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a b s t r a c t

With the high penetration of wind power connected to the integrated electricity and district heating
systems (IEDHSs), wind power curtailment still inevitably occurs in the traditional IEDHS dispatch.
Focusing on the flexibilities of the IEDHS is considered to be a beneficial solution to further promote
the integration of wind power. In the district heating network, the thermal inertia is utilized to improve
such flexibility. Therefore, an IEDHS dispatch model considering the thermal inertia of district heating
network and operational flexibility of generators is proposed in this paper. In addition, to avoid the
tendency of traditional reinforcement learning (RL) to fall into local optimality when solving high-
dimensional problems, a double-deck deep RL (D3RL) framework is proposed in this study. D3RL
combines with a deep deterministic policy gradient (DDPG) agent in the upper level and a conventional
optimization solver in the lower level to simplify the action and reward design. In the simulation,
the proposed model considering the transmission time delay characteristics of the district heating
network and the operational flexibility of generators is verified in four scheduling scenarios. Besides,
the superiority of the proposed D3RL method is validated in a larger IEDHS. Numerical results show
that the considered scheduling model can use the heat storage characteristics of heating pipelines,
reduce operating costs, improve the operational flexibility and encourage wind power utilization.
Compared with traditional RL, the proposed optimization method can improve its training speed
and convergence performance.

© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Increasingly, serious environmental issues and energy crisis
concerns caused by conventional fossil fuels are bringing great
pressure on power system design and implementation (Obama,
2017). Globally, governments are responding with plans for clean
energy development, aiming to promote a thriving renewable
energy (RE) industry (Yang, 2021). However, the fluctuations of
RE resources bring increasing burden to power grid regulation.
Instead, due to the characteristics of internal autonomous op-
eration and external friendly power, integrated energy systems
(IES) have been recognized as an effective means of distributed
RE consumption in the past several years (Nejabtkhah and Li,
2015). Especially, researches on integrated electricity and district
heating systems (IEDHS) are receiving increasing attention. Mo-
harram et al. (2022) assessed the capability of the district inte-
grated electrical and heating systems to dissipate solar energy.

∗ Corresponding author.
E-mail addresses: bzh@et.aau.dk (B. Zhang), amer.ghias@ntu.edu.sg

(A.M.Y.M. Ghias), zch@et.aau.dk (Z. Chen).

With temperature feedback mechanism of district heating system
(DHS) in mind, Xu et al. (2021) discussed the potential of the
integrated electricity and heating system to further accommodate
wind power. According to 100+ literature review, the barriers to
reach flexible district electricity and heating system are analyzed
and characterized into different technology types (Sneum, 2021).
Instead of a centralized control solution, Chen et al. (2021) pro-
posed a distributed coordinated operation strategy for a regional
large-scale IEDHS to improve energy efficiency, which considers
the thermal inertial of pipeline networks and different heating
modes of buildings.

However, with the increasing intention of clean energy, the
phenomenon of wind power curtailments have inevitably oc-
curred, especially in the heating season, which has caused un-
necessary economic losses. For example, under the conventional
model of heat to electricity, combined heat and power plant (CHP)
unit supplies the high heat load in winter and generates excess
electricity, which limits the scheduling flexibility of the CHP and
simultaneously causes the issue of large amounts of wind curtail-
ments (Bagherian and Mehranzamir, 2020). As a result, a series of
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Nomenclature

AI Artificial Intelligence
CHP Combined heat and power unit
DDPG Deep deterministic policy gradient
DHS District heating system
D3RL Double-deck deep reinforcement learn-

ing
DNN Deep neural network
EB Electric boiler
IES Integrated energy system
IEDHS Integrated electricity and district heat-

ing system
MDP Markov decision process
ML Machine Learning
MILP Mixed-integer linear programming
RL Reinforcement learning
RE Renewable energy
ReLU Rectified linear unit
WT Wind turbine

researches are dedicated to the IEDHS, in which how to alleviate
the issues of wind power curtailments in the heating season is
being addressed. To cope with increasing wind capacity, Xia et al.
(2022) established a bi-level planning-operation IEDHS frame-
work, and the role of the participation of compressed air energy
storage studied. Zhang et al. (2019b) proposed a novel integrated
electricity and heat system covering local and national infras-
tructures, and assessed its performance on utilizing RE. Zhang
et al. (2022a) integrated the reserve provision from large-scale
heat pumps into the district electricity and heat networks to re-
alize economic operation, wind power accommodation and load
availability. Wang et al. (2020) used a district thermal energy
storage to improve the energy utilization efficiency of the com-
bined electricity and heat networks. While the above studies
indeed improve the system’s ability to accommodate RE to some
extent, the majority of them rely on thermal storage devices such
as storage tanks and heat pumps, which are not economically
feasible. In fact, due to the transmission characteristics in the
district heating pipelines, there is a time delay in the supply of
energy from the heat source to the heat load. The network of
pipelines in the heating system can be viewed as a thermal energy
storage device. Zhang et al. (2021a) investigated the impact of
heat energy storage in heat-supply net on the energy utilization
efficiency of district heating system, which is described by the
quantitative calculation model. However, the above literature
neglects to promote RE integration by improving the operational
flexibility of the units while considering the transmission delay.

Furthermore, despite sufficient thermal storage capacity in the
heating pipelines and potential for thermal inertia to facilitate
RE integration, RE utilization still faces significant challenges in
some special occasions, and operational flexibility of the IEDHS
itself should be emphasized. Ma et al. (2021) aims to mitigate
the conflict between the inflexible operation of efficient CHP
systems and the demand for grid flexibility improvement. A two-
stage cogeneration dispatch model is proposed, in which lower
stage quantifies the optimal trade-off between supply flexibil-
ity and conversion efficiency, and upper stage achieves global
coordination by formulating a convex optimal power flow prob-
lem. Zhu and Li (2022) considered multiple modeling factors of
thermal energy storages, such as heat transfer delay, mass flow
rate and heat exchanger, to improve the flexibility of CHP units.
Then, a decomposition coordination method is applied to solve

the strongly complex non-linear problem. Daraei et al. (2021)
integrated a hydrotreated pyrolysis oil production into the CHP
plant for flexible energy supply. The integrated pyrolysis to CHP
plants and onsite hydrogen use can improve flexibility and RE
utilization. Therefore, a proper flexibility improvement method
is worthy of investigation in the IEDHS researches.

In addition, traditional energy management ways (e.g., deter-
ministic rules and abstract models) in the above existing litera-
tures are mainly hampered by two dilemmas: (a) deterministic
rules are difficult to cope with the time-varying parameters in
non-stationary systems and may result in high costs; (b) the per-
formance of the abstract model mostly relies on the experience of
the modeler and may differs somewhat from the realistic model.
Therefore, a model-free deep reinforcement learning (DRL) -based
energy dispatch strategy is proposed in this paper. In recent years,
with the rising enthusiasm of artificial intelligence (AI), machine
learning (ML) algorithms are being widely adopted in smart grid,
including voltage control (Sun and Qiu, 2021), operation costs
optimization and electricity market bidding (Ye et al., 2020). The
economic operation problem in an IES is formulated as a Markov
decision process (MDP), and a DRL-based economic energy man-
agement strategy is proposed in Zhang et al. (2019a) and Yang
et al. (2021). Indeed, these works aim to minimize economic op-
erating costs with consideration of uncertainties of wind power,
but flexibility of the CHP units is not fully guaranteed. Zhang
et al. (2020) proposed a DRL-based dynamic energy management
strategy for an IES to balance the flexibility of the unit while
ensuring economic operation. However, the issue of how to ef-
fectively ensure the flexibility of the units while coping with the
high dimensionality brought by multiple generators in the case
of large-scale RE penetration has not been fully investigated.

In the view of above, a double-deck RL (D3RL) framework-
based collaborative IEDHS dispatch model considering thermal
inertia of heating pipelines and operational flexibility indicators
is proposed in this paper. The dispatch objectives are to satisfy
the intension of promoting integration of clean energy, reduce
operating costs and improve operational flexibility of generators.
Specifically, the main contributions of this paper are summarized
below:

(1) A model-driven IEDHS energy management model is pro-
posed to solve the non-convex multi-objective function
without accurate thermal dynamic model and IEDHS topol-
ogy information.

(2) Multiple uncertainties associated with electricity and heat
loads, instant outputs of wind turbines, thermal plants,
CHP, are considered.

(3) The proposed IEDHS dispatch model considers thermal in-
ertia of heating pipeline network and operational flexi-
bility of the combined heating and power units. Simula-
tion results demonstrate that the proposed model has a
positive effect on promoting wind power utilization and
minimizing energy cost.

(4) To the best of our knowledge, it is the first study to
construct a hybrid optimization framework that combines
an upper-level DRL with a lower-level conventional opti-
mization solver to accomplish the optimal IEDHS dispatch
strategy. A large IEDHS is used to verify the proposed
double-deck framework can effectively accelerate training
speed and improve final convergence results with respect
to original DRL.

The remaining structure of this work is introduced as follows.
Section 2 describes the mathematical model of the IEDHS and
the scheduling objective. The framework of the D3RL and the
principles of DDPG algorithm are presented in Section 3. Section 4
studies the performance of the scheduling model based on four
scenarios. Conclusion and future work are given in Section 5.
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Fig. 1. Example architecture of the IEDHS with wind power.

2. System description

Fig. 1 depicts the example architecture of the IEDHS with wind
power. Referring to Wang et al. (2021), a typical IEDHS includes
wind turbines (WTs), thermal power unit, CHP unit, electric boiler
(EB), and load demands. Electrical and heating networks are cou-
pled through the CHP and EB units. Similar to the power system,
the heat sources produce heat energy, the DHS transfers the heat
energy (the form of hot water) by the primary pipeline network
to the heat exchange station, and then distributes the heat energy
to the consumers via the secondary pipeline network.

2.1. District heating system

A typical thermodynamic system consists of four compo-
nents: heat source, heat network, heat exchange station and
heat loads (Chen et al., 2015). As presented in Fig. 2, similar to
power system, DHS can be divided into transmission system and
distribution system. This paper mainly considers the transmission
system. In the transmission system, the heat transfer medium
transmits heat from each heat source to each heat exchange
station through the water supply pipe network, and then re-
turns to the heat source through the return pipe network, which
continuously circulates in the heat network.
(1) Heat sources

As shown in Fig. 1, heat sources in the considered IEDHS are
composed of the CHP and the EB. The output of CHP follows the
principle of heat to power. According to Chen et al. (2015), the
mathematic model of the feasible operational region of the CHP
is expressed as:

PCHPi (t) =
Ni∑
k=1

yki α
k
i (t),QCHPi (t) =

Ni∑
k=1

xki α
k
i (t),∀i ∈ NCHP (1)

0 ≤ αk
i (t) ≤ 1,

Ni∑
k=1

αk
i (t) = 1,∀i ∈ NCHP , k ∈ {1, 2, . . . ,Ni} (2)

where (QCHPi (t), PCHPi (t)) represent the heat and electricity gener-
ated by the CHP i at time slot t . (xki , y

k
i ) are the heat and electricity

output of the extreme point i, and Ni is the total number of corner
points of the CHP.

In Eq. (3), EB generates heat by consuming electricity:

QEB(t) = ηEBPEB(t) (3)

Pmin
EB ≤ PEB(t) ≤ Pmax

EB (4)

where (QEB(t), PEB(t)) stand for the generated heat and consumed
electricity at time slot t , respectively. ηEB is denoted as the con-
version ratio between the input and output of the EB. (Pmin

EB , Pmax
EB )

represent the allowable minimum and maximum input of the EB.
(2) Pipeline heating network

A distributed heating pipeline network is divided into the
supply network and return network. The relationship between
nodal thermal power Q and nodal temperature T can be described
by Eq. (5) (Bin et al., 2019; Li et al., 2020).

Q = Cpmq(Ts − Tr ) (5)

where Cp is the specific heat capacity of water, mq is the mass
flow of the pipeline, and (Ts, Tr ) represent nodal temperature
of the supply and return networks, respectively. Therefore, the
thermal power φCHP

i of the CHP at the source node i can be
calculated by:

φCHP
i = CpmHS

q (THS
s − THS

r ),∀i ∈ NHS (6)

Similarly, the thermal power φHE
j of the heat exchange station

located at node j can also be calculated, as presented in Eq. (7).

φHE
j = CpmHE

q (THE
s − THE

r ),∀j ∈ NHE (7)

As shown in Fig. 2, the structure of pipeline heating network
is presented, and the corresponding injected mass flow and nodal
temperature can be calculated by Eqs. (8) and (7) (Shao et al.,
2017).∑
k∈SP

(T s,out
k,t ·m

s
k,t ) = T s

n,t ·
∑
k∈SP

ms
k,t (8)
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Fig. 2. Structure of pipeline heating network.

∑
k∈RP

(T r,out
k,t ·m

r
k,t ) = T r

n,t ·
∑
k∈RP

mr
k,t (9)

where (SP, RP) are the sets of pipelines in supply and return
networks, respectively. T s,out

k,t is the outlet temperature of the
pipeline k in the supply network at time slot t , ms

k,t is the mass
flow of the pipeline k in the supply network, and T s

n,t is the
temperature of the mixing node n in the supply network at time
slot t . Similarly, (T r,out

k,t ,mr
k,t , T

r
n,t ) are the outlet temperature and

mass flow of the pipeline k and temperature of the mixing node
n in the return network at time slot t , respectively.

Besides, the nodal temperature of both the supply network
and the return network should meet the following constraints:

T s
i,min ≤ T s

i,t ≤ T s
i,max (10)

T r
i,min ≤ T r

i,t ≤ T r
i,max (11)

where (T s
i,t , T

r
i,t ) are temperature of the node i in the supply

and return networks at time slot t , respectively. (T s
i,max, T

r
i,max)

and (T s
i,min, T

r
i,min) are the corresponding upper and lower limits

of the nodal temperature in the supply and return networks,
respectively.

In the distributed heating network, the heat medium is in
the form of hot water (Gu et al., 2017). This leads to a certain
thermal inertia for the process from the thermal power plant to
each connected node. Because the hot water medium flows in the
pipeline at a certain velocity ν, there is a certain time delay in the
temperature change between the inlet and outlet of the pipeline.
The temperature change delay Tdelay of hot water medium in a
pipe is related to the length L of the pipeline and flow rate ν,
which can be expressed as:

Tdelay = Kdelay
L
ν

(12)

where Kdelay is denoted as the thermal delay coefficient.
On the other hand, heat losses in the pipeline transmission

system can be indirectly represented as the decrease of the nodal
temperature in the pipeline. Heat loss of the pipeline can be
calculated by Eq. (13) (Dai et al., 2018).

Tend = (Tstart − Ta)e
−

λL
Cpmq + Ta (13)

where (Tstart , Tend) are the inlet and outlet temperature of the
pipeline, respectively. Ta is the ambient temperature, and mq is
the mass flow through the pipeline. (λ, L) describe the parameters
of physical property, which are the transmission impedance and
the length of the pipeline, respectively.

To sum up, after considering the transmission time delay in
the heating network, the temperature change of the pipeline can
be expressed as:

Tend − Ta = (Tstart (t − Tdelay)− Ta(t − Tdelay))e
−

λL
Cpmq (14)

2.2. Electricity network

In this paper, DC power flow model (Yugeswar et al., 2022) is
applied to analyze the power system. In addition, the node power
balance model and the branch power flow model are shown in
Eqs. (15)–(18).∑
(i,j)∈Ωpipe

pfij −
∑

(k,i)∈Ωpipe

pfki +
∑
g∈i

Pg = Pl,i,∀i ∈ Ωbus (15)

− PFmax
ij ≤ pfij =

θi,t − θj,t

xij
≤ PFmax

ij ,∀(i, j) ∈ Ωline (16)

Pmin
g ≤ Pg ≤ Pmax

g (17)

θmin
i ≤ θi ≤ θmax

i (18)

where the subscript ij indicates the line with i and j as nodes.
(θ, x) are node phase angle and branch reactance, respectively.
pfij is the power flow at line ij and PFmax

ij,t is the maximum trans-
mission power of the line ij. Pg is the active power output of
generators, including wind turbines and CHP units. Pl,i is the total
power load at bus i. (Pmin

g , Pmax
g ) and (θmin

i , θmax
i ) are minimum

and maximum active power output of generator g and phase
angle of node i, respectively.

2.3. Wind power generation

The consumption of wind power should not exceed its output,
as expressed in Eqs. (19) and (20).

Pc
WT (t) = ηWT (t)PWT (t) (19)

0 ≤ ηWT (t) ≤ 1 (20)

where (Pc
WT (t), PWT (t)) are the wind power consumed and gener-

ated at time slot t . ηWT (t) is the wind power conversion ratio at
time slot t , which is regarded as one of the decision variables.

2.4. Flexible operation model

In this paper, the established scheduling model not only con-
siders the economic operating costs, but also increases the flexi-
bility of the electricity system to respond to sudden changes of
wind power generations and load demands. Upward flexibility
and downward flexibility should be considered simultaneously to
improve the flexibility of the IEDHS, as described in Eqs. (21) and
(22):

Pd(t) =
N∑
i=1

min(Pi(t)− Pmin
i , ∆t ∗ rdi ) (21)

Pu(t) =
N∑
i=1

min(Pmax
i − Pi(t), ∆t ∗ rui ) (22)

where (Pd(t), Pu(t)) are separately downward flexibility and up-
ward flexibility indexes for the CHP units, and (rdi , r

u
i ) are down-

ward and upward ramp rates of the generation unit i, respec-
tively. Pi(t) is the electric output of the generation unit i at time
slot t . (Pmin

i (t), Pmax
i (t)) represent the minimum and maximum

outputs of the unit i at time slot t , respectively. N is the amount
of the generation units, and ∆t is the adjacent time interval.

2.5. Objective function

In this paper, the optimization objective is to minimize the
operation cost of the considered IEDHS in the dispatching cycle T
by controlling the output of controllable equipment in real time.
Specifically, the whole dispatch cycle T is set as one day, equal to
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24 h. Besides, the operating costs are composed of the operating
cost (CCHP (t), CEB(t), CG(t)) of CHP, EB and thermal power units,
and the penalty item CWT (t) of wind power curtailment.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{
T∑

t=1

C(t)−ϖ (
T1∑
t=1

Pd(t)+
T2∑
t=1

Pu(t))}

C(t) = CG(t)+ CCHP (t)+ CEB(t)+ CWT (t)

CCHP (t) = a+ b · PCHP (t)+ c · PCHP (t)2 + d · QCHP (t)

+e · QCHP (t)2 + f · PCHP (t) · QCHP (t)

CG(t) = g · PG(t)2 + h · PG(t)+ k
CEB(t) = m · PEB(t)
CWT (t) = κ · (PWT (t)− Pc

WT (t))

(23)

where (T1, T2) are the number of peak and valley hours, and ϖ
is denoted as the economic conversion coefficient used to project
the target of scheduling flexibility into the economic dimension.
(a, b, c, d, e, f , g, h, k,m) are operating cost coefficients of CHP,
EB and thermal power unit, respectively, which are constant
values. κ is denoted as the penalty factor. Here, the first term in
(23) denotes the operation cost of the IEDHS, and the second term
represents the operation flexibility of the generators. It should be
noteworthy that the symbol — in (23) indicates that the objective
aims to avoid the unit output approaching the predefined max-
imum Pmax

i and minimum Pmin
i values. Therefore, the CHP unit

can operate flexibly during the periods of the load peak and the
low generation of wind power or the load valley and the high
generation of wind power.

3. Double-deck scheduling model based on reinforcement
learning

RL agent selects the action sequence by interacting with the
environment by trial and error, in order to maximize the cumu-
lative return (Cao et al., 2020). In RL, elements in action space are
regarded as the decision variables of the optimal energy manage-
ment problem of the IEDHS. However, the economic scheduling
problem of the considered IEDHS includes a continuous action
space with complicate constraints. Therefore, to solve the afore-
mentioned characteristics, this paper aims to construct a D3RL
decision model to improve the efficiency of learning process and
realize real-time regulation of the IEDHS, and the framework is
shown in Fig. 3. The lower level applies traditional solver to find
the optimal wind power conversion ratio as

∗

t to maximize the
immediate reward, when receiving the thermal power units, CHP
and EB output alt from the upper DRL layer. Since each search in
the decision dimension of the actual wind power output is opti-
mal, the learning efficiency of RL can be significantly improved,
and the model training and convergence can be accelerated.

3.1. Upper-level DRL model

3.1.1. Markov decision process
The upper-level decision model is composed of a DRL-based

agent, which controls the dispatch of the battery. In the frame-
work of DRL, MDP (Zhang et al., 2022b) is used to formalize the
interaction process between the agent and the environment. Six
essential elements can be described the MDP, which is composed
of the tuple ⟨s, a, r, Γ , γ , π⟩:

(1) State st ∈ S: st is the current state information, and S
represents the state set. Sufficient state information should be
provided for the DRL agent, including electricity loads Pl(t), heat
loads Ql(t), wind power generation PWT (t), and the output of
thermal power unit, CHP and EB listed as:

st : {Pl(t),Ql(t), PWT (t), PG(t), PCHP (t), PEB(t)} (24)

(2) Action at ∈ A: at is the specific action, and A represents
the action set. As shown in Eq. (25), the DRL agent regulates the
amount of adjustment of thermal power unit, CHP and EB output.

at : {∆PG(t), ∆PCHP (t), ∆PEB(t)} (25)

(3) Reward rt ∈ R: rt indicates the immediate reward value,
and R is the reward set. The immediate reward function rt pro-
vided for the DRL agent is designed below:

rt = −C(alt; t) (26)

in which, C(alt; t) is the operating costs obtained by the lower
layer after receiving the action given by the upper layer.

(4) State transition function Γ (st+1|st , at ): the transition pro-
cess can be divided into deterministic part and stochastic part.
The deterministic part represents the effects of action at on
state {PG(t), PCHP (t), PEB(t)}, which means the relationship be-
tween {PG(t), PCHP (t), PEB(t)} and {PG(t+1), PCHP (t+1), PEB(t+1)}
is only {PG(t)+∆PG(t), PCHP (t)+∆PCHP (t), PEB(t)+∆PEB(t)}. For the
stochastic part, other state information with random and complex
characteristics has unknown conditional probability P(st+1|st , at ).

(5) Discount factor γ : the function of the discount factor is to
balance the immediate return and the future return, and the value
is within the range [0, 1], as expressed in Eq. (27).

Rt = rt+1 + γ rt+2 + γ 2rt+3 + · · · =
T∑

k=0

γ krt+k+1 (27)

(6) Policy π (at |st ): policy π is used to map the state to the
action. For the policy π , the expected cumulative return of an
exploration process starting from state st and executing action
at can be described by the action-value function Q π (s, a):

Q π (s, a) = Eπ
[Rt |s = st , a = at ] (28)

3.1.2. Deep deterministic policy gradient
As discussed before, state transition process in the considered

optimization model includes the stochastic part. Therefore, it is
intractable for a model-based method to describe an environ-
ment that can represent the above randomness. In this paper, as
the representative of the policy gradient-based algorithms, deep
deterministic policy gradient (DDPG) (Timothy et al., 2015) is
applied to train an agent that can provide the real-time optimal
strategy for the IEDHS.

DDPG algorithm with the actor–critic architecture combines
the core principles of the deep Q network (Volodymyr et al.,
2013) and the DPG (David et al., 2014), and has achieved good
performance in solving the RL problem with continuous action
control. In DDPG algorithm, the instant reward (Eq. (25)) is ob-
tained by the agent through interaction with the environment,
and the cumulative reward (Eq. (27)) is maximized to obtain the
optimal strategy π∗. The actor–critic architecture of the DDPG
is composed of four fully connected layers, the corresponding
inputs and outputs are listed in Table 1. Critic and actor func-
tions are approximated by the critic and actor online networks,
parameterized by θ q and θµ, respectively. The targets network
parameterized by θµ and θ q are introduced to ensure the stability
during training process. In addition, considering that the strategy
provided by DDPG is deterministic, Gaussian noise Nt is added
to the action to increase the random exploration, as expressed
in Eq. (29). The updating process of the critic and action are
introduced below.

ãt = at + Nt (29)

The critic online network is updated by minimizing the loss
function, as shown in Eq. (30):

LDDPG =
1
m

m∑
i=1

[yi − Q (si, ai; θ q)]2 (30)
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Fig. 3. Decision framework of the double-deck RL model.

Table 1
The neural network settings of DDPG algorithm.
Neural network Input Output

Actor online network µ st at = µ(st ; θµ)
Actor target network µ′ st+1 a′t = µ′(st+1; θµ)
Critic online network q st , ãt q = Q (st , ãt |θ q)
Critic target network q′ st+1, a′t q′ = Q ′(st+1, a′t |θ

q)

Table 2
The DDPG algorithm.
1. Initialize weights (θ q, θµ, θq, θµ) of online networks and their
corresponding target networks.
2. Initialize replay buffer.
3. For each episode do
4. For each environment step do
5. Select an action using Eq. (29).
6. Execute action at , and return immediate reward rt and next state st+1 .
7. Store interaction information (st , at , st+1, rt ) in replay buffer.
8. Sample a random batch information {si, ai, si+1, ri} with size K.
9. Update the weights of the critic online network by minimizing the

loss using Eq. (30).
10. Update the weights of the actor online network by policy gradient

using Eq. (32).
11. Update the weights of the corresponding target networks using
Eq. (33).
12. End For
13. End For

yi = ri + γQ ′(st+1, µ′(st+1; θµ); θ q) (31)

where m is defined as the batch size.
Similarly, the parameters of the actor online network are

updated in the direction of increasing the Q (s, a; θ q) by gradient
descent method, which is given in Eq. (32).

∇θµ J ≈
1
m

m∑
t=1

[∇aQ (s, a; θ q)|si,µ(si)∇θµµ(s; θµ)|si ] (32)

Target networks share the same parameters and architectures
with the corresponding online network, and the updating of the
target networks slowly tracks the online networks, which is called
‘‘soft update’’ mode:{
θµ
← τθµ

+ (1− τ )θµ

θ q
← τθ q

+ (1− τ )θ q (33)

where τ is the soft update coefficient, and 0 < τ ≪ 1.
The flow of the DDPG algorithm is provided in Table 2.

3.2. Lower-level solver model

The optimization objective of the lower-level solver model
is to minimize the real-time operation cost after receiving the

immediate action from the upper-level DRL model, as expressed
in Eq. (34):{
min C(t; ast )
s.t. Equations (1)–(23)

(34)

Furthermore, Eq. (34) describes a mixed-integer linear program-
ming (MILP) problem, which can be solved by SciPy toolkit. Then,
the lower-level solver model provides the upper-level DRL model
with the optimal instant operating cost and the optimal RE output
values, which is used for immediate reward for the DRL model.
Thus, it is a closed loop process.

3.3. Framework of the double-deck scheduling model based on DDPG
algorithm

In Fig. 4, the workflow of the proposed D3RL scheduling model
based on DDPG algorithm is concretely presented. Besides, the
input, output and architecture of the actor and critic networks
are also shown in detail. As for the critic network, it is composed
of three fully connected layers, each of which has 300 neurons.
As for the actor network, it includes two fully connected layers
with the same neurons. Note that the rectified linear unit (ReLU)
function and the tanh function are set as the activation functions
of the DNNs.

The termination condition of the iteration is that the reward
expectation converges to the maximum value, as expressed in
Eq. (35):

|Ri − Ri−1| ≤ δ (35)

where (Ri, Ri−1) are the current future reward expectation and the
previous future reward expectation, and δ is a constant, which
is used as the maximum value of the gap. Finally, the optimal
energy management strategy for the succeeding time slots is
achieved.

4. Case studies

In this section, to illustrate the validity of the collaborative
and flexible scheduling model and the proposed D3RL scheduling
method, three scenarios are carried out on a IEDHS consisting
of an IEEE-6 electricity system with an 8-node heat system. The
potential benefits of considering thermal inertial and flexibil-
ity assessment are illustrated by comparing with the traditional
economic dispatch model. Further, a comparison analysis with
single DRL scheduling method is conducted on a IEDHS consisting
of an IEEE-39 electricity system with a 16-node heat system
to demonstrate the superiority of the DRL-based double-deck
scheduling model. The implementation diagram of the case study
is displayed in Fig. 5.
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Fig. 4. Workflow of the double-deck scheduling model based on DDPG algorithm.

Fig. 5. Implementation diagram of the case system.

Step (1) Based on Section 2, the input basic data set composed
of historical data is established.

Step (2) Under the constraints of the power balance, heat bal-
ance and SOC limit, optimization objectives are developed, which
is consist of comprehensive benefits and flexibility assessment.

Step (3) Three scenarios are used to verify the rationality
of the collaborative and flexible scheduling model. Besides, the
low-level MILP problem is solved by using SciPy toolkit on Math-
Works. The upper-level DRL decision problem is solved by using
DDPG algorithm in Python 3.6 on the TensorFlow platform.

Step (4) The dispatch results obtained from step 3 are eval-
uated from the perspective of the operation of each unit. In
addition, the advantage of the proposed D3RL scheduling method
is further illustrated by comparison analysis.

The case program is carried out on a 64-bit Windows-based
laptop equipped with 4 GB of memory and Intel Core i7-4720HQ
CPU. The algorithm is written in Python, and the system model is
evaluated on the PandaPower.

4.1. Test system configuration

As displayed in Fig. 6, a modified system, an IEEE-6 power
system combined with an 8-node heat network, is used for case
study. There are three CHP units, which are located at Bus 1, Bus
4 and Bus 6, respectively. A WT is connected to Bus 1 in the
electricity network. The thermal power unit are installed at Bus

1. Loads are divided into zone I, II, III and IV, where an EB is also
equipped to supply thermal power. The return pipeline network
has the same topology with the supply network. Each adjustable
facility is dispatched every 15 min, and the whole dispatch period
is a typical day (24 h). Detailed parameter settings of the test
system can be referred to (Yao et al., 2019).

4.2. Scenario description

The scheduling results of the IEDHS from three simulation
scenarios are analyzed to verify the effectiveness of the thermal
inertial model and flexibility assessment model. Four scenarios
are described below:

Scenario 1: Scheduling strategy with collaborative dispatch
of the adjustable devices without involving the thermal iner-
tial model and flexibility assessment model. In this scheduling,
there is no transmission time delay characteristics in the heating
pipeline network. Besides, the upward and downward flexibilities
during peak and valley periods are not adopted in the objective
functions.

Scenario 2: Collaborative dispatch strategy with the thermal
inertial model. The transmission time delay is about 10 min. The
impact of the heat storage characteristics in the heating pipeline
network are investigated, but without the flexibility assessment
model in the objective functions.

Scenario 3: Different from Scenario 2, dispatch strategy in
Scenario 3 regards the operational flexibility model as one of the
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Fig. 6. Diagram of the case system with 6-bus electricity and 8-node district heating networks.

objective functions, instead of considering thermal inertial model
in the distributed heating network.

Scenario 4: Compared with the above scenarios, the objective
functions of this scheduling include minimizing operating costs
and maximizing upward and downward flexibilities during peak
and valley periods. Simultaneously, the thermal inertial model is
included in the modeling process of the heating pipeline network.

Then the simulation results of the above four scenarios are
performed and analyzed for the case system with 6-bus electricity
and 8-node district heating networks.

4.3. Training process

In this sub-section, the parameter settings and training pro-
cedure are provided in detail. Continuous iterative simulations
are required to successfully determine the optimal collaborative
control strategy for the defined comparison scenarios. In one
iteration, the instant energy information at the beginning of a
day is gathered by the agent, such as wind power, electricity and
heating loads, electricity price and initial SOC value; then, the
agent provides current strategy (adjustable units output, i.e., ESS
operation, EB and CHP generation and electricity purchased from
main grid) and receives immediate reward and observation infor-
mation of next time step. According to the algorithm presented
in Fig. 4, the agent can adaptatively adjust the provided control
strategy by updating the inner weights of DNNs to maximize the
cumulative reward of the whole iteration. Thus, through a large
amount of training episodes, the optimal collaborative scheduling
strategy can be achieved.

The proposed D3RL scheduling method is a data-driven
method, thus sufficient data is required to establish data sets for
training. In this simulation, the historical data of one year (Conolly
et al., 2015; Ashfaq and Ianakiev, 2018) for Aarhus, Denmark,

Table 3
The hyperparameters of DDPG algorithm.
Parameter Value

Discount factor γ 0.9
Soft updating coefficient τ 0.01
Learning rate of the Actor α

µ

0 0.01

Learning rate of the Critic α
q
0 0.015

Batch size m 512
Experience buffer capacity D 20000

including electricity and heating load profiles, wind power gener-
ations, are used to constitute the training set. Fig. 7 presents the
concrete information of the historical data.

The performance of the DRL algorithm mainly depends on
settings of the DNNs, which has been discussed in Section 3.
Additionally, the hyperparameters of the DRL DDPG algorithm are
listed in Table 3. For the DDPG algorithm, the weights of the critic
and actor networks are updated with the learning rates α

µ

0 =

0.01 and α
q
0 = 0.015 according to Eqs. (30) and (32), respectively.

Discount factor γ = 0.9 is provided for the critic to calculate
the cumulative return mentioned in Eq. (27). The updating rates
of the target networks are controlled by the given soft updating
coefficient τ = 0.01. The experience replay buffer with sufficient
storage capacity D = 20 000 is used to store historical interactive
information. Batch information with size m = 512 is used as
instant samples to update the weights of DNNs.

The change trend of cumulative reward corresponding to 24
time points of each training episode is given in Fig. 8. In the policy
learning stage (before 4000 episodes), to increase the cumulative
reward, the neural network parameters are modified and updated
according to Eqs. (30), (32) and (33) to deal with the random
changes of wind power, and load demands. After 4000 episodes,
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Fig. 7. Profiles of historical data based on one year: (a) Wind power generation, (b) Load demands.

Fig. 8. Cumulative reward values change with episodes during the training process.

Table 4
Optimization results of economic costs and RE utilization under four scenarios.
Scenarios Total economic costs (DKK) Total RE utilization (kW)

Scenario 1 1884.4 4102.1
Scenario 2 1636.5 4717.3
Scenario 3 1589.8 4653.2
Scenario 4 1421.3 4952.9

the gap between the current future reward expectation and the
previous future reward expectation is less than the predefined
threshold (Zhang et al., 2019a). It means the agent learned how to
deal with the random environment and maintain the cumulative
reward, indicating that the optimal energy management strategy
has been achieved.

4.4. Analysis of optimal scheduling results based on four scenarios

Based on the above training process, the corresponding opti-
mal scheduling results of economic costs and RE utilization under
four scenarios are listed in Table 4.

4.4.1. Impact of transmission time delay in the heating pipeline
network

As displayed in Table 4, compared to Scenario 1, the daily
economic operating costs of Scenario 2 decreased by 13.15%, that
is from 1884.4 DKK to 1636.5 DKK. Furthermore, the amount of
the RE utilization in Scenario 2 increased from 4102.1 kW to
4717.3 kW. In Scenario 2, the transmission time delay consid-
ered in the heating pipeline modeling indicates that heat storage
capacity in the pipeline network can be utilized to supply heat
power. Especially during the peak periods of wind power, CHP
can reduce its own output by utilizing the residual heat in the
pipeline network to supply heat loads, so as to improve the
utilization rate of RE. Therefore, to reduce economic costs and
promote wind power accommodation, it is generally reasonable
to take the transmission time delay characteristic into account
when modeling the district heating network.

4.4.2. Impact of flexibility assessment model
The total economic costs of Scenario 3 decrease from 1884.4

DKK to 1589.8 DKK, a decrease of 15.63% compared to Scenario
1. Additionally, the wind power utilization in Scenario 3 increase
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Fig. 9. Comparison results of scheduled electricity under four scenarios: (a) Electricity output of the CHP unit, (b) Utilized wind power.

from 4102.1 kW to 4653.2 kW, compared to Scenario 1. The opti-
mization target of Scenario 3 is not only the economic operating
costs, but also the flexibility of the IEDHS. By optimizing the
flexibility during load peak period and valley period, the opera-
tional flexibility model considered in Scenario 3 can effectively
cope with the increased variability of RE generations and load
profiles, thereby the integration of wind power can be promoted
with less efforts. The results shows that the flexibility assessment
model can efficiently help to improve RE utilization and reduce
operating costs.

4.4.3. Impact of combination of two above characteristics
In the Scenario 4, the above characteristics, including trans-

mission time delay and flexibility assessment model, are consid-
ered. The total economic costs are reduced by 24.57% compared
with Scenario 1, from 1884.4 DKK to 1421.3 DKK. The amount
of wind power utilization increases 20.74% from 4102.1 kW to
4952.9 kW compared with Scenario 1. The simulation results
demonstrate that the combination of thermal inertial model and
flexibility assessment model can further reduce the economical
operating costs and RE curtailment. The results can be attributed
to two reasons: due to the thermal inertial existing in the heating
pipelines, surplus heat energy can be stored in the distributed
heating network; to ensure flexibility of the IEDHS, more RE
resources are utilized to supply electricity loads and EB units for
satisfying heating loads, instead of increasing the output of the
CHP units. Hence, the total heat output of the CHP is relatively
lower than that in other three scenarios, resulting in lower op-
erating costs. Besides, more wind power is tended to integrated
into the IEDHS.

In Fig. 9(a) and (b), a comparison analysis of the electricity
output of the CHP unit and utilized RE under four scenarios
is displayed. Due to heat storage characteristic and more EB
participation, the electricity outputs of the CHP in Scenarios 2,
3 and 4 are lower than those in Scenario 1 in most scheduling
time slots. However, during some time periods of hours 0–9, it
can be observed that the electricity output of the CHP in Scenario
2 is higher than that in Scenario 1. The reason is that the CHP is
needed to generate more heat energy and store it in the heating
pipelined in advance, resulting in more electricity being pro-
duced. Hence, the least electricity output of the CHP is required
in Scenario 4 because it takes heat storage characteristics and
flexibility assessment into account at the same time. In Fig. 9(b),
Scenario 4 has the greatest RE utilization among four scenarios.

Fig. 10 displayed the scheduled heat energy of Scenarios 1,
2, 3 and 4. Due to the influence factor of transmission time

Table 5
Flexibility comparison results of thermal power units under four scenarios.
Scenarios Downward

flexibility (kW)
Upward flexibility
(kW)

Total flexibility
(kW)

Scenario 1 62.3 112.5 174.8
Scenario 2 70.2 113.8 184
Scenario 3 82.3 114.2 196.5
Scenario 4 85.6 116.5 202.1

delay characteristic, compared with Scenario 1, more heat en-
ergy are scheduled in Scenario 2 during hours 3–4, hours 8–10
and hours 18–20, indicating that thermal energy is stored into
the heating pipelines to minimize operating costs. In Scenario
3, without heat capacity of pipeline network, thermal energy
at the time of hours 14–20 are actively scheduled to improve
the operational flexibility of the CHP unit. Considering influence
factors of thermal inertial and operational flexibility, Scenario
4 has the least thermal energy of CHP among four scenarios,
which reduces the output of the CHP. At the time of hours 8–9,
hours 14–20, more thermal energy is still required to be stored
in advance. The results show that, after introducing these two
kinds of factors, wind power integration is promoted and the
operational flexibility of the CHP is improved by reducing the
output of the CHP. The reason why the electricity output of CHP
and utilized RE for cases 1–4 are the same during 35–89 h is
that cases 1–4 have the same electricity balance constraints after
storing sufficient thermal energy in the heat network. Besides,
operation cost including reducing wind curtailment is the com-
mon objective in cases 1–4, and using the CHP units is more
economical than the thermal plants.

Furthermore, the downward flexibility and upward flexibility
of the CHP unit are displayed in Table 5. It can be observed that
flexibilities in Scenarios 2, 3 and 4 are significantly better than
that in Scenario 1, which illustrates that thermal inertial has a
certain function on improving flexibility. Besides, the downward
flexibility of Scenario 4 increases from 62.3 kW to 85.6 kW, an
increase of 37.40% compared to Scenario 1, resulting in flexibility
improvement of the IEDHS. Since there are almost valley periods
of electric load in the test day, the improvement of the upward
flexibility is not obvious.

4.5. Performance evaluation on IEEE 39-bus system

To further validate the effectiveness and superiority of the
proposed D3RL dispatch model, an IEEE 39-bus system com-
bined with a 16-node distributed heating network is applied, the
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Fig. 10. Comparison results of scheduled heat of the CHP under four scenarios.

Fig. 11. Diagram of the case system with 39-bus electricity and 16-node district heating networks.

structure of which is shown in Fig. 11. Electricity network and
heating network are coupled by the CHP and EB units. The 16-
node distributed heating network is composed of two 8-node
heating networks, and model parameters can be obtained in Li
et al. (2015). Five wind farms are located at bus 30, bus 35, bus 18,
bus 37 and bus 4, respectively. Two CHP units are placed at bus
31 and bus 37, which are connected with node 1 and node 9 of
the district heating network to supply heat energy, respectively.
EBs located at bus 38 and bus 34 are connected with node 2
and node 10, respectively, which are regarded as heat sources.
Thermal power generators are placed at bus 33, bus 36 and bus
39 to supply electric loads.

In Fig. 12, the cumulative reward change of the proposed
method and DDPG algorithm is displayed. The final convergence

result of the proposed D3RL scheduling method is significantly
better than that of the DDPG algorithm. Due to the volatility
associated with the increasing share of wind power, the DDPG
algorithm, which performs the optimization search by exploring
the action space, causes significant oscillations compared to the
proposed method. The training process shows that the proposed
model can effectively reduce the invalid exploration and obtain
better results because the conventional optimization algorithm
can provide the optimal RE generators output to the DRL model
in advance.

Furthermore, to demonstrate the superiority of the well-trained
D3RL agent, comparison simulation with other benchmark meth-
ods on consecutive 30 days test data, e.g., DDPG and PSO-based
stochastic optimization (Zhang et al., 2021b), are conducted. The
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Fig. 12. Cumulative reward comparison of the proposed method and DDPG in IEEE 39-bus system during the training process.

Fig. 13. Daily operating costs of the IEDHS under 30-day test data using the proposed approach, DDPG and PSO.

optimal value is obtained by formalizing the problem as a mixed-
integer linear problem and using the Gurobi Optimizer to solve it,
which is regarded as a theoretical benchmark. The control strat-
egy of the PSO-based stochastic is formalized by averaging the
optimal control strategy over a sample set of 500 historical days
test data. It can be observed that the proposed D3RL energy man-
agement strategy achieves the least average daily costs among
three methods. Besides, Table 6 presents the comparison results
of daily operation costs under different wind power forecast ac-
curacy. DRL-based algorithms are decision processes that address
only current and historical information, eliminating the need for
source/load prediction, and are able to respond adaptively to
random dynamic changes in the environment. In contrast, the
PSO stochastic algorithm is influenced by the prediction accuracy
during the optimal scheduling process(see Fig. 13).

5. Conclusion

In this paper, a collaborative IEDHS energy dispatch model
considering the thermal inertia of the DHS and operational flex-
ibility is established. Based on the transmission time delay char-
acteristics of heating pipeline networks, thermal inertia of the

DHS is constructed. Then, operational flexibility is included in
the multi-objective optimization function, which also considers
operating costs and wind power utilization. Instead of directly ap-
plying DRL methods, a D3RL optimization framework is proposed
to cope with high-dimensional action space brought by large-
scale wind turbines integrated into IEDHS. The D3RL optimization
framework is composed of upper-level DRL model and lower-
level traditional solver model. When receiving the instant action
from the upper-level DRL model, the lower-level solver model
determines the optimal wind power conversion ratio and the
optimization objective, which is used as the reward value for DRL
model. Four scenarios with are applied to analyze the influence
of the different models. Simulation results show that due to the
heat capacity of heating pipeline network, thermal inertia has
positive potential in promote operation flexibility of CHPs, re-
ducing operating costs and improving wind power utilization. To
demonstrated the superiority of the proposed D3RL framework,
a large infrastructure with 39-bus electricity and 16-node district
heating networks is used. Compared with traditional RL, the
proposed D3RL optimization framework can improve its training
speed and convergence performance. In addition, it still has the
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Table 6
Comparison analysis of the daily operation costs under different wind power forecast accuracy.
Method Wind power forecast accuracy (Tawn and Browell, 2022)

100 95 90 85

PSO-based stochastic method 2512.3 2732.5 2962.1 3032.4
DDPG 2280.6 – – –
The proposed method 2019.3 – – –

advantages on dealing with optimization problem affected by
wind power forecast accuracy.

In future work, the rescheduling problem between different
IEDHS will be further investigated. Because IEDHS rescheduling
in practical application gets into trouble with long training time,
poor scenario transability and waste of domain knowledge, a
transfer-RL based rescheduling method will be applied.
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