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Independent screening for single-index hazard rate
models with ultra-high dimensional features

Anders Gorst-Rasmussen†
Department of Mathematical Sciences, Aalborg University, Denmark

Thomas Scheike
Department of Biostatistics, University of Copenhagen, Denmark

Summary. In data sets with many more features than observations, independent screening based
on all univariate regression models leads to a computationally convenient variable selection method.
Recent efforts have shown that in the case of generalized linear models, independent screening
may suffice to capture all relevant features with high probability, even in ultra-high dimension. It
is unclear whether this formal sure screening property is attainable when the response is a right-
censored survival time. We propose a computationally very efficient independent screening method
for survival data which can be viewed as the natural survival equivalent of correlation screening. We
state conditions under which the method admits the sure screening property within a general class
of single-index hazard rate models with ultra-high dimensional features. An iterative variant is also
described which combines screening with penalized regression in order to handle more complex
feature covariance structures. The methods are evaluated through simulation studies and through
application to a real gene expression data set.

Keywords: Independent screening; survival data; additive hazards model; variable selection; ultra-high
dimension

1. Introduction

With the increasing proliferation of biomarker studies, there is a need for efficient methods for relating
a survival time response to a large number of features. In typical genetic microarray studies, the sample
size n is measured in hundreds whereas the number of features p per sample can be in excess of millions.
Sparse regression techniques such as lasso (Tibshirani, 1997) and SCAD (Fan and Li, 2001) have proved
useful for dealing with such high-dimensional features but their usefulness diminishes when p becomes
extremely large compared to n. The notion of NP-dimensionality (Fan and Lv, 2009) has been conceived
to describe such ultra-high dimensional settings which are formally analyzed in an asymptotic regime
where p grows at a non-polynomial rate with n. Despite recent progress (Bradic et al., 2011), theoretical
knowledge about sparse regression techniques under NP-dimensionality is still in its infancy. Moreover,
NP-dimensionality poses substantial computational challenges. When for example pairwise interactions
among gene expressions in a genetic microarray study are of interest, the dimension of the feature space will
trouble even the most efficient algorithms for fitting sparse regression models. A popular ad hoc solution
is to simply pretend that feature correlations are ignorable and resort to computationally swift univariate
regression methods; so-called independent screening methods.

In an important paper, Fan and Lv (2008) laid the formal foundation for using independent screening
to distinguish ‘relevant’ features from ‘irrelevant’ ones. For the linear regression model they showed
that, when the design is close to orthogonal, a superset of the true set of nonzero regression coefficients
can be estimated consistently by simple hard-thresholding of feature-response correlations. This sure
independent screening (SIS) property of correlation screening is a rather trivial one, if not for the fact that
it holds true in the asymptotic regime of NP-dimensionality. Thus, when the feature covariance structure
is sufficiently simple, SIS methods can overcome the noise accumulation in extremely high dimension. In
order to accommodate more complex feature covariance structures Fan and Lv (2008) and Fan et al. (2009)
developed heuristic, iterated methods combining independent screening with forward selection techniques.
Recently, Fan and Song (2010) extended the formal basis for SIS to generalized linear models.

In biomedical applications, the response of interest is often a right-censored survival time, making the
study of screening methods for survival data an important one. Fan et al. (2010) investigated SIS methods
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for the Cox proportional hazards model based on ranking features according to the univariate partial log-
likelihood but gave no formal justification. Tibshirani (2009) suggested soft-thresholding of univariate
Cox score statistics with some theoretical justification but under strong assumptions. Indeed, independent
screening methods for survival data are apt to be difficult to justify theoretically due to the presence of
censoring which can confound marginal associations between the response and the features. Recent work
by Zhao and Li (2010) contains ideas which indicate that independent screening based on the Cox model
may have the SIS property in the absence of censoring.

In the present paper, we depart from the standard approach of studying SIS as a rather specific type of
model misspecification in which the univariate versions of a particular regression model are used to infer the
structure of the joint version of the same particular regression model. Instead, we propose a survival variant
of independent screening based on a model-free statistic which we call the ‘Feature Aberration at Survival
Times’ (FAST) statistic. The FAST statistic is a simple linear statistic which aggregates across survival
times the aberration of each feature relative to its time-varying average. Independent screening based on this
statistic can be regarded as a natural survival equivalent of correlation screening. We study the SIS property
of FAST screening in ultra-high dimension for a general class of single-index hazard rate regression models
in which the risk of an event depends on the features through some linear functional. A key aim has been to
derive simple and operational sufficient conditions for the SIS property to hold. Accordingly, our main result
states that the FAST statistic has the SIS property in an ultra-high dimensional setting under covariance
assumptions as in Fan et al. (2009), provided that censoring is essentially random and that features satisfy
a technical condition which holds when they follow an elliptically contoured distribution. Utilizing the
fact that the FAST statistic is related to the univariate regression coefficients in the semiparametric additive
hazards model (Lin and Ying (1994); McKeague and Sasieni (1994)), we develop methods for iterated SIS.
The techniques are evaluated in a simulation study where we also compare with screening methods for the
Cox model (Fan et al., 2010). Finally, an application to a real genetic microarray data set is presented.

2. The FAST statistic and its motivation

Let T be a survival time which is subject to right-censoring by some random variable C. Denote by N(t) :=
1(T ∧C ≤ t ∧ T ≤ C) the counting process which counts events up to time t, let Y (t) := 1(T ∧C ≥ t)
be the at-risk process, and let Z ∈ Rp denote a random vector of explanatory variables or features. It
is assumed throughout that Z has finite variance and is standardized, i.e. centered and with a covariance
matrix ΣΣΣ with unit diagonal. We observe n independent and identically distributed (i.i.d.) replicates of
{(Ni,Yi,Zi) : 0≤ t ≤ τ} for i = 1, . . . ,n where [0,τ] is the observation time window.

Define the ‘Feature Aberration at Survival Times’ (FAST) statistic as follows:

d := n−1
∫ τ

0

n

∑
i=1
{Zi− Z̄(t)}dNi(t); (1)

where Z̄ is the at-risk-average of the Zis,

Z̄(t) :=
∑n

i=1 ZiYi(t)
∑n

i=1 Yi(t)
.

Components of the FAST statistic define basic measures of the marginal association between each feature
and survival. In the following, we provide two motivations for using the FAST statistic for screening
purposes. The first, being model-based, is perhaps the most intuitive – the second shows that, even in a
model-free setting, the FAST statistic may provide valuable information about marginal associations.

2.1. A model-based interpretation of the FAST statistic
Assume in this section that the Tis have hazard functions of the form

λ j(t) = λ0(t)+Z>j ααα0; j = 1,2, . . . ,n; (2)

with λ0 an unspecified baseline hazard rate and ααα0 ∈ Rp a vector of regression coefficients. This is the
so-called semiparametric additive hazards model (Lin and Ying (1994); McKeague and Sasieni (1994)),
henceforth simply the Lin-Ying model. The Lin-Ying model corresponds to assuming for each N j an
intensity function of the form Yj(t){λ0(t) + Z>j ααα0}. From the Doob-Meyer decomposition dN j(t) =
dM j(t)+Yj(t){λ0(t)+Z>j ααα0}dt with M j a martingale, it is easily verified that

n

∑
i=1
{Zi− Z̄(t)}dNi(t) =

[ n

∑
i=1
{Zi− Z̄(t)}⊗2Yi(t)dt

]
ααα0 +

n

∑
i=1
{Zi− Z̄(t)}dMi(t), t ∈ [0,τ]. (3)
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This suggests that ααα0 is estimable as the solution to the p× p linear system of equations

d = Dααα; (4)

where

d := n−1
n

∑
i=1

∫ τ

0
{Zi− Z̄(t)}dNi(t), and D := n−1

n

∑
i=1

∫ τ

0
Yi(t){Zi− Z̄(t)}⊗2dt. (5)

Suppose α̂αα solves (4). Standard martingale arguments (Lin and Ying, 1994) imply root n consistency of α̂αα ,

√
n(α̂αα−ααα0)

d→ N(0,D−1BD−1), where B = n−1
n

∑
i=1

∫ τ

0
{Zi− Z̄(t)}⊗2dNi(t). (6)

For now, simply observe that the left-hand side of (4) is exactly the FAST statistic; whereas d jD−1
j j for j =

1,2, . . . , p estimate the regression coefficients in the corresponding p univariate Lin-Ying models. Hence we
can interpret d as a (scaled) estimator of the univariate regression coefficients in a working Lin-Ying model.

A nice heuristic interpretation of d results from the pointwise signal/error decomposition (3) which is
essentially a reformulated linear regression model X>Xααα0+X>εεε = X>y with ‘responses’ y j := dN j(t) and
‘explanatory variables’ X j := {Z j− Z̄(t)}Yj(t). The FAST statistic is given by the time average of E{X>y}
and may accordingly be viewed as a survival equivalent of the usual predictor-response correlations.

2.2. A model-free interpretation of the FAST statistic
For a feature to be judged (marginally) associated with survival in any reasonable interpretation of survival
data, one would first require that the feature is correlated with the probability of experiencing an event –
second, that this correlation persists throughout the time window. The FAST statistic can be shown to reflect
these two requirements when the censoring mechanism is sufficiently simple.

Specifically, assume administrative censoring at time τ (so that C1 ≡ τ). Set V (t) := Var{F(t|Z1)}1/2

where F(t|Z1) :=P(T1≤ t|Z1) denotes the conditional probability of death before time t. For each j, denote
by δ j the population version of d j (the in probability limit of d j when n→ ∞). Then

δ j = E
([

Z1 j−
E{Z1 jY1(t)}

E{Y1(t)}
]
1(T1 ≤ t ∧ τ)

)

= E{Z1 jF(τ|Z1)}−
∫ τ

0

E{Z1 jY1(t)}
E{Y1(t)}

E{dF(t|Z1)}

=V (τ)Cor{Z1 j,F(τ|Z1)}+
∫ τ

0
Cor{Z1 j,F(t|Z1)}

V (t)
E{Y1(t)}

E{dF(t|Z1)}.

We can make the following observations:

(i) If Cor{Z1 j,F(t|Z1)} has constant sign throughout [0,τ], then |δ j| ≥ |V (τ)Cor{Z1 j,F(τ|Z1)}|.
(ii) Conversely, if Cor{Z1 j,F(t|Z1)} changes sign, so that the the direction of association with F(t|Z1)

is not persistent throughout [0,τ], then this will lead to a smaller value of |δ j| compared to (i).
(iii) Lastly, if Cor{Z1 j,F(t|Z1)} ≡ 0 then δ j = 0.

In other words, the sample version d j estimates a time-averaged summary of the correlation function t 7→
Cor{Z1 j,F(t|Z1)} which takes into account both magnitude and persistent behavior throughout [0,τ]. This
indicates that the FAST statistic is relevant for judging marginal association of features with survival beyond
the model-specific setting of Section 2.1.

3. Independent screening with the FAST statistic

In this section, we extend the heuristic arguments of the previous section and provide theoretical justification
for using the FAST statistic to screen for relevant features when the data-generating model belongs to a class
of single-index hazard rate regression models.
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3.1. The general case of single-index hazard rate models
In the notation of Section 2, we assume survival times Tj to have hazard rate functions of single-index form:

λ j(t) = λ (t,Z>j ααα0), j = 1,2, . . . ,n. (7)

Here λ : [0,∞)×R→ [0,∞) is a continuous function, Z1, . . . ,Zn are random vectors in Rpn , ααα0 ∈ Rpn is
a vector of regression coefficients, and Z>j ααα0 defines a risk score. We subscript p by n to indicate that the
dimension of the feature space can grow with the sample size. Censoring will always be assumed at least
independent so that C j is independent of Tj conditionally on Z j. We impose the following assumption on
the hazard ‘link function’ λ :

Assumption 1. The survival function exp{−∫ t
0 λ (s, ·)ds} is strictly monotonic for each t ≥ 0.

Requiring the survival function to depend monotonically on Z>j ααα0 is natural in order to enable interpretation
of the components of ααα0 as indicative of positive or negative association with survival. Note that it suffices
that λ (t, ·) is strictly monotonic for each t ≥ 0. Assumption 1 holds for a range of popular survival
regression models. For example, λ (t,x) := λ0(t) + x with λ0 some baseline hazard yields the Lin-Ying
model (2); λ (t,x) := λ0(t)ex is a Cox model; and λ (t,x) := exλ0(tex) is an accelerated failure time model.

Denote by δδδ the population version of the FAST statistic under the model (7) which, by the Doob-Meyer
decomposition dN1(t) = dM1(t)+Y1(t)λ (t,Z>1 ααα0)dt with M1 a martingale, takes the form

δδδ = E
[∫ τ

0
{Z1− e(t)}Y1(t)λ (t,Z>1 ααα0)dt

]
; where e(t) :=

E{Z1Y1(t)}
E{Y1(t)}

. (8)

Our proposed FAST screening procedure is as follows: given some (data-dependent) threshold γn > 0,

(i). calculate the FAST statistic d from the available data and
(ii). declare the ‘relevant features’ to be the set {1≤ j ≤ pn : |d j|> γn}.

By the arguments in Section 2, this procedure defines a natural survival equivalent of correlation screening.
Define the following sets of features:

M̂n
d := {1≤ j ≤ pn : |d j|> γn},

Mn := {1≤ j ≤ pn : α0
j 6= 0},

Mn
δ := {1≤ j ≤ pn : δ j 6= 0}.

The problem of establishing the SIS property of FAST screening amounts to determining when Mn ⊆ M̂n
d

holds with large probability for large n. This translates into two questions: first, when do we have Mn
δ ⊆ M̂n

d ;
second, when do we have Mn ⊆ Mn

δ ? The first question is essentially model-independent and requires
establishing an exponential bound for n1/2|d j − δ j| as n→ ∞. The second question is strongly model-
dependent and is answered by manipulating expectations under the single-index model (7).

We state the main results here and relegate proofs to the appendix where we also state various regularity
conditions. The following principal assumptions, however, deserve separate attention:

Assumption 2. There exists c ∈ Rpn such that E(Z1|Z>1 ααα0) = cZ>1 ααα0.

Assumption 3. The censoring time C1 depends on T1,Z1 only through Z1 j, j /∈Mn.

Assumption 4. Z1 j, j ∈Mn is independent of Z1 j, j /∈Mn.

Assumption 2 is a ‘linear regression’ property which holds true for Gaussian features and, more generally,
for features following an elliptically contoured distribution (Hardin, 1982). In view of Hall and Li (1993)
which states that most low dimensional projections of high dimensional features are close to linear,
Assumption 2 may not be unreasonable a priori even for general feature distributions when pn is large.

Assumption 3 restricts the censoring mechanism to be partially random in the sense of depending only
on irrelevant features. As we will discuss in detail below, such rather strong restrictions on the censoring
distribution seem necessary for obtaining the SIS property; Assumption 3 is both general and convenient.

Assumption 4 is the partial orthogonality condition also used by Fan and Song (2010). Under this
assumption and Assumption 3, it follows from (8) that δ j = 0 whenever j /∈ Mn, implying Mn

δ ⊆ Mn.
Provided that we also have δ j 6= 0 for j ∈Mn (that is, Mn ⊆Mn

pre), there exists a threshold ζn > 0 such that

min
j∈Mn
|δ j| ≥ ζn max

j/∈Mn
|δ j|= 0.
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Consequently, Assumptions 3-4 are needed to enable consistent model selection via independent screening.
Although model selection consistency is not essential in order to capture just some superset of the relevant
features via independent screening, it is pertinent in order to limit the size of such a superset.

The following theorem on FAST screening (FAST-SIS) is our main theoretical result. It states that the
screening property Mn ⊆ M̂n

d may hold with large probability even when pn grows exponentially fast in a
certain power of n which depends on the tail behavior of features. The covariance condition in the theorem
is analogous to that of Fan and Song (2010) for SIS in generalized linear models with Gaussian features.

Theorem 1. Suppose that Assumptions 1-3 hold alongside the regularity conditions of the appendix and
that P(|Z1 j| > s) ≤ l0 exp(−l1sη) for some positive constants l0, l1,η and sufficiently large s. Suppose
moreover that for some c1 > 0 and κ < 1/2,

|Cov[Z1 j,Z>1 ααα0}]| ≥ c1n−κ , j ∈Mn. (9)

Then Mn ⊆Mn
δ . Suppose in addition that γn = c2n−κ for some constant 0 < c2 ≤ c1/2 and that log pn =

o{n(1−2κ)η/(η+2)}. Then the SIS property holds, P(Mn ⊆ M̂n
d)→ 1 when n→ ∞.

Observe that with bounded features, we may take η = ∞ and handle dimension of order log pn = o(n1−2κ).
We may dispense with Assumption 2 on the feature distribution by revising (9). By Lemma 5 in the

appendix, taking ẽ j(t) :=E{Z1 jP(T1≥ t|Z1)}/E{P(T1≥ t|Z1)}, it holds generally under Assumption 3 that

δ j = E{ẽ j(T1∧C1∧ τ)}, j ∈Mn.

Accordingly, if we replace (9) with the assumption that E|Z1 jP(T1 ≥ t|Z1)| ≥ c1n−κ uniformly in t for
j ∈ Mn, the conclusions of Theorem 1 still hold. In other words, we can generally expect FAST-SIS to
detect features which are ‘correlated with the chance of survival’, much in line with Section 2. While this
is valuable structural insight, the covariance assumption (9) seems a more operational condition.

Assumption 3 is crucial to the proof of Theorem 1 and to the general idea of translating a model-based
feature selection problem into a problem of hard-thresholding δδδ . A weaker assumption is not possible in
general. For example, suppose that only Assumption 2 holds and that the censoring time also follows some
single-index model of the form (7) with regression coefficients βββ 0. Applying Lemma 2.1 of Cheng and Wu
(1994) to (8), there exists finite constants ζ1,ζ2 (depending on n) such that

δδδ = ΣΣΣ(ζ1ααα0 +ζ2βββ 0). (10)

It follows that unrestricted censoring will generally confound the relationship between δδδ and ΣΣΣααα0,
hence ααα0. The precise impact of such unrestricted censoring seems difficult to discern, although (10)
suggests that FAST-SIS may still be able to capture the underlying model (unless ζ1ααα0+ζ2βββ 0 is particularly
ill-behaved). We will have more to say about unrestricted censoring in the next section.

Theorem 1 shows that FAST-SIS can consistently capture a superset of the relevant features. A priori,
this superset can be quite large; indeed, ‘perfect’ screening would result by simply including all features.
For FAST-SIS to be useful, it must substantially reduce feature space dimension. Below we state a survival
analogue of Theorem 5 in Fan and Song (2010), providing an asymptotic rate on the FAST-SIS model size.

Theorem 2. Suppose that Assumptions 1-3 hold alongside the regularity conditions of the appendix and
that P(|Z1 j| > s) ≤ l0 exp(−l1sη) for positive constants l0, l1,η and sufficiently large s. If γn = c4n−2κ

for some κ < 1/2 and c4 > 0, there exists a positive constant c5 such that

P[|M̂n
d | ≤ O{n2κ λmax(ΣΣΣ)}]≥ 1−O(pn exp{−c5n(1−2κ)η/(η+2)});

where λmax(Σ) denotes the maximal eigenvalue of the covariance matrix ΣΣΣ of the feature distribution.

Informally, the theorem states that, under similar assumptions as in Theorem 1 and the partial orthogonality
condition (Assumption 4), if features are not too strongly correlated (as measured by the maximal
eigenvalue of the covariance matrix) and pn grows sufficiently fast, we can choose a threshold γn for hard-
thresholding such that the false selection rate becomes asymptotically negligible.

Our theorems say little about how to actually select the hard-thresholding parameter γn in practice.
Following Fan and Lv (2008) and Fan et al. (2009), we would typically choose γn such that |Mn

pre| is of
order n/ logn. Devising a general data-adaptive way of choosing γn is an open problem; false-selection-
based criteria are briefly mentioned in Section 3.3.
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3.2. The special case of the Aalen model
Additional insight into the impact of censoring on FAST-SIS is possible within the more restrictive context
of the nonparametric Aalen model with Gaussian features (Aalen (1980); Aalen (1989)). This particular
model asserts a hazard rate function for Ti of the form

λ j(t) = λ0(t)+Z>j ααα0(t), j = 1,2, . . . ,n; (11)

for some baseline hazard rate function λ0 and ααα0 a vector of continuous regression coefficient functions.
The Aalen model extends the Lin-Ying model of Section 2 by allowing time-varying regression coefficients.
Alternatively, it can be viewed as defining an expansion to the first order of a general hazard rate function
in the class (7) in the sense that

λ
(
t,Z>1 ααα0)≈ λ (t,0)+Z>1 ααα0 ∂λ (t,x)

∂x

∣∣∣
x=0

. (12)

For Aalen models with Gaussian features, we have the following analogue to Theorem 1.

Theorem 3. Suppose that Assumptions 1-2 hold alongside the regularity conditions of the appendix.
Suppose moreover that the Z1 is mean zero Gaussian and that T1 follows a model of the form (11) with
regression coefficients ααα0. Assume that C1 also follows a model of the form (11) conditionally on Z1
and that censoring is independent. Let A0(t) :=

∫ t
0 ααα0(s)ds. If for some κ < 1/2 and c1 > 0, we have

|Cov[Z1 j,Z>1 E{A0(T1∧C1∧ τ)}]| ≥ c1n−κ , j ∈Mn, (13)

then the conclusions of Theorem 1 hold with η = 2.

In view of (12), Theorem 3 can be viewed as establishing, within the model class (7), conditions for first-
order validity of FAST-SIS under a general (independent) censoring mechanism and Gaussian features.
The expectation term in (13) is essentially the ‘expected regression coefficients at the exit time’ which is
strongly dependent on censoring through the symmetric dependence on survival and censoring time.

In fact, general independent censoring is a nuisance even in the Lin-Ying model which would otherwise
seem the ‘natural model’ in which to use FAST-SIS. Specifically, assuming only independent censoring,
suppose that T1 follows a Lin-Ying model with regression coefficients ααα0 conditionally on Z1 and that C1
also follows some Lin-Ying model conditionally on Z1. If Z1 = ΣΣΣ1/2Z̃1 where the components of Z̃1 are
i.i.d. with mean zero and unit variance, there exists a pn× pn diagonal matrix C such that

δδδ = ΣΣΣ1/2CΣΣΣ1/2ααα0. (14)

See Lemma 6 in the appendix. It holds that C has constant diagonal iff features are Gaussian; otherwise the
diagonal is nonconstant and depends nontrivially on the regression coefficients of the censoring model. A
curious implication is that, under Gaussian features, FAST screening has the SIS property for this ‘double’
Lin-Ying model irrespective of the (independent) censoring mechanism. Conversely, sufficient conditions
for a SIS property to hold here under more general feature distributions would require the jth component
of ΣΣΣ1/2CΣΣΣ1/2ααα0 to be ‘large’ whenever α0

j is ‘large’; hardly a very operational assumption. In other words,
even in the simple Lin-Ying model, unrestricted censoring complicates analysis of FAST-SIS considerably.

3.3. Scaling the FAST statistic
The FAST statistic is easily generalized to incorporate scaling. Inspection of the results in the appendix
immediately shows that multiplying the FAST statistic by some strictly positive, deterministic weight does
not alter its asymptotic behavior. Under suitable assumptions, this also holds when weights are stochastic.
In the notation of Section 2, the following two types of scaling are immediately relevant:

dZ
j = d jB

−1/2
j j (Z-FAST); (15)

dLY
j = d jD−1

j j (Lin-Ying-FAST). (16)

The Z-FAST statistic corresponds to standardizing d by its estimated standard deviation; screening with this
statistic is equivalent to the standard approach of ranking features according to univariate Wald p-values.
Various forms of asymptotic false-positive control can be implemented for Z-FAST, courtesy of the central
limit theorem. Note that Z-FAST is model-independent in the sense that its interpretation (and asymptotic
normality) does not depend on a specific model. In contrast, the Lin-Ying-FAST statistic is model-specific
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and corresponds to calculating the univariate regression coefficients in the Lin-Ying model, thus leading to
an analogue of the idea of ‘ranking by absolute regression coefficients’ of Fan and Song (2010) .

We may even devise a scaling of d which mimicks the ‘ranking by marginal likelihood ratio’ screening
of Fan and Song (2010) by considering univariate versions of the natural loss function βββ 7→ βββ>Dβββ −2βββ>d
for the Lin-Ying model. The components of the resulting statistic are rather similar to (16), taking the form

dloss
j = d jB

−1/2
j j (loss-FAST). (17)

Additional flexibility can be gained by using a time-dependent scaling where some strictly positive
(stochastic) weight is multiplied on the integrand in (1). This is beyond the scope of the present paper.

4. Beyond simple independent screening – iterated FAST screening

The main assumption underlying any SIS method, including FAST-SIS, is that the design is close to
orthogonal. This assumption is easily violated: a relevant feature may have a low marginal association with
survival; an irrelevant feature may be indirectly associated with survival through associations with relevant
features etc. To address such issues, Fan and Lv (2008) and Fan et al. (2009) proposed various heuristic
iterative SIS (ISIS) methods which generally work as follows. First, SIS is used to recruit a small subset of
features within which an even smaller subset of features is selected using a (multivariate) variable selection
method such as penalized regression. Second, the (univariate) relevance of each feature not selected in
the variable selection step is re-evaluated, adjusted for all the selected features. Third, a small subset of
the most relevant of these new features is joined to the set of already selected features, and the variable
selection step is repeated. The last two steps are iterated until the set of selected features stabilizes or some
stopping criterion of choice is reached.

We advocate a similar strategy to extend the application domain of FAST-SIS. In view of Section 2.1,
a variable step using a working Lin-Ying model is intuitively sensible. We may also provide some formal
justification. Firstly, estimation in a Lin-Ying model corresponds to optimizing the loss function

L(βββ ) := βββ>Dβββ −2βββ>d; (18)

where D was defined in Section 2.1. As discussed by Martinussen and Scheike (2009), the loss function
(18) is meaningful for general hazard rate models: it is the empirical version of the mean squared prediction
error for predicting, with a working Lin-Ying model, the part of the intensity which is orthogonal to the
at-risk indicator. In the present context, we are mainly interested in the model selection properties of a
working Lin-Ying model. Suppose that T1 conditionally on Z1 follows a single-index model of the form (7)
and that Assumptions 3-4 hold. Suppose that ∆∆∆βββ 0 = δδδ with ∆∆∆ the in probability limit of DDD. Then α0

j ≡ 0
implies β 0

j = 0 (Hattori, 2006) so that a working Lin-Ying model will yield conservative model selection
in a quite general setting. Under stronger assumptions, the following result, related to work by Brillinger
(1983) and Li and Duan (1989), is available.

Theorem 4. Assume that T1 conditionally on Z1 follows a single-index model of the form (7). Suppose
moreover that Assumption 2 holds and that C1 is independent of T1,Z1 (random censoring). If βββ 0

defined by ∆∆∆βββ 0 = δδδ is the vector of regression coefficients of the associated working Lin-Ying model
and ∆∆∆ is nonsingular, then there exists a nonzero constant ν depending only on the distributions of Z>1 ααα0

and C1 such that βββ 0 = νααα0.

Thus a working Lin-Ying model can consistently estimate regression coefficient signs under misspecifica-
tion. From the efforts of Zhu et al. (2009) and Zhu and Zhu (2009) for other types of single-index models,
it seems conceivable that variable selection methods designed for the Lin-Ying model will enjoy certain
consistency properties within the model class (7). The conclusion of Theorem 4 continues to hold when
∆∆∆ is replaced by any matrix proportional to the feature covariance matrix ΣΣΣ. This is a consequence of
Assumption 2 and underlines the considerable flexibility available when estimating in single-index models.

Variable selection based on the Lin-Ying loss (18) can be accomplished by optimizing a penalized loss
function of the form

βββ 7→ L(βββ )+
p

∑
j=1

pλ (|β j|); (19)

where pλ : R→ R is some nonnegative penalty function, singular at the origin to facilitate model selection
(Fan and Li, 2001) and depending on some tuning parameter λ controlling the sparsity of the penalized
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estimator. A popular choice is the lasso penalty (Tibshirani, 2009) and its adaptive variant (Zou, 2006),
corresponding to penalty functions pλ (|β j|) = λ |β j| and pλ (|β j|) = λ |β j|/|β̂ j| with β̂ββ some root n
consistent estimator of βββ 0, respectively. These penalties were studied by Ma and Leng (2007) and
Martinussen and Scheike (2009) for the Lin-Ying model. Empirically, we have had better success with
the one-step SCAD (OS-SCAD) penalty of Zou and Li (2008) than with lasso penalties. Letting

wλ (x) := λ1(x≤ λ )+
(aλ − x)+

a−1
1(x > λ ), a > 2 (20)

an OS-SCAD penalty function for the Lin-Ying model can be defined as follows:

pλ (|β j|) := wλ (D̄|β̂ j|)|β j|. (21)

Here β̂ββ := argmin βββ L(βββ ) is the unpenalized estimator and D̄ := n−1tr(D) is the average diagonal element
of D; this particular re-scaling is just one way to lessen dependency of the penalization on the time scale. If
D has approximately constant diagonal (which is often the case for standardized features), then re-scaling
by D̄ leads to a similar penalty as for OS-SCAD in the linear regression model with standardized features.
The choice a = 3.7 in (20) was recommended by Fan and Li (2001). OS-SCAD has not previously been
explored for the Lin-Ying model but its favorable performance in ISIS for other regression models is well
known (Fan et al., 2009, 2010). OS-SCAD can be implemented efficiently using, for example, coordinate
descent methods for fitting the lasso (Gorst-Rasmussen and Scheike, 2011; Friedman et al., 2007). For
fixed p, the OS-SCAD penalty (21) has the oracle property if the Lin-Ying model holds true. A proof is
beyond scope but follows by adapting Zou and Li (2008) along the lines of Martinussen and Scheike (2009).

In the basic FAST-ISIS algorithm proposed below, the initial recruitment step corresponds to ranking
the regression coefficients in the univariate Lin-Ying models. This is a convenient generic choice because it
enables interpretation of the algorithm as standard ‘vanilla ISIS’ (Fan et al., 2009) for the Lin-Ying model.

Algorithm 1 (Lin-Ying-FAST-ISIS). Set M := {1, . . . , p}, let rmax be some pre-defined maximal number
of iterations of the algorithm.

(a) (Initial recruitment). Perform SIS by ranking |d jD−1
j j |, j = 1, . . . , pn, according to decreasing

order of magnitude and retaining the k0 ≤ d most relevant features A1 ⊆M.
(b) For r = 1,2, . . . do:

(i) (Feature selection). Define ω j := ∞ if j ∈ Ar and ω j := 0 otherwise. Estimate

β̂ββ := argmin βββ

{
L(βββ )+

pn

∑
j=1

ω j pλ̂ (|β j|)
}

;

with pλ defined in (21) for some suitable tuning parameter λ̂ . Set Br := { j : β̂ j 6= 0}.
(ii) If r > 1 and Br = Br−1, or if r = rmax; return Br.

(iii) (Re-recruitment). Otherwise, re-evaluate relevance of features in M\Br according to the
absolute value of their regression coefficient |β̃ j| in the |M\Br| unpenalized Lin-Ying models
including each feature in M\Br and all features in Br, i.e.

β̃ j := β̂ ( j)
1 , where β̂ββ

( j)
= argmin βββ { j}∪Br

L(βββ { j}∪Br
), j ∈M\Br. (22)

Take Ar+1 := Cr ∪Br where Cr is the set of the kr most relevant features in M\Ar, ranked
according to decreasing order of magnitude of |β̃ j|.

Fan and Lv (2008) recommended choosing d to be of order n/ logn. Following Fan et al. (2009), we may
take k0 = b2d/3c and kl = d−|Al | at each step. This k0 ensures that we complete at least one iteration of
the algorithm; the choice of kr for r > 0 ensures that at most d features are included in the final solution.

Algorithm 1 defines an iterated variant of SIS with the Lin-Ying-FAST statistic (16). We can devise
an analogous iterated variant of Z-FAST-SIS in which the initial recruitment is performed by ranking
based on the statistic (15), and the subsequent re-recruitments are performed by ranking |Z|-statistics in the
multivariate Lin-Ying model according to decreasing order of magnitude, using the variance estimator (6).
A third option would be to base recruitment on (17) and re-recruitments on the decrease in the multivariate
loss (18) when joining a given feature to the set of features picked out in the variable selection step.
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The re-recruitment step (b.iii) in Algorithm 1 resembles that of Fan et al. (2009). Its naive
implementation will be computationally burdensome when pn is large, requiring a low-dimensional matrix
inversion per feature. Significant speedup over the naive implementation is possible via the matrix identity

D =

(
e f>
f D̃

)
⇒ D−1 =

(
k−1 −k−1f>D̃−1

−k−1D̃−1f (D̃− e−1ff>)−1

)
where k = e− f>D̃−1f. (23)

Note that only the first row of D−1 is required for the re-recruitment step so that (22) can be implemented
using just a single low-dimensional matrix inversion alongside O(pn) matrix/vector multiplications.
Combining (23) with (6), a similarly efficient implementation applies for Z-FAST-ISIS.

The variable selection step (b.i) of Algorithm 1 requires the choice of an appropriate tuning parameter.
This is traditionally a difficult part of penalized regression, particularly when the aim is model selection
where methods such as cross-validation are prone to overfitting (Leng et al., 2007). Previous work on ISIS
used the Bayesian information criterion (BIC) for tuning parameter selection (Fan et al., 2009). Although
BIC is based on the likelihood, we may still define the following ‘pseudo BIC’ based on the loss (18):

PBIC(λ ) = κ{L(β̂ββ λ )−L(β̂ββ )}+n−1dfλ logn. (24)

Here β̂ββ λ is the penalized estimator, β̂ββ is the unpenalized estimator, κ > 0 is a scaling constant of choice, and
dfλ estimates the degrees of freedom of the penalized estimator. A computationally convenient choice is
dfλ = ‖β̂ββ λ‖0 (Zou et al., 2007). It turns out that choosing λ̂ = argmin λ PBICλ may lead to model selection
consistency. Specifically, the loss (18) for the Lin-Ying model is of the least-squares type. Then we can
repeat the arguments of Wang and Leng (2007) and show that, under suitable consistency assumptions for
the penalized estimator, there exists a sequence λn→ 0 yielding selection consistency for β̂ββ λn

and satisfying

P
{

inf
λ∈S

PBIC(λ )> PBIC(λn)
}
→ 1, n→ ∞; (25)

with S the union of the set of tuning parameters λ which lead to overfitted (strict supermodels of the true
model), respectively underfitted models (any model which do not include the true model). While (25)
holds independently of the scaling constant κ , the finite-sample behavior of PBIC depends strongly on κ . A
sensible value may be inferred heuristically as follows: the range of a ‘true’ likelihood BIC is asymptotically
equivalent to a Wald statistic in the sense that (for fixed p),

BIC(0)−BIC(∞) = β̂ββ
>
MLI(βββ 0)β̂ββ ML +op(n−1/2); (26)

with β̂ββ ML the maximum likelihood estimator and I(βββ 0)≈ n−1Var(β̂ββ ML−βββ 0)
−1 the information matrix. We

may specify κ by requiring that PBIC(0)−PBIC(∞) admits an analogous interpretation as a Wald statistic.
Since PBIC(0)−PBIC(∞) = κd>D−1d+op(n−1/2), it follows from (6) that we should choose

κ :=
d>B−1d
d>D−1d

.

This choice of κ also removes the dependency of PBIC on the time scale.

5. Simulation studies

In this section, we investigate the performance of FAST screening on simulated data. Rather than comparing
with popular variable selection methods such as the lasso, we will compare with analogous screening
methods based on the Cox model (Fan et al., 2010). This seems a more pertinent benchmark since previous
work has already demonstrated that (iterated) SIS can outperform variable selection based on penalized
regression in a number of cases (Fan and Lv (2008); Fan et al. (2009)).

For all the simulations, survival times were generated from three different conditionally exponential
models of the generic form (7); that is, a time-independent hazard ‘link function’ applied to a linear
functional of features. For suitable constants c, the link functions were as follows (see also Figure 1):

Logit : λlogit(t,x) := {1+ exp(clogitx}−1

Cox : λcox(t,x) := exp(ccoxx)
Log : λlog(t,x) := log{e+(clogx)2}{1+ exp(clogx)}−1.
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The link functions represent different characteristic effects on the feature functional, ranging from uniformly
bounded (logit) over fast decay/increase (Cox), to fast decay/slow increase (log). We took clogit = 1.39,
ccox = 0.68, and clog = 1.39 and, unless otherwise stated, survival times were right-censored by independent
exponential random variables with rate parameters 0.12 (logit link), 0.3 (Cox link) and 0.17 (log link). These
constants were selected to provide a crude ‘calibration’ to make the simulation models more comparable:
for a univariate standard Gaussian feature Z1, a regression coefficient β = 1, and a sample size of n = 300,
the expected |Z|-statistic was 8 for all three link functions with an expected censoring rate of 25%, as
evaluated by numerical integration based on the true likelihood.

Methods for FAST screening have been implemented in the R package ‘ahaz’ (Gorst-Rasmussen, 2011).
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Figure 1. The three hazard rate link functions used in the simulation studies

5.1. Performance of FAST-SIS
We first considered the performance of basic, non-iterated FAST-SIS. Features were generated as in
scenario 1 of Fan and Song (2010). Specifically, let ε be univariate standard Gaussian. Define

Z j :=
εεε j +a jε√

1+a2
j

, j = 1, . . . , p; (27)

where εεε j is independently distributed as a standard Gaussian for j = 1,2, . . . ,bp/3c: independently
distributed according to a double exponential distribution with location parameter zero and scale para-
meter 1 for j = bp/3c+ 1, . . . ,b2p/3c; and independently distributed according to a Gaussian mixture
0.5N(−1,1)+ 0.5N(1,0.5) for j = b2p/3c+ 1, . . . , p. The constants a j satisfy a1 = · · · = a15 and a j = 0
for j > 15. With the choice a1 =

√
ρ/(1−ρ), 0≤ ρ ≤ 1, we obtain Cor(Z1i,Z1 j) = ρ for i 6= j, i, j ≤ 15,

enabling crude adjustment of the correlation structure of the feature distribution. Regression coefficients
were chosen to be of the generic form ααα0 = (1,1.3,1,1.3, . . .)> with exactly the first s components nonzero.
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Figure 2. Minimum observed |Z|-statistics in the oracle model under λlog, for the SIS simulation study.
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Table 1. MMMS and RSD (in parentheses) for basic SIS with n = 300 and p = 20,000 (100 simulations).

λlogit λcox λlog

ρ s = 3 s = 6 s = 9 s = 3 s = 6 s = 9 s = 3 s = 6 s = 9

0 d 3 (1) 32 (53) 530 (914) 3 (0) 7 (5) 45 (103) 3 (0) 22 (44) 202 (302)
dLY 4 (1) 66 (95) 678 (939) 3 (0) 11 (14) 96 (176) 3 (1) 41 (87) 389 (466)
dZ 3 (1) 40 (71) 522 (873) 3 (0) 7 (7) 48 (105) 3 (0) 22 (45) 262 (318)
Cox 3 (1) 44 (68) 572 (928) 3 (0) 7 (4) 40 (117) 3 (0) 26 (51) 280 (306)

0.25 d 3 (0) 6 (1) 11 (1) 3 (0) 6 (0) 9 (1) 3 (0) 6 (1) 10 (1)
dLY 3 (0) 7 (1) 11 (2) 3 (0) 6 (1) 10 (1) 3 (0) 7 (1) 11 (1)
dZ 3 (0) 6 (1) 11 (1) 3 (0) 6 (0) 10 (1) 3 (0) 6 (1) 10 (1)
Cox 3 (0) 6 (1) 11 (1) 3 (0) 6 (0) 9 (1) 3 (0) 6 (1) 10 (1)

0.5 d 3 (0) 7 (2) 12 (2) 3 (0) 6 (1) 10 (1) 3 (0) 7 (1) 11 (2)
dLY 3 (0) 9 (3) 13 (1) 3 (0) 8 (2) 13 (2) 3 (0) 8 (2) 12 (2)
dZ 3 (0) 8 (3) 12 (1) 3 (0) 7 (2) 12 (2) 3 (0) 7 (2) 12 (2)
Cox 3 (1) 9 (3) 13 (2) 3 (0) 6 (1) 11 (2) 3 (0) 8 (2) 12 (2)

0.75 d 3 (1) 9 (2) 13 (1) 3 (0) 8 (2) 12 (1) 3 (1) 9 (3) 12 (2)
dLY 4 (2) 11 (3) 14 (2) 4 (1) 11 (3) 14 (1) 4 (2) 10 (2) 13 (1)
dZ 4 (1) 10 (2) 13 (1) 3 (1) 10 (3) 13 (1) 3 (1) 9 (2) 13 (1)
Cox 5 (3) 12 (2) 14 (1) 3 (0) 7 (2) 12 (2) 4 (1) 11 (3) 14 (2)

For each combination of hazard link function, non-sparsity level s, and correlation ρ , we performed 100
simulations with p = 20,000 features and n = 300 observations. Features were ranked using the vanilla
FAST statistic, the scaled FAST statistics (15) and (16), and SIS based on a Cox working model (Cox-SIS),
the latter ranking features according their absolute univariate regression coefficient. Results are shown in
Table 1. As a performance measure, we report the median of the minimum model size (MMS) needed to
detect all relevant features alongside its relative standard deviation (RSD), the interquartile range divided
by 1.34. The MMS is a useful performance measure for this type of study since it eliminates the need to
select a threshold parameter for SIS. The censoring rate in the simulations was typically 30%-40%.

For all methods, the MMMS is seen to increase with feature correlation ρ and non-sparsity s. As also
noted by Fan and Song (2010) for the case of SIS for generalized linear models, some correlation among
features can actually be helpful since it increases the strength of marginal signals. Overall, the statistic dLY

seems to perform slightly worse than both d and dZ whereas the latter two statistics perform similarly to
Cox-SIS. In our basic implementation, screening with any of the FAST statistics was more than 100 times
faster than Cox-SIS, providing a rough indication of the relative computational efficiency of FAST-SIS.

To gauge the relative difficulty of the different simulation scenarios, Figure 2 shows box plots of the
minimum of the observed |Z|-statistics in the oracle model (the joint model with only the relevant features
included and estimation based on the likelihood under the true link function) for the link function λlog. This
particular link function represents an ‘intermediate’ level of difficulty; with |Z|-statistics for λcox generally
being somewhat larger and |Z|-statistics for λlogit being slightly smaller. Even with oracle information and
the correct working model, these are evidently difficult data to deal with.

5.2. FAST-SIS with non-Gaussian features and nonrandom censoring
We next investigated FAST-SIS with non-Gaussian features and a more complex censoring mechanism.
The simulation scenario was inspired by the previous section but with all features generated according
to either a standard Gaussian distribution, a t-distribution with 4 degrees of freedom, or a unit rate
exponential distribution. Features were standardized to have mean zero and variance one, and the
feature correlation structure was such that Cor(Z1i,Z1 j) = 0.125 for i, j < 15, i 6= j and Cor(Z1i,Z1 j) = 0
otherwise. Survival times were generated according to the link function λlog with regression coefficients
βββ = (1,1.3,1,1.3,1,1.3,0,0, . . .) while censoring times were generated according to the same model (link
function λlog and conditionally on the same feature realizations) with regression coefficients β̃ββ = kβββ . The
constant k controls the association between censoring and survival times, leading to a basic example of
nonrandom censoring (competing risks).

Using p = 20,000 features and n = 300 observations, we performed 100 simulations under each of
the three feature distributions, for different values of k. Table 2 reports the MMMS and RSD for the four
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Table 2. MMMS and RSD (in parentheses) for SIS under nongaussian
features/nonrandom censoring with n = 300 and p = 20,000 (100 simulations).

k

Feature distr. k = 0 −0.5 −0.25 0.25 0.5

Gaussian d 6 (1) 8 (8) 7 (4) 6 (1) 7 (3)
dLY 6 (1) 8 (6) 7 (3) 7 (2) 8 (5)
dZ 6 (1) 7 (6) 7 (2) 6 (1) 7 (2)
dloss 6 (1) 8 (6) 7 (3) 6 (1) 7 (3)
Cox 6 (1) 8 (5) 7 (2) 6 (1) 7 (2)

t (d f = 4) d 6 (1) 13 (17) 7 (5) 6 (1) 7 (3)
dLY 11 (7) 12 (8) 9 (7) 48 (136) 99 (185)
dZ 7 (3) 17 (20) 8 (5) 7 (2) 7 (3)
dloss 6 (1) 8 (7) 7 (4) 8 (15) 10 (10)
Cox 7 (4) 15 (23) 8 (10) 8 (4) 9 (5)

Exponential d 6 (1) 6 (2) 6 (1) 7 (4) 8 (7)
dLY 6 (1) 11 (12) 7 (3) 6 (1) 6 (1)
dZ 15 (10) 34 (36) 24 (17) 22 (28) 26 (29)
dloss 6 (0) 7 (4) 6 (1) 6 (1) 6 (1)
Cox 8 (4) 22 (31) 14 (11) 9 (6) 9 (8)

different screening methods of the previous section, as well as for the statistic dloss in (17). The censoring
rate in all scenarios was around 50%.

From the column with k = 0 (random censoring), the heavier tails of the t-distribution increases the
MMMS, particularly for dLY. The vanilla FAST statistic d seems the least affected here, most likely
because it does not directly involve second-order statistics which are poorly estimated due to the heavier
tails. While dZ and dloss are also scaled by second-order statistics, the impact of the tails is dampened
by the square-root transformation in the scaling factors. In contrast, the more distinctly non-Gaussian
exponential distribution is problematic for dZ . Overall, the statistics d and dloss seems to have the best and
most consistent performance across feature distributions. Nonrandom censoring generally increases the
MMMS and RSD, particularly for the non-Gaussian distributions. There appears to be no clear difference
between the effect of positive and negative values of k. We found that the effect of k 6= 0 diminished when the
sample size was increased (results not shown), suggesting that nonrandom censoring in the present example
leads to a power rather than bias issue. This may not be surprising in view of the considerations below (14).
However, the example still shows the dramatic impact of nonrandom censoring on the performance of SIS.

5.3. Performance of FAST-ISIS
We lastly evaluated the ability of FAST-ISIS (Algorithm 1) to cope with scenarios where FAST-SIS fails.
As in the previous sections, we compare our results with the analogous ISIS screening method for the Cox
model. To perform Cox-ISIS, we used the R package ‘SIS’, with (re)recruitment based on the absolute Cox
regression coefficients and variable selection based on OS-SCAD. We also compared with Z-FAST-ISIS
variant described below Algorithm 1 in which (re)recruitment is based on the Lin-Ying model |Z|-statistics
(results for FAST-ISIS with (re)recruitment based on the loss function were very similar).

For the simulations, we adopted the structural form of the feature distributions used by Fan et al. (2010).
We considered n = 300 observations and p = 500 features which were jointly Gaussian and marginally
standard Gaussian. Only regression coefficients and feature correlations differed between cases as follows:

(a) The regression coefficients are β1 =−0.96, β2 = 0.90, β3 = 1.20, β4 = 0.96, β5 =−0.85, β6 = 1.08
and β j = 0 for j > 6. Features are independent, Cor(Z1i,Z1 j) = 0 for i 6= j.

(b) The regression coefficients are the same as in (a) while Corr(Z1i,Z1 j) = 0.5 for i 6= j.
(c) The regression coefficients are β1 = β2 = β3 = 4/3, β4 =−2

√
2. The correlation between features is

given by Cor(Z1,4,Z1 j) = 1/
√

2 for j 6= 4 and Cor(Z1i,Z1 j) = 0.5 for i 6= j, i, j 6= 4.
(d) The regression coefficients are β1 = β2 = β3 = 4/3, β4 = −2

√
2 and β5 = 2/3. The correlation

between features is Cor(Z1,4,Z1 j) = 1/
√

2 for j /∈ {4,5}, Cor(Z1,5,Z1 j) = 0 for j 6= 5, and
Cor(Z1i,Z1 j) = 0.5 for i 6= j, i, j /∈ {4,5}.
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Table 3. Simulation results for ISIS with n = 300, p = 500 and d = 17 (100 simulations). Numbers in
parentheses are standard deviations (or relative standard deviation, for the MMMS).

Average no. true positives (ISIS) Average model size (ISIS)

Link Case MMMS (RSD) LY-FAST Z-FAST Cox LY-FAST Z-FAST Cox

λlogit (a) 7 (3) 6.0 (0) 6.0 (0) 5.5 (1) 7.8 (1) 7.9 (2) 6.3 (2)
(b) 500 (1) 5.5 (1) 5.5 (1) 3.4 (1) 7.0 (2) 6.7 (2) 4.3 (2)
(c) 240 (125) 3.7 (1) 3.8 (1) 3.0 (2) 5.2 (2) 5.7 (3) 4.5 (4)
(d) 230 (124) 4.8 (1) 4.7 (1) 3.5 (2) 5.9 (2) 6.2 (3) 4.9 (4)

λcox (a) 7 (1) 6.0 (0) 6.0 (0) 6.0 (0) 7.5 (1) 7.5 (1) 6.2 (1)
(b) 500 (1) 5.8 (1) 5.8 (1) 5.6 (1) 7.2 (2) 6.8 (1) 6.4 (2)
(c) 218 (120) 3.7 (1) 3.6 (1) 3.0 (2) 5.1 (3) 5.3 (3) 4.9 (4)
(d) 258 (129) 4.9 (1) 4.8 (1) 3.8 (2) 6.3 (2) 6.0 (2) 6.4 (5)

λlog (a) 6 (1) 6.0 (0) 6.0 (0) 6.0 (0) 7.3 (1) 7.4 (1) 6.3 (1)
(b) 500 (1) 5.8 (1) 5.7 (1) 4.9 (1) 7.2 (2) 6.7 (1) 5.7 (2)
(c) 252 (150) 3.9 (0) 3.9 (1) 3.4 (1) 5.3 (2) 4.9 (2) 5.5 (5)
(d) 223 (132) 4.9 (1) 4.8 (1) 4.0 (2) 6.0 (2) 6.1 (2) 5.9 (5)

Case (a) serves as a basic benchmark whereas case (b) is harder because of the correlation between relevant
and irrelevant features. Case (c) introduces a strongly relevant feature Z4 which is not marginally associated
with survival; lastly, case (d) is similar to case (c) but also includes a feature Z5 which is weakly associated
with survival and does not ‘borrow’ strength from its correlation with other relevant features.

Following Fan et al. (2010), we took d = bn/ logn/3c = 17 for the initial dimension reduction;
performance did not depend much on the detailed choice of d of order n/ logn. For the three different
screening methods, ISIS was run for maximum of 5 iterations. (P)BIC was used for tuning the variable
selection steps. Results are shown in Table 3, summarized over 100 simulations. We report the average
number of truly relevant features selected by ISIS and the average final model size, alongside standard
deviations in parentheses. To provide an idea of the improvement over basic SIS, we also report the median
of the minimum model size (MMMS) for the initial SIS step (based on vanilla FAST-SIS only). The
censoring rate in the different scenarios was 25%-35%.

The overall performance of the three ISIS methods is comparable between the different cases. All
methods deliver a dramatic improvement over non-iterated SIS, but no one method performs significantly
better than the others. The two FAST-ISIS methods have a surprisingly similar performance. As one would
expect, Cox-ISIS does particularly well under the link function λcox but does not appear to be uniformly
better than the two FAST-ISIS methods even in this ideal setting. Under the link function λlogit, both FAST-
ISIS methods outperform Cox-ISIS in terms of the number of true positives identified, as do they for the link
function λlog, although less convincingly. On the other hand, the two FAST-ISIS methods generally select
slightly larger models than Cox-ISIS and their false-positive rates (not shown) are correspondingly slightly
larger. FAST-ISIS was 40-50 times faster than Cox-ISIS, typically completing calculations in 0.5-1 seconds
in our specific implementation. Figure 3 shows box plots of the minimum of the observed |Z|-statistics in
the oracle model (based on the likelihood undebr the true model).
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Figure 3. Minimum observed |Z|-statistics in the oracle models for the FAST-ISIS simulation study.
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We have experimented with other link functions and feature distributions than those described above
(results not shown). Generally, we found that Cox-ISIS performs worse than FAST-ISIS for bounded link
functions. The observation from Table 3, that FAST-ISIS may improve upon Cox-ISIS even under the
link function λcox, does not necessarily hold when the signal strength is increased. Then Cox-ISIS will
be superior, as expected. Changing the feature distribution to one for which the linear regression property
(Assumption 2) does not hold leads to a decrease in the overall performance for all three ISIS methods.

6. Application to AML data

The study by Metzeler et al. (2008) concerns the development and evaluation of a prognostic gene
expression marker for overall survival among patients diagnosed with cytogenetically normal acute myeloid
leukemia (CN-AML). A total of 44,754 gene expressions were recorded among 163 adult patients using
Affymetrix HG-U133 A1B microarrays. Based the method of supervised principal components (Bair and
Tibshirani, 2004), the gene expressions were used to develop an 86-gene signature for predicting survival.
The signature was validated on an external test data set consisting of 79 patients profiled using Affymetrix
HG-U133 Plus 2.0 microarrays. All data is publicly available on the Gene Expression Omnibus web
site (http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE12417. The CN-AML data was
recently used by Benner et al. (2010) for comparing the performance of variable selection methods.

Median survival time was 9.7 months in the training data (censoring rate 37%) and 17.7 months in the
test data (censoring rate 41%). Preliminary to analysis, we followed the scaling approach employed by
Metzeler et al. (2008) and centered the gene expressions separately within the test and training data set,
followed by a scaling of the training data with respect to the test data.

We first applied vanilla FAST-SIS to the n = 163 patients in the training data to reduce the dimension
from p = 44,754 to d = bn/ log(n)c = 31. We then used OS-SCAD to select a final set among these 31
genes. Since the PBIC criterion can be somewhat conservative in practice, we selected the OS-SCAD tuning
parameter using 5-fold cross-validation based on the loss function (18). Specifically, using a random split
of {1, . . . ,163} into folds F1, . . . ,F5 of approximately equal size, we chose λ as:

λ̂ = argmin λ

5

∑
i=1

L(Fi){β̂ββ−Fi
(λ )};

with L(Fi) the loss function using only observations from Fi and β̂ββ−Fi
(λ ) the regression coefficients

estimated for a tuning parameter λ , omitting observations from Fi. This approach yielded a set of 7
genes, 5 of which also appeared in the signature of Metzeler et al. (2008). For β̂ββ the estimated penalized
regression coefficients, we calculated a risk score ZZZ>j β̂ββ for each patient in the test data. In a Cox model,
the standardized risk score had a hazard ratio of 1.69 (p = 6 ·10−4; Wald test). In comparison, lasso based
on the Lin-Ying model (Leng et al. (2007); Martinussen and Scheike (2009)) with 5-fold cross-validation
gave a standardized risk score with a hazard ratio of 1.56 (p = 0.003; Wald test) in the test data, requiring
5 genes; Metzeler et al. (2008) reported a hazard ratio of 1.85 (p = 0.002) for their 86-gene signature.

We repeated the above calculations for the three scaled versions of the FAST statistic (15)-(17). Since
assessment of prediction performance using only a single data set may be misleading, we also validated
the screening methods via leave-one-out (LOO) cross-validation based on the 163 patients in the training
data. For each patient j, we used FAST-SIS as above (or Lin-Ying lasso) to obtain regression coefficients
β̂ββ− j based on the remaining 162 patients and defined the jth LOO risk score as the percentile of Z>j β̂ββ− j

among {Z>i β̂ββ− j}i6= j. We calculated Wald p-values in a Cox regression model including the LOO score as
a continuous predictor. Results are shown in Table 4 while Table 5 shows the overlap between gene sets
selected in the training data. There is seen to be some overlap between the different methods, particularly
between vanilla FAST-SIS and the lasso, and many of the selected genes also appear in the signature of
Metzeler et al. (2008). In the test data, the prediction performance of the different screening methods was
comparable whereas the lasso had a slight edge in the LOO calculations. Lin-Ying SIS selected only a single
gene in the test data and typically selected no genes in the LOO calculations. We found FAST screening to
be slightly more sensitive to the cross-validation procedure than the lasso.

We next evaluated the extent to which iterated FAST-SIS might improve upon the above results. From
our limited experience with applying ISIS to real data, instability can become an issue when several
iterations of ISIS are run; particularly when cross-validation is involved. Accordingly, we ran only a single
iteration of ISIS using |Z|-FAST-ISIS. The algorithm kept 2 of the genes from the first FAST-SIS round
and selected 3 additional genes so that the total number of genes was 5. Calculating in the test data a
standardized risk score based on the final regression coefficients, we obtained a Cox hazard ratio of only
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Table 4. Prediction performance of FAST-SIS and Lin-Ying lasso in the AML data,
evaluated in terms of the Cox hazard ratio for the standardized continuous risk score.
The LOO calculations are based on the training data only.

Screening method

Scenario Summary statistic d dLY d|Z| dloss Lasso

Test data Hazard ratio 1.69 1.59 1.46 1.58 1.54
p-value 6 ·10−4 0.0007 0.01 0.002 0.004
No. predictors 7 1 3 7 5

LOO p-value 4 ·10−7 0.16 5 ·10−5 4 ·10−4 4 ·10−8

Median no. predictors 7 0 3 5 5

Table 5. Overlap between gene sets selected by the different
screening methods and the signature of Metzeler et al. (2008).

d dLY d|Z| dloss Lasso Metzeler

d 7 0 1 2 4 5
dLY 1 0 0 0 0
d|Z| 3 2 2 2
dloss 7 2 5

Lasso 5 5
Metzeler 86

1.06 (p = 0.6; Wald test) which is no improvement over non-iterated FAST-SIS. A similar conclusion was
reached for the corresponding LOO calculations in the training data which gave a Cox Wald p-value of
0.001 for the LOO risk score, using a median of 4 genes. None of the other FAST-ISIS methods lead to
improved prediction performance compared to their non-iterated counterparts.

FAST-ISIS runs swiftly on this large data set: one iteration of the algorithm (re-recruitment and OSS-
SCAD feature selection with 5-fold cross-validation) completes in under 5 seconds on a standard laptop.

Altogether, the example shows that FAST-SIS can compete with a computationally more demanding
full-scale variable selection method in the sense of providing similarly sparse models with competitive
prediction properties. FAST-ISIS, while computationally very feasible, did not seem to improve prediction
performance over simple independent screening in this particular data set.

7. Discussion

Independent screening – the general idea of looking at the effect of one feature at a time – is a well-
established method for dimensionality reduction. It constitutes a simple and excellently scalable approach
to analyzing high-dimensional data. The SIS property introduced by Fan and Lv (2008) has enabled a basic
formal assessment of the reasonableness of general independent screening methods. Although the practical
relevance of the SIS property has been subject to scepticism (Roberts, 2008), the formal context needed
to develop the SIS property is clearly useful for identifying the many implicit assumptions made when
applying univariate screening methods to multivariate data.

We have introduced a SIS method for survival data based on the notably simple FAST statistic. In
simulation studies, FAST-SIS performed on par with SIS based on the popular Cox model, while being
considerably more amenable to analysis. We have shown that FAST-SIS may admit the formal SIS property
within a class of single-index hazard rate models. In addition to assumptions on the feature distribution
which are well known in the literature, a principal assumption for the SIS property to hold is that censoring
times do not depend on the relevant features nor survival. While such partially random censoring may
be appropriate to assume in many clinical settings, it indicates that additional caution is called for when
applying univariate screening and competing risks are suspected.

A formal consistency property such as the SIS property is but one aspect of a statistical method and
does not make FAST-SIS universally preferable. Not only is the SIS property unlikely to be unique to FAST
screening, but different screening methods often highlight different aspects of data (Ma and Song, 2011),
making it impossible and undesirable to recommend one generic method. We do, however, consider FAST-
SIS a good generic choice of initial screening method for general survival data. Ultimately, the initial choice
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of a statistical method is likely to be made on the basis of parsimony, computational speed, and ease of
implementation. The FAST statistic is about as difficult to evaluate as a collection of correlation coefficients
while iterative FAST-SIS only requires solving one linear system of equations. This yields substantial
computational savings over methods not sharing the advantage of linearity of estimating equations.

Iterated SIS has so far been studied to a very limited extent in an empirical context. The iterated
approach works well on simulated data, but it is not obvious whether this necessarily translates into good
performance on real data. In our example involving a large gene expression data set, ISIS did not improve
results in terms of prediction accuracy. Several issues may affect the performance of ISIS on real data.
First, it is our experience that the ‘Rashomon effect’, the multitude of well-fitting models (Breiman, 2001),
can easily lead to stability issues for this type of forward selection. Second, it is often difficult to choose a
good tuning parameter for the variable selection part of ISIS. Using BIC may lead to overly conservative
results, whereas cross-validation may lead to overfitting when only the variable selection step – and not the
recruitment steps – are cross-validated. He and Lin (2011) recently discussed how to combine ISIS with
stability selection (Meinshausen and Bühlmann, 2010) in order to tackle instability issues and to provide
a more informative output than the concise ‘list of indices’ obtained from standard ISIS. Their proposed
scheme requires running many subsampling iterations of ISIS, a purpose for which FAST-ISIS will be ideal
because of its computational efficiency. The idea of incorporating stability considerations is also attractive
from a foundational point of view, being a pragmatic departure from the limiting de facto assumption that
there is a single, true model. Investigation of such computationally intensive frameworks, alongside a study
of the behavior of ISIS on a range of different real data sets, is a pertinent future research topic.

A number of other extensions of our work may be of interest. We have focused on the important case
of time-fixed features and right-censored survival times but the FAST statistic can also be used with time-
varying features alongside other censoring and truncation mechanism supported by the counting process
formalism. Theoretical analysis of such extensions is a relevant future research topic, as is analysis of more
flexible, time-dependent scaling strategies for the FAST statistic. Fan et al. (2011) recently discussed SIS
where features enter in nonparametric, smooth manner, and an extension of their framework to FAST-SIS
appears both theoretically and computationally feasible. Lastly, the FAST statistic is closely related to the
univariate regression coefficients in the Lin-Ying model which is rather forgiving towards misspecification:
under feature independence, the univariate estimator is consistent whenever the particular feature under
investigation enters the hazard rate model as a linear function of regression coefficients (Hattori, 2006).
The Cox model does not have a similar property (Struthers and Kalbfleisch, 1986). Whether such internal
consistency under misspecification or lack hereof affects screening in a general setting is an open question.

Appendix: proofs

In addition to Assumptions 1-4 stated in the main text, we will make use of the following assumptions for
the quantities defining the class of single-index hazard rate models (7):

A. E(Z1 j) = 0 and E(Z2
1 j) = 1, j = 1,2, . . . , pn.

B. P{Y1(τ) = 1}> 0.
C. Var(Z>1 ααα0) is uniformly bounded above.

The details in Assumption A are included mainly for convenience; it suffices to assume that E(Z2
1 j)< ∞.

Our first lemma is a basic symmetrization result, included for completeness.

Lemma 1. Let X be a random variable with mean µ and finite variance σ2. For t >
√

8σ , it holds that
P(|X−µ|> t)≤ 4P(|X |> t/4).

Proof. First note that when t >
√

8σ we have P(|X −µ|> t/2)≤ 1/2, by Chebyshev’s inequality. Let X ′

be an independent copy of X . Then

2P(|X | ≥ t/4)≥ P(|X ′−X |> t/2)≥ P(|X−µ|> t ∧|X ′−µ| ≤ t/2). (28)

But
P(|X−µ|> t ∧|X ′−µ| ≤ t/2) = P(|X−µ|> t)P(|X ′−µ| ≤ t/2)≥ 1

2
P(|X−µ|> t).

Combining this with (28), the statement of the lemma follows.

The next lemma provides a universal exponential bound for the FAST statistic and is of independent interest.
It bears some similarity to exponential bounds reported by Bradic et al. (2010) for the Cox model.
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Lemma 2. Under assumptions A-B there exists constants C1,C2,C3 > 0 independent of n such that for
any K > 0 and 1≤ j ≤ pn, it holds that

P{n1/2|d j−δ j|>C1(1+ t)} ≤ 10exp{−t2/(2K2)}+C2 exp(−C3n)+nP(|Z1 j|> K).

Proof. Fix j throughout. Assume first that |Zi j| ≤ K for some finite K. Define the random variables

An := n−1
n

∑
i=1

∫ τ

0
{Zi j− e j(t)}dNi(t), Bn :=

∫ τ

0
{Z̄ j(t)− e j(t)}dN̄(t);

where N̄(t) := n−1{N1(t)+ · · ·+Nn(t)} and e j(t) = E{Z̄ j(t)}. Then we can write

n1/2(d j−δ j) = n1/2{An−E(An)}+n1/2{Bn−E(Bn)}.

We will deal with each term in the display separately. Since dNi(t)≤ 1, it holds that

|An| ≤ max
1≤i≤n

|Zi j|+‖e j‖∞ ≤ 2K.

and Hoeffding’s inequality (Hoeffding, 1963) implies

P(n1/2|An−E(An)|> t)≤ 2exp{−t2/(2K2)}. (29)

Obtaining an analogous bound for n1/2{Bn−E(Bn)} requires a more detailed analysis. Since dN̄(t)≤ 1,

|Bn| ≤
∫ τ

0
|Z̄ j(t)− e j(t)|dN̄(t)≤ ‖Z̄ j− e j‖∞. (30)

We will obtain an exponential bound for the right-hand side via empirical process methods. Define
E(k)(t) := n−1 ∑n

i=1 Zk
i jYi(t) and e(k)(t) := E{E(k)(t)} for k = 0,1. Denote m := inft∈[0,τ] e(0)(t) and observe

that m > 0, by Assumption B. Moreover, by Cauchy-Schwartz’s inequality,

‖e(1)/e(0)‖∞ ≤ m−1
√

E|Z1 j|2e(0)(t)≤ m−1.

Define Ωn := {inft∈[0,τ] E(0)(t)≥ m/2} and let 1Ωn be the indicator of this event. In view of the preceding
display, we can write

|Z̄ j(t)− e j(t)|1Ωn ≤
1

E(0)(t)

{∣∣∣e
(1)(t)

e(0)(t)

∣∣∣|e(0)(t)−E(0)(t)|+ |E(1)(t)− e(1)(t)|
}

1Ωn (31)

≤ 2m−2(‖Pn−P‖F0 +‖Pn−P‖F1)1Ωn (32)

with function classes Fk := {t 7→ Zk1(T ≥ t ∧C ≥ t)}. We proceed to establish exponential bounds for the
empirical process suprema in (32). Each of the Fks are Vapnik-Cervonenkis subgraph classes, and from
Pollard (1989) there exists some finite constant ζ depending only on intrinsic properties of the Fks such that

E(‖Pn−P‖2
Fk
)≤ ζ n−1E(Z2

1 j) = n−1ζ . (33)

In particular, it also holds that E(‖Pn−P‖Fk)≤ n−1/2ζ 1/2. Moreover,

|Zk
1 j1(T1 ≥ t ∧C1 ≥ t)−Zk

1 j1(T1 ≥ s∧C1 ≥ s)|2 ≤ K2k, s, t ∈ [0,τ].

With k1 := ζ 1/2, the concentration theorem of Massart (2000) implies

P{n1/2‖Pn−P‖Fk > k1(1+ t)} ≤ exp{−t2/(2K2)}, k = 0,1. (34)

Combining (30)-(32), taking k2 := k1m2/2, we obtain

P({n1/2|Bn|> k2(1+ t)}∩Ωn)≤ 2exp{−t2/(2K2)}. (35)

whereas Cauchy-Schwarz’s inequality implies

E(B2
n1Ωn)≤ E‖Z̄ j− e j‖2

∞1Ωn ≤ 4m−4E{(‖Pn−P‖F0 +‖Pn−P‖F1)
2}1Ωn ≤ 12m−4ζ n−1.
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Combining Lemma 1 and (35), there exists nonnegative k3 (depending only on m and ζ ) such that

P{n1/2|Bn−E(Bn)| ≥ k3(1+ t)} ≤ 8exp{−t2/(2K2)}+P(Ωc
n). (36)

To bound P(Ωc
n), recall that e(0)(t)≥ m by assumption. Consequently,

Ωc
n ⊆ {|E(0)(t)− e(0)(t)|> m/2 for some t} ⊆ {‖Pn−P‖F0 > m/2}.

By (33), we have E(‖Pn−P‖F0) ≤ m/4 eventually. By another application of the concentration theorem
(Massart, 2000), there exists finite k4 so that P{‖Pn−P‖F0 > m/4(1+ t)} ≤ k4 exp(−nt2/2). Setting t = 1,

P(Ωc
n)≤ P(‖Pn−P‖F0 > m/2)≤ k4 exp(−n/2).

Substituting this bound in (36) and combining with (29), omitting now the assumption that Zi j is bounded,
it follows that there exists constants C1,C2,C3 > 0 such that for any K > 0 and t > 0,

P{n1/2|d j−δ j|>C1(1+ t)} ≤ 10exp{−t2/(2K2)}+C2 exp(−C3n)+P
(

max
1≤i≤n

|Zi j|> K
)
.

The statement of the lemma then follows from the union bound.

Lemma 3. Suppose that Assumptions A-B hold and that there exists positive constants l0, l1,η such that
P(|Z1 j|> s)≤ l0 exp(−l1sη) for sufficiently large s. If κ < 1/2 then for any k1 > 0 there exists k2 > 0
such that

P
(

max
1≤ j≤pn

|d j−δ j|> k1n−κ
)
≤ O[pn exp{−k2n(1−2κ)η/(η+2)}]. (37)

Suppose in addition that |δ j| > k3n−κ whenever j ∈Mn
δ and that γn = k4n−κ where k3,k4 are positive

constants and k4 ≤ k3/2. Then

P(Mn
δ ⊆ M̂n

d)≥ 1−O[pn exp{−k2n(1−2κ)η/(η+2)}]. (38)

In particular, if log pn = o{n(1−2κ)η/(η+2)} then P(Mn
δ ⊆ M̂n

d)→ 1 when n→ ∞.

Proof. In Lemma 2, take 1+ t = k1n1/2−κ/C1 and K := n(1−2κ)/(η+2). Then there exists positive constants
k̃2, k̃3 such that for each j = 1, . . . , pn,

P(|d j−δ j|> k1n−κ)≤ 10exp{−k̃2n(1−2κ)η/(η+2)}+nl0 exp{−k̃3n(1−2κ)η/(η+2)}.
By the union bound, there exists k2 > 0 such that

P
(

max
1≤ j≤pn

|d j−δ j|> k1n−κ
)
≤ O[pn exp{−k2n(1−2κ)η/(η+2)}];

which proves (37). Concerning (38), k3n−κ −|d j| ≤ |δ j−d j| by assumption and so

P
(

min
j∈Mn

δ

|d j|< γn

)
≤ P

(
max
j∈Mn

δ

|d j−δ j| ≥ k4n−κ − γn

)
≤ P

(
max
j∈Mn

δ

|d j−δ j| ≥ n−κ k3/2
)

;

where the last inequality follows since we assume k4 ≤ k3/2. Taking k1 = k3/2 in (37), we arrive at the
desired conclusion:

P(Mn
δ ⊆ M̂n

d)≥ 1−P
(

min
j∈Mn

δ

|d j|< γn

)
≥ 1−O[pn exp{−k2n(1−2κ)η/(η+2)}].

Finally, P(Mn
δ ⊆ M̂n

d)→ 1 when n→ ∞ follows immediately when log pn = o{n(1−2κ)η/(η+2)}.

Lemma 4. Let Z ∈ Rp be a random vector with zero mean and covariance matrix ΣΣΣ. Let b ∈ Rp and
suppose that E(Z|Z>b) = cZ>b for some constant vector c ∈ Rp. Assume that f is some real function.
Then

E{Z f (Z>b)}= ΣΣΣb
E{Z>b f (Z>b)}

Var(Z>b)
; (39)

taking 0/0 := 0. If moreover f is differentiable and strictly monotonic, there exists ε > 0 such that

E|Z f (Z>b)| ≥ ΣΣΣbε/Var(Z>b). (40)

In particular, E{Z j f (Z>b)}= 0 iff Cov(Z j,Z>b) = 0.
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Proof. Set W := Z>b. By standard properties of conditional expectations, it holds that

0 = E{W (Z−E(Z|W ))}= ΣΣΣb−E{WE(Z|W )}= ΣΣΣb− cE(W 2),

implying E(Z|W ) = ΣΣΣbW/Var(W ). We then obtain (39):

E{Z f (Z>b)}= E{E(Z|W ) f (W )}= ΣΣΣbE{W f (W )}/Var(W ).

To show (40), the mean value theorem implies the existence of some 0 < W̃ <W such that

E(W f (W )) = E[W{ f (0)+ f ′(W̃ )W ] = E{W 2 f ′(W̃ )}.

Then
E|W 2 f ′(W̃ )| ≥ E{| f ′(W̃ )|W 21(W 2 ≤ 1)} ≥ inf

0≤x≤1
| f ′(x)|E{W 21(W 2 ≤ 1)}.

Strict monotonicity of f then yields (40).

Lemma 5. Assume that the survival time T has a general, continuous hazard rate function λT (t|Z)
depending on the random variable Z ∈ R and that the censoring time C is independent of Z, T . Then

δ =
∫ τ

0
ẽ(t)dF(t) = E{ẽ(T ∧C∧ τ)};

where F(t) := P(T ∧C∧ τ ≤ t) and ẽ(t) := E{ZP(T ≥ t|Z)}/E{P(T ≥ t)}.

Proof. Let ST ,SC denote the survival functions of T,C, conditionally on Z. Using the expression (8) for δ
alongside the assumption of random censoring, we obtain

δ = E
[∫ τ

0
{Z− e(t)}Y (t)λT (t|Z)dt

]
(41)

=
∫ τ

0
SC(t)E{ZST (t)λT (t|Z)}dt−

∫ τ

0

E{ZST (t)}
E{Y (t)} SC(t)E{Y (t)λT (t|Z)}dt (42)

=−
∫ τ

0

d
dt

ẽ(t)E{Y (t)}dt; (43)

where last equality follows since S′T =−λT ST . Integrating by parts, we obtain the statement of the lemma:

δ =−
∫ τ

0

d
dt

ẽ(t)E{Y (t)}dt =−
∫ ∞

0

d
dt

ẽ(t)E{P(T ∧C∧ τ ≥ t|Z)}dt = E{ẽ(T ∧C∧ τ)}.

Proof of Theorem 1. Set ẽ j(t) :=E{Z1 jST (t,Z>1 ααα0)}/E{ST (t,Z>1 ααα0)}with ST (t, ·)= exp{−∫ t
0 λ (s, ·)ds}.

From Assumptions 1-3, Assumption C, and Lemma 4, there exists a universal positive constant k1 such that

|δ j|= |ẽ j(t)| ≥ |E{Z1 jST (t,Z>1 ααα0)}| ≥ k1|Cov(Z1 j,Z>1 ααα0)|, j ∈Mn.

Then Mn ⊆Mn
δ . The sure screening property follows from Lemma 3 and the assumptions.

Proof of Theorem 2. Suppose that
‖δδδ‖2 = O{λmax(ΣΣΣ)}. (44)

For any ε > 0, on the set Bn := {max1≤ j≤pn |d j−δ j| ≤ εn−κ}, it then holds that

|{1≤ j ≤ pn : |d j|> 2εn−κ}| ≤ |{1≤ j ≤ pn : |δ j|> εn−κ}| ≤ O{n2κ λmax(ΣΣΣ)}.

Taking k1 = 2ε in Lemma 3, we have

P[|M̂n
d | ≤ O{n2κ λmax(ΣΣΣ)}]≥ P[|{ j : |d j|> k1n−κ}| ≤ O{n2κ λmax(ΣΣΣ)}]≥ P(Bn).

By Lemma 3, P(Bn) = 1−O[pn exp{−c3n(1−2κ)η/(η+2)}] as claimed. So we need only verify (44).
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By Lemma 5, there exists a positive constant c1 such that |δ j| ≤ c1
∫ τ

0 |E{Z1 jST (t,Z>1 ααα0)}|dF(t) for
j ∈Mn with F the unconditional distribution function of T1 ∧C1 ∧ τ . In contrast, δ j = 0 for j /∈Mn, by
Assumptions 3-4. It follows from Jensen’s inequality that there exists a positive constant c2 such that

‖δδδ‖2 ≤ c2

∫ τ

0
‖E{Z1ST (t,Z>1 ααα0)}‖2dF(t). (45)

Lemma 4 implies

E{Z1ST (t,Z>1 ααα0)}= E{Z>1 ααα0ST (t,Z>1 ααα0)}
Var(Z>1 ααα0)

ΣΣΣααα0. (46)

By Cauchy-Schwartz’s inequality, using that ‖ΣΣΣααα0‖2 ≤ ‖ΣΣΣ1/2‖2‖ΣΣΣ1/2ααα0‖2 ≤ λmax(ΣΣΣ)‖ΣΣΣ1/2ααα0‖2,

‖E{Z1ST (t,Z>1 ααα0)}‖2 ≤ ‖ΣΣΣααα0‖2/Var(Z>1 ααα0)≤ λmax(ΣΣΣ).

Inserting this in (45) then yields the desired result (44). Note that this result does not rely on the uniform
boundedness of Var(Z>1 ααα0) (Assumption C).

Lemma 6. Suppose that Assumption A holds and that both the survival time T1 and censoring time C1

follow a nonparametric Aalen model (11) with time-varying parameters ααα0 and βββ 0, respectively. Sup-
pose moreover that Z1 = ΣΣΣ1/2Z̃1 where Z̃1 has i.i.d. components and denote by φ(x) := E{exp(Z̃ j1x)}
the moment generating function of Z̃ j1. Then

δδδ = ΣΣΣ1/2
[∫ τ

0
diag

{ d
dx

φ ′(x)
φ(x)

∣∣∣
x=−Γ0

j (t)

}
E{Y1(t)}ααα0(t)>dt

]
ΣΣΣ1/2; (47)

where ΓΓΓ0(t) := ΣΣΣ1/2 ∫ t
0{ααα0(s)+βββ 0(s)}ds. In particular, if Z1 ∼ N(0,ΣΣΣ) then

δδδ = ΣΣΣ
{∫ τ

0
ααα0(t)E{Y1(t)}dt

}
. (48)

Proof. Let ΛT and ΛC denote the cumulative baseline hazard functions associated with T1 and C1.
Combining (8) and (11), we get

δδδ = E
{∫ τ

0
Z1Z>1 Y1(t)ααα0(t)dt

}
−
∫ τ

0
E{Z1Y1(t)}⊗2E{Y1(t)}−1ααα0(t)dt (49)

=
∫ τ

0
ΣΣΣ1/2H(t)ΣΣΣ1/2E{Y1(t)}ααα0(t)dt; (50)

defining here

H(t) :=
E{Y1(t)}E{Z̃1Z̃>1 Y1(t)}−E{Z̃1Y1(t)}⊗2

E{Y1(t)}2 .

Since we have Y1(t) = exp[−{ΛT (t) + ΛC(t) + Z̃>1 ΓΓΓ0(t)}] conditionally on Z̃1, independence of the
components of Z̃1 clearly implies [H(t)]i j ≡ 0 for i 6= j. For i = j, factor the conditional at-risk indicator as
Y1(t) = Y ( j)

1 (t)Y (− j)
1 (t) where Y ( j)

1 := exp{−Z̃1 jΓ0
j(t)}. Utilizing independence again, we get

[H(t)] j j =
E{Y ( j)

1 (t)}E{Z̃2
1 jY

( j)
1 (t)}−E{Y ( j)

1 (t)Z̃1 j}2

E{Y ( j)
1 (t)}2

=
d
dx

φ ′(x)
φ(x)

∣∣∣
x=−Γ0

j (t)

This proves (47). To verify (48), simply note that the moment generating function of a standard Gaussian
is φ(x) = exp(x2/2) for which d/dx(φ ′(x)φ(x)−1) = 1.

From (47), a ‘simple’ description of δδδ (which does not involve factorizing a matrix in terms of ΣΣΣ1/2) is
available exactly when features are Gaussian. Specifically, it holds for some fixed K > 0 that

d
dx

φ ′(x)
φ(x)

= K, and φ(0) = 1,

iff φ(x) = exp(Kx2/2), the moment generating function of a centered Gaussian random variable.
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Proof of Theorem 3. We apply Lemma 6. Denote by v j the jth canonical basis vector in Rpn . Integrating
by parts in (48), we obtain

δ j = v>j ΣΣΣ
∫ τ

0
ααα0(t)E{Y1(t)}dt = v>j ΣΣΣ

∫ ∞

0
ααα0(t)E{P(T1∧C1∧ τ ≥ t)}dt = v>j ΣΣΣE{A0(T1∧C1∧ τ)}.

By the assumptions, |v>j ΣΣΣE{A0(T1 ∧C1 ∧ τ)}| ≥ c1n−κ whenever j ∈Mn. Thus Mn ⊆Mn
δ . For Gaussian

Z1 j, we have P(|Z1 j|> s)≤ exp(−s2/2), and the SIS property then follows from Lemma 3.

Proof of Theorem 4. Recall that

∆∆∆ = E
[∫ τ

0
{Z1− e(t)}⊗2Y1(t)dt

]
.

Then

∆∆∆ααα0 =
∫ τ

0

E{Y1(t)}E{Y1(t)Z1Z>1 ααα0}−E{Y1(t)Z>1 ααα0}E{Y1(t)Z1}
E{Y1(t)}

dt,

But by Lemma 4 and the assumption of random censoring,

E{Y1(t)Z1Z>1 ααα0}= ΣΣΣααα0 E{(Z>1 ααα0)2Y1(t)}
Var(Z>1 ααα0)

, and E{Z1Y1(t)}= ΣΣΣααα0 E{Y1(t)Z>1 ααα0}
Var(Z>1 ααα0)

.

So we can construct a function ξ such that ∆∆∆ααα0 = ΣΣΣααα0 ∫ τ
0 ξ (ZZZ>1 ααα0, t)dt where

∫ τ
0 ξ (Z>1 ααα0, t)dt 6= 0,

by nonsingularity of ∆∆∆. Similarly, using Lemma 5, we may construct a function ζ such that δδδ =

ΣΣΣααα0 ∫ τ
0 ζ (Z>1 ααα0, t)dt. Taking ν :=

∫ τ
0 ζ (Z>1 ααα0, t)dt/

∫ τ
0 ξ (t,Z>1 ααα)dt, βββ 0 = νααα0 solves ∆∆∆βββ 0 = δδδ .

References

Aalen, O. O. (1980) A model for non-parametric regression analysis of counting processes. In Lecture
Notes on Mathematical Statistics and Probability 2 (eds. W. Klonecki, A. Kozek and J. Rosinski), 1–25.
Springer-Verlag.

Aalen, O. O. (1989) A linear regression model for the analysis of lifetimes. Statist. Med., 8, 907–925.

Bair, E. and Tibshirani, R. (2004) Semi-supervised methods to predict patient survival from gene expression
data. PLoS Biol., 2, E108.

Benner, A., Zucknick, M., Hielscher, T. and et al. (2010) High-dimensional Cox models: The choice of
penalty as part of the model building process. Biom. J., 52, 50–69.

Bradic, J., Fan, J. and Jiang, J. (2010) Regularization for Cox’s proportional hazards model with NP-
dimensionality. Tech. rep., Princeton University.

Bradic, J., Fan, J. and Wang, W. (2011) Penalized composite quasi-likelihood for ultrahigh dimensional
variable selection. J. R. Statist. Soc. B, 73, 325–349.

Breiman, L. (2001) Statistical modeling: The two cultures (with comments and a rejoinder by the author).
Statist. Sci., 16, 199–231.

Brillinger, D. R. (1983) A generalized linear model with “Gaussian” regressor variables. In A Festschrift
for Erich L. Lehmann (eds. P. J. Bickel, K. A. Doksum and J. L. Hodges), 97–114. Wadsworth.

Cheng, K. F. and Wu, J. W. (1994) Adjusted least squares estimates for the scaled regression coefficients
with censored data. J. Amer. Statist. Assoc., 89, 1483–1491.

Fan, J., Feng, Y. and Song, R. (2011) Nonparametric independence screening in sparse ultra-high
dimensional additive models. Tech. rep., Princeton University. http://arxiv.org/pdf/1012.4255.

Fan, J., Feng, Y. and Wu, Y. (2010) Borrowing Strength: Theory Powering Applications - A Festschrift for
Lawrence D. Brown, chap. High-dimensional variable selection for Cox’s proportional hazards model.
Institute of Mathematical Statistics.

Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties.
J. Amer. Statist. Assoc., 96, 1348–1360.



22 Gorst-Rasmussen and Scheike

Fan, J. and Lv, J. (2008) Sure independence screening for ultra-high dimensional feature space. J. R. Statist.
Soc. B, 70, 849–911.

Fan, J. and Lv, J. (2009) Non-concave penalized likelihood with NP-dimensionality. Tech. rep., Princeton
University and University of South California.

Fan, J., Samworth, R. and Wu, Y. (2009) Ultrahigh dimensional feature selection: Beyond the linear model.
J. Machine Learning Res., 10, 2013–2038.

Fan, J. and Song, R. (2010) Sure independence screening in generalized linear models with NP-
dimensionality. Ann. Statist., 38, 3567–3604.

Friedman, J., Hastie, T., Höfling, H. and Tibshirani, R. (2007) Pathwise coordinate optimization. Ann. Appl.
Statist., 1, 302–332.

Gorst-Rasmussen, A. (2011) ahaz – Regularization for semiparametric additive hazards
regression. Department of Mathematical Sciences, Aalborg University. http://cran.r-
project.org/web/packages/ahaz/index.html.

Gorst-Rasmussen, A. and Scheike, T. (2011) Efficient penalized estimation in the semiparametric additive
hazards model. Tech. rep., Department of Mathematical Sciences, Aalborg University. In preparation.

Hall, P. and Li, K. (1993) On almost linearity of low dimensional projections from high dimensional data.
Ann. Statist., 21, 867–889.

Hardin, C. D. (1982) On the linearity of regression. Z. Wahrsch. verw. Gebiete, 61, 293–302.

Hattori, S. (2006) Some properties of misspecified additive hazards models. Statist. Prob. Letters, 76,
1641–1646.

He, Q. and Lin, D. (2011) A variable selection method for genome-wide association studies. Bioinformatics,
27, 1–8.

Hoeffding, W. (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc., 58, 13–30.

Leng, C., Lin, Y. and Wahba, G. (2007) A note on the lasso and related procedures in model selection.
Statist. Sinica, 16, 1273–1284.

Li, K. and Duan, N. (1989) Regression analysis under link violation. Ann. Statist., 17, 1009–1052.

Lin, D. Y. and Ying, Z. (1994) Semiparametric analysis of the additive risk model. Biometrika, 81, 61–71.

Ma, S. and Leng, C. (2007) Path consistent model selection in additive risk model via lasso. Statist. Med.,
26, 3753–3770.

Ma, S. and Song, X. (2011) Ranking prognosis markers in cancer genomic studies. Brief. Bioinform., 12,
33–40.

Martinussen, T. and Scheike, T. H. (2009) Covariate selection for the semiparametric additive risk model.
Scand. J. Statist., 36, 602–619.

Massart, P. (2000) About the constants in Talagrands concentration inequalities for empirical processes.
Ann. Prob., 28, 863–884.

McKeague, I. W. and Sasieni, P. D. (1994) A partly parametric additive risk model. Biometrika, 81, 501–
514.

Meinshausen, N. and Bühlmann, P. (2010) Stability selection. J. R. Statist. Soc. B, 72, 417–473.

Metzeler, K. H., Hummel, M., Bloomfield, C. D. and et al. (2008) An 86 probe set gene expression signature
predicts survival in cytogenetically normal acute myeloid leukemia. Blood, 112, 4193–4201.

Pollard, D. (1989) Asymptotics via empirical processes. Statist. Sci., 4, 341–354.

Roberts, C. P. (2008) Discussion of ‘sure independence screening for ultrahigh dimensional feature space’.
J. R. Statist. Soc. B, 70, 901.



SIS for single-index hazard rate models 23

Struthers, C. A. and Kalbfleisch, J. D. (1986) Misspecified proportional hazards models. Biometrika, 73,
363–369.

Tibshirani, R. (1997) The lasso method for variable selection in the Cox model. Statist. Med., 16, 385–395.

Tibshirani, R. (2009) Univariate shrinkage in the Cox model for high dimensional data. Stat Appl Genet
Mol Biol, 8. Article 21.

Wang, H. and Leng, C. (2007) Unified LASSO estimation by least squares approximation. J. Amer. Statist.
Assoc., 102, 1039–1048.

Zhao, S. D. and Li, Y. (2010) Principled sure independence screening for Cox models with ultra-high-
dimensional covariates. Tech. rep., Harvard School of Public Health.

Zhu, L., Qian, L. and Lin, J. (2009) Variable selection in a class of single-index models. Ann. Inst. Statist.
Math. DOI: 10.1007/s10463-010-0287-4.

Zhu, L. and Zhu, L. (2009) Nonconcave penalized inverse regression in single-index models with high
dimensional predictors. J. Multivariate Anal., 100, 862–875.

Zou, H. (2006) The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc., 101, 1418–1429.

Zou, H., Hastie, T. and Tibshirani, R. (2007) On the “degrees of freedom” of the lasso. Ann. Statist., 35,
2173–2192.

Zou, H. and Li, R. (2008) One-step sparse estimates in nonconcave penalized likelihood models. Ann.
Statist., 36, 1509–1533.


