Synchronization Stability Enhancement of Grid-Following Converter under Inductive Power Grid

Bin Hu, Student Member, IEEE, Chen Zhao, Subham Sahoo, Member, IEEE, Chao Wu, Member, IEEE, Liang Chen, Heng Nian, Senior Member, IEEE, Frede Blaabjerg, Fellow, IEEE

Abstract—The loss of synchronization (LOS) is a main issue for dynamic behavior of grid-following converter (GFC) under inductive power grid. This letter reveals the underlying mechanism of insufficient damping or even negative damping during grid disturbance, and analyzes how the initial speed of angle-difference between PLL output and grid voltage affects the synchronization stability. Then a synchronization stability enhancement scheme to add a positive damping and a reverse angular frequency during transient process is proposed in this letter.

Index Terms—Grid-following converter, phase-locked loop, inductive grid, synchronization stability.

I. INTRODUCTION

With the rapid increase of renewable energy sources, the active and reactive power can be injected into the grid through the grid-following converter (GFC) [1]. Differing from the synchronous generator (SG), the synchronization dynamic behavior of GFC is highly affected by the phase-locked loop (PLL), which may cause the loss of synchronization (LOS) due to insufficient damping [2].

Some improved PLL structures during grid disturbance have been published previously, such as the frozen PLL [3], the adaptive parameter PLL [4] and the first-order PLL [5]. However, the frozen PLL lacks accurate phase angle detection [4]. The adaptive parameter PLL and the first-order PLL both focus on increasing the damping ratio. Nevertheless, modifying PLL parameters may cause some resonance issues [6]. The logic transitions and threshold values of first-order PLL are complicated to design [7]. And it is also worth analyzing other methods to further enhance the synchronization stability besides changing damping ratio.

This letter analyzes the underlying mechanism of insufficient damping or even negative damping for GFC under inductive power grid. In addition, this letter notices that the initial speed of angle-difference between PLL output and grid voltage is another important link to affect synchronization stability. To this end, an improved synchronization stability enhancement scheme related to the damping coefficient and initial angle speed is presented in this letter.

This work was supported by the National Natural Science Foundation of China under Grant 51977194. (Corresponding author: Heng Nian.)

B. Hu, C. Zhao and H. Nian are with the College of Electrical Engineering, Zhejiang University, Hangzhou, China (e-mail: 11810031@zju.edu.cn; ezhihaochen@zju.edu.cn; nianheng@zju.edu.cn). S. Sahoo and F. Blaabjerg are with the Department of Energy, Aalborg University, Aalborg, Denmark. (email: ss@energy.aau.dk; fbl@energy.aau.dk). C. Wu is with the Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China (e-mail: wuchao@sjtu.edu.cn). L. Chen is with the School of Information Science and Engineering, NingboTech University, Ningbo, China (e-mail: 21410077@zju.edu.cn).

II. LOS MECHANISM FOR GRID-FOLLOWING CONVERTER UNDER INDUCTIVE POWER GRID

Fig. 1 illustrates the topology of GFC connected with weak grid. U_{pcc} and I_{pcc} represent the three-phase voltage and current at the point of common coupling (PCC). U_{gy} is the grid voltage at the grid connection point (GCP). $Z_p = R_p + jQ_p$ is the grid impedance. L_f is the filter inductance. The dc-link voltage V_{dc} is assumed to be constant in this letter.

The GFC relies on the PLL to implement the grid synchronization, and the block diagram of the conventional synchronous reference frame PLL (SRF-PLL) is also depicted in Fig. 1, where the K_p and K_i are the proportional integral gains, $\omega_p=100\text{π rad/s}$ is the fundamental angular frequency. The dynamics of LOS lies in the low-frequency range [5], while the bandwidth of current controller is usually high, thus the synchronization stability of the GFC is dominated by the dynamics of the PLL. The PLL output angle θ_{PLL} is equal to PCC voltage angle θ_{pcc} at the steady state, while $\theta_{PLL}\neq\theta_{pcc}$ in the transient process. It can define the angle difference δ between PLL output and GCP voltage as shown in (1), and depict the voltage-angle curves as shown in Fig. 2, to characterize the phase-swing behavior of GFC. The steady-state and max-deviation of δ can be calculated in (2). Note that the LOS mechanism and synchronization stability enhancement under resistive dominated grid have been analyzed in [8]. For example, GFC may lose the synchronization under smaller grid voltage and larger grid resistance. This letter pays more attention on inductive dominated grid. When the grid impedance is pure inductive, i.e. $R_p>0$, the steady-state angle difference δ_0 is always positive.

$$\delta = \theta_{PLL} - \theta_{gy} = \left[K_p + K_i \right] \left(\omega_p L_f I_f + R_f I_f - U_{gy} \sin \delta \right)$$

Fig. 1. Topology of grid-following converter connected with weak grid.
\[
\delta_i = \sin^{-1}\left(\frac{\omega_p L_e I_e + R_e I_e}{U_p}\right)
\]
\[
\delta_{\text{max}} = \pi - \sin^{-1}\left(\frac{\omega_p L_e I_e + R_e I_e}{U_p}\right)
\]

(2)

When the operating point of the converter-grid interconnected system changes, for example, changes from the point \(a\) to point \(b\), the angle difference \(\delta\) will move to a new steady state at \(\delta_b\), and the trajectory of \(\delta\) can be seen as the purple solid curve in Fig. 2. Due to the inertial effect of integral loop, \(\delta\) will continue to move. Due to the damping effect of proportional loop, \(\delta\) will converge to \(\delta_0\) after several phase-swing periods [5]. However, when the angle overshoot exceeds the \(\delta_{\text{max}}\), the GFC will lose synchronization stability as shown in the purple dotted curve.

![Voltage-angle curves of grid-following converter under inductive grid.](image)

It can be found that the GFC may occur LOS when the new steady-state angle difference \(\delta_0\) is larger than the initial one \(\delta_i\) under weak inductive grid. There are three cases with increased angle difference:

- **Case 1**: GFC startups with increased active current, i.e. point \(a\) moves to point \(b\).
- **Case 2**: Grid impedance increases to \(L_{\text{fault}}\) during grid faults such as line tripping, i.e. point \(b\) moves to point \(c\).
- **Case 3**: Grid voltage sags during grid faults such as short circuit, i.e. point \(b\) moves to point \(d\), then moves to point \(e\).

III. Effect of Damping and Initial Angle Speed on LOS

A. Compared with synchronous generator

The traditional swing equation of SG is as follow, where \(P_T\) is mechanical power, \(P_E\) is electromagnetic power, \(J\) and \(D\) are inertia and damping coefficient.

\[
P_T - P_E = J\dot{\delta} + D\dot{\delta}
\]

(3)

The voltage-angle curve of GFC is similar to the power–angle curve of SG. However, the PLL-based system has two additional characteristics, i.e. maybe exist negative damping and the initial angle speed.

Fig. 3 depicts the phase portrait of (3) to clearly describe the influence of different damping coefficient \(D\) and initial angle speed \(\delta_i\), where the \(P_T=394.36\) W, \(P_E=563.38\sin\delta\) W, \(\delta_0=0\), \(\delta_0=0.78\) rad, \(\delta_{\text{max}}=2.36\) rad, \(J=2\).

According to Fig. 3 (a), it can be found that: 1) when there is no damping, i.e. \(D=0\), the system is always in dynamic process; 2) when with the positive damping, i.e. \(D=10\), the phase portrait will converge to steady state at \(\delta_0\); 3) when with the negative damping, i.e. \(D=-10\), the system will lose synchronization; 4) when with a smaller negative damping, i.e. \(D=-1\), the phase portrait is diverged, and finally occur LOS after several swing periods.

According to Fig. 3 (b), it can be found that: 1) when the initial angle speed increases, i.e. \(\delta_i=0.75\), the phase portrait is closer to \(\delta_{\text{max}}\); 2) when the initial angle speed further increases, i.e. \(\delta_i=1.5\), the phase portrait may exceed \(\delta_{\text{max}}\) and cause LOS; 3) when with the opposite initial angle speed, i.e. \(\delta_i=-1.5\), the second half of trajectory is the same as \(\delta_i=1.5\).

![Phase portraits of swing equation.](image)

(a) initial angle speed is always zero but damping coefficient is different

(b) damping coefficient is always zero but initial angle speed is different

Fig. 3. Phase portraits of swing equation.

Overall, it is desirable to have large positive damping and small absolute value of initial angle speed to enhance the synchronization stability.

B. Detailed transient model of grid-following converter

According to the detailed transient model of GFC, this section will analyze the causes and effects of negative damping and initial angle speed. Taking Case 1 as an example, the GFC is controlled with the unity power factor, and the active current startups from 0 to the rated current \(I_{\text{max}}\).

- Assuming \(K_p=0\), \(\omega_p=\omega_p\) and performing differentiation of (1), the swing equation and initial angle speed are shown as,

\[
\frac{\omega_p L_e I_{\text{max}}}{R_T} - \frac{U_{\text{pp}}}{P_e}\sin\delta = \frac{1}{K_p}\int\frac{K_p}{J}\delta^\prime
\]

(4)

\[
\delta_i = 0
\]

(5)
It can be found that when considering K_p only, the initial angle speed is 0, and the GFC is similar to the SG without damping. If δ does not exceed $\delta_{max}=\pi/2$, the system will be stable.

- Considering K_p and K_i, assuming $\alpha_{pll}=\alpha_{pll,s}$, the swing equation and initial angle speed are shown as,

$$\alpha_{g}L_gI_{max}-U_{gpf}\sin\delta=\frac{1}{2}\frac{K_pU_{gpf}\cos\delta}{D} \delta'$$

$$\delta'=K_p\alpha_{g}L_gI_{max}$$

It can be found that when considering K_p, the system has positive damping when δ is between 0 and 90°, while has negative damping when δ is between 90° and 180°. In addition, the system has the initial angle speed which deteriorate the synchronization stability.

- Considering K_p and K_i, assuming $\alpha_{pll}\neq\alpha_{pll,s}$, the swing equation and initial angle speed are shown as,

$$\alpha_{g}L_gI_{max}-U_{gpf}\sin\delta=\frac{1}{2}\frac{K_pU_{gpf}\cos\delta}{D} \delta'$$

$$\delta'=K_p\alpha_{g}L_gI_{max}$$

Note that the reactance under synchronous reference frame is not a constant in transient process, i.e. $\alpha_{pll}=\alpha_{pll,s}+\delta/L_g$. This phenomenon is caused by the dynamic of PLL output, and this influence is more obvious with larger grid inductance L_g. When the GFC decreases the active current after extremely severe grid voltage sags, this phenomenon can be ignored [9].

It can be found that there is a negative damping $-\omega_{g}L_gI_{max}$, resulting in worse synchronization stability. The initial angle speed is faster when $0<\alpha_{pll}<\alpha_{pll,s}$, then increases the risk of LOS. Increasing K_p can increase the damping coefficient, but it will also enhance the initial angle speed to deteriorate the synchronization stability.

IV. PROPOSED SYNCHRONIZATION STABILITY ENHANCEMENT SCHEME AND SIMULATION RESULTS

![Fig. 4. Quasi-static large-signal model of the grid-following converter and proposed synchronization stability enhancement scheme.](image)

Fig. 4 depicts the quasi-static large-signal model of the GFC. The basic idea is to add a positive damping and a reverse angular frequency during transient process. The additional damping parameter K_i is set as $2L_g=1.7933$ in this letter. The added high-pass filter is to avoid the steady-state offset in $\Delta\omega$, where the cut-off frequency is 5 Hz. When the rate of change of frequency (ROCOF) exceeds the threshold value, a reverse angular frequency $\omega=2\pi5$ rad/s is employed to further enhance the synchronization stability. Fig. 5, Fig. 6 and Fig. 7 validate the effectiveness of proposed scheme from Case 1 to Case 3, where $U_{gpf}=690$ V, $I_{max}=1775$ A, $K_p=0.2$, $K_i=10$. The blue lines denote the proposed control is disabled, and the red lines denote the proposed control is enabled.

- **Case 1**: Active current startups: L_g increases from 0 to I_{max}, $L_g=0.86$ mH.

![Fig. 5. Angle and frequency response for Case 1.](image)

- **Case 2**: Line tripping fault: L_g increases from 0.1 mH to 0.89 mH.

![Fig. 6. Angle and frequency response for Case 2.](image)

- **Case 3**: Grid voltage sags: U_{gpf} decreases from 690 V to 373V, $L_g=0.51$ mH.

![Fig. 7. Angle and frequency response for Case 3.](image)

It is noticed that when enabling the proposed control, δ will not exceed δ_{max}, and f_{gpf} will recover to 50 Hz eventually. Fig. 5 (c), Fig. 6 (c) and Fig. 7 (c) depict the enlarged view of frequency response. Note that f_{gpf} is still 50 Hz in the initial stage due to the constraints of current dynamic, but it will rise to the calculated initial value after 0.5 ms. It is easy to notice that there is a reverse 5 Hz offset after the fault occurs, which can decrease the initial angle speed. And the slower rising speed of f_{gpf} is caused by the positive damping. Compared with the frozen PLL, the proposed control has more accurate phase-tracking ability during grid fault. Compared with the first-order PLL, the logic transitions of proposed control are simpler, since it only need to judge when the reverse angular frequency should be enabled.

According to Fig. 4, the model considering the additional damping can be elaborated in (10). Fig. 8 depicts the synchronization stable range with parameter deviations, where the blue area indicates that the system is synchronization stable. A constant α_{pll} is subtracted in δ' to simulate the additional reverse angular frequency. It can be noticed that the α has an upper limit as 16.2 rad/s when $\alpha_{pll}=0$, indicating the system will lose synchronization stability with high cut-off frequency of high-pass filter. When α is 2n/2 rad/s, K_i is necessary to set between 2.2 and 18.2. However, a too small cut-off frequency will affect the dynamic response at fundamental frequency.
The appropriate reverse angular frequency can increase the synchronization stable range and increase the upper limit of α, i.e., $\omega_n = 2\pi \cdot 2 \text{ rad/s}$ and $\omega_n = 2\pi \cdot 5 \text{ rad/s}$. However, adding a too large reverse angular frequency may cause the reversed direction of the initial angle speed, which deteriorates the synchronization stability, i.e., $\omega_n = 2\pi \cdot 10 \text{ rad/s}$.

\[
\begin{align*}
\delta' &= K_s (ax - U_{gy} \cos \delta') + K_h (\omega_n + \delta') I_g I_{gy} - U_{gy} \sin \delta' - x \\
\alpha' &= K_h \left(\frac{K_s (ax - U_{gy} \cos \delta') + K_h (\omega_n + \delta') I_g I_{gy} - U_{gy} \sin \delta'}{1 - K_s I_g I_{gy} - K_h} \right) \cdot ax
\end{align*}
\]

Fig. 8. Synchronization stable range with parameter deviations for Case 3.

V. CONCLUSIONS

This letter compares the swing equation between SG and GFC, then explains that when GFC encounters some grid faults such as line tripping and voltage sags, the larger positive damping and smaller absolute value of initial angle speed can enhance the synchronization stability and avoid LOS. A synchronization stability enhancement scheme is presented to increase the positive damping and decrease the initial angle speed, which has the simple logic transitions.

REFERENCES

