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Abstract 
This article discusses different statistical methods to 
compare the predictions (in the form of time series) of 
urban-scale building energy models. It focuses on inter-
model comparison without empirical measurements as a 
reference case. It is thus suggested to build a reference 
time series as a point-to-point mean average of all the 
models to be compared (ensemble methods). Different 
comparison metrics found in the literature are then 
reviewed and tested on simulation data from a modelling 
common exercise (DESTEST project). Most of those 
metrics behave similarly. Finally, a Python-based time 
series comparison tool is presented. It uses three simple 
metrics to compare building models: NMBE, CVRMSE 
of hourly data and CVRMSE of daily amplitudes. 

Key Innovations 
• Suggestion of a simple solution to build a reference 

case for inter-model comparison of building energy 
models without measurement reference case. 

• Critical review of different comparison methods and 
metrics for building energy simulations. 

• Presentation of an open-source Python-based tool to 
compare building energy simulations. 

Practical Implications 
How to assess the accuracy of building energy models, 
especially when there is no empirical reference case from 
a monitored building? This article suggests some simple 
solutions and introduces an open-source tool using them. 

Introduction 
To tackle the current environmental and sustainability 
challenges we are facing, our society needs to drastically 
decarbonize our cities while improving the quality and 
reliability of urban energy systems and transportation 
services. Concerning energy distribution networks, most 
long-term planning strategies lean towards the 
establishment of smart grids coupling different energy 
networks (electricity grid, district heating, district 
cooling, gas distribution, etc) to enable demand-side 
management and energy flexibility measures. These smart 
grids should be able to handle the ever-increasing share of 
intermittent renewable energy sources. 
To that matter, smart grids must account for the capacity, 
dynamics and interactions of all energy suppliers and end-
users. The design, optimization and operation of such a 

complex system require accurate urban-scale models that 
can perform dynamic numerical simulations of multiple 
buildings, infrastructures and energy distribution 
networks. The multi-physics modelling language 
Modelica is particularly well-suited for that purpose. 
In that context, the IBPSA Project 1 develops an open-
source BIM/GIS and Modelica framework for simulating 
clusters of buildings connected to energy networks at a 
city scale (IBPSA, 2017). Within the IBPSA Project 1, the 
District Energy Simulation Test (DESTEST) aims at 
testing urban-scale energy system simulation tools and, in 
particular, validate the district energy systems models of 
dedicated Modelica libraries: AixLib (RWTH Aachen 
University, Germany), Buildings (LBNL, USA), 
BuildingSystems (UdK Berlin, Germany), IDEAS (KU 
Leuven, Belgium). All these libraries are based on the 
core Modelica IBPSA library 
(https://github.com/ibpsa/modelica-ibpsa). 
Inspired by the principles of the BESTEST 
(ANSI/ASHRAE Standard 140-2017), the DESTEST 
consists of a series of common exercises used for 
comparison, benchmarking and thorough verifications of 
urban-scale energy system simulation tools. In each 
common exercise, different participants are modelling 
and simulating a given case of buildings and/or energy 
grid with well-defined properties, characteristics, grid 
topology, weather conditions, and boundary conditions. 
The participants can use any suitable commercial and 
non-commercial simulation tools or the dedicated 
Modelica libraries. To stay within the scope of the IBPSA 
Project 1, the DESTEST common exercises are restricted 
to buildings and cluster of buildings connected to district 
heating or district cooling networks. However, the 
DESTEST procedure can be extended to other types of 
systems (Saelens et al., 2019). The DESTEST is also the 
occasion for participants to discuss common mistakes and 
pitfalls that are encountered when modelling such 
systems. The experience and feedback from these 
common exercises will be gathered into guidelines for 
good modelling practices. All materials developed for the 
DESTEST can also be used for training researchers, 
engineers and students who are willing to gain expertise 
in dynamic simulations of urban-scale energy systems. 
The raw outcome of these common exercises is a set of 
numerous time series (TS) for some key simulated 
parameters. The manual qualitative comparison of all of 
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these TS is very tedious and impractical for a large 
number of participants. It is thus important to analyse this 
data with a limited number of appropriate comparison 
metrics (CMs) to assess the performance of a large 
number of participants (with their various simulation 
tools) and establish clear rankings. 
To analyse the simulated data generated by the 
participants of the DESTEST, a Python-based TS 
comparison tool has been developed. It enables modellers 
to easily compare their simulation results with the pool of 
data already generated and uploaded to an online public 
repository. This DESTEST comparison tool employs 
some common CMs to assess the differences between the 
simulated result TS of the user and a reference TS 
generated from the pool of all vetted results uploaded to 
the repository. If the differences between the tested TS 
and the reference TS are large, the user is encouraged to 
perform a thorough analysis of the model to possibly 
identify and resolve modelling mistakes. 
This article aims at discussing the comparison methods of 
building energy model (BEM) simulation results. It opens 
with a suggestion for building a reference for inter-model 
comparison when there is no empirical reference case. 
CMs found in the literature are then reviewed and tested. 
Finally, the DESTEST Python-based TS comparison tool 
is presented. Although the IBPSA Project 1 and the 
DESTEST are also considering district heating and 
district cooling systems, the scope of this article is 
restricted to the comparison of BEMs. 
Study case 
To test the different CMs and illustrate the Python-based 
TS comparison tool hereafter, results generated by the 
participants of the DESTEST are chosen among the 
common exercises concerning single-family dwellings. 
The study case is a single-family house with simple 
geometry. It is located in the heating-dominated climate 
of Belgium. It is assumed to have been constructed in the 
1980s and has thus a high space heating demand. The 
building model has two thermal zones: ground floor (with 
kitchen and living rooms) and first floor (with only 
bedrooms). Standard occupancy, internal gains and 
indoor temperature setpoint schedules are assumed. The 
infiltration rate is constant. There is no ventilation system. 
The heating system is an ideal radiator. 
The primary question regarding model comparison and 
validation is what simulated state variables (virtual 
sensors) should be recorded as output results. However, 
this crucial discussion is out of the scope of the current 
article. In the present case, the selected virtual sensors are 
the ones chosen in the DESTEST common exercises for 
single-family dwellings: the indoor temperature in each of 
the two thermal zones and the building heating power use. 
The simulation period is an entire year. The output data is 
sampled at a 10-minute interval. More details about this 
common exercise, the study cases, simplification 
assumptions and choice of the virtual sensors can be 
found in Saelens et al. (2019). 
At the moment, seven modellers have simulated this case 
and have submitted their results. These modellers have 

used commercial simulation tools (IDA ICE, TRNSYS 
and DIMOSIM) or Modelica with different libraries 
(AixLib, Buildings, BuildingSystems and IDEAS). These 
seven sets of result data are used for this study. 
Reference choice for inter-model 
comparison of building energy simulations 
The quality and validity of a BEM are usually defined by 
its capacity to accurately predict indoor environment state 
variables and energy demand. The output of dynamic 
BEMs usually takes the form of TS for the different 
variables of interest. Assessing the quality of a BEM thus 
consists in determining how different the TS of the tested 
BEM are from a reference TS. 
The TS from the tested BEMs are usually denominated 
“simulated data”, “modelled data”, “predicted data”, “test 
data”, or “fitted data” (for a model that is a fitted function 
by regression analysis). The TS from the reference are 
usually denominated “reference data”, “observed data”, 
“measured data”, “empirical data” (especially for data 
measured in an existing building). 
Ideally, a BEM validation is performed by comparing the 
simulation results against empirical measurement data 
where the measurements, the boundary conditions, the 
building and its systems are described in detail 
(ANSI/ASHRAE Standard 140-2017, Annex B23). 
However, such a benchmarking procedure requires a 
tremendous amount of time and effort. It would be very 
expensive and cumbersome to develop one for the 
validation of urban-scale energy models comprising 
multiple buildings and/or building occupants. 
Contrary to a validation procedure with a measured 
reference case, the DESTEST is based solely on 
simulations from various BEMs. Hence, the question of 
what reference to choose for inter-model comparison is 
crucial. Some could say that there is no good answer to 
that question as all models are wrong and should not be 
taken as a reference. Nevertheless, a reference is 
necessary so that all models can be compared to each 
other. For each system’s variable of interest, it is thus 
suggested to build a reference TS made of the point-to-
point mean average or the point-to-point median of the TS 
of all the BEMs that are to be compared (see Figure 1). 

 
Figure 1: Building reference point-to-point mean 

average or median time series. 
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Although not a perfect solution, one can argue that it is 
the least worst of all and a very simple one. For a large 
collection of simulation results of the same study case, 
one could reasonably assume that the different biases of 
the numerical models and mistakes of the modellers are 
independent and will compensate each other. Actually, 
the elimination of individual errors by aggregating the 
results of many participants has been observed in 
numerous situations. This effect is commonly designated 
as the “wisdom of the crowd” (Galton, 1907) or 
“ensemble methods”. The estimation of a single 
continuous quantity by aggregating the answers (mean 
average or median) of a large number of independent 
participants outperforms the majority of individual 
solutions and falls very close from the true value. The 
phenomenon has also been observed for higher-
dimensional problems, and recent studies indicate that it 
could be used for a larger spectrum of problem‐solving 
and decision‐making situations (Yi et al., 2012). 
Currently, ensemble methods are frequently used for 
numerical weather prediction and machine learning. This 
strengthens the validity of a point-to-point mean average 
or median reference TS for inter-model comparison 
purpose. With the increasing number of participants using 
different numerical models, the reliability of such a 
reference should only improve. 
A new question then stems from the choice of an 
aggregated reference: should it be a point-to-point mean 
average or median? The mean average estimates well the 
central tendency, but it is sensitive to outliers and skewed 
distributions. On the other hand, the median is less 
affected by outliers and skewed data, but it is not 
necessarily affected by new data, it does not estimate well 
central tendency for small sample size, and it can create 
an unsmooth TS profile (see Figure 1). As an alternative 
to those two options, one could use a point-to-point 
winsorized mean (with moderate winsorizing, e.g., 7.5–
22.5% on each side) or trimmed mean (with moderate 
trimming, e.g., 5–15% on each side) to build the reference 
TS (Jose and Winkler, 2008). 
However, the importance of this question can be 
moderated by the fact that, for distributions with finite 
variance (which is the case here), the distance between the 
median and the mean average is bounded by the standard 
deviation (Mallows, 1991). Consequently, for a given 
time step, the distance between the mean average 
reference TS and the median reference TS is smaller than 
the standard deviation of the data points used to build 
these reference TS. 

Table 1: Comparison metrics calculated with a mean 
average reference or median reference (colours are only 

intended to emphasize extrema). 

 

Table 1 presents the calculation results of the Mean Bias 
Error (MBE), the Root Mean Square Error (RMSE) and 
the RMSE of the daily amplitude (RMSE 24h-Amp) for 
the ground floor indoor temperature of the study case. 
Each CM is calculated against both the mean average and 
the median reference TS. One can observe in this example 
that there is not a large difference between the CMs using 
the mean average reference and the ones using the median 
reference. Furthermore, the performance ranking order of 
the different models is fairly well preserved. Similar 
results are obtained for the two other variables of interest 
(first floor indoor temperature and heating use). 
The current number of modellers participating in the 
DESTEST common exercises is relatively modest. 
However, modellers have the occasion to compare their 
simulation results with that of other participants, and thus 
notice large deviations due to mistakes that can be 
eliminated. The chances of large outliers occurring in the 
pool of results should thus be reduced. 
For all those reasons, the point-to-point mean average of 
all vetted results uploaded to the repository is chosen to 
build the reference TS. The CMs of the DESTEST 
comparison tool are thus calculated with this temporary 
reference. A new modeller joining the common exercise 
is encouraged to use this tool to compare its simulation 
results to the current reference. If large deviations are 
observed, the new modeller is encouraged to analyse and 
revise its BEM. If the simulation results are deemed to be 
correct, the new modeller can upload them to the 
dedicated repository. These new results are integrated into 
the pool of vetted data and a new temporary reference is 
generated for the comparison tool. 
Review and testing of the comparison 
metrics for building energy simulations 
CMs that are commonly used in the scientific literature to 
assess TS differences for BEM are tested and compared 
hereafter. In the equations of these CMs, the TS data 
points of the tested model are noted mi, and the TS data 
points of the reference are noted ri, with i ∈ [1,n] and n 
the number of data points in the TS. 
Common qualitative graphical comparisons 
Five graphical representations are commonly used to 
qualitatively assess the differences between BEM 
simulation outputs: stacked lines plot of the simulated 
variables as a function of time (see Figure 1), stacked lines 
plot of the model residuals (ri - mi) as a function of time, 
boxplot (see Figure 2), time distribution plot (also known 
as “load duration curves”) (see Figure 3) and prediction 
vs reference plot (see Figure 4). 
The stacked lines plot is convenient for detailed analysis 
of TS, but it becomes unreadable for yearly simulations 
with many daily periodic patterns. The boxplot is a very 
efficient way to grasp the key statistical characteristics of 
the data result distribution and to compare many cases 
against each other. However, it does not preserve any 
temporal aspects of the TS (e.g., time offsets). 
Alternatively, the load duration curve provides more 
temporal information, but it does not show the periodic 
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patterns and it becomes unreadable with numerous data 
sets. Finally, the predicted vs reference plot is very 
convenient to observe global biases, correlations and 
distortions, but it becomes impractical to display more 
than one data set on the same figure. 

 
Figure 2: Boxplot of the ground floor indoor 

temperature during a year (median and quartiles form 
the box; mean average and outliers are visible; whiskers 

are set according to Tukey’s definition). 

 
Figure 3: Annual load duration curve for heating power 

usage (data points sorted in descending order). 

 
Figure 4: Prediction vs reference plot for heating power 

usage of model 3. 
Common simple comparison metrics 
Although intuitive and very informative, a qualitative 
graphical comparison is not convenient to summarize the 
differences between numerous TS and rank the quality of 

multiple models. To that matter, synthetic CMs have been 
created to condense all the complex differences between 
two TS into a single number. Of course, a lot of 
information is lost during this simplification process (in 
comparison to the qualitative graphical analysis of the 
human eyes), but it provides a clear and objective 
assessment method that can easily be automated for a 
large number of data sets. 
The Mean Bias Error (MBE) is probably the simplest CM 
of all. It calculates the mean average point-to-point 
difference between the model and the reference: 

 𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝑚𝑚𝑖𝑖−𝑟𝑟𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (1) 

The MBE is meant to be an indicator of the general bias 
of the tested model with regards to the reference. Here, a 
positive MBE indicates that the tested model globally 
over-predicts the results. Conversely, a negative MBE 
indicates that the tested model globally under-predicts the 
results. There are two main issues with this CM. Firstly, 
the MBE is not normalized, which makes it difficult to 
give general indications about acceptable MBE ranges for 
the different variables of a BEM. The MBE cannot be 
used to compare the performance of a model for simulated 
variables with different units, scales or natures. Secondly, 
the MBE can be subjected to cancellation or 
compensation effects, i.e., local biases in opposite 
directions compensate each other. For example, local 
under-estimations would compensation local over-
estimations, leading to a globally low MBE despite large 
local discrepancies. 
The most common CMs found in the reviewed studies 
performing BEM validations are the Normalized Mean 
Bias Error (NMBE) and the Coefficient of Variation of 
Root Mean Square Error (CVRMSE). This confirms the 
observation already made by Coakley et al. (2014) and 
Ruiz and Bandera (2017). 
The NMBE [%] is a normalization of the MBE by the 
mean average of all the reference data points (�̅�𝑟): 

 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝑚𝑚𝑖𝑖−𝑟𝑟𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
× 100

�̅�𝑟
   [%] (2) 

The NMBE of different simulated variables can thus be 
compared. Similarly to the MBE, the NMBE informs 
about the global bias of the model: negative values for 
general under-predicts, and vice versa. However, the 
NMBE is also prone to compensation effects. 
The CVRMSE [%] indicates the variability or 
randomness between the tested model and the reference: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀 = �∑ (𝑚𝑚𝑖𝑖−𝑟𝑟𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
× 100

�̅�𝑟
   [%] (3) 

The CVRMSE is a normalization of the Root Mean 
Square Error (RMSE) by the mean average of all the 
reference data points (�̅�𝑟). Contrary to the previous 
metrics, the CVRMSE is not subjected to compensation 
effects. It is thus well-suited to assess BEM fit and 
accuracy. However, the CVRMSE does not inform about 
the direction of global systematic bias. Hence, the 
calculation of both the CVRMSE and NMBE is 
recommended. 
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The popularity of the NMBE and the CVRMSE can be 
explained by the fact that they are easy to implement into 
calculation spreadsheet tools like Microsoft Excel, and 
that they are recommended by well-established 
international guidelines such as the ASHRAE Guideline 
14-2014 (Ruiz and Bandera, 2017). 
The coefficient of determination R2 (R squared) is widely 
used to measure the goodness of fit for statistical 
modelling and regression models. It is also very often 
misunderstood and misused because there are multiple 
definitions and formulations of R2, but they are not all 
necessarily equivalent, and certain formulations present 
some significant pitfalls (Kvålseth, 1985). R2 is generally 
defined as the proportion of variance in the output of a 
linear model that can be explained by the input variables 
to that model (the remaining unexplained variability being 
attributed to unknown variables and/or inherent 
variability). The common formulation of the coefficient 
of determination is based on the ratio between the Sum of 
Squares of the Residuals 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 and the Total Sum of 
Squares 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡: 

 𝐶𝐶2 = 1 − 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

= 1 − ∑ (𝑚𝑚𝑖𝑖−𝑟𝑟𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1
∑ (𝑟𝑟𝑖𝑖−�̅�𝑟)2𝑛𝑛
𝑖𝑖=1

 (4) 

For BEMs, R2 is commonly used to assess the accuracy of 
sub-system time-independent linear regression models 
over a range of input parameters (e.g., validation of a heat 
pump model against measurement data during steady-
state operation). However, this metric is more seldomly 
used to assess the accuracy of an entire dynamic BEM by 
analysing its TS outputs. 
The two following metrics are not subjected to 
compensation effects, but they are not normalized. 
Similarly to MBE, it is thus not possible to compare their 
results for simulated variables of different natures. 
Although very common in statistical modelling, the Mean 
Squared Error (MSE) and the RMSE are less common for 
BEM comparison. The RMSE is the standard deviation of 
the model’s residuals or errors (differences between the 
model’s prediction and the reference): 

 𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀 = �∑ (𝑚𝑚𝑖𝑖−𝑟𝑟𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (5) 

As an alternative to the CVRMSE, the RMSE can also be 
normalized by the range (amplitude) of the reference data, 
or by the interquartile range (IQR) of the reference data: 

 𝑁𝑁𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛

 (6) 

 𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀𝑅𝑅𝑅𝑅𝐶𝐶 = 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅
𝐼𝐼𝐼𝐼𝑅𝑅

 (7) 

However, the NRMSE and the RMSEIQR are very rare, 
in comparison to the CVRMSE, for BEM validations. 
The Root Mean Squared Logarithmic Error (RMSLE) is 
a metric that is commonly found in the Machine Learning 
community but that is rare for BEM accuracy assessment: 

 𝐶𝐶𝑀𝑀𝐶𝐶𝑅𝑅𝑀𝑀 = �∑ (log (𝑚𝑚𝑖𝑖+1)−log (𝑟𝑟𝑖𝑖+1))2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (8) 

Because of the logarithmic functions in its formulation, 
the RMSLE is less sensitive to large outliers, in 
comparison to the RMSE: it penalizes much less very 

large differences between the tested model and the 
reference when both the prediction and the reference are 
large numbers. Besides, the RMSLE penalizes model 
under-estimations more severely than model over-
estimations. 
Advanced time series distance metrics 
One of the main limitations of the aforementioned simple 
CMs is that they are calculated point-to-point for 
synchronized TS with a constant sampling rate. This 
means that the model prediction at a given time is 
compared to the reference for the same corresponding 
time step. This can be very problematic in the case of time 
offsets between the model output and the reference, 
especially if there are multiple rapid peaks and drops of 
the variable of interest. Point-to-point simple metrics 
would then significantly over-penalize such models, even 
if the time offset is only a single sampling time step. 
To tackle that issue, one can use advanced distance 
calculation metrics for TS analysis. These distance and 
shape comparison methods have been developed for 
classification purposes such as clustering analysis, but 
they can also be applied to BEM validation. The TSdist 
(Time Series Distance) package is a library of the 
programming environment “R” that is dedicated to 
advanced TS analysis, elastic distances calculation and 
shape comparison. It can be used to measure the 
dissimilarity between model TS to perform model 
validation. The package includes four groups of times 
series distance measurement: 
• General shape comparison with lock-step (point-to-

point) or elastic distance measurement (measure the 
distance to the closest point on the other TS, 
disregarding its time position). 

• Feature-based distance measurement: Fourier, 
wavelet coefficients, autocorrelation values, etc. 

• Structure-based distance measurement: a model is 
fitted to the TS and then compared to that of other TS 
(measure the quantity of shared model information). 

• Prediction-based distance measurement: comparison 
of the predictions made with the different TS. 

Among those, the elastic general shape comparison 
methods could be interesting for BEM comparison: 
Dynamic Time Warping (DTW); Dissimilarities based on 
Pearson’s correlation (COR); Dissimilarity index 
combining temporal correlation and raw value behaviours 
(CORT); Frechet distance (Mori et al., 2016). 
Only a few BEM studies were found using advanced TS 
analysis accounting for time shift or shape distortion. This 
is expected since those methods are harder to implement, 
require some programming skills and have a longer 
computation time. 
DESTEST comparison metrics for building models 
In the DESTEST Python-based TS comparison tool, three 
simple CMs are recommended for BEM validation: 1) 
• NMBE. 
• CVRMSE on hourly-averaged data (Hourly 

CVRMSE). 
• CVRMSE of daily amplitude (CVRMSE 24h-Amp). 
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As explained before, the NMBE indicates the overall bias 
of the model. The Hourly CVRMSE is meant to represent 
the goodness of fit of the model but without penalizing 
small-time offsets too much. It is assumed that the hourly 
averaging of data sampled at a 10-minute rate is a 
reasonable smoothing of small-time shifts in the BEM 
predictions. Finally, the CVRMSE 24h-Amp is calculated 
as the CVRMSE of the daily amplitude (from midnight to 
midnight) of the simulated variables of interest. This 
metric was intended to assess how well a model can 
predict the dynamics of a building: amplitude of indoor 
temperature variations over 24 hours, daily maximum 
heating power or cooling power peak, etc. 
Testing comparison metrics 
In this section, the aforementioned CMs are computed 
with the TS of the seven BEMs simulating the study case 
presented before. The reference is constructed as the 
point-to-point average of the TS of all the models. Table 2 
presents a qualitative comparison of all CMs for the 
simulated heating power usage and the first floor indoor 
temperature. For clarity, the CMs have been grouped into 
four categories: 
• CMs based on the Mean Bias Error. 
• CMs based on the Sum of Squared Errors (SSE). 
• Elastic distance metrics between TS. 
• CMs based on the daily amplitude. 

Table 2: Qualitative comparison of the comparison 
metrics for building energy model accuracy (colours are 

only intended to emphasize extrema). 

 
Although the absolute values of the CMs are very 
different from one another, the relative performance 
ranking of the models is clearly preserved for most 
metrics in their respective group. 

Logically, the MBE and the NMBE perform exactly the 
same since the latter is just a normalization of the former. 
One can also observe that all the SSE-based metrics 
perform very similarly for ranking the models, except for 
the RMSLE that shows very different results for the 
heating power usage comparison. The latter could be due 
to the asymmetry of the RMSLE penalization of over-
estimations and under-estimations. It indicates that 
RMSLE is probably not an adequate metric for BEM 
comparison. 
Regarding the advanced elastic distance metrics, their 
ranking is very similar to that of the SSE-based metrics 
for the indoor temperature comparison. For heating power 
usage, however, agreement within the elastic distance 
metrics group or with the SSE-based group is much less 
clear, with the Frechet distance diverging clearly. Further 
investigations are needed to identify which elastic 
distance metrics are the best suited for BEM TS 
comparison. 
Finally, the ranking of the CVRMSE 24h-Amp is 
significantly different from that of all the other metrics. 
This is intended since its purpose is to specifically analyse 
the goodness of fit of the daily amplitude rather than that 
of the data points themselves. 
DESTEST comparison tool 
The Python-based TS comparison tool has been 
developed for the DESTEST participants to easily 
compare their simulation results to each other when 
working on the same common exercise. The participants 
are encouraged to use the tool from early stage to quickly 
receive feedback about how their simulation results fall in 
comparison to the other participants who have uploaded 
their vetted results. The tool is intended to give a synthetic 
overview of how far is the user’s data from the reference 
TS (key CMs), but also provide informative figures 
allowing for more detailed analysis. If the user finds its 
results to be outliers among the pool of data generated by 
the other participants (large differences with the reference 
TS), the former is encouraged to analyse further its model 
to identify possible modelling errors. When the 
simulation results are deemed to be correct, the user can 
upload them to a dedicated online GitHub repository. 
These new results are thus integrated into the pool of 
vetted data used for the generation of the reference TS. 
Three key CMs are suggested by default for this 
comparative analysis (presented above). However, most 
of the CMs presented in this article can also be used 
(selected) in the comparison tool. Because the 
performance ranking of the different BEMs is most 
probably different for each CM and each comparison 
simulated variable, a summary Accuracy Grade is 
calculated as follows: For each simulated variable of 
interest and for each CM calculated for the latter, the 
model with the best CM score gets a grade of 100% and 
the model with the worst CM score gets a grade of 0%. 
The remaining models receive a grade between 0% and 
100% that is linearly proportional to the distance of their 
score from the “best” and “worst” models. All these 
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grades are then averaged to form the summary Accuracy 
Grade. The user can assign a weighting factor to the 
different CMs. The summary Accuracy Grade is then 
calculated as a weighted mean average. By default, all 
CMs have a weighting factor of 1. If a model scores the 
best CM for all variables of interest, its Accuracy Grade 
is 100%. Conversely, if a model scores the worst CM for 
all variables, its Accuracy Grade is 0%. However, it is 
important to note that this Accuracy Grade is only 
intended to rank the models of the data pool in between 
each other. A low Accuracy Grade indicates that the 
model is an outlier relative to the other models, but it does 
not necessarily mean that the model is flawed, especially 
if there are not many models in the data pool. 

 
Figure 5: Tool interface for selection of the comparison 

metrics and weighting factors. 
The TS comparison tool has a simple graphical user 
interface to select a specific common exercise case, select 
the result data file of the user (optional), and choose the 
different CMs and associated weighting factors that are 
used for the comparison process (see Figure 5). The 
Python-based source code and detailed documentation of 
the comparison tool, together with all information and 
DESTEST result data can be found on the dedicated 
GitHub: https://github.com/ibpsa/project1-destest. 

Table 3: Output result table with comparison metrics 
and summary accuracy grade (colours are only intended 

to emphasize extrema). 

 
The output of the comparison tool is a report with 
comparison tables gathering the results of all CMs for all 
variables of interest (see Table 3), and the basic statistical 

properties of the data sets (see Table 4). The tables are 
followed by several figures illustrating the detailed 
comparison of the different models. One can see some of 
these figures hereafter (see Figure 6-10). 

Table 4: Output result table with basic statistical 
properties of the data sets (colours are only intended to 

emphasize extrema). 

 

 
Figure 6: Average and standard deviation of the ground 

floor indoor temperature. 

 
Figure 7: Ground floor indoor temperature for the 

selected day 5th of May. 

 
Figure 8: Model residuals for the ground floor indoor 

temperature for the selected day 5th of May. 
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Figure 9: Annual load duration curve for the ground 

floor indoor temperature (data points sorted in 
descending order). 

 
Figure 10: Prediction vs reference plot for the ground 

floor indoor temperature of the user data. 

Conclusions 
In this article, different methods for comparing results (in 
the form of time series) of BEMs are discussed. In the case 
of inter-model comparison without empirical reference 
case, it is suggested to build a reference time series as a 
point-to-point mean average of all the models to be 
compared (ensemble methods). However, this approach 
should not be preferred over measurement-based 
reference when the latter exists. Different simple 
comparison metrics and advanced time series distance 
metrics are then reviewed and tested on simulation data 
from a common exercise on modelling single-family 
houses. Those metrics are grouped into four categories. 
Within these categories, most of the metrics behave 
similarly. For the simple comparison metrics, it is 
suggested to not use RMSLE but rather use NMBE and 
CVRMSE. CVRMSE of hourly-averaged data and daily 
amplitude of data are also suggested as simple metrics that 
do not over-penalize small time shifts and scrutinize 
building dynamics, respectively. However, these 
conclusions are drawn for only two types of virtual 
sensors which are commonly used for BEM analysis: 
indoor temperature and energy use. The conclusions 
might change for simulated variables with different 
patterns and dynamics. Finally, a Python-based time 
series comparison tool is presented. It is intended to help 
the modelling community to compare simulation results 
and thus improve the accuracy of building models. 
In the near future, the work presented in this article will 
be extended as follows. The ensemble methods for 

building a reference will be tested further. More 
comparison metrics will be reviewed, analysed and tested 
with larger data sets. Advanced time series distance 
metrics will be thoroughly studied. The analysis will also 
include various virtual sensors of urban-scale energy 
systems such as district heating/cooling networks. New 
metrics and functionalities will be integrated into the 
DESTEST comparison tool. 
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