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Adaptive Estimation of Zeros of Time-Varying Z-Transforms
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Abstract

In the present paper, a method is proposed for adaptive es-

timation and tracking of roots of time-varying, complex, and

univariate polynomials, e.g. z-transform polynomials that arise

from finite signal sequences. The objective with the method is

to alleviate the computational burden induced by factorization.

The estimation is done by solving a set of linear equations; the

number of equations equals the order of the polynomial. To

avoid potential drifting of the estimations, it is proposed to ver-

ify with Aberth-Ehrlich’s factorization method at given inter-

vals.

A numerical experiment supplements theory by estimating

roots of time-varying polynomials of different order. As a func-

tion of order, the proposed method has a lower run time than

Lindsey-Fox and computing eigenvalues of companion matri-

ces. The estimations are quite accurate, but tend to drift slightly

in response to increasing coefficient pertubation lengths.

Index Terms: Z-transform zeros, estimation, time-varying

1. Introduction

The computational burden of estimating zeros of time-varying

z-transforms of long real-valued signal sequences is rather

heavy. The z-transform can be regarded as a real and univariate

polynomial where the signal sequence represents the coefficient

vector; thus, the zeros are obtained by estimating the roots of

the z-transform polynomial. State of the art factorization al-

gorithms like Lindsey-Fox (LF) is in time O(n2) and in space

O(n); eigenvalue estimation of a polynomial’s companion ma-

trix is in time O(n3) and in space O(n2) [1]. These methods do

not utilize knowledge about prior (coefficient,root)-vector pairs

and therefore, re-factorizes for every coefficient vector pertuba-

tion. However, the roots of a polynomial are continuous func-

tions of the coefficients of the polynomial [2]. Hence, for well-

conditioned polynomials, small coefficient pertubations lead to

small root pertubations, and large coefficient pertubations may

lead to large root pertubations. Adaptive estimation methods

can use this a priori knowledge when adapting a root vector to a

perturbed coefficient vector, e.g. an initial factorization is con-

ducted whereupon the entire root vector is updated in response

to a coefficient vector pertubation.

Often, factorization algorithms uses deflation and estimates

only one root at a time, e.g. the Jenkins-Traub method [3] and

LF [1], but this requires that the factorization must be restarted

in response to coefficient pertubations which is computationally

ineffective in the adaptive case. In the literature, methods that

update the entire root vector have already been proposed, e.g.

the Durand-Kerner method [4] [5], the Aberth-Ehrlich method

[6] [7], inverse iteration [8] [9, chap. 7], and by Gauss-Newton

based optimization [8, 10]. However, none of these methods

takes as explicit advantage of slowly time-varying root vectors

as the method in the present paper. On the other hand, they do

not require slowly time-varying coefficient vectors. Also, sev-

eral algorithms for adaptive root estimation have been proposed,

e.g. [11, 8, 12, 13, 10, 14]. Of these, only [14] addresses specif-

ically the situation where coefficients exhibit a relatively slow

rate of change. With the slow rate of change requirement it is

possible to focus on fast, but locally only, convergent methods

as the root pertubations can be assumed small. However, the lo-

cal convergence constraint may entail drifting or incorrect esti-

mations, if the requirement of slow rate of change is not met. As

a novelty, the method proposed in the present paper addresses

this problem by verifying the estimations at given intervals; the

verification comes at a very modest run time cost.

In the present paper, a method is proposed for adaptive esti-

mation of zeros of time-varying, complex, and univariate poly-

nomials, e.g. z-transform polynomials that arise from finite

speech signal sequences. In short, the method is dubbed ARE

(Adaptive Root Estimation). The objective with the method

is to alleviate the computational burden induced by factoriza-

tion, e.g. when utilizing the zeros of the z-transform repre-

sentation in speech signal processing for mixed phase signal

separation. The method presented is most accurate when the

polynomial coefficients have a relatively slow rate of change

as the estimation is locally convergent only. Application wise,

this is often the case in analysis of voiced speech where the sig-

nal changes relatively slowly compared to the sampling rate.

This ratio is due to the underlying physical system, i.e. the

speech production apparatus, that varies in relatively slow con-

tinuous motions compared to the most common speech signal

sampling rates. In contrast, e.g. plosives may entail large coef-

ficient pertubations relative to the sampling rate. The adaptive

estimation is supplemented with factorization at given time in-

tervals with Aberth-Ehrlich’s method [6] [7] to avoid potential

estimation drifting; thus, the estimation error accumulation is

bounded. The required frequency of factorizations depend on

the coefficients’ rate of change; qualifying relatively slow rate

of change is left to a sequel. Although the proposed method is

in time O(n3) the results indicate that it outperforms the intrin-

sic Matlab c© function roots which outperforms LF for most

practically sized input sequence lengths. For longer input se-

quences, LF gains according to the asymptotic time complexi-

ties.

The method proposed in this paper can be applied when-

ever the method’s constraints are respected. Adaptive root esti-

mation of time-varying polynomials may arise for instance in:

i) Estimation of arrival direction of acoustic waves by adaptive

root-MUSIC (MUltiple SIgnal Classification) where roots rep-

resent the angle of arrival [15]. ii) In coding of speech signals

by factorization of line spectral pair (LSP) polynomials [16].

iii) In pole/zero-representation of autoregressive moving aver-

age (ARMA) processes [13].

Further, the proposed method may be applied in time-

invariant cases with empirical polynomials, i.e. polynomials



where some or all coefficients are with limited accuracy and

thus may vary in some defined neighborhood. Such coefficient

inaccuracies occur due to, e.g. sampling and/or quantization, in

almost all practical signal processing applications.

2. Problem formulation

Before posing the problem, some notation is introduced. Quan-

tities denoted by upper case bold face and lower case bold face

letters are matrices and vectors respectively; the transpose is

denoted by (·)T . Root vectors obtained by numerical factoriza-

tion, e.g. with Aberth-Ehrlich’s method, are considered exact,

whereas root vectors obtained by the proposed ARE method

are considered estimates. Of course, factorization of high de-

gree polynomials can not be considered mathematically exact,

but only exact up to computational precision. The following no-

tation is used to indicate the time of evaluation of an arbitrary

time dependent quantity x;

x(τ) = x(τ)(t) , x(t+ τ), t, τ ∈ Z+

Now, to the problem. Given a polynomial coefficient vector

ordered in ascending powers

a
(τ) = [a0, a1, ..., aN−1]

T ∈ CN , (1)

the corresponding root vector

λ
(τ) = [λ1, λ2, ..., λN−1]

T ∈ CN−1,

and a
(τ+1), the objective is to estimate the root vector

λ
(τ+1) = λ

(τ) + δ (2)

where

δ = [δ1, δ2, ..., δN−1]
T ∈ CN−1

represents a root pertubation vector. The δ vector is a finite

forward difference in λ, i.e.

δ
(τ)(λ) = δ

(τ)[λ](t) , λ
(t+τ) − λ

(t), t, τ ∈ Z+

Unless otherwise stated, τ = 1 and will for brevity be omitted.

Table 1 lists the main properties of the proposed ARE method.

1 Rare factorization of the coefficient vector.

2 Takes advantage of small coefficient pertubations.

3 Bounded estimation error accumulation.

4 Tracks entire root vectors.

5 Handles high degree, univariate polynomials.

6 Fast convergence.

7 Restricted to slow rate of change of the coefficients.

Table 1: Main properties of the proposed ARE method.

3. Proposed algorithm and method

3.1. Algorithm outline

In the following sections, the methods needed to realize the al-

gorithm proposed in table 2 are elaborated. Steps 1, 5, and 6

do not need further explanation. Steps 2 and 4 are explained in

section 3.4, and step 3 is elaborated in section 3.3. Section 3.2

establishes the relationship between a z-transform’s coefficients

and zeros.

1 Initialize time indices t, τ = 0

2 Factorize a
(τ) to obtain λ

(τ)

3 Estimate δ and λ
(τ+1)

4 At intervals of τ , factorize a
(τ+1) to verify λ

(τ+1)

5 Increment τ = τ + 1

6 Start over from step 3

Table 2: Outline of the proposed algorithm.

3.2. Zeros of the z-transform

At every time instance, the vectors λ and a are interrelated by

the z-transform factorization

A(z) =

N−1
∑

n=0

anz
−n =

a0

∏N−1
m=1(z − λm)

z(N−1)
, a0 = 1, z ∈ C

(3)

where it is assumed that ∀ i 6= j : λi 6= λj . In practical cases

with voiced speech as generating sequence, this assumption is

not restrictive. Turning to matrix notation, (3) can be stated as

A
(τ) =

N−1
∏

n=1

Λ
(τ)
n (4)

where

A
(τ) =













1

a1

. . .

...
. . .

aN−1 . . . a1 1













, Λ
(τ)
n =













1

−λn

. . .

. . .

−λn 1













and all the blank entries are zeros. In response to a root pertu-

bation, cf. (2), (4) can be expressed as

A
(τ+1) =

N−1
∏

n=1

(Λ(τ)
n −∆n) (5)

where ∆n = Lδn and L is a N×N lower shift matrix.

3.3. Adaptive estimation of zeros

Not to clutter notation in this section, the superscript, (·)(τ), on

Λ is omitted. To estimate δ in (2), (5) can be restated as

A
(τ+1) ⋆

≈

N−1
∏

n=1

Λn −

N−1
∑

n=1

(∆n

N−1
∏

j=1
j 6=n

Λj) (6)

= A
(τ) −

N−1
∑

n=1

(∆nΛ
−1
n Λn

N−1
∏

j=1
j 6=n

Λj)

= A
(τ) −

N−1
∑

n=1

∆nΛ
−1
n A

(τ)

where the starred approximation is due to ignored second and

higher order terms of ∆ [14]. Thus, the approximation error

is a function of the root pertubation length, cf. table 1. The

reduction is possible since Λn is invertible, det(Λn) = 1, and

commute under matrix multiplication, Λn is lower-triangular

Toeplitz. The left and right hand sides of (6) are lower-

triangular Toeplitz with ones in the diagonal so only the first



column minus the first row needs to be considered. Cf. (1)

where a0 = 1, the first column can be expressed as

a
(τ+1) ≈ a

(τ) − L

N−1
∑

n=1

δnΛ
−1
n a

(τ)
(7)

= a
(τ) − L

([

Λ
−1
1 a

(τ) . . . Λ−1
N−1 a

(τ)
]

δ
)

where each column vector entry, Λ
−1
n a

(τ), is considered a

block. If top and bottom row cancellation is denoted by overline

and underline respectively, (7) can be formulated as

a
(τ) − a

(τ+1) =
[

(

Λ
−1
1

)

a
(τ) . . .

(

Λ
−1
N−1

)

a
(τ)

]

δ (8)

Note that, as Λn is N×N then

Λ
−1
n =





















1

λ1
n

. . .

λ2
n

. . .

...
. . .

λN−1
n . . . λ2

n λ1
n 1





















where all the blank entries are zeros. Although Λ
−1
n is Toeplitz,

the system of linear equations in (8) is not. Toeplitz systems

are solvable in time O(n2) by, e.g. Levinson-Durbin recursion,

whereas the non-Toeplitz case in (8) is in O(n3). Hence, the

root pertubation vector, δ, for a N −1 degree univariate and

complex polynomial can be achieved by solving a set of N−1
linear equations in O(n3).

3.4. Verification of the adaptive estimation

The Aberth-Ehrlich method [6] [7] is a factorization method for

simultaneous approximation of all the roots of a univariate and

complex polynomial. Given such a polynomial, p(a(τ), z) =

zN−1 +
∑N−2

n=0 anz
n, with an approximated root vector, λ(τ),

the method refines the roots iteratively by:

wk = −
Q

1−Q
∑N−1

m=1
m 6=k

1/(λk − λm)
, Q =

p(a(τ), λk)

p′(a(τ), λk)

where k = 1, . . . , N−1 and prime, (·)′, is Lagrange’s differen-

tiation notation; the method does not require p to be monic.

The refined root vector becomes λ
(τ)
i+1 = λ

(τ)
i + w, where

w = [w1, w2, ..., wN−1]
T and i is the iteration number. The

number of iterations needed to reach a given approximation ac-

curacy strongly depends on how close the initial root vector ap-

proximation, λ
(τ)
i=0, is to the true root vector, λ

(τ)
i=i max. In table

2 step 4, λ
(τ+1)
i=0 = λ

(τ+1), and in step 2, λ
(τ)
i=0 is a vector of

N−1 equispaced points on a circle around origo of the com-

plex plane with a radius centered between the lower and upper

Cauchy modulus bounds denoted β∗ and β∗ respectively. All

roots, λ(τ), of the monic polynomial, p(a(τ), z), lie in the an-

nulus [17] [2] [18]:

|λn| < β∗ = 1 + max
0≤k≤N−2

{|ak|}

|λn| ≥ β∗ = (1 + max
1≤k≤N−1

{|ak/a0|})
−1

where n = 1, . . . , N−1. Cf. [19] for an efficient implemen-

tation of the Aberth-Ehrlich method and a general strategy for

choosing a good initial approximation.

4. Numerical experiment

4.1. Experiment setup

This experiment indicates the run time and accuracy of a

Matlab c© implementation of ARE, cf. table 2. The run time

of ARE is compared with the run times of the state of the art

algorithms: LF and roots. Intrinsic Matlab c© functions are set

in typewriter font. The Matlab c© LF implementation is the sec-

ond version of ”lroots”, cf. [1]; all diagnostics are turned off to

lower run time. The function, roots, estimates eigenvalues of

a polynomial’s companion matrix in time O(n3); LF is in time

O(n2) [1]. Run time is measured with tic/toc. Accuracy

is measured as the root-mean-square-deviation (RMSD) as a

function of absolute polynomial coefficient pertubation lengths.

Note that measurements like these are highly computer and im-

plementation dependent and thus only indicative.

4.2. Dataset

The dataset for the accuracy test is divided into subsets:

S01 = {a(τ),a(τ+1),λ(τ) : τ ∈ [0; 10], N = 3},

S02 = {a(τ),a(τ+1),λ(τ) : τ ∈ [0; 10], N = 4},
...

S79 = {a(τ),a(τ+1),λ(τ) : τ ∈ [0; 10], N = 81}
where

a
(τ=0)
n ∼ U ]0, 1[ , a

(τ=1)
n = a

(τ−1)
n + τα, ..., a

(τ=10)
n =

a
(τ−1)
n + τα. The continuous uniform distribution is denoted

by U , and the coefficient pertubation by α; α = 0.001. The

dataset for the run time test is similar, only N = [270; 800] to

focus on the progressed tendencies. Run times are reported as

averages across τ .

5. Results

The proposed ARE runs in time O(n3) as systems of lin-

ear equations with no apparent exploitable structure need to

be solved, cf. (8). Fig. 1 illustrates the run time ratios

roots/ARE and LF/ARE as functions of polynomial degree.

At the cross over point, LF starts to gain from roots.

250 300 350 400 450 500
3

4

5

6

7

8

9

10

11

Polynomial degree [1]

R
u

n
 t

im
e 

ra
ti

o
 [

1
]

Figure 1: Run time ratios as functions of polynomial degree.

Dashed: roots/ARE. Solid: LF/ARE.

Fig. 2 illustrates the RMSD between root vectors estimated

with roots and ARE as a function of pertubation length.
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Figure 2: RMSD between results of roots and ARE.

6. Discussion

A method for adaptive estimation of the roots of time-varying,

univariate, and complex polynomials, e.g. zeros of the z-

transform, has been presented. The estimation is done by solv-

ing a set of linear equations; the number of equations equals the

polynomial degree. To avoid potential drifting of the adaptive

estimations, it has been proposed to verify the estimations with

Aberth-Ehrlich’s factorization method at given time intervals.

The potential estimation error of the adaptive method depends

on the root pertubation length, cf. (6), and the condition of the

matrix to be inverted when solving the set of linear equations,

cf. (8).

As roots and ARE are in time O(n3) their run times will

tend to n3 asymptotically. However, the test case illustrated in

fig. 1 indicate that ARE outperforms roots for most prac-

tically sized input sequence lengths. The polynomial degree

range is chosen to illustrate the LF/roots cross over point and

the progressed run time tendencies. Note that run time mea-

surements like these are computer and implementation depen-

dent and thus only indicative. In [1], a run time comparison

between roots and LF has been performed; roots showed a

lower run time for n / 180. Again, this is highly computer and

implementation dependent.

As expected, cf. (6), the ARE estimations tend to drift as a

function of polynomial coefficient pertubation length, cf. fig. 2.

The roots of a polynomial are continuous functions of the coef-

ficients of the polynomial; hence, for well-conditioned polyno-

mials, small coefficient pertubations lead to small root pertuba-

tions. Likewise, large coefficient pertubations lead to long root

trajectories and thus, most likely, to large root pertubations.

In a sequel, it would be interesting to devise a dynamic

heuristic on when to apply the Aberth-Ehrlich verification in-

stead of verifying at regular intervals. This would address the

Achilles’ heel of ARE: potential estimation inaccuracies.
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