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Dynamical orders of decentralized HQQ controllers
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The problem of decentralized control is addressed, i.e. the problem of designing a
controller where each control input is allowed to use only some of the measurements.
It is shown that, for such problems, there does not always exist a sequence of controllers
of bounded order which obtains near-optimal control. Neither does there exist an infinite-
dimensional optimal controller. Using the insight of the line of proof of these results, a
heuristic design algorithm is proposed for designing near-optimal controllers of increasing
orders.

1. Introduction

In several industrial environments, implementing a full multivariable controller which
combines all measurements and all control signals is not possible, practical, or desirable.
For a distributed plant, installing a full multivariable controller could mean that a complex
communication network had to be installed. Moreover, in terms of reliability, a full
multivariable controller could have the effect that a breakdown in a single unit, no matter
how peripheral to the system, could have plantwide consequences. Examples of application
areas where full multivariable controllers are unacceptable are: distributed power systems
(where the controllers for each station should be independent), steel milling (where the
controllers for each stand should not interfere), and large-scale space systems (where the
modules should be autonomous).

To formalize such requirements, known as decentralized control specifications, we
consider a state-space plant model of the form

x = Ax + B\w+ B2U,
z = Clx + Duw + Dl2u, (I)
y = C2X + Di\w +
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FIG. 1. Decentralized control

where u and y are partitioned as

u = y =

Now, the problem is to design k controllers

(2)

(3)

such that the resulting transfer function from w to z meets the specifications. In this paper
we shall assume that the specifications are posed in terms of an Hoo norm constraint of the
transfer function from w to z. However, this choice is not crucial, and the argument found
below would hold for many other types of performance specification.

Rewriting (3) using (2), we get

= Ky, K =

K] 0
0 K2

0 0

0
0

Kk

The decentralized control problem is depicted in Fig. 1.
The theory of decentralized control has been widely studied in the literature. The

classical theory which especially addresses the issue of decentralized stabilization is
surveyed by Davison (1984). Two excellent textbooks dealing with decentralized contr
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are those of Vidyasagar (1985) and Ozgiiler (1994). More recently, Hoo decentralized
control has been introduced by Paz (1993), and robust and reliable decentralized control
has been studied, (e.g. Veilette et al. 1992).

Most published results on decentralized control are based on sufficient conditions
only. In contrast, Sourlas & Manousiouthakis (1995) suggest an optimization-based
approach. Their method uses a parametrization which enables an infinite-dimensional
optimization problem to be approximated by a finite-dimensional one. In the example
studies, controller orders grow rapidly as the optimization approaches the optimum.
Sourlas & Manousiouthakis blame their method rather than the decentralized control
problem itself. Indeed, since the problem formulation is finite-dimensional, it is tempting
to believe that a decentralized control problem always can be solved by fixed-order
controllers. In this paper, we shall prove to the contrary that, for decentralized control
problems, all controllers can have dynamic orders that tend to infinity as the optimum is
approached.

2. Main results

The main result of this paper is that near-optimal decentralized Hoo control problems can
require controllers of arbitrarily large orders as the optimum as approached. To state this
in more precise terms, we introduce the following two sets of controllers:

ICyiG) --

K =
0

K is internally stabilizing, and \\Fi(G, -K")|loo < Y
Kk

[K = diag(tf, : / = 1,..., k) e fCY(G) : Kj (i = 1,..., k) is of dynamical order < N}.

THEOREM 1 There exists a nonempty class Q°° of systems such that, for each G e £°°,
the inequality

inf [y : K.Y{G) ^ 0} < inf jy : tC^G) jt 0)

holds for any N.

The interpretation of Theorem 1 is that there exists systems for which no sequence of
fixed-order decentralized controllers approach the optimal value.

REMARK 1 It is tempting, yet incorrect, to conclude from Theorem 1 that this implies
the existence of an optimal infinite-dimensional decentralized controller. We shall prove
that, in general, there is no optimal decentralized controller yielding a closed-loop system
analytical in the open right half plane.

Before embarking the proof of Theorem 1, we shall need the following result from
functional analysi

 

http://imamci.oxfordjournals.org


302 i. STOUSTRUP AND H. H. NIEMANN

COROLLARY 2 Let V denote a closed subset of the complex plane. Consider / (•) e H^,
with / analytic in V, and assume /(z) = 0 on a set of positive measure on the boundary
of!?. Then / = 0.

This observation is evident from the following result, which can be found in Jensen's
(1899) paper. (This paper illustrates how use of the word 'new' in the title can be
misleading.)

THEOREM 3 Let V denote the unit disc or C + . If / (•) € HP(P), with / # 0, then

-J- I log|/(e*)|d0>-oo.
2n JdD

Finally, we shall use the following technical result.

LEMMA 4 Let

(S) A(s) s
be an irreducible Nth-order proper rational function, and let {<wi,..., a>2/v+i} be a set of
distinct real values for which A(ia>j) # 0 (/ = 1,..., 2/V + 1). Define the numbers

= aN

Then there exists a neighbourhood of (yi,..., YIN+\) such that the map F : C2N+l —*•
C2JV+I, which maps the complex (2N + l)-vector (YI,-<Y2N+\) l 0 the (2N + 1)-
dimensional (possibly complex) parameter vector (CKI,..., as, fk>,-, PN) of a rational
function in the form (4), is a continuous bijection.

Proof. Let us first establish uniqueness of F at (yi,..., YIN+\ )• To that end, assume that the
parameters u\,..., ayy, Po,-, P~N satisfy (4), i.e.

= BQioj) = m(oi)N+piQa>i)N-l+--+pN

However, from (4) and (5) we infer

A(\a>i)B(iwi) - A(\wj)B(ia>i) =0 (i = \,...,2N + 1).

The only polynomial of degree less than or equal to 2N having 2N + 1 zeros is the zero
polynomial; hence

A(s)B(s)-A(s)B(s) = Q. (6)

Since A(s) and B(s) were assumed to be coprime, the only solutions to (6) of order less
than or equal to N are

A = k A , B = k B ,

where it is a unit in the ring of polynomials, i.e. a constant. Finally, since the coefficients
of highest order in A and A are fixed at 1, we conclude k = I.

http://imamci.oxfordjournals.org
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FIG. 2. Decentralized control for series connected model matching problems

From this argument, it follows that the map

F : C2W+1 -* C 2 " + 1 :(y,

is well defined in any neighbourhood of (yi,..., Y7N+\) where the corresponding transfer
function remains irreducible. Such a neighbourhood exists due to the continuity of the roots
of a polynomial as functions of the coefficients, and due to the fact that the coefficients are
computable by solving linear equations that depend continuously on the y,'s. This also
establishes continuity. Obviously, the inverse map is injective, due to the definition of the
y,'s. •

We are now able to prove our main result.

Proof of Theorem 1. To establish nonemptyness of G°°, we shall study the decentralized
control problem in Fig. 2. The system is a series connection of two 'model-matching
problems', which can be thought of as a prototype of decentralized production-line control.
In this interpretation, w is the amount of an impurity of the product eliminated in part by the
controller Q \ which is then transferred downstream, where the product is further refined by
£?2 before it is fully processed as z. The notation Q, rather than Kj is introduced because
we think of the 2, 's as YJBK parameters (Youla et al. 1976; KuCera 1975) rather than
controllers. Specifically, we shall choose:

s -z\
s + zi

G2(s) = S - Z 2

S + Zl'
zi > z\ > 0.

Note that internal stability is equivalent to stability of Q\ and Qi since the C,'s are stable
(though non-minimum phase.)

For this particular system, we shall prove that any sequence of fixed-order controllers
stays boundedly away from the optimal value of y, which for this example is 0 (see
below). To that end, let N be fixed and assume to the contrary that we have a sequence

of controllers Qy = ' y \, with Q] being Wth-order transfer functions, which

flwO)^ < Y for all y > 0, where 7"Zw() is the closed-loop transfer functionsatisfies fl^
from w to z:

TU-) = T*{.)T*(.) = [] + Qr
2()G2{)] [1 + G[()C,()].

For any S > 0 we can perturb G\() and G 2 O by two irreducible (/V - l)th-order stable
proper rational functions G\() and G )

G\=Gi+G\, G2 = G2 + (7)
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such that G \ and G2 are A/th-order stable non-strictly proper rational functions which have
zeros in the right half plane and satisfy

Obviously, fZw < y + S implies that, for each frequency co,
U Uoo

either

Now, choose 4N + 2 arbitrary but different frequencies. Then, for each y, either
f\ (ia>i) I < Vy + <* or I f\ (icoj) fl < Jy + <* will be satisfied for at least IN + 1 of the

chosen frequencies. Since there are only finitely many ways to choose 2N + 1 frequencies
among 4N + 2 frequencies, there exists a subsequence {Q*) of {QY} for which one of the
Gf(O'Si which can be taken to be Q\{-) without loss of generality, satisfies

I 77 (to;) | <V9+S

for 2N + 1 fixed frequencies a>\,..., a>2/v+i- Hence, for these 2A7 + 1 frequencies,

lim g| ' ( iw/)6B(-G71(iw/),5), (8)

where B(c, r) denotes the complex ball of radius r centred at c.
Let us consider a transfer-function* representation of Q\:

y, , _

Now, since C]" is irreducible, we can apply Lemma 4. Indeed, by selecting S sufficiently
small,B(—C]"'(iaj/),5) will be contained in some neighbourhood of — Cj"'(iw,-) in which
the operator F mentioned in Lemma 4 is continuous. Finally, by continuity of F and by the
continuity of the roots of a polynomial in the coefficients, the denominator of Q\(s) will
have roots in the open right half plane for y and S sufficiently small, since the denominator
of —G| (J ) has. That is a contradiction, since Q\(s) was assumed to be stable. Hence, no
fixed-order sequence of controllers achieve the infimal value of y.

To establish the nonexistence of an infinite-dimensional optimal decentralized
controller as mentioned in Remark 1, we assume to the contrary the existence of an optimal

analytical function Q* = \ ^ nt , i.e. a function which is analytical in the open right
L u V2 J

half plane, and which makes the closed-loop transfer function from w to z equal to 0:

7kw(-) = [1 + Ql()G2()] [1 + e j ( ) C i ( ) ] = 0.

* The controller is allowed to be a complex transfer function in this argument. Thereby we prove a slightly
stronger result.
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From continuity of the transfer function 1 + Q\(-)G2.(-), the transfer function 1 +
Q*\(-)G\(-) has to be identically equal to zero in a neighbourhood of s = Z2-
Applying Corollary 2 for a set T> contained in the (nonempty) intersection between
this neighbourhood and the open right half plane, it follows from Corollary 2 that
I + 6 | ( ) C | ( ) = 0. This implies that Q*() - -G\ (•)"', which is a contradiction since
C i ( ) ~ ' is not analytic in the right half plane.

On the other hand, there does exist a sequence of controllers of increasing orders
that makes 7ZW tend to zero in H<x, norm topology. Such a sequence is relatively easy
to design. The main idea is to design 1 + Q\{-)G\ (•) to have low-pass characteristics and
1 + 62 (")G2(0 to have high-pass characteristics. Then the overall HQQ norm is determined
only at frequencies between z\ and zi by the roll-off rates of these two transfer functions.

To achieve this, we introduce P£(S,CDB) to denote the Nth-order Butterworth
polynomial with characteristic frequency COB- In terms of these polynomials, we can give
explicit expressions for a possible controller sequence:

N = (*
S ~

Z2)[sNPg(Z2, Z2-') ~ Z2"

Note that Q1^ and 2 ^ a r e stable, considered as rational functions, since the two unstable
denominator factors are cancelled by the numerators.

Now it can be verified, using a symbolic manipulation package, that the maximal value
of |7iw(i^)l appears for to = *Jz\l2, and that this maximal value tends to zero as A' tends
to infinity. The resulting design for N = 5 can be seen in Fig. 3. The dotted lines are the
magnitudes of the two transfer functions I -f Q^ (\co)G[(\u)) and I + 2^(ia>)G2(iw), and
the solid line is magnitude of their product, 7"zw(iw). The vertical lines indicate the two
nonminimum-phase zeros zi and Z2- D

REMARK 2 It is not easy to determine the exact contents of the class Q°°. Theorem 1
shows that the class is nonempty. Indeed, from the line of proof, it could be anticipated
that a majority of nonminimum-phase systems would be in the class. On the other hand,
if G\ or G2 would be minimum-phase in the configuration in Fig. 2, there would exist a
fixed-dimensional sequence of controllers, so the class does not comprise all decentralized
control problems.

3. Near-optimal design of decentralized controllers

In the literature, few algorithms can be found for near-optimal decentralized control
for arbitrary plants. The reason for this is likely to be found in Theorem I, which
eliminates the possibility of Riccati-type necessary and sufficient conditions for near-
optimal problems. One result that facilitates design for near-optimal control is that
of Sourlas & Manousiouthakis (1995). This method, however, is based on a complex
optimization procedure, and might be numerically infeasible for large-scale systems. Based
on the line of proof above, however, a heuristic algorithm can be devised, which wo
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FIG. 3 5th-order Butterworth design

systems where individual subsystems have only a limited number of nonminimum-phase
zeros, and where subsystems are only lightly coupled.

First, without loss of generality, we will rewrite (1) as k subsystems of the form

I Xi= AjXi+ B\jW+ Y.j#B2.ijzj+ B3.iUi<
z< = C\.;xi + £>i i./w + £^ , . D\2.ij ZJ + Daj tn,
Vi = CjjXi

(9)

The intuition of this form is that each controller 'looks into' a subsystem with two
kinds of disturbance: the original exogenous signals w and the artificial disturbance vector

Wj =

which determine how the subsystems influence one another. Expanding the idea of the
proof of Theorem 1, we obtain the following conceptual algorithm:

ALGORITHM 1

Step 1. Determine the nonminimum-phase zeros for each subsystem E-, with respect to
each component of the input Co,

Step 2. Sort the zeros of all subsystems by magnitude, and assign either a low-pass (LP), a
band-pass (BP), or a high-pass (HP) attribute to each input of each subsystem based
on this. The assignment should consider the signals to,- also; i.e. by computing the



DYNAMICAL ORDERS OF DECENTRALIZED HTO CONTROLLERS 307

zeros related to these inputs, the local interpolation constraints should be taken into
account

Step 3. Design weightings for each subsystem such that the outputs for a subsystem with
a HP attribute is input only to LP loops and vice versa

Step 4. Compute a controller for each subsystem with these weightings using Hoo
optimization

Step 5. Iterate from Step 3 by increasing the roll-off rate of the weightings until the
specifications are met

At each iteration of the algorithm, the controller order will increase due to the increased
order of the weightings.

REMARK 3 Obviously, if any of the involved systems are minimum-phase with respect
to all input-output pairs, these subsystems can be made uniformly small (at the possible
cost of robustness).

It is interesting to observe that, e.g. for systems comprising three subsystems with each
having just one nonminimum-phase zero, it might be the case that (LP, LP, HP) and (LP,
HP, HP) are both admissible assignments of attributes, leading to the same optimum. In
fact, for a series connection, if it is possible to design two loops to have disjoint LP and HP
characteristics, the remaining loops are completely free. Needless to say, the corresponding
controllers will then be rather different. This type of non-uniqueness does not exist always
in a full multivariable near-optimal design.

4. Conclusions

We have shown that, for a class of systems, the controller order of a decentralized Hoo
controller will not remain bounded as the Hoo optimization tends to the optimum. In
such cases, no sequence of controllers will converge, not even to an infinite-dimensional
controller. The 'optimal' controller will be non-causal.

We believe that the proof of the main result in this paper provides insight which can
guide the design of decentralized controllers. In particular, a heuristic design algorithm has
been devised, which works for systems that are not too strongly coupled, or have not too
many nonminimum-phase zeros.
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