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(ZAMP) �9 1995 Birkhfiuser Verlag, Basel 

On gyroscopic stabilization 

By A. Seyranian*, Institute of Mechanics, Moscow State Lomonosov 
University, Moscow, 117192, Russia, J. Stoustrup and W. Kliem, 
Mathematical Institute, Technical University of Denmark, 
Building 303, DK-2800 Lyngby, Denmark (e-mail: jakob@mat.dtu.dk.)  

1. Introduction 

Stability properties of linear conservative gyroscopic systems of the 
form 

MY + G 2  + K x = O  (1) 

have been investigated for many years. M, G and K are real n x n matrices 
with M r = M > 0 (positive definite), G r =  _ G and K r =  K. M is the mass 
matrix, G describes the gyroscopic forces and K the potential forces. The 
vector x represents the generalized coordinates. Systems of  form (1) are 
important  mathematical models for e.g. rotor systems, satellites and fluid- 
conveying pipes. 

Some important  existing results for conservative gyroscopic systems 
should be mentioned. While gyroscopic forces can never destabilize a stable 
conservative system, they can possibly stabilize an unstable conservative 
system. A classical result by Thomson and Tait [TT79] and Chetayev 
[Che61] states that an unstable conservative system MY + Kx = O, K ~ 0 
can be stabilized by gyroscopic forces if and only if the number of unstable 
degrees of freedom is even. This means e.g. that when K < 0, then the 
dimension n must be even. For this case Lakhadanov [Lak75] showed that 
suitable stabilizing matrices are G =g0G0, where det Go-r 0 and go is a 
sufficiently large number. Lakhadanov gave an explicit expression for one 
such go. In the general case with an indefinite K, an unstable conservative 
system can be decoupled by choosing modal  coordinates. Hence, we only 
need to stabilize the subsystem which has a negative definite stiffness matrix. 
Gyroscopic stabilization in the case K _< 0 was dealt by e.g. Merkin [Mer56] 
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and Mfiller [Mill77]. Hagedorn [Hag75] showed that 4 K - G M - 1 G  < 0  
implies instability of the system (1). On the other hand 4 K - G M - I G  > 0 

does not generally ensure stability. For the special dimension n = 2, 
Teschner [Tes77] proved that if K < 0  and 4 K - G M - 1 G  >0,  then the 
system (1) is stable. Inman and Saggio [IS85] extended this result and 
showed that if n = 2, K < 0 and t r ( 4 K -  G M  I G) > 0, then the system is 
stable. Several investigations have been made to clarify the role of the 
matrix 4K - G M  I G concerning stability in the case of arbitrary dimension 
n. Huseyin, Hagedorn, and Teschner [HHT83] proved the lemma that if the 
conditions G M - ~ K - K M  ~G > 0  and 4 K - G M - ~ G  > 0  hold, then the 
system is stable. A theorem from the same paper states that if 
G M - ~ K  = K M - 1 G ,  the relation 4 K - G M - 1 G  > 0 is necessary and suffi- 
cient for the stability of the system (1). Confined to systems with M = I  
(identity matrix), the lemma is covered by the theorem, since the matrix 
GK - KG can never be positive definite because it is always indefinite or the 
zero matrix. A system with M = I can easily be established from (1) by 
means of the transformation x = M  1/2Z and premultiplying by M -1/2 

Then the skew symmetry of G and the symmetry of K are transformed to 
M - 1 / 2 G M  -~/2 and M - ~ / 2 K M  -~/2 respectively. Calling these new system 
matrices again G and K, we get the differential equation 

I~ + G~ + Kz =0.  (2) 

Recently Inman [Inm88] found a sufficient condition for the stability of the 
system (2): if K < 0 and 4 K -  G 2 -  eI > 0, where 2e = #max(-G2), then the 
system (2) is stable. Here #max(- G2) denotes the largest eigenvalue of - G  2. 

One of the aims of the present work is to improve this last condition in 
a way, which makes e independent of G, decreases the value of e and finally 
results in e = 0 if GK = KG, which is in accordance with the theorem by 
Huseyin, Hagedorn and Teschner. Another important task will be to 
investgate the behaviour of eigenvalues of the system (2) dependent on 
parameters in order to reveal the mechanism of transition between diver- 
gence, flutter and stability. This anlysis is based on the theory of interac- 
tions of eigenvalues developed recently by Seyranian [Sey91, Sey93]. 

2. The behaviour of eigenvalues 

In this section we consider the system (2) when G and K contain 
parameters. Assuming solutions of the form z = u exp(2t), the respective 
eigenvalue problem is expressed by 

(221 + 2G + K)u = 0. (3) 

Notice, that the 2n eigenvalues in the complex plane are placed symmetri- 
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Figure 1 
Impossible behaviour of eigenvalues. 

cally with respect to the real as well as to the imaginary axis: together with 
Z are )7, - 2  and - s  eigenvalues. Studying the dependence of  the eigenval- 
ues on the parameters,  this symmetry implies that  real and purely imaginary 
eigenvalues, as long as they are distinct, can move only on their respective 
axes. Leaving an axis can not  happen  in the way as sometimes indicated in 
the literature by Fig. 1, but  only as a result of  a special eigenvalue collision, 
called strong interaction (Fig. 2), see also [Sey91, Sey93]. 

This symmetry also implies that  stability of  the system (2) can occur 
only if all eigenvalues are purely imaginary (marginal  stability). 

First we investigate the system 

I}" + pGoz + Kz = O, G = pGo, (4) 

with one load parameter  p >- 0. Notice, that  all real eigenvalues of  (4) are 
bounded,  since real eigenvalues have real eigenvectors u and urGou = 0 such 
that  2 2u r I u +  u rKu = 0 leads to 

urKu 
#min(K ) < _ ~ 2  = _  < #max(K). (5)  uru - 

We now want to study the behaviour of  the eigenvalues of  the system (4) 
with n even and K < 0 (statically unstable) under  the stabilizing process. 
Much  can be seen by investigating the case n = 2 with 

G = p G o = p  B ' LC12 c22_] 

Then K < 0 means c1~ < 0, C2z < 0, det K > 0. The characteristic equa- 
tion 12:I + 2G + g I = 0 results in the four symmetrically placed eigenvalues 
satisfying 

1 2 2 1 "1  ;.2 = + <2 + P p ) + > f D ,  

D (Cl l  __ C22)2 _~_ 4CI22 jr_ 2 (Cl  1 q._ C22)/~2p2 _~_ f14p4.) ( 7 )  

Figure 2 
Strong interaction of eigenvalues. 1 ! 
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One finds the zeros of D as 

 2p}1 = -(c,1 + e22)- 2d ,'l 

t~2pj~2 = - - (C l l  -1- C22 ) "l- 2 d ~ . J  ? (8) 

The roots of the discriminant D determines the boundaries of diver- 
gence, flutter and stability. This results in 

0 < p < PF1 : divergence 

PF1 < P < PF2 : flutter 

PF2 < P : stability. 

Hence, gyroscopic stabilization will always take place for a sufficiently 
large load parameter, but the inspection of the definiteness of 4 K -  G 2 alone 
will usually not reveal the stabilization value PF2. 

We now turn to the system (4) with K < 0  and arbitrary (even) 
dimension n. According to Lakhadanov [Lak75], the system will be stabi- 
lized for sufficient large value of p if det Go r 0. But Lakhadanov also 
showed by an example that det Go ~ 0 is not necessary for stabilization. 
Anyhow, it is obvious that the picture of stabilization is similar to that of 
Fig. 3: pairs of real eigenvalues have to collide, interact strongly and 
become complex conjugate values 2 and )T. After the flutter phase, 2 and -)T 
meet in a strong interaction on the imaginary axis. According to this 
mechanism all eigenvalues will finally end on the imaginary axis and the 
system is gyroscopically stabilized. This illustrates clearly the above men- 
tioned theorem of Thomson-Ta i t -Che tayev :  In the case of K < 0 and odd 
number n there is a single eigenvalue left on the real axis such that no 
interaction with following leave of the axis is possible. Also in the case 
where K is indefinite the mechanism of stabilization is similar to the one 
shown in Fig. 3, if stabilization can be achieved at all. The only possible 

I Im?~ 

Figure 3 
The mechanism of  gyroscopic stabilization for the system (4), (6). 

p=O Re3, 
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difference is that  if K has zero eigenvalues, then a collision at 2 = 0 will take 
place. 

Now we shall s tudy the case, where both  the gyroscopic and the stiffness 
matrix contains parameters.  Consider  a simplified model  of  an elastic rotor. 
A massless non-circular elastic shaft carries a disk with mass and is 
subjected to an axial compression force. Such a model  is according to e.g. 
Huseyin [Hus78] described by a system of  form (2) with 

E ~ ~  G = 2p 1 ' 0 C2 - -  17 __p2  �9 (9) 

Here, p is the angular  velocity of  the shaft, t / represents  the axial force and 
cl and c2 are stiffness coefficients of  the shaft in two principal directions. 
Using p, al = C l - q  and a2 = c 2 - q  as the parameters,  the characteristic 
equat ion becomes 

2 4 q- ,)~2(al -Jr- a2 + 2p 2) + (a~ -p2)(a2 _ p 2 )  = 0 (10) 

with solutions 

2~,2 = - ( a l  + a2 + 2p 2) _ ~ 

2 f (11) 
D = (al - -  a2) 2 q- 8(al + a2)p 2. 

For  p = 0 we get 2 2 = --al and 222 = -a2.  A zero eigenvalue 2 = 0 appears 
for p 2 =  a~ and p 2 =  a2, i.e. only for positive values of  al and a2. Splitting 
up the al a2-plane into appropriate  regions, elementary calculations studying 
the behaviour  of  the roots of  (10) provides the following results: 

(~) al -< 0, a 2 <- 0: 

(al -- a2) 2 ' divergence (al) 0 -< p2 < p )  _ 8(a, + a2) 

(a2) p~.<p2 : f l u t t e r  

(fi) a l > 0 ,  a 2 > 0 :  

(fl~) 0 -< p2 < min(a~, a2) : stability 

(f12) rain(a1, a2) -< p2 < max(a1, a2) : divergence 

(f13) and (f14) max(a1, a2) < p 2  : stability 

(7) al < 0, a 2 > 0, al + a2 < 0: 

(71) 3a2 + al > 0, 0 < p2 < a2 : divergence 

(72) 3a2 + al > O, a2 -< p2 _< p~ �9 stability 

(73) 3a2 + a~ > O, p~ --- p2 �9 flutter 

(74) 3a2 + al < 0, 0 -< p2 _< p} : divergence 

p~ < p2 " flutter 
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(6) a l < 0 ,  a e > 0 ,  a l + a 2 > 0 :  
(61) 0 < p2 < a2 " divergence 
(62) a2 < p 2  " stability 

This is a complete four-parameter  (cl, c2,/'], p) stability analysis of  the 
system (9). As an example we ment ion  the mechanism of  stabilization in case 
6: an eigenvalue collision at 2 = 0 changes divergence into stability. 

It is instructive to follow Inman  [Inm88, Into89, p. 84], fixing the values 
of  r /and p and asking for the stability regions in the al a2-plane or in the cl c2- 
plane (cl > 0, c2 > 0). For  I / --  3 a n d p  = 2, Fig. 4 shows the result of  the pres- 
ent investigation. Notice, that  this picture does not  entirely agree with Inman  
[Inm88] and is more  complete than the picture given by Inman  [Inm89]. 

The areas for el and 71 correspond to negative stiffness coefficients Cl and 
c2 and are hence not  shown. 

Since t / a n d  p are fixed, it would be possible to use the system (4), (6) 
to get Fig. 4. One may compare  with the stability regions according to the 
above ment ioned  theorems: 

(f12), (a,) 

4K - G 2 < 0. Hagedorn  [Hag75]: unstable. 

K > 0. T h o m s o n  and Tait [TT79]: stable. 

n = 2, K indefinite. T h o m s o n  and Tait [TT79]: unstable. 

n = 2, 4K - G 2 > 0. Teschner [Tes77]: stable. 

n arbitrary, 4 K -  G 2 - e l  > 0, e = �89 = 8. Inman  [Inm88]: 
stable. 

c 2 

7 
61 #2 

3a1+a2=O 

& 

61 

• QI-I-G 2=0 
(a 1-a2)Z+,.32(a 1 +a 2)=0 

Figure  4 
Stabi l i ty  m a p  of  the sys tem (9) for r/ = 3 and  p = 2. 

Q1 

c1 
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(Ta), (73), (74) no decision. 

(/33), (/34) n = 2, K <  0, t r ( 4 K - G  2) > 0. Inman and Saggio [IS85]: 
stable. 

G K  = KG is equivalent to cl = c2. Huseyin, Hagedorn and Teschner 
[HHT83]. cl = c2 > 3: stable, cl = c2 < 3: unstable. 

In the next section we will prove a stability condition, which will reveal 
the region (72) as stable witUout inspection of the eigenvalues as done in the 
previous investigation. 

Now, let us consider a generalization of the system (9) with the form 

M 2  + p G 2  + ( C - - p 2 B ) x  = 0, (12) 

where p-> 0 is a load parameter and C and B are symmetric, positive 
definite n x n matrices. We introduce the Rayleigh quotients 

m = (mu,  u)/(u, u) > 0, c = (Cu, u)/(u, u) > O, 
(13) 

b = (Bu, u)/(u, u) > O, ig = (Gu, u)/(u, u). 

Choosing eigenvectors in the Rayleigh quotients, we find that every eigen- 
value 2 is a root of the quadratic equation 

m• 2 + ipg)~ + c - p2b = 0. (14) 

Flutter appears when the discriminant of (14) is positive: 

p2(4bm _ g2) _ 4cm > 0. (15) 

A necessary condition for flutter is therefore 

4bin _g2  > 0. (16) 

Since the Rayleigh quotients (13) are limited by the smallest respectively by 
the largest eigenvalue of the associated matrix, (16) is satisfied, if 

4/~min(B)/~min(M) > ~max( - -  G2). (17) 

Assuming (17), the critical flutter parameter Ps can now be evaluated as 

( b  ) c _ cm mmax(C)#max(M ) 
p~ = min <<- -b <- P} bm ~ g 2  < #min(B)#min(M) 1 - -  4~max(  - -  G 2 )  

(18) 
Here p2 is the smallest eigenvalue of the problem 

Cu = p 2Bu, (19) 

and corresponds to the eigenvalue 2 = 0 of the original problem (12). So, it 
is obvious that the system is stable for 0 -< p2 <p~ and unstable for p2 _> p~. 
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If p~ is a simple eigenvalue of (19), then only one eigenvector ul 
corresponds to the double eigenvalue 2 = 0 of (12). This means that at 
p2 = p~ a strong interaction of eigenvalues takes place with the result that the 
system (12) loses stability by divergence for p2 >p~. 

Ifp~ is a double eigenvalue of (19), the double eigenvalue 2 = 0 of (12) 
has two linearly independent eigenvectors. In this case weak interaction of 
eigenvalues takes place and the system (12) remains stable for p2 >p2 at 
least in some neighbourhood of p~. It is interesting that this is valid for 
arbitrary gyroscopic matrices G, such that the gyroscopic stabilization can 
be achieved by arbitrary small gyroscopic forces. 

The considered case of gyroscopic stabilization in the vicinity of p 2 can 
be generalized in the following way: with an even multiplicity of the smallest 
eigenvalue p~ of the problem (19) stability is maintained for p2 ___ p l  2, while 
an odd multiplicity of p~ leads to a loss of stability for p2 >p2 by 
divergence. 

3. A stability condition 

Consider the system (1) with even dimension n and K < 0. Since M > 0, 
we can introduce modal coordinates z by x = Uz with orthogonal U--  
[u1 �9 �9 �9 un], (K  - k iM)u i  = O, U r M U  = I, U r K U  = / (  = diag{k,.}, ki < 0 and 
U r G U  = G = - G  r. Again calling (7 and / s  for G and K, the system (1) is 
written in form (2) with the special advantage of a purely diagonal K: 

12 + G~ + Kz = 0, K = diag{ki}, ki < 0, n even. (20) 

(20) is equivalent to the first order system 

~  :I:l 

A well-known theorem (see e.g. Mfiller [Mill77], p. 122) states that the 
system (21) is (marginally) stable if and only if the homogeneous Lyapunov 
equation 

A Tp + PA = 0 (22) 

has a symmetric, positive definite solution P = p r >  0. If P is partitioned 
into square submatrices 

~Pll P12~ (23) 
P=[_P~2 P~21' 
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(22) is identical with the four equations 

KP~[2 + P 1 2 K  = 0 

P22G - GP22 - P12 - -  PTI2 = 0 

P11 - P12G - K P =  = 0 

Pl l - -P~ l  = 0  

Now we formulate the following theorem: 

263 

(24) 

To get optimal stabilization results from (25)- - th is  means gyroscopic 
stabilization matrices G with HG]I as small as possible--we have to find 
optimal matrices A. The above definition of A makes the following consider- 
ations obvious. 

(1) Assume that G couples the degrees of freedom pairwise in a perfect 
matching. In this case G contains only one nonzero element in each row and 
in each column, e.g. 

0 0 g13 0 1 

G = 0 0 0 g24 (29) 
--gl3 0 0 0 ' 

0 --g24 0 0 

Proof. It can easily be checked that the following matrix P of form (23) 
is a solution to (24): 

Pl l  = - A K  + K 2, P12 = K G ,  P2z = K - A - G 2. (26) 

For this check the relations AK = KA and AG = GA are of importance. 
Now, stability of (20) is ensured by P > 0, which is the case, according to 
a well known theorem (see e.g. Horn and Johnson [HJ85], p. 472), if and 
only if 

P~I > 0 and P 2 2  - -  PT[2P~IP~2 > 0. (27) 

P~l > 0 is obviously satisfied since K < 0 and A > 0. Since 

G K ( K  2 - zXK) ' K G  = G ( I -  AK -~) ~G, (28) 

the second condition in (27) directly implies (25), which completes the 
proof. [] 

Theorem 1. Consider the system (20). Let A be any positive definite 
diagonal matrix, A=diag{Si},  81 >0 ,  such that A and G commute: 
AG = GA. Then the system (20) is stable if 

K - A - G  2 + G ( I - A K  -~) 1G>0 .  (25) 
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where the coupling is 1 ~-~ 3, 2 ~ 4. Let these pairs be represented by i +-+j. 
Choose A = diag{6k} such that 3; = 6j and call this common value 6,j. Then 
the matrices K, A, G= and G ( I - K - 1 ) - l G  are all diagonal and condition 
(25) implies 

(6 j - k , ) (6 i j  - k j )  ( 3 0 )  g~- > 6u 

An optimal choice for c~u the right hand side of (30) to be minimum, is 

6o .=~k~k~ . .  (31) 

Then (30) implies the values of the stabilizing matrix G as 

g~ > ( ~  + x f ~ -  kj)=. (32) 

We now define 

e u = ( x ~ - - k  ~ + x/-L-- kj) 2 + 4 min(k~, kj) (33) 

and introduce a matrix E = diag{ek} with e~ = ej and call this common value 
e U. Then (32) is expressed by 

4 min(ki, kj) + g~ - e;j > 0. (34) 

The stability condition (34) is the main part of the following theorem. 

Theorem 2. Consider the system (20), where G couples the degrees of 
freedom pairwise in a perfect matching. For  every pair i ~ j  introduce 

e0 = (x/-~-ki + x / - k j ) =  + 4 min(ki, kj) (35) 

and place the elements eij in a diagonal matrix E with <.j both in the i ' th and 
the j ' t h  position. Then the system (20) is stable if 

4K - G 2 - E > 0. (36) 

If  we w~mt to replace E in (36) by eL we can use e = max ~ij but this 
reduces the advantage of getting optimal values for the stabilizing matrix G. 
On the other side, (36) is then directly comparable with the condition of 
Inman [Into88]. In the discussed case of G (a perfect matching), G K  = K G  

is valid if and only if ki = kj for all pairs i +-~j. Then (35) implies ~ = 0, 
which reduces the condition (36) to 4 K - G 2 > 0 ,  in agreement with 
Huseyin, Hagedorn and Teschner [HHT83]. 

(2) If G does not couple the degrees of freedom in a perfect matching, 
it is convenient to work with the stability condition (25) of Theorem I. We 
then choose A = 6 I  with 6 = ~ ,  where kmin = min ki, kmax = max k~. 
An interesting special case is again G K  = K G .  Suppose that we want to 
stabilize with G, where all gzj r 0, i < j .  Then G K  = K G  if and only if 
K = kI .  (31) implies in this case c5 U = - k ,  such that A = - k I  = - K  and the 
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stability condi t ion (25) takes the form 2K-G2+G(2I)-~G>O or 
4 K - G 2 >  0, which again is in agreement  with Huseyin, Hagedorn  and 
Teschner [HHT83]. 

4. Examples 

1. We want  to apply Theorem 2 to example (9) with fixed q = 3  
and p = 2 .  For  k 1 = c ~ - 7 < 0 ,  k 2 = c 2 - 7 < 0  and e.g. c ~ < c 2 < 7 ,  (35) 
implies 

g,2 = ( , / 7 - - C l  + X / / 7 - -  C2) 2 + 4 ( c , -  7). (37) 

Then the stability condi t ion (36) results in 

4(C1 - -  7) + 16 - 812 > 0, (38) 

which after elementary computa t ions  yields 

(c~ - c2) 2 + 32cl + 32c2 - 192 > 0. (39) 

Recalling al = Cl - t / =  c~ - 3, a2 = c2 - t / =  c2 - 3, (39) is equivalent to 

(a~ - a2) 2 + 32(a~ + a2) > 0. (40) 

This stability condi t ion results in the regions f13, fi4, 62 and Y2 of  Fig. 4. 
Therefore condi t ion (36) reveals 72 as a stable region, which earlier only was 
possible to recognize by inspection of the eigenvalues. 

2. Consider  the system (20) with ] i 3051 
- 2  0 i 1 (41) 

K = - 3 G = 0 5.037 

- 6  . 0 

According to the remarks in Section 3, we choose 6 = x / k m i n k m a x  • N/-6, 
A---c~L Then checking condi t ion (25) is easy by e.g. Matlab T M  [Mo190]. 
With the matrices (41) the check turns out  positive. But we change the two 
entries in G, g34 and g43 to 5 and - 5  respectively, condi t ion (25) is no 
longer satisfied. Still, (25) is sufficient but  not  necessary for stability, such 
that  in case of  the failure of (25) the system could be stable. But an 
inspection of  the eigenvalues of  the ment ioned example with (25) not  valid 
shows that  the system really in unstable. Which is an indication of  the 
usefulness of  condi t ion (25) with A = 61, 6 = N/kminkmax. 

The stability check by using condi t ion (25) should also be compared  
with the result of  Lakhadanov  [Lak75]. According to this, in the present 
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example (41) the matrix G has to be multiplied by the quite large factor 
go = 119 to ensure stability. 

3. To study the method for systems with large numbers of degrees of 
freedom, we did some computer simulations. In a typical example with a 
system for which n = 20 with a random (normally distributed) skew sym- 
metric Go and a random negative definite diagonal K, we obtained that the 
system 

I~" + goGo~ + K = 0 (42) 

was marginally stable if and only if go > 12.45. Using (25), we derived the 
bound that the system (42) is stable for go -> 12.86. In comparison, the best 
result in literature (Mfiller (Mill77], p. 161, which is actually a special case 
of (25) with A = I) resulted in stability for go > 21.8. Finally, the bound of 
Lakhadanov only guaranteed stability for go > 140918. 

5. Conclusions 

In Section 2 we have dealt with the mechanisms of transition between 
divergence, flutter and stability for several conservative gyroscopic systems 
with parameters. This investigation was based on the behaviour of the 
eigenvalues. Hereby, the theory of interaction of eigenvalues (see Seyranian 
[Sey91, Sey93]) played an essential role. As an example a stability map for 
a simple system with four parameters was presented in order to compare the 
stability regions with those derivable by existing results. 

In Section 3 we proved a theorem, which states a sufficient condition for 
gyroscopic stabilization for conservative systems with an even dimension 
and with K < 0. The proof  is based on the matrix Lyapunov equation and 
follows M/511er [M/i177], p. 161, improved by the introduction of a conve- 
nient positive definite commutator  A for G, where the approach of Mfiller 
corresponds to a choice of A -- L In the case of quite general G, A = 6I with 

= x/kmink . . . .  is a good choice. If G K  = KG, A = - K  leads to the well 
known stability condition 4K - G 2 > 0. In the special case where G couples 
the degrees of freedom pairwise in a perfect matching, A can be chosen in 
a certain 'optimal' way. This leads to a result, which for this special case 
improves a theorem by Inman [Inm88]. 
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Abstract 

The mechanisms of transition between divergence, flutter, and stability for a class of conservative 
gyroscopic systems with parameters are studied. Two results are obtained which state sufficient 
conditions for gyroscopic stabilization of conservative systems with an even dimension and a negative 
definite stiffness matrix. A number of examples are given to demonstrate the feasibility of the results. 
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