237 0.3500 0.4963 0.7184 0.4710 0.5728 0.6981 0.8562 0.4875 0.5987 0.7048 0.8043
GMAN 0.5605 0.6289 0.7079 0.8974 0.3507 0.3987 0.4601 0.5130 0.3018 0.3411 0.3888 0.4398
GCWC 0.5158 0.5763 0.6316 0.7105 0.5963 0.6308 0.6653 0.6871 0.7074 0.7132 0.7291 0.7441
TCN 0.3368 0.4395 0.5421 0.6921 0.2742 0.3255 0.3726 0.4214 0.2834 0.3194 0.3662 0.4130

DJSD ST-MetaNet 0.3105 0.4026 0.5026 0.6474 0.2750 0.3499 0.3877 0.4340 0.2651 0.3161 0.3570 0.4156
MTGNN 0.2579 0.4316 0.5632 0.6921 0.2582 0.3078 0.3608 0.4087 0.2550 0.2968 0.3512 0.4013
GWaveNet 0.2184 0.3579 0.4579 0.6158 0.2540 0.3045 0.3625 0.4138 0.2453 0.2943 0.3448 0.3938
SST-GCNmv 0.5868 0.6579 0.7158 0.8237 0.3650 0.4163 0.4693 0.5265 0.3896 0.4390 0.4916 0.5435
SST-GCN 0.1974 0.3053 0.3895 0.5342 0.2422 0.2902 0.3474 0.3970 0.2408 0.2776 0.3319 0.3829

VAR 1.0457 1.0481 1.0555 1.0841 1.6112 1.6109 1.6246 1.6378 2.2529 2.2280 2.2118 2.2196
MICE 0.2402 0.3803 0.5133 0.7292 0.4168 0.5114 0.6235 0.7479 0.4165 0.5101 0.6045 0.7018
GMAN 0.7038 0.7472 0.8267 0.9298 0.4865 0.5243 0.5648 0.5959 0.4508 0.4832 0.5231 0.5622
GCWC 0.7274 0.7740 0.8068 0.8655 0.6482 0.6689 0.6912 0.7146 0.7286 0.7358 0.7438 0.7530
TCN 0.5065 0.6442 0.7135 0.8323 0.4519 0.5000 0.5434 0.5792 0.4386 0.4779 0.5209 0.5530

DEMD ST-MetaNet 0.4792 0.5841 0.6844 0.8073 0.4360 0.4819 0.5128 0.5459 0.4061 0.4612 0.4985 0.5445
MTGNN 0.3304 0.5018 0.6197 0.7671 0.3983 0.4475 0.4958 0.5333 0.3985 0.4427 0.4950 0.5400
GWaveNet 0.3651 0.5342 0.6423 0.7717 0.4016 0.4486 0.4947 0.5351 0.3475 0.4073 0.4640 0.5196
SST-GCNmv 0.6063 0.6497 0.6872 0.7528 0.4491 0.4901 0.5254 0.5704 0.4686 0.5061 0.5499 0.5875
SST-GCN 0.3364 0.4681 0.5591 0.7130 0.3668 0.4235 0.4786 0.5245 0.3570 0.4014 0.4602 0.5101

Table 5: Effect of Context-Aware Diffusion Process.

Datasets / 𝜌 SST-GCN SST-GCNNC GWaveNet GWaveNetC

𝐻𝑇

0.5 0.1974 0.2000 0.2184 0.2105
0.6 0.3053 0.3184 0.3579 0.3395
0.7 0.3895 0.4105 0.4579 0.4421
0.8 0.5342 0.5658 0.6158 0.5947

𝐶𝑅173

0.5 0.2422 0.2498 0.2540 0.2473
0.6 0.2902 0.2986 0.3045 0.3003
0.7 0.3474 0.3549 0.3625 0.3532
0.8 0.3970 0.4071 0.4138 0.4003

𝐶𝑅1026

0.5 0.2408 0.2542 0.2453 0.2458
0.6 0.2776 0.2910 0.2943 0.2885
0.7 0.3319 0.3420 0.3448 0.3403
0.8 0.3829 0.3972 0.3938 0.3905

the normalized JSD. The results for KLD and EMD have similar

behavior, thus we omit them due to space limitations.

Table 5 shows that the context-aware diffusion process improves

the accuracy of both SST-GCN and GWaveNet by approximately

3% and 2.6% on average. Moreover, the context-aware diffusion pro-

cess has a higher impact on the estimation accuracy as 𝜌 increases.

For example, on HT, the accuracy of SST-GCN is improved by 1.3%
over SST-GCNNC when 𝜌 = 0.5, and by 5.5% when 𝜌 = 0.8. Based
on this analysis, we conclude that our proposed context-aware dif-

fusion process better captures the spatial correlations between the

road segments when the graph contains many nodes with missing

information. Finally, although the context-aware diffusion process

improves the accuracy of GWaveNet, it is still not better than our

SST-GCN. This is because GWaveNet cannot capture the spatio-

temporal correlations among the speed ranges.

Table 6: Effect of considering separate speed ranges.

Datasets / Methods / 𝜌 = 0.5 0.6 0.7 0.8

𝐻𝑇
SST-GCN 0.1974 0.3053 0.3895 0.5342

SST-GCNNH 0.2105 0.3263 0.4132 0.5658

𝐶𝑅173
SST-GCN 0.2422 0.2902 0.3474 0.3970

SST-GCNNH 0.2498 0.2986 0.3583 0.4146

𝐶𝑅1026
SST-GCN 0.2408 0.2776 0.3319 0.3829

SST-GCNNH 0.2458 0.2901 0.3353 0.3888

6.6 Speed Range Feature Vectors Evaluation

To better understand the effect of learning different convolutional

kernels for each speed range, we implement a new model, SST-

GCNNH (NH stands for non-histogram). SST-GCNNH does not con-

sider the features of each histogram bucket separately but combines

them into a single representation. Table 6 shows the results for the

normalized JSD. As can be seen, SST-GCN improves the accuracy

by 4% over SST-GCNNH, indicating the effectiveness of our design

decision to learn convolutional kernels for each speed range sepa-

rately in the ST-Block. The results for the KLD and EMD measures

also show a similar improvement.

6.7 Model Efficiency Analysis

Table 7 compares the space and time efficiency of SST-GCN against

the deep learning baselines on the biggest CR1026 graph. In terms of

both time and space efficiency, SST-GCN is well-positionedw.r.t the

baselines. The inference and training time is faster than ST-MetaNet

and GMAN, and only slightly slower than the remaining baselines.

Having the lowest number of parameters, TCN has the lowest

training and inference times. However, SST-GCN is from 16% to
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Table 7: Efficiency analysis on CR1026 dataset.

Methods
Parameters

(×103)

Inference

time (s/b)

Training

time (s/b)

GCWC ∼ 20000 ∼ 0.004 ∼ 0.01
GMAN ∼ 380 ∼ 0.08 ∼ 0.21
TCN ∼ 2.8 ∼ 0.001 ∼ 0.01

ST-MetaNet ∼ 18 ∼ 0.10 ∼ 0.30
MTGNN ∼ 135 ∼ 0.01 ∼ 0.13
GWaveNet ∼ 192 ∼ 0.01 ∼ 0.05
SST-GCN ∼ 45 ∼ 0.03 ∼ 0.14

18% more accurate than TCN. In contrast, both GWaveNet and

GCWC have from 4 to 400 times more parameters, which increases

their space complexity. This is because GCWC’s decoder component

utilizes a fully connected layer to reconstruct the stochastic speed

matrix for all nodes in the graph. Therefore, as the number of

nodes increases, the number of parameters in this last layer also

increases. GWavenet uses 256 kernels in the skip connection as

suggested in [24], making the number of parameters also higher

than SST-GCN. Nevertheless, in both cases, the layer with the high

number of parameters requires only a single matrix multiplication

that is computed very fast when the data fits in the GPU memory.

Finally, although ST-MetaNet has the second fewest parameters,

its inference and training times are much higher due to the use of

three stacked RNNs which cannot be parallelized.

6.8 Other Experiments

We conduct further experiments to evaluate two aspects of our

SST-GCN: 1) resilience to spatially localized missing values and 2)

scalability to bigger graphs. Due to space limitations, we include the

detailed description and results for these experiments in Appendices

A.5 and A.6. In the first experiment, we generate a new dataset

where the nodes with missing values are clustered and compare

SST-GCN against GWaveNet. The results show that the accuracy

of SST-GCN gets only slightly affected and is still better than

GWaveNet. In the second experiment, we show that estimating

the missing stochastic speed in a large road network (3064 nodes)

simply requires partitioning the graph into smaller subgraphs and

applying SST-GCN on those subgraphs independently. Finally, we

also study in more detail the intermediate representation learned

by our Encoder in Appendix A.7. Overall, the experiments show

that our Encoder can differentiate the speed ranges and capture the

similarities between adjacent nodes in the edge graph.

7 CONCLUSION AND FUTUREWORK

This paper introduces a novel deep learning architecture, SST-GCN,

to impute missing speed distributions in a road network. Unlike

prior work, SST-GCN efficiently captures both spatial and tempo-

ral correlations and uses a novel context-aware diffusion process

that effectively prioritizes the observed nodes in the graph while

estimating the missing values. This context-aware diffusion pro-

cess is generic, and thus can be applied to any graph-based model

for efficient learning. Extensive experiments show that SST-GCN

outperforms the state-of-the-art on estimation accuracy from 4.6%
up to 50% while being competitive in terms of time and space com-

plexity. Furthermore, multiple ablation studies confirm our design

choices and scalability to large road networks. In future work, we

plan to extend SST-GCN to simultaneously estimate the missing

distributions of current time intervals and forecast the distributions

of future time intervals, paving the path toward even more efficient

routing services.
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A APPENDIX

A.1 Context-Aware GCN Generalization

In this section, we provide formal proof of Lemma 1.

Proof. We prove Eq. (13) using induction in 𝑘 .
Base case: when 𝑘 = 1 , let𝑚 ≥ 0 be the number of unobserved

nodes within 1-hop distance. From Eq. (9), we obtain the transition

matrix 𝑃1 for P𝑪 , and the transition matrix 𝑃1 for P𝑪 as

𝑃1 =
1

colsum(𝐴𝑐 )
𝐴𝑐 ; 𝑃1 =

1

colsum(𝐴)
𝐴 (15)

From Eq. (15), we obtain the weights of the observed neighboring

node 𝑢 of 𝑣 as

𝑃1 [𝑢; 𝑣] =
1

𝑑𝑖𝑛𝑣 −𝑚
𝐴𝑐 [𝑢; 𝑣] ≥ 𝑃1 [𝑢; 𝑣] =

1

𝑑𝑖𝑛𝑣
𝐴[𝑢; 𝑣] (16)

where 𝑑𝑖𝑛𝑣 > 0 is the in-degree of node 𝑣 and 𝑐𝑡 [𝑢] = 1. Thus, Eq.

(13) hold for 𝑘 = 1.

Induction hypothesis: assume that Eq. (13) holds for some

positive 𝑘 . Thus, we have :

𝑃𝑘 [𝑢; 𝑣] ≥ 𝑃𝑘 [𝑢; 𝑣], ∀𝑢 ∈ N𝑘 (𝑣) ∧ 𝑐𝑡 [𝑢] = 1 (17)

Induction step: we prove that Eq. (13) also holds for 𝑘 + 1. Let

𝑚′ ≥ 0 be the number of nodes that are still unobserved after 𝑘
aggregations. From Eq. (10), we obtain the transition matrices for

P𝑪 and P𝑪 after 𝑘 + 1 aggregations as

𝑃𝑘+1 = 𝑃𝑘𝑃
′; 𝑃𝑘+1 = 𝑃𝑘𝑃

′ (18)

The weight of the observed neighboring node 𝑢 of 𝑣 is therefore

computed as

𝑃𝑘+1 [𝑢; 𝑣] =
∑

𝑖∈N𝑘 (𝑣)

𝑃𝑘 [𝑢; 𝑖]𝑃
′[𝑖; 𝑣]

𝑃𝑘+1 [𝑢; 𝑣] =
∑

𝑖∈N𝑘 (𝑣)

𝑃𝑘 [𝑢; 𝑖]𝑃
′[𝑖; 𝑣]

(19)

where

𝑃 ′[𝑖; 𝑣] =
1

𝑑𝑖𝑛𝑣 −𝑚′
≥ 𝑃 [𝑖; 𝑣] =

1

𝑑𝑖𝑛𝑣
(20)

Since we have 𝑃𝑘 [𝑢; 𝑖] ≥ 𝑃𝑘 [𝑢; 𝑖] by the induction hypothesis, we

obtain Eq. (13) from Eqs. (19), (20) QED. �

A.2 JSD and EMD Metrics

The Jensen-Shannon Divergence (JSD) is computed as

JSD(𝑤, 𝑤̂) =
KL(𝑤 | |𝑤̄) + KL(𝑤̂ | |𝑤̄)

2
(21)

where 𝑤̄ = 0.5 × (𝑤 + 𝑤̂) and KL is the textitKullback-Leibler

Divergence (KLD), shown in Eq. (3). The JSD measure is symmetric,

bounded, and satisfies the triangle inequality property.

The Earth Mover’s Distance (EMD) measures the distance be-

tween two probability distributions (𝑤, 𝑤̂) as the minimum cost to

transform 𝑤̂ into𝑤 . The cost is defined as the product of two fac-

tors: the difference between the probability values of histogram’s

buckets, e.g., 𝑤̂𝑖 − 𝑤 𝑗 , and the measuring distance between the

buckets themselves, e.g., |𝑖 − 𝑗 | + 1. Formally, EMD is defined as

EMD(𝑤, 𝑤̂) =

∑𝑀
𝑖=1

∑𝑀
𝑗=1 𝐹𝑖 𝑗𝐶𝑖 𝑗

∑𝑀
𝑖=1

∑𝑀
𝑗=1 𝐹𝑖 𝑗

(22)

where 𝐹𝑖 𝑗 is the optimal flow that minimizes the transformation

cost from 𝑤̂𝑖 to𝑤 𝑗 , and𝐶𝑖 𝑗 is the pairwise distance between bucket

𝑖 and bucket 𝑗 .

A.3 Hyper-Parameters Searching

All deep learning models are trained using the mini-batch Adam

optimizer, with batch size 32, the learning rate (lr) is searched from

{0.001, 0.002, ..., 0.01}, the dropout (dp) ratio is tuned in {0.05, 0.1,

0.15, 0.2, ..., 0.5}, and the number of diffusion processes (K) per

layer is searched from {2, 3, 4, 8}. For MTGNN, we set the number

of neighbors parameter 𝑘 = 20 for the CR-derived datasets as

suggested in [8], and 𝑘 = 5 for HT since it has only 24 nodes. For

GMAN, we search for the best results using several attention heads,

i.e., {2, 3, 4}, and set the node embedding size to 64. The number of

kernels for graph convolution and size of the hidden layer of RNN

is searched from {8, 16, 32}. The regularization term is fixed to 0.001
for SST-GCN, while for the baselines we use the value suggested

by the authors. In SST-GCN, the number of ST-Blocks is set to 2,

and we maintain the same number of kernels for each layer. Grid

search is used for all methods.

A.4 Edge Graph Visualization

Figure 4 shows the 𝐻𝑇 and 𝐶𝑅173 edge graphs. The 𝐶𝑅1026’s edge
graph is too big for visualization but, in general, it follows the same

topology as 𝐶𝑅173. Note that the topology of the two graphs is

completely different. 𝐻𝑇 is a dispersed graph with few connections

between nodes, while 𝐶𝑅 has many connections, i.e., a higher aver-

age degree. This clearly has an impact on all baselines, as well as our

SST-GCN. Note that the results deteriorate faster in𝐻𝑇 than in the

𝐶𝑅 datasets as the number of missing values increases. Intuitively,

since 𝐶𝑅 datasets have more connections, observed information

can reach the rest of the nodes faster than in 𝐻𝑇 .

Figure 4: Visualization of 𝐻𝑇 and 𝐶𝑅173 edge graphs.

A.5 Spatially Localized Missing Values

In this section, we evaluate the resilience of SST-GCN by artifi-

cially generating missing values that are concentrated in the same

region. We note that in all other experiments, the missing values

are randomly distributed in the road network. To generate such

concentrated missing regions, we randomly choose a starting node

𝑣 and perform a Breadth-First Search starting from 𝑣 , labeling every
node reached on the way as missing. We repeat this process to cre-

ate multiple missing clusters in the tested road network, using the
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missing values rate 𝜌 to control the cluster size. In this experiment,

we use the CR1026 graph and the average cluster size is 58 nodes.

Table 8 shows the results of SST-GCN compared to the best

baseline GWaveNet for all metrics. We can see that the accuracies

of SST-GCN and GWaveNet are only slightly affected. Specifically,

SST-GCN experiences only from 0.98% to 3.8% (2.7% on average)

accuracy reduction for all the metrics. Intuitively, this is attrib-

uted to the highly connected road networks (cf. Table 3) that allow

the observed information to reach many missing nodes in just a

few hops. In comparison, GWavenet experiences from 0.95% to

4.2% (2.2% on average) accuracy reduction for all the metrics. Ad-

ditionally, our SST-GCN still obtains better results overall with

an average accuracy improvement of 2% over GWaveNet. Finally,

we would like to emphasize that, in general, the random missing

node scenario is more realistic as GPS or sensor malfunctioning is

highly unlikely to follow a specific pattern like in this experiment.

Nevertheless, with this set of experiments, we show that even if

such a pattern occurs, our method can still achieve higher accuracy

than the closest baseline.

Table 8: Impact of spatially localized missing values.

Metric Method/𝜌 = 0.5 0.6 0.7 0.8

DKLD
SST-GCN 0.2253 0.2677 0.3138 0.3545

GWaveNet 0.2311 0.2743 0.3201 0.3605

DJSD
SST-GCN 0.2508 0.2960 0.3428 0.3913

GWaveNet 0.2478 0.2971 0.3484 0.3938

DEMD
SST-GCN 0.3547 0.4109 0.4641 0.5176

GWaveNet 0.3685 0.4262 0.4848 0.5336

A.6 Scalability by Partitioning

As discussed in Section 5.2, to estimate the missing value of a

node 𝑣 , SST-GCN only needs to propagate information from the

neighboring nodes that are within its 𝐾-hop distance. Therefore,

applying SST-GCN to a very big road network simply requires

partitioning the graph into smaller subgraphs and applying the

method on those subgraphs independently. The scalability of SST-

GCN is thus guaranteed if the estimation results obtained from the

subgraphs are similar to the estimation results obtained from the

full big graph.

Table 9: Accuracy over partitions.

Datasets/𝜌 = 0.5 0.6 0.7 0.8

𝐶𝑅1522 0.2387 0.2847 0.3324 0.3811

𝐶𝑅1542 0.2604 0.3175 0.3728 0.4256

𝐶𝑅3064 0.2511 0.3010 0.3508 0.4007

We validate this approach by comparing the results of SST-GCN

on a bigger graph that consists of 3064 nodes extracted from the

𝐶𝑅 dataset (𝐶𝑅3064) with the results on two disjoint subgraphs of

𝐶𝑅3064, 𝐶𝑅1522 and 𝐶𝑅1542. The results are shown in Table 9 using

the JSD metric. We can see that SST-GCN obtains similar accu-

racy when training and testing on the full graph 𝐶𝑅3064, and when
training and testing on the two subgraphs separately. This shows

that using this partitioning strategy, SST-GCN can be applied to

very big road networks and can still obtain high accuracy while

maintaining the training and inference times that grow linearly to

the number of partitions. We also believe that more advanced parti-

tioning strategies such as those that consider overlapping between

different partitions can further improve the results.

A.7 Intermediate Representation Visualization

To gain more intuition about the learned intermediate represen-

tation L ∈ R𝑁×𝑀×𝐷 of SST-GCN, we use Principal Component

Analysis (PCA) [13] to analyze the feature vectors associated with

each speed range and node in the graph. Figure 5 visualizes the

feature vectors of two adjacent nodes using the first two principal

components. Here, different colors represent different histogram

buckets. First, we observe that the histogram buckets of two adja-

cent nodes have similar feature representations. This confirms our

intuition that the probability of driving at a certain speed range is

similar in adjacent road segments. However, this does not apply

to all speed ranges, as there are other factors, such as traffic lights,

that also affect the vehicle’s speed. For example, the features of the

bucket [20-30) are slightly different. Second, we observe that the

feature vectors of different buckets form relatively independent clus-

ters, and the features of consecutive speed ranges (adjacent buckets)

are closer to each other than the features of non-consecutive speed

ranges. This helps explain the better performance of SST-GCN

over the baselines, as SST-GCN explicitly learns the feature repre-

sentation of each bucket separately, and thus can capture distinct

features that are representative for each speed range.

Figure 5: Feature vectors of two adjacent nodes.


