

Aalborg Universitet

Dataset of smart heat and water meter data with accompanying building characteristics

Schaffer, Markus; Veit, Martin; Marszal-Pomianowska, Anna; Frandsen, Martin; Pomianowski, Michal Zbigniew; Dichmann, Emil; Sørensen, Christian Grau; Kragh, Jesper

Publication date: 2023

Document Version Other version

Link to publication from Aalborg University

Citation for published version (APA):

Schaffer, M., Veit, M., Marszal-Pomianowska, A., Frandsen, M., Pomianowski, M. Z., Dichmann, E., Sørensen, C. G., & Kragh, J. (2023). Dataset of smart heat and water meter data with accompanying building characteristics.

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 06, 2025

Dataset of smart heat and water meter data with accompanying building characteristics

Markus Schaffer¹, Martin Veit¹, Anna Marszal-Pomianowska^{1*}, Martin Frandsen¹, Michal Zbigniew Pomianowski¹, Emil Dichmann², Christian Grau Sørensen², Jesper Kragh²

¹Department of the Built Environment, Aalborg University, Aalborg, Denmark

²Department of the Built Environment, Aalborg University, Copenhagen, Denmark

*ajm@build.aau.dk

Abstract

The data presented were collected from 34884 commercial smart heat meters and 10765 commercial smart water meters with a span of up to 5 years (2018 - 2022), all located in buildings within the Aalborg Municipality. In addition, building characteristics from the Danish Building and Dwelling Register (BBR) and Energy Performance Certificate (EPC) input data were collected for each building, resulting in up to 86 different characteristics per building. All smart meter data was processed using an established method to obtain equidistant data without erroneous values. The building characteristics derived from the EPCs were filtered based on rule sets to increase the quality of the data. All data can be linked. It is expected that researchers in the built environment, district heating and water sectors will find such a dataset of great value.

Subject	Civil and Structural Engineering
Specific subject area	Hourly smart heat and water meter data from buildings. Building characteristics.
Type of data	Table Database
How the data were acquired	The hourly smart heat meter data was acquired via commercial smart heat meters (Kamstrup MULTICAL 402, Kamstrup MULTICAL 403, Kamstrup MULTICAL 603) The hourly smart water meter data was acquired via commercial smart water meters (MULTICAL 21/ flowIQ 210x) The statistical building characteristics were collected from the Danish Building and Dwelling Register (BBR) The detailed building characteristics were collected from the input data of Danish Energy Performance Certificates (EPCs)

1 29.04.2023

Data format	Raw Filtered
Description of data collection	The local district heating and water company collected the hourly smart heat and water meter data for billing purposes. The statistical building characteristics were collected via a publicly available API. The detailed building characteristics were collected from a database at Aalborg University. All building characteristics were collected on the condition that energy and/or water consumption data were available for the building.
Data source location	Aalborg Municipality Denmark 57.053, 9.924
Data accessibility	Part of the data was originally collected for billing purposes (hourly data from smart heat and water meters) and made available to the authors for scientific purposes via a data use agreement on the legal basis of GDPR article 89. The data were anonymised by the researchers. However, as the data can potentially be deanonymised in combination with the building characteristics through a backward search in the public Danish Building and Dwelling Register, the data is considered personal data subject to the GDPR. Researchers interested in using the data should contact the corresponding author and are then required to complete a joint declaration that the data sharing is lawful. It should be noted that for researchers outside the European Union, possible additional requirements apply in accordance with applicable Danish and European law. Once the agreement has been approved, the data can be accessed via an API, which requires authentication via edugain.
Related research article	M. Schaffer, J.E. Vera-Valdés, A. Marszal-Pomianowska, Exploring smart heat meter data: A co-clustering driven approach to analyse the energy use of single-family houses, (2023). [1]

1 Value of the data

- This dataset provides an unprecedented amount of data, particularly in conjunction with accompanying building features at a high level of detail. The easy and curated accessibility of the data makes it usable for both small and large-scale investigations.
- The data can be of great value to research in the built environment and the district heating and water sectors. It provides countless opportunities for data-driven research and validation of models.
- The data can be used to develop new data-driven methods to gain insight into the energy
 use of buildings. It can also be used to detect faults in buildings. In addition, it is valuable
 for validating urban building energy models or automatically deriving building
 characteristics based on energy use data.

2 Objective

The dataset was originally created to support research within the FOREFRONT project. It has now been decided to make this data generally available, recognising its high value to other researchers (with the aforementioned restrictions). Making it more widely available will increase the reproducibility of the research carried out by Schaffer et al., 2023 [1] and any future research carried out using this data.

3 Data description

The data is structured within six tables in a database. An entity relationship diagram is shown in Figure 1. All data can be related, which is the core idea of the whole database. For all processed data, the meter ID is unique and can be used as an identifier. For the raw smart meter data, it should be noted that there may be meters that are incorrectly assigned to two customers, so the uniqueness of the ID is not guaranteed for the raw data. The customer ID can be used to link Smart Heat Meter (SHM) and Smart Water Meter (SWM) data. It should be noted that a customer can have one or more meters. For this reason, there may be duplicate entries in the Danish Building and Dwelling Register (BBR) data, differing only in the meter ID, e.g., if a customer has one SHM but two SWM, then there are two entries, identical except for the SWM ID (both entries have the same SHM ID). For the BBR data, due to the dependency on the data period, there may be several identical entries for the same building, e.g., one for the SWM data, one for the SHM data, or several for the SHM data if the SHM data has several periods. Figure 2 gives an overview of the number of meters for which the respective data (processed data from SHM and SWH data) are available in the database. In the following, each table is described separately.

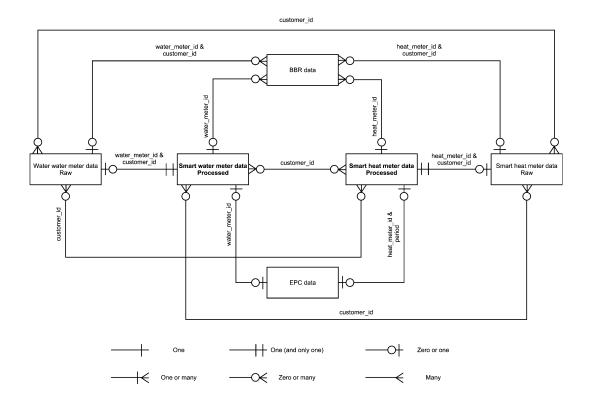


Figure 1 Entity relationship diagram for the database

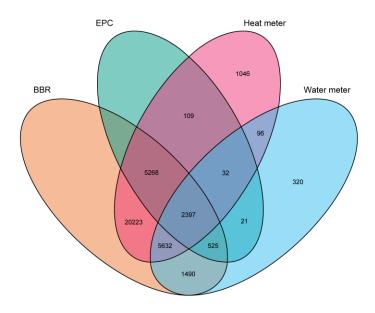


Figure 2 Meter ID and customer ID based number of meters available in the respective group based on the processed data.

3.1 Hourly smart heat meter data

3.1.1 Raw data

This table contains the data as collected by the SHMs installed in the respective buildings in the municipality of Aalborg, Denmark. An overview of all columns included in this dataset is given in Table 1. The data span from the beginning of 2018 to the end of 2022 (with different lengths for each building) and contain data from a total of 34884 SHMs (9.46e+08 rows). Data from a building may not be complete, i.e. a building may have data from 2018 and 2020 but no data from 2019. The data has not been processed in any way other than the removal of redundant columns of units of measurement to reduce the amount of storage space required. As the data is not processed, it is not equidistant hourly as the SHMs have a temporal accuracy of ±30 minutes around the full hour. In addition, the original data were delivered to the researchers with a timestamp in local time (CET/CEST) but without any time zone information. Consequently, the time may be incorrect at the end of summertime, as the two 'overlapping' hours at 03:00 could not be distinguished. The data contain missing values due to errors in the transmission infrastructure used to collect the data.

3.1.2 Processed data

The processed data table contains the processed data from the SHMs. It contains data from 34795 SHMs (9.33e+08 rows), and an overview of all available columns is given in Table 1. These data are equidistant, have no erroneous values, and missing ones have been imputed. The processing used is described in detail in Section 4.1. Figure 3 shows the number of SHMs available for the different years of the data period.

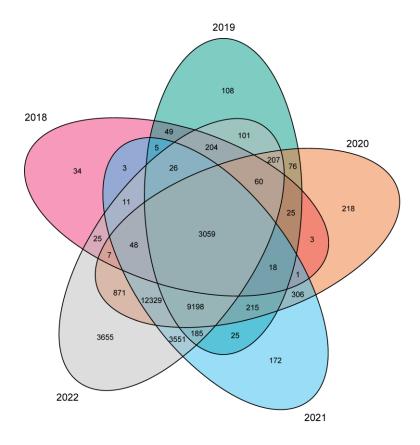


Figure 3 Number of processed SHMs available across the different years of the data period.

3.2 Smart water meter data

3.2.1 Raw data

This table contains the data as collected via the SWMs installed in the respective buildings in Aalborg Municipality, Denmark. An overview of all columns included in this dataset is given in Table 2. The data covers the period from the beginning of May 2021 to the end of 2022 (with different lengths for each building) and contains in total data from 10765 SWMs (7.19e+07 rows). The data has not been processed in any way other than removing redundant columns containing units of measurement to reduce the amount of storage required. As the data is not processed, it is not equidistant hourly as the SWMs have a time accuracy of ±30 minutes around the full hour. The data have been supplied with UTC timestamps, so unlike the SHM data, the timestamp is always correct.

3.2.2 Processed data

The processed data table contains the processed data from the SWMs. It contains data from 10510 SWMs (7.04e+07 rows), and an overview of all available columns is given in Table 2. These data are equidistant, have no erroneous values, and missing ones have been imputed. The processing used is described in detail in Section 4.2.

3.3 Statistical building characteristics (BBR)

For each building for which either SHM or SWM data are available in this dataset, the corresponding data from the BBR have been collected where possible. This publicly available database in Denmark contains information on every building in Denmark and is operated by the Danish Customs and Tax Administration. An overview of the available columns is given in Table 3.

3.4 Detailed building characteristics (EPC)

For each building for which either SHM or SWM data are available in this dataset, the input data from the corresponding energy performance certificate (EPC), if available, were collected and processed from the EPC database developed by Brøgger and Wittchen, 2016 [2] and hosted at Aalborg University. An overview of the available columns is given in Table 4. The processing used to derive the data is described in Section 4.4.

4 Experimental design, materials and methods

4.1 Smart heat meter data processing

The SHM data were obtained by the authors from the local utility company as .csv files. As mentioned above, the readings were provided in local time (CET/CEST) without any time zone information. As the dataset is similar to the one described in detail by Schaffer et al., 2022 [3], a similar cleaning and imputation framework was applied to obtain equidistant data without erroneous or missing values. The only difference to the framework described in Schaffer et al., 2022 [3] is that, due to the long data period and the higher uncertainty in data quality, it was tested that there were at least 8584 hours of data per year and per meter (approximately 2% of missing data). If this threshold was exceeded, only the year in question was excluded. Thus, an SHM may have data in non-consecutive years in the processed data. Consequently, these data sequences can be considered as separate data. For this reason, the period column (Table 1) has been introduced. This column, starting with one, indicates whether the data of the SHM are from a different sequence, i.e. if an SHM has data in 2018 and 2020-2022 but no data in 2019, the period column is 1 for all data in 2018 and 2 for all data in 2020-2022.

In addition to this basic data treatment, the SPMS method developed by Schaffer et al., 2023 [4] was applied to energy use. SPMS was developed to reduce the error introduced by rounding the raw cumulative energy data to integer values. The result of this process is available as a separate column (heat_energy_kwh_spms) in the processed data (Table 1).

4.2 Smart water meter data processing

The authors obtained the SWM data from the local utility company as .csv files. The data were provided with readings in UTC. Given the same nature of the data (cumulative and approximately

hourly), the same cleaning and imputation framework as for the SHM data was used to process the SWM data. However, given the shorter data period compared to the SHM, the threshold for missing values was set at 2% for each SWM dataset individually to account for the different lengths of the datasets.

4.3 BBR data processing

The address was the only customer information provided by the utility company to link SHM and SWH data to a building/unit. It was unclear whether the address referred to a unit (e.g. an apartment) or a building (e.g. an apartment building). This information is used to retrieve the building characteristics from the BBR database. In order to prevent incorrect information from influencing the retrieval of building characteristics, the address information provided was treated with the Address Cleaning API, which is part of the Danish Address Web API (DAWA) [5]. This API can translate unstructured addresses with possible misspellings into official addresses. In addition to the address information, the API returns the certainty of the match expressed in three levels, A - identical match, B - certain match and C - uncertain match. Only results with a confidence of A or B are considered valid. As the address cleaning API distinguishes between unit and building addresses, all addresses were initially treated as unit addresses, and only addresses with a certainty of C were subsequently treated as building addresses. Addresses for which neither a unit nor a building address could be found with high confidence (level A or B) were excluded.

The BBR information was obtained through Denmark's Address Web API (DAWA) [5]. Information about a unit and its building could be obtained directly through the API. For the SHMs where only a building address was available, the 'access address id' had to be retrieved via the address before information about the building could be obtained. In both cases, more than one BBR record may be obtained, for example, if two or more units/buildings have the same address. In order to allow for a data structure where an SHM can be linked to zero or one BBR record, cases where more than one record was obtained were considered invalid and consequently not included in the database. All nominal values were translated to human understandable terms in English.

As the main objective was to establish essential building characteristics for as many SHMs as possible, only mandatory BBR information was considered for the dataset. Such mandatory information must be provided by the building owner and is, therefore, subject to uncertainty. Recently, however, the quality of the data was investigated [6] and it was concluded that the overall data quality is high and that the data quality has improved from 2000 to 2013.

4.4 EPC data processing

To link the available EPC data from the EPC database developed by Brøgger and Wittchen, 2016 [2] and hosted at Aalborg University with the SHM and SWM data, the same 'cleaned' addresses were used as for the BBR data (Section 4.3). Given the sheer amount of information available in the EPCs, it was decided to focus mainly on data from five aspects:

- Building envelope
- Domestic hot water (DHW)

- Ventilation
- Heating
- · Internal heat gains

The data quality of the Danish EPC has been heavily criticised in the past, as random checks have revealed errors in 20-30% of all EPCs [7]. For this reason, the cleaning framework developed by Brøgger, 2019 [7] was applied. However, this framework was originally developed for the purpose of energy modelling of the building stock. Therefore, some criteria have been adapted, and some have been added to better fit the purpose of this dataset. All quality assurance criteria used are listed in Appendix AAppendix A.

After the cleaning step, the information obtained was aggregated to obtain the same building characteristics for each building where information was available. The resulting columns, including a description of how they were calculated, are shown in Table 4. Only results where an EPC record could be clearly linked to one building were considered. Furthermore, only valid EPCs were considered. Validity was defined as the EPC being valid (no more than 10 years old) at least on the first day of the data period. For SHM data, each period was considered separately. Thus, if a SHM has two periods, one period may have EPC information available, and the other may not, or the information may differ between the periods. In addition, several EPCs can be valid simultaneously, as EPCs are not invalidated when a new EPC is issued. For example, if a house is sold, an EPC is issued, the house is renovated, and a new EPC is issued. If two EPCs are valid for an SHM or SWM, the information from the most recent EPC was used. Furthermore, if an EPC was issued during the data period of the respective SHM or SWM, all EPCs are considered invalid, as it is assumed that the building has been renovated and, therefore, the data represent two different building conditions.

5 CRediT author statement

Markus Schaffer: Conceptualization, Methodology, Software, Formal analysis, Data Curation, Writing - Original Draft, Writing - Review & Editing Martin Veit: Methodology, Software, Data Curation, Writing - Review & Editing Anna Marszal-Pomianowska: Conceptualization, Methodology, Writing - Review & Editing, Supervision, Project administration, Funding acquisition Martin Frandsen: Methodology, Writing - Review & Editing Michal Zbigniew Pomianowski: Methodology, Writing - Review & Editing Emil Dichmann: Software, Data, Curation Writing - Review & Editing Christian Grau Sørensen: Software, Data Curation, Writing - Review & Editing Jesper Kragh: Data Curation, Writing - Review & Editing

6 Acknowledgements

This work was funded by the Independent Research Fund Denmark under FOREFRONT project (0217-00340B). The authors would like to thank Aalborg Forsyning, notably Kenneth Faarkrog Kristensen, who kindly provided the original data.

7 Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

8 References

- [1] M. Schaffer, J.E. Vera-Valdés, A. Marszal-Pomianowska, Exploring smart heat meter data: A co-clustering driven approach to analyse the energy use of single-family houses, (2023).
- [2] M. Brøgger, K.B. Wittchen, Energy Performance Certificate Classifications Across Shifting Frameworks, Procedia Eng. 161 (2016) 845–849. https://doi.org/10.1016/J.PROENG.2016.08.727.
- [3] M. Schaffer, T. Tvedebrink, A. Marszal-Pomianowska, Three years of hourly data from 3021 smart heat meters installed in Danish residential buildings, Sci Data. 9 (2022) 420. https://doi.org/10.1038/s41597-022-01502-3.
- [4] M. Schaffer, D. Leiria, J.E. Vera-Valdés, A. Marszal-Pomianowska, Increasing the accuracy of low-resolution commercial smart heat meter data and analysing its error, in: 2023 European Conference on Computing in Construction 40th International CIB W78 Conference, 2023.
- [5] The Danish Agency for Data Supply, Denmark's Address Web API, (2022). https://dawadocs.dataforsyningen.dk/.
- [6] SAS Institute, Datakvaliteten af ejerboliger i BBR, 2015. https://ki.bbr.dk/file/571501/datakvalitet-af-ejerboliger-i-bbr.pdf (accessed February 17, 2023).
- [7] M. Brøgger, Building stock energy modelling, PhD, Aalborg University, 2019. https://doi.org/10.5278/vbn.phd.eng.00077.
- [8] Trafik- Bygge- og Boligstyrelsen, Bygningsreglementets vejledning om korrektioner til 10 pct.-reglen for dagslys, Bygningsreglementets Vejledning Om Korrektioner Til 10 Pct.-Reglen for Dagslys. (2019) 25.

Table 1 Description of the raw and processed smart heat meter (SHM) data

Raw data Description data Description	Unit
customer_id	customer of the utility company.
heat_meter_id Hashed meter ID. Unique for every SHI data)	M (guaranteed unique only in the processed _
	secutive years period indicates if the data of or more separated years. A period is thereby
reading time saved in the database correctly parsed	n in local time (CET). To be noted, the time is d with the time zone. However, originally the lee. Thus, the time can be incorrect when the
time_rounded	e data processing given in local time (CET)
heat_energy_kwh	w values are rounded down to inter-values. kWh
heat_energy_kwh_demand Calculated hourly energy use	kWh
heat_energy_kwh_spms By SPMS [4] treated energy use data. by the rounding down of the original data.	This reduces the rounding error introduced kWh data.
volume_m3 The cumulative volume of district h measured at the supply Raw values are	heating water passed through the SHM - m ³ m ³
volume_m3_demand Calculated hourly volume use	m³
flow_x_temp_supply_m3C	upply multiplied by the supply temperature. r-values.
flow_x_temp_supply_m3C_demand The demand value of the volume flow temperature.	ow of the supply multiplied by the supply
flow_x_temp_return_m3C	upply multiplied by the return temperature. r-values.
flow_x_temp_return_m3C_demand	ow of the supply multiplied by the return
was_missing	s imputed

Column name	Raw data Processed data	Description	Unit
supply_temp_C	✓	Instantaneous supply temperature at the time of reading (reading_time)	°C
return_temp_C	✓	Instantaneous return temperature at the time of reading (reading_time)	°C
supply_flow_m3	✓	Instantaneous supply flow at the time of reading (reading_time)	m³/h
time_counter_h	√	Number of hours the SHM has been in operation	h
heat_effect_kw	✓	Current deposited heating effect at the time of reading (reading_time) – not recorded for all meter types	kW
meter_type	√	SHM type	-

Table 2 Description of the raw and processed smart water meter (SWM) data

Column name	Raw data	Processed data	Description	Resolution
customer_id	√	√	Hashed customer ID. Unique for every customer of the utility company. One customer can have multiple SWMs	-
water_meter_id	✓	\checkmark	Hashed meter ID. Unique for every SHM (guaranteed unique only in the processed data)	-
reading_time	√		Original reading time of the SWM given in local time (CET). In contrast to the smart heat meter data, this data was originally saved in UTC, and thus no issue with the daylight-saving time exists.	-
time_rounded	√	√	Equidistant timesteps as a result of the data processing given in local time (CET).	-
water_volume_m3	√	√	Cumulative water volume	m3
water_volume_demand_m3h		✓	Hourly usage of water	m3
was_missing	•	√	Binary column indicating if a value was imputed	

Table 3 Description of data derived from the Danish Building and Dwelling Register

Column name	Type	Description
heat_meter_id	-	Unique meter ID, which functions as the key to link the data to the smart heat meter data
Water_meter_id		
unit_type_code	nominal	Type of unit, such as a single-family house, apartment etc.
unit_housing_type_code	nominal	Information if the unit is a residential apartment, mixed-used, a single room etc.
unit_total_area	float	Total area of the unit
unit_residential_area	float	Total residential area of the unit
unit_business_area	float	Total business area of the unit
unit_nr_room	integer	Number of rooms in the unit
unit_toilet_pos_code	nominal	Information if the toilet is positioned inside the unit or outside the unit.
unit_bath_pos_code	nominal	Information if a bathroom exists and if the bathroom is positioned inside the unit or outside the unit.
unit_kitchen_pos_code	nominal	Information if a kitchen exists and if the kitchen is positioned inside the unit or outside the unit.
unit_energy_code	nominal	Information about which voltage of electricity is available in the unit and if gas is available.
unit_nr_business_room	integer	Number of business rooms per unit
unit_other_area	float	Total area which is neither business nor residential
unit_rent_status_code	nominal	Information if the unit is used by the owner or rented out.
unit_heating_code	nominal	Type of heating available in the unit
unit_heating_agent_code	nominal	Type of heating agent used for heating the unit
unit_sup_heating_code	nominal	Type of supplementary heating available in the unit
unit_nr_toilet	integer	Number of toilets in the unit
unit_nr_bathroom	integer	Number of bathrooms in the unit
bldg_type_code	nominal	Same as unit_type_code but on the building level
bldg_nr_units_w_kitchen	integer	Number of units with kitchen in the building
bldg_nr_units_wo_kitchen	integer	Number of units without a kitchen in the building
bldg_constrcution_year	integer	Construction year of building
bldg_conversion_year	integer	Year of renovation of the building
bldg_ext_wall_mat_code	nominal	Type of external façade cladding
bldg_roof_mat_code	nominal	Type of roof cladding material

Column name	Type	Description
bldg_sup_ext_wall_mat_code	nominal	Type of supplementary external façade cladding
bldg_sup_roof_mat_code	nominal	Type of supplementary roof cladding material
bldg_total_area	float	Building total area
bldg_residential_area	float	Building residential area
bldg_business_area	float	Building business area
bldg_developed_area	float	Developed area of the building
bldg_nr_floor	integer	Number of floors in the building
bldg_floor_code	nominal	Information about the floors, e.g., if the building has double high storeys or deviating floors.
bldg_heating_code	nominal	Same as unit_heating_code but on the building level
bldg_heating_agent_code	nominal	Same as unit_heating_agent_code but on the building level
bldg_sup_heating_code	nominal	Same as unit_sup_heating_code but on the building level
bbr_resolution	nominal	Information on whether the address could be attributed to a unit or a building. If the address could only be linked to a building, information about the unit are missing.

Table 4 Description of data derived from the Danish Energy Performance Certificate

	Column name	Unit/Type	Description
General information	heat_meter_id	nominal	Unique meter ID, which functions as the key to link the data to the smart heat meter data
	water_meter_id		
			As a meter can have data for non-consecutive years period indicates if the data of one meter is
	period	nominal	continuous or from two or more separated years. A period is thereby an integer ranging from 1 to n.
iner	valid_from		
9	valid_to		
	bbr_use_code	nominal	Use code as defined in the Danish Building and Dwelling Register (translated)
General building characteristics	total_heated_floor_area	m²	The total heated floor area of the building
	heated_commercial_area	m²	Commercial area of the building
	height	m	
	floor_count	-	Number of floors of the building
	heat_capacity	W/(m²K)	Simplified heat capacity of the building according to DS/INF 418-2:2014 (or an earlier version if the data is based on an EPC from before 2014) per unit gross area
Opaque envelope	opaque_heatloss_kelvin	W/K	Total heat losses through the opaque envelope per Kelvin calculated as follows: $\sum_{n=1}^{i} area_n \times u - value_n \times temperature\ factor_n $
Opaque envelope	opaque_heatloss_total	W	Total heat losses through the opaque envelope, taking the dimensioning temperature into account, calculated as follows: $\sum_{n=1}^{i} area_n \times u \ value_n \times temperature \ factor_n \\ \times \ (\text{dim.int.temp.} - \text{dim.ext.temp.})$ The dimensioning temperatures are thereby calculated based on the Danish standard DS 418:2011. Standard values are thereby 20°C for the interior, 30°C interior temperature for a floor with floor heating, -12°C for the exterior, and 10°C for exterior elements against soil deeper than 2m.

	Column name	Unit/Type	Description
	window_heatloss_north_kelvin	W/K	Heat losses per Kelvin through all windows facing north (orientation > 315° OR orientation <= 45 °), calculated as:
£			$\sum_{n=1}^{\infty} nr \ of \ windows_n \ \times \ area_n \times u - value_n \times temperature \ factor_n $ 3
Window north			Total heat losses through all windows facing north (orientation > 315° OR orientation <= 45°), taking the dimensioning temperature into account is calculated as: $\frac{i}{i}$
Win	window_heatloss_north_total	W	$\sum_{n=1}^{\infty} nr \ of \ windows_n \times area_n \times u \ value_n \times temperature \ factor_n \\ \times \ (\text{dim. int. temp.} - \text{dim. ext. temp.})$
			The dimensioning temperatures are thereby calculated based on the Danish standard DS 418:2011. Standard values are thereby 20°C for interior, 30°C interior temperature for floor with floor heating, -12°C for exterior, and 10°C for exterior for elements against soil deeper than 2m.
Window north			Total solar factor of all windows facing north (orientation > 315° OR orientation <= 45°), calculated as:
	window_solar_north -		$\sum_{n=1}^{l} nr \ of \ windows_n \times area_n \times g - value_n \times glass \ share_n \times shading \ factor$ 5 Whereby the shading factor was calculated from the angles to shading objects of each window based on the simplified method stated in [8]. For objects shading from the side as well as overhang, an infinite height respectively length was assumed. It is to be noted that the shading from the wall thickness could not be considered as the simplified method is based on the wall thickness, which is not an input for EPCs.

-			
ast	window_heatloss_east_kelvin	W/K	Heat losses per Kelvin through all windows facing east (orientation > 45° AND orientation <= 135°), calculated as stated in Equation 3.
Window east	window_heatloss_east_total	W	Total heat loss through all windows facing east (orientation > 45° AND orientation <= 135°), taking the dimensioning temperature into account, is calculated as stated in Equation 4.
Win	window_solar_east	-	Total solar factor of all windows facing east (orientation > 45° AND orientation <= 135°), calculated as stated in Equation 5
uth	window_heatloss_south_kelvin	W/K	Heat losses per Kelvin through all windows facing south (orientation > 135° AND orientation <= 225°), calculated as stated in Equation 3.
Window south	window_heatloss_south_total	W	Total heat loss through all windows facing east (orientation > 135° AND orientation <= 225°), taking the dimensioning temperature into account, is calculated as stated in Equation 4.
Wing	window_solar_south	-	Total solar factor of all windows facing south (orientation > 135° AND orientation <= 225°), calculated as stated in Equation 5
Window west	window_heatloss_west_kelvin	W/K	Heat losses per Kelvin through all windows facing west (orientation > 225° AND orientation <= 315°), calculated as stated in Equation 3.
	window_heatloss_west_total	W	Total heat loss through all windows facing east (orientation > 225° AND orientation <= 315°), taking the dimensioning temperature into account, is calculated as stated in Equation 4.
	window_solar_west	-	Total solar factor of all windows facing west (orientation > 225° AND orientation <= 315°), calculated as stated in Equation 5
	skylight_heatloss_kelvin	W/K	Heat losses per Kelvin through all skylights were calculated as stated in Equation 3.
Skylight	skylight_heatloss_total	W	Total heat loss through all skylights taking the dimensioning temperature into account, is calculated as stated in Equation 4.
S	skylight_solar	-	The total solar factor of all skylights was calculated as stated in Equation 5
Thermal	thermal_bridge_kelvin	W/K	Total heat losses through thermal bridges, calculated as follows: $\sum_{n=1}^{i} length_n \times u - value_n \times temperature\ factor_n$
Thermal bridge	thermal_bridge_total	W	Total heat losses through thermal bridges, taking the dimensioning temperature into account, calculated as follows: $\sum_{n=1}^{i} length_n \times u \ value_n \times temperature \ factor_n \\ \times \ (\text{dim. int. temp.} - \text{dim. ext. temp.})$

			Total domestic hot water tank volume calculated as:
Domestic hot water tank	dhw_tank_volume	I	$\sum_{n=1}^{i} nr \ of \ tanks_n \times volume_n $ 8 It is, however, to be noted that the Danish EPC calculation method is insensitive to the tank volume. For this reason, many buildings have a total share of domestic hot water covered by the
stic h			domestic hot water tank larger than zero with a 0l tank volume.
Domes	dhw_tank_heat_loss	W/K	Total heat losses from domestic hot water tanks, calculated as follows: $\sum_{n=1}^{i} nr \ of \ tanks_n \ \times heat \ loss_n \times temperature \ factor_n $
			Required supply flow temperature from the central heating system to the domestic hot water tank calculated as follows:
	dhw_tank_sup_temp	°C	$\frac{\sum_{n=1}^{i} supply\ temperature_n}{n}$
ank			Due to the above-mentioned fact that a large share of EPCs have a tank volume of OI, the tank volume is not considered for averaging.
er ta			The total share of domestic hot water covered by the domestic hot water tanks. Calculated as:
hot wat	dhw_tank_share	-	$\sum_{n=1}^{l} share of consumption_n$ 11
Domestic hot water tank	dhw_tank_el_support_code	nominal	A factor indicating whether the domestic hot water tank has electrical heating. The factor has three levels: • None: no electric heating • Always: electric heating is always available • Summer: electric heating is only available in summer available • No tank The value was derived based on the maximum number of tanks with the respective electric heating possibility. (The volume could be due to the above problem, that many EPC have erroneously a OI tank, not be used)

			Domestic hot water demand calculated as:	
Domestic hot water	dhw_average_consumption	l/year	heated dwelling area \times average DHW consumption	12
c ho	dhw_temperature	°C	Domestic hot water temperature	
esti			Total heat losses through DHW pipes calculated as follows:	
Dom	dhw_pipes	W	$\sum_{n=1}^{i} length_n \times u - value_n \times temperature \ factor_n$	13
			Total heat gains from occupants, calculated as follows:	
gains	gains_people	W	$\sum_{n=1}^{i} area_n \times occ \ heat \ gains \ per \ area_n$	14
Internal gains	gains_device	W	Total heat gains from appliances inside usage hours, calculated as follows: $\sum_{n=1}^{i} area_n \times appliances\ heat\ gains\ per\ area_n$	15
	gains_device_outside	W	Total heat gains from appliances outside usage hours calculated as stated in Equation 15	
	heating_supply_temp	°C	Supply temperature of the heat distribution system	
	heating_return_temp	°C	Return temperature of the heat distribution system	
Heating system	heating_pipes	W	Total heat losses through heating pipes, calculated as: $\sum_{n=1}^{i} length_n \times u - value_n \times temperature\ factor_n$	16
	heating_type_code	nominal	 Plant type: 1: Single-circuit system 2: Double circuit system (or parts of the installation are single circuit, and the equipped with local mixing devices) 	ese are

			Tatal vatural vastilation in viotae palaulated as fallence.	
Ventilation winter	vent_nat_winter	I/s	Total natural ventilation in winter, calculated as follows:: $\sum_{n=1}^{i} area_n \times ventilation flow per area_n \times usage factor_n$ 17	
	vent_mech_winter	I/s	Total mechanical ventilation in winter, calculated as follows: $\sum_{n=1}^{i} area_n \times ventilation \ flow \ per \ area_n \times usage \ factor_n \\ \times temperature \ efficiency_n$	
Ventilation system	vent_inlet_temperature_code	nominal	Categorisation of ventilation heat recovery and heating coil, based on the maximum vent_mech_winter for the first three categories. If vent_mech_winter is zero, "Type 4" is selected. • Type 1 = ventilation systems with temperature-controlled heat recovery (and temperature-controlled heating coil) • Type 2 = ventilation systems with NOT temperature-controlled heat recovery and temperature-controlled heating coil • Type 3 = ventilation systems with NOT temperature-controlled heat recovery and NO (temperature-controlled) heating coil • Type 4 = no mechanical ventilation system	
	vent_nat_summer	l/s	Total natural ventilation in summer calculated as stated in Equation 17.	
Ventilation summer	vent_mech_summer	I/s	Total mechanical ventilation in summer calculated as: $\sum_{n=1}^{i} area_n \times ventilation \ flow \ per \ area_n \times usage \ factor_n $ 19	
Solar plant	solar_plant_type_code	nominal	Type of solar plant: None = No solar plant (respectively solar plant with 0m² area) UtilityWater = only for domestic hot water RoomHeating = only for room heating Combined = Combined for room heating and domestic hot water	
	solar_plant_area	m ²	Area of the solar plant	

Heat pump	heatpump_type_code	nominal	Type of solar plant: None = No heat pump (respectively heat pump with 0 area fraction) RoomHeating = only for room heating UtilityWater = only for domestic hot water Combined = One heat pump combined for room heating and domestic hot water
	heatpump_area_fraction	-	 Duo = Two heat pumps, one for room heating and one for domestic hot water Proportion of the total heated floor area of the building covered by the heat pump. If heat pumps supply heat to the ventilation system's supply air, a negative number indicates that there is also other heating in the rooms.

Appendix A Quality criteria for EPC data

In Table 5 following criteria used for cleaning of the EPC data are outlined. These criteria are based on the work by [2,7] but were adapted, and some were added to fit the purpose of this dataset better. The column modified indicated if that criterion was compared to the ones used by [2,7] either modified or added.

Table 5 EPC cleaning criteria based on the ones established by [2,7]. The column modified indicated

if that criterion was compared to the one used by [2,7] either modified or added.

Component	Characteristic	Criterion	Modified
Building information	Heat capacity	[23,180]	√
	Area	>0	
Building	U-value]0.03, 7]	
envelope information	Temperature factor for roofs and ceilings	[0, 1]	✓
	Heat capacity [23,180] Area >0 U-value]0.03, 7]	✓	
	Number	>0	
	Area	>0	
	U-value]0.2, 7]	
	Temperature factor	[0, 1]	
Window	Fraction of glazing	[0, 1]	
information	Solar transmittance (g-value)	[0, 1]	
	Shading angle horizon	[0, 90]	
	Shading angle eaves	[0, 90]	
	Shading angle left	[0, 90]	
	Shading angle right	[0, 90]	
Linear	Length	>0	
thermal transmittance	Heat loss]-0.1, 10]	✓
information	Temperature factor	[0,1.3]	\checkmark
	Area	>0	
	Time of operation	[0, 1]	
Ventilation information	Natural ventilation winter	>=0	
Illomation	Mechanical ventilation winter	>=0	
	Natural ventilation summer	>=0	√
	Mechanical ventilation summer	>=0	√
Ventilation information	Heat recovery	[0, 1]	
iiiioiiiiatioii	Inlet temperature	(-18, 0, 18)	

	Area	>0	
Internal heat	Heat load from persons]0, 10]	
gains	Heat load from appliances inside and outside usage hours]0, 16]	
	Supply temperature	[30, 90]	
Heat	Return temperature	[15, 90]	
distribution system	Supply temperature & Return temperature	Exists at least once	√
	Temperature difference	>=5	\checkmark
Heat/DHW	Length	>0 if temperature factor ≠ 0	Х
distribution pipes	Heat loss	>0 if temperature factor ≠ 0	Х
p.p.c	Temperature factor	[0, 1]	
Domestic hot	Average consumption	[0, 300]	
water	Temperature	>=55	✓
	Number	>= 0	
	Volume	>= 0	
Domestic hot	Share of DHW	[0, 1]	
water tanks	Supply temperature	[30, 90]	
	Heat loss	>0	
	Temperature factor	[0, 1]	
Solar heating plant	Area	>= 0	√
Heat pump	Fraction of area	[-1, 1]	√