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Profit Maximization of a Power Plant

Martin Kragelund, John Leth, Rafa l Wisniewski, and Ulf Jönsson

Abstract—This paper addresses the problem of
profit maximization of a power plant by utilizing three
different fuel systems in an optimal manner. Pontrya-
gin’s maximum principle is used to derive properties
of the optimal control strategy. These properties give
rise to a switching function. Subsequently, certain
heuristics are introduced and used in combination
with discrete optimization to obtain an initial tra-
jectory of the switching function. An iterative pro-
cedure is proposed, which uses the initial trajectory
for the computation of the optimal control strategy.
The control strategy derived is a combination of a
state feedback and time-varying feedforward term. Its
performance is tested against input noise.

I. Introduction

The economic perspective is rarely considered when
developing control structures and strategies for pro-
cess control systems. Indeed, requirements are most fre-
quently imposed on disturbance rejection, pole place-
ment or other well known system theoretic properties.
Nonetheless, the economics of control has gained some
focus for example the selection of sensor and actuator [15]
and the design of controller structure [16]. Furthermore,
optimal steady state operations have been studied [3].

In [8], the hydro power production in Norway is
considered by maximizing the profit of a hydro plant
such that the production commitment of the current day
is fulfilled. The electrical market is considered in the
optimization and planning of the production for which
stochastic programming is used.

The work in this paper is similar to the work in [8]
as profit maximization in electricity production is con-
sidered. However, a traditional power plant will be con-
sidered, and optimal control will be used for the profit
optimization [19], [21].

A problem of the optimal operation of a power plant
in a liberal electricity market is a subject of [20]. In
this work, two types of power plants are considered: a
hydroelectric and a thermal power plant. The main focus
is on the dynamic modeling of electricity-production
and the price of electricity. Both of them are described
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by random processes. As a consequence, the suggested
approach to the optimal operation of a power plant is
stochastic optimization, which is formulated in terms of
nonlinear partial-integro-differential equations. To solve
them, the authors use a finite difference scheme.

In like manner, [17] addresses the problem of bal-
ancing the power on electricity market consisting of
wind energy and hydropower. Also in this work, the
demand for balancing power and the electricity price
are described by stochastic models. Subsequently, the
hydropower-scheduling of trading decisions are formu-
lated as a stochastic optimization problem. To solve it,
the stochastic variables are approximated by a finite
set of scenarios, so called scenario-trees. Afterward, the
optimization problem is solved by means of stochastic
programming.

A power plant capable of using a number of different
fuels is considered in this paper. The fuels of interest are
coal, gas, and oil. They certainly have certain advantages
and disadvantages, e.g., coal is an inexpensive fuel, but
it is difficult to control. The objective of this work is to
maximize the profit of the power plant when following a
predefined production reference.

The problem stated above has been discussed in [14],
[12], [13], and [10]. In particular, the formulation in [10]
which includes plant dynamics gives the basis of this
work. In the previous works, a function for the instan-
taneous profit flow has been determined, which includes
time-varying measures of business objectives and time
varying price data obtained from Nord Pool1. The ob-
jective is to maximize the integral of the instantaneous
profit flow over time, i.e., maximizing the profit of the
company. The requirement of following a predefined ref-
erence has been formulated as a side-constraint in the
optimization, which has been solved in discrete time.
Whereas, in this work the tracking will be included as
a penalty term in the objective function. This yields a
simpler problem, which substantially reduces the com-
putation time.

In this work, a continuous control strategy is given
that maximizes the profit of a power plant. The strategy
is obtained by using Pontryagin’s maximum principle to
devise some properties of the optimal control input. The
optimal solution consists primarily of singular arcs which
is known to make the optimal control problem more
difficult to solve numerically. In this work, we propose an
approach that results in a combined feedback and feed-

1Nord Pool is the Nordic electrical market, where power contracts
are traded.



forward solution, which yields a profit 30% greater than
using an input signal obtained by discrete optimization.
Feedback schemes for solving singular control problems
have been proposed previously [22].

We anticipate the results in this paper are of interest
in a model predictive control (MPC) context. Indeed, if
the optimal solution is known to consist of singular arcs
then this information should be used in the development
of an optimal algorithm. By computing the feedback
law that generates the singular arcs better performance
and lower sampling rate may be achieved. This should
be particularly useful when the model and the data is
provided in continuous time over a large time horizon.

A. Outline

A model of the plant considered in this work is pre-
sented in Section II. Furthermore, the models of the busi-
ness objectives and optimization problem are presented
there. In Section III, Pontryagin’s maximum principle is
applied to the optimization problem and some properties
of the optimal input are derived. As the optimal input
is dependent on an unknown switching function, the
optimization problem is converted to discrete time, and
subsequently, an estimate of the switching function is
computed. This procedure is carried out in Section IV.
The switching function is applied to the optimal input
strategy in Section V, and the resulting profit is com-
pared to what was possible with the discrete optimiza-
tion. In Section VI, the control strategy is evaluated
when input noise is present, and finally, in Section VII,
a discussion of the results is given. Furthermore, two
appendices are included where the optimal continuous
control strategy and a discrete version of the objective
function are given.

II. Problem Formulation

In this section, the models from previous work will be
recalled, and the optimization problem will be presented.
First, an introduction to the considered plant is given.

The problem considered in this work is based on a coal
fired boiler in power plant, which is depicted in Figure 1,
and consists of the following components:

Coal mills: The coal mills grind the coal to small
dust particles which burn quickly and efficiently. How-
ever, it is difficult to control the amount of dust the coal
mills deliver as it is not possible to measure the dust flow
into the furnace.

Furnace: The furnace is a module where the coal
dust (or other fuels) is burned; thereby, heat is delivered
to the boiler.

Evaporator: The evaporator is fed with water, which
is evaporated under high pressure by the heat from the
burners.

Superheater: The superheater (super) heats the
steam from the evaporator.

Fig. 1. Benson boiler model. The fuel system consists of the coal
mills and a transport system to the furnace. Here the coal is burned
in the burners and the heat is exchanged to water in the evaporator.

Economizer: The economizer uses some of the re-
maining heat in the flue gas to preheat the feed water
before it enters the evaporator.

The illustrated model does not depict the flue gas
cleaning and smoke stack and the conversion from steam
power to electrical power is also left out. It is assumed
that when the plant is operating at full load the electrical
power produced amounts to 400MW . Furthermore, the
power plant is in this work augmented with two addi-
tional fuel systems: gas and oil.

The three different fuels have certain advantages and
disadvantages, e.g., gas is easy to control, but is an
expensive fuel. Some of the characteristics of the different
fuels are:

Coal is advantageous when considering the price per
stored energy; however, it is difficult to control
as unmeasurable fluctuations in the coal flow are
introduced when the coal is ground to coal dust
in the coal mill. This implies that changing the
operating point of the system should be done
slowly. Furthermore, the coal mills use some
electrical energy to grind the coal, which needs
to be considered.

Gas is more expensive than coal and energy is not
converted to steam as efficiently with gas as
with coal due to the layout of the chosen boiler.
However, gas arrives at the power plant under
high pressure, which is lowered using a turbine
generating electrical energy. Furthermore, gas
is much easier to control as it is possible to
measure the flow.



Oil is, with the current market prices, the most
expensive of the three fuels and has to be pre-
heated before entering the boiler. This process
demands energy itself. Nevertheless, oil is con-
sidered in this work as it is possible to measure
the oil flow into the boiler and this makes it
easy to control. Furthermore, oil is present in
most existing coal fired plants as oil is used to
start up the plant.

In this work, it is assumed that the plant is con-
trolled. Therefore, linear dynamics are sufficient to model
it [7]. Indeed, it is shown in [7] that the change in
the produced electricity caused by changing the fuel
flow can be captured by third order dynamics. In the
following, it is assumed that the fuel flow reference (in
kg/s) of coal, gas, and oil is the input to the system,
i.e., u = (uc, ug, uo) is a vector of the coal, gas, and
oil flow references respectively. The state vector consists
of the actual flow of the different fuels and their first
and second derivative, i.e., zc = (z1, z2, z3) is the coal
flow into the boiler and its first and second derivative.
Similarly, for the gas and oil systems zg = (z4, z5, z6)
and zo = (z7, z8, z9). Therefore, the full state vector z

is given by z = (zc, zg, zo). Furthermore, the complete
dynamics of the three different fuel systems considered
in this work is given by

ż(t) = Az(t) + Bu(t)

x(t) = Cz(t),
(1)

where

A =





Ac 03x3 03x3

03x3 Ag 03x3

03x3 03x3 Ao



 , Ai =





0 1 0
0 0 1

hi1 hi2 hi3



 ,

B =





Bc 03x1 03x1

03x1 Bg 03x1

03x1 03x1 Bo



 , Bi =





0
0

hi0



 ,

C =





C1 01x3 01x3

01x3 C1 01x3

01x3 01x3 C1



 , C1 =
[
1 0 0

]
,

and hij
, i ∈ I = {c, g, o}, are constants describing the

dynamics of the three fuel systems, which are obtained
from transfer functions of the form

Hi(s) =
1

(τis + 1)3
,

where τi, i ∈ I, is 90s, 60s, and 70s, respectively. See [10]
for further comments on the above quantities.

The objective of this work is to derive a plan for
optimal usage of the three fuels described above during
24 hours of operation. Optimal usage is defined as max-
imizing the profit in terms of two business objectives:
efficiency and controllability. The models used in this
work for business objectives are based on the following:
Efficiency deals with a measure of efficiency2 of the

2Remark that the term efficiency in this work often is referred to
as production in power plant community.

conversion of a fuel into electricity and controllability
is a measure of the plant’s capability to change the
production level. In addition to maximizing the profit,
the production level of the plant is to follow a time
varying reference yr(t) (also called a production plan)
as closely as possible.

The efficiency objective is modeled as

ye(z) = γT Q̃z + γT b, (2)

where

Q̃ = diag(ex)C, ex = (10.77, 18.87, 15.77),

b = (−1.76, 1.85,−0.37), γ = (1, 1, 1),

with C as in (1). The value of the entries of ex and b

has been established using measurement data provided
by DONG Energy3. The elements of ex are conversion
factors from mass flows to electrical-energy flows, and the
entries of b are energy used or generated in preprocessing
of the fuels.

The controllability objective is modeled as

yc(z, t) = ϑ(t)z + ζ(t), (3)

where

ϑ(t) =







0 yr(t) ∈ S1 = {s ∈ R|0 ≤ s ≤ 200}
ξT Q̃
yr(t) yr(t) ∈ S2 = {s ∈ R|200 < s < 360}

0 yr(t) ∈ S3 = {s ∈ R|360 ≤ s ≤ 400},

ζ(t) =







0.133 yr(t) ∈ S1

ξT b
yr(t) yr(t) ∈ S2

0.133 yr(t) ∈ S3,

with ξ = (0.267, 0.534, 0.534) and S1, S2, and S3 denote
different operating regions. The operating regions arise
as maximum temperature gradients are imposed in the
boiler due to wear and tear of the building materials.
Therefore, the controllability measure also changes de-
pending on the current production.

The value of the objectives have been established using
price data available at Nord Pool and in collaboration
with DONG Energy by using their heuristics. That is,
current and historic prices of electricity, which is available
online has been used as price of the efficiency measure.
The instantaneous profit flow is formulated as in [10],
i.e.,

gp(z, t) = Θ(t)z + ϕ̃(t), (4)

where

Θ(t) = pR1(t)γT Q̃ − pT
CC + pR2(t)ϑ(t),

ϕ̃(t) = pR1(t)γT b + pR2(t)ζ(t),

with pC the price of the different fuels, and pR1 and
pR2 are prices imposed on the two business objectives,
efficiency and controllability respectively. The functions
in (4) are in this work assumed sufficiently smooth (C5

is enough as shown in Appendix I). Further description

3DONG Energy is a power producer in Denmark.



and explanation of the above quantities can be found in
[14], [12], [13], and [10].

A prognosis of the next days’s electricity consumption
is established by Energinet.dk4, which is responsible for
the electrical grid in Denmark. The estimated electricity
consumption in an area (e.g. West Denmark) is divided
between the different electricity producers in accordance
with the bids on Nord Pool; and thus, a production plan
is generated for each producer. The production plan used
in this work is an approximation of a production plan
delivered by DONG Energy. These are depicted in Fig-
ure 2 (for more details on the production plan see [13]).
The plant should follow the generated production plan
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Fig. 2. Production plan for June 29th, 2008. The data used to
generate this plot has been delivered by DONG Energy (solid).
The approximation used in this work consists of piece-wise affine
function (dashed).

such that power balance can be upheld. The tracking
requirement is included by adding the quadratic tracking
error,

te(z, t) = ‖ye(z) − yr(t)‖
2

=ye(z)2 − 2yr(t)ye(z) + yr(t)2

=zT Q̃
T
γγT Q̃z + 2bT γγT Q̃z + bT γγT b

− 2yr(t)γT Q̃z + yr(t)2 (5)

as a penalty term in the objective function in the opti-
mization. This approach has been taken as the compu-
tational complexity is lowered by including the require-
ment in the objective function and not as an additional
constraint [11].

As a result, the optimization problem is expressed as

max
u∈U

∫ T

0

f(z, t)dt

subject to ż(t) = Az(t) + Bu(t),
(6)

where the input space is given by

U = {u ∈ R
3
+|e

T
u u ≤ cu, eu > 0},

4Energinet.dk a Danish Transmission System Operator, TSO.

with eu = ex and cu = 400−γT b as in [10], and f given
by

f(z, t) = gp(z, t) − βqte(z, t)

= −zT Qz + 2q(t)T z + ϕ(t),

with

Q = βqQ̃
T
γγT Q̃

q(t)T =
1

2
Θ(t) + βq

(

yr(t)γT Q̃ − bT γγT Q̃
)

ϕ(t) = ϕ̃(t) + βq

(

bT γγT b − yr(t)2
)

,

and βq a positive weighting factor, which can be de-
scribed as a reference penalty factor.

In the remaining sections, this paper deals with solving
the optimization problem in (6).

III. Continuous Optimization

In this section, Pontryagin’s maximum principle will
be applied to the optimization problem described above.

However, first, notice that by replacing the (non-
continuous) functions q and ϕ by continuous approx-
imations, such that f becomes continuous, Filippov’s
existence theorem [5, pp. 199] may be applied. Hence,
in the continuous case, there exists an optimal solution
to the optimization problem. Nonetheless, the question of
existence for the discontinuous case will not be pursued
here (see e.g. [5, p. 386] for a statement in this direction)
since numerical solutions to the optimization problem are
to be used, and since the above continuous approxima-
tions may be chosen with any given precision [23].

The Hamiltonian approach is now used, i.e., neces-
sary conditions are deduced, by means of Pontryagin’s
maximum principle, to obtain candidates for optimal
solutions.

The Hamiltonian for the optimization problem is

H(z, u,λ, t)

= f(z, t) + λT (Az + Bu) ,

and thus, the adjoint equation is given by

λ̇(t) = −
∂H(z(t), u(t), λ(t), t)

∂z

= −
∂f(z(t), t)

∂z
− AT λ(t)

= 2Qz(t) − 2q(t) − AT λ(t), (7)

with the transversality condition λ(T ) = 0. Point-wise
maximization of H then yields

max
u∈U

H(z(t), u, λ(t), t) =f(z(t), t) + λ(t)T Az(t)

+ max
u∈U

λ(t)T B
︸ ︷︷ ︸

σ(t)T

u.

Note that σ(t) is not known. However, by examining the
sign of the coordinates of the vector σ(t), it is possible to



determine the following properties of the optimal input,
u∗(t),

σi(t) < 0 ⇒ u∗
i (t) = 0. (8)

Now, let

U(t) = {u ∈ U | ui = 0 if σi(t) < 0},

and let E(t) be the matrix which by projection removes
the negative elements of σ(t), e.g., if σ1(t) < 0 and
σ2(t), σ3(t) ≥ 0, we have

E(t) =

[
0 1 0
0 0 1

]

.

Note that the mapping E(t) is injective when restricted
to U(t).

Let σ̃(t) = E(t)σ(t). Now, two cases remain to be
analyzed.

Case 1:
∑

σ̃i 6= 0.
Case 2: σ̃(t) = 0.

(9)

In Case 1, the optimal control input u∗(t) is found
from

u∗(t) = arg max
u∈U(t)

σ̃(t)T E(t)u

subject to eT
u u = cu,

(10)

which, for each time t, searches through corners of a 2-
simplex, 1-simplex, or 0-simplex in R

3.
Case 2 is a singular optimal control problem [2], [4].

The optimal control input in Case 2 is found from (27)
in Appendix I as

Cu(t)u∗(t) = Cz(t)z(t) + Cτ (t), u∗(t) ∈ U(t). (11)

Here, the time dependence which was left out in the
appendix is reintroduced as the entire time horizon is
considered.

Now by introducing the following relation

u∗(t) = E(t)T ũ∗(t), (12)

and inserting it in (11), the following equation is ob-
tained.

Cu(t)E(t)T ũ∗(t) = Cz(t)z(t) + Cτ (t).

Since Cu(t)E(t)T is square and non-singular, ũ∗(t) is
given by

ũ∗(t) =(Cu(t)E(t)T )−1Cz(t)z(t)

+ (Cu(t)E(t)T )−1Cτ (t).

Now, a u∗(t) ∈ U(t) can again be computed by using
(12),

u∗(t) =E(t)T (Cu(t)E(t)T )−1Cz(t)z(t)

+ E(t)T (Cu(t)E(t)T )−1Cτ (t). (13)

In conclusion, in Case 1, the optimal control input is
an open loop controller; and in Case 2, a combination
of a state feedback and a time varying feedforward.
This combination will in the following be denoted “feed-
back/feedforward”.

Now, a strategy for finding the optimal control input
is devised; however, the switching function σ(t), which
is required in the control law, is unknown and thus the
time instances of switching between the two cases (and
different E(t)) can not be determined.

The next two sections of this paper will present a solu-
tion to this problem. It will be based on an approximated
solution to the optimization problem. The approximated
solution will subsequently be used to solve the adjoint
equation and thus obtain an approximated solution for
σ(t). The approximated solution will be found using a
discrete time formulation of the optimization problem.
This procedure is explained in the next section.

IV. Discrete Optimization

The optimization problem in (6) has been addressed in
[10] where the tracking of the reference was formulated as
a constraint. As a consequence, it has not been modeled
in the objective function. This is done in this work. In
this section, we will apply the procedure in [10] to the
quadratic objective function, i.e., we will formulate the
optimization problem in discrete time. In Appendix II,
lifting [6] is applied to the objective function in (6)
to obtain a discrete-time expression. However, some as-
sumptions are imposed. In particular, it is assumed that
q(t) and ϕ(t) can be approximated by piecewise constant
functions, and that the control u is piecewise constant.

The discrete time objective function can be formulated
as
N−1X

k=0

„
ˆ

zT

k uT

k

˜
N

»
zk

uk

–

+ M zk
zk + M uk

uk + hϕk

«

,

where

N = −

[
Nzz N zu

Nuz Nuu

]

,

with the matrices Nzz , N zu, Nuz , Nuu, Mzk
, and Muk

as given by (32) and (38) in Appendix II. The optimiza-
tion problem in (6) can be rewritten by introducing the
following notation

Φ̃ =










I

Φ

Φ
2

...

Φ
N−2










, ϕ̃ =










ϕ0

ϕ1

ϕ2

...
ϕN−1










, 1 =










1
1
1
...
1










,

Γ̃ =











0 0 · · · 0

Γ 0 · · · 0

ΦΓ Γ
. . .

...
...

...
. . . 0

Φ
N−3

Γ Φ
N−4

Γ · · · Γ











,

and the matrices Φ = eAh and Γ =
∫ h

0
eAsBds are the

discrete time equivalences of the system matrices given
in (1). Furthermore, ϕk is given by (29) in Appendix II.

Using the above discrete time system and considering
zk as a function of z0 and uk, it is possible to formulate



the following optimization problem, which is the discrete
time equivalent of (6)

max
v∈V

vT Wv + Lv + g, (14)

where

v =








u0

u1

...
uN−2








,

V ={v ∈ R
m(N−1)|vi ∈ U , i ∈ {0, 1, 2, ..., N − 2}},

W = − Γ̃
T

(I ⊗ Nzz) Γ̃ − Γ̃
T

(I ⊗ Nzu)

− (I ⊗ Nuz) Γ̃ − I ⊗ Nuu,

L =1
T ⊗ Muk

+
(
1

T ⊗ Mzk

)
Γ̃

− zT
0 Φ̃

T
(

I ⊗ Nzu + I ⊗ NT
uz

)

− zT
0 Φ̃

T
(

I ⊗ Nzz + I ⊗ NT
zz

)

Γ̃,

g =
(
1

T ⊗ Mzk

)
Φ̃z0 + h1

T ϕ̃ − zT
0 Φ̃

T
(I ⊗ N zz) Φ̃z0,

with ⊗ the Kronecker product.
The optimization in (14) has been implemented using

YALMIP with the following constants used for the pa-
rameters in (32) and (38)

h = 192s, βq = 0.05, T = 86400s, N = 450,

and solved using the quadratic solver BPMPD. Remark
that the sampling time of 192 s yielding 450 discrete
points in time is close to the limit of the capabilities of
the computer used for the optimization.
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Fig. 3. The result of the discrete optimization. Top: The profit and
value of objective function during 24 hours. Bottom: The control
signal for the different fuel systems.

Figure 3-top depicts the profit and the value of the
objective function. Remark that the word “profit” is used
for the real profit of the company, i.e., the objective
function value without the quadratic tracking penalty,
te, and the expression “value of the objective function”

is used when the quadratic tracking penalty is included.
The profit computed in this work is in the same order
of magnitude as the results obtained in [10] where the
tracking requirement was implemented as a constraint
instead of included in the objective function as in this
work.

The usage of fuels are also comparable to [10] except
that around 7:00 when the gas system is not used, as
seen in Figure 3-bottom.

V. Optimal Feedback

In this section, the idea of a continuous feed-
back/feedforward from Section III is revisited. The rea-
son for this is the usual robust behavior of a feedback
system with regards to noise compared with pure feed-
forward control (this is further discussed in Section VI).

Let us begin by remarking that an essential part of
the optimization problem is to follow the predefined ref-
erence. In particular, there should be no market situation
such that a large deviation from reference is beneficial.
This, of course, depends on the value of β which in this
work has been chosen such that the above is satisfied.

As stated at the end of Section III, the reason for
not using the feedback/feedforward solution is that σ(t)
is unknown. To compensate for this, we introduce an
algorithm whose purpose is to approximate σ(t). In
short, we need to approximate λ(t) which depends on
z(t). As an input for the algorithm we use the discretized
solution z(t) = (z0, ..., zN−2) given by Φ̃zo + Γ̃v as
described in the previous section. Note that z(t) can be
viewed as a small perturbation of the optimal solution
z∗(t). As a result, the algorithm is, as follows:

1. Use z(t) to obtain λ(t) in (7) with transversality
condition λ(T ) = 0. In simulations, this step is
preformed using Matlab’s ode45.

2. Use λ(t) to compute σ(t) = BT λ(t) and the pro-
jection E(t) as described in Section III.

3. For each time t determine, by evaluating σ(t),
whether case 1 or 2 in (9) holds:

I. If case 1 use (10) to compute u∗(t).
II. If case 2 use λ(t) and E(t) to compute

Ci(t), i = z, u, t given by (28). Then compute
u∗(t) using (13). We remark that due to numer-
ical imprecision, in simulations, we have placed
a band around 0 of width 1 in which all elements
are set to zero.

4. Use u∗(t) to obtain z(t) in (1). In simulations, this
step is preformed using Matlab’s ode45.

5. Return to 1.

The switching function, σ(t) = BT λ(t) is depicted
in Figure 4, where the solution to the adjoint equa-
tion λ(t) is computed using the discrete state trajec-
tory (z(tk)) , tk ∈ {0, h, 2h, · · · , (N − 1)h}, i.e., the
first iteration of the algorithm described above. After
300 iterations, the above algorithm shows no sign of
convergence. This is illustrated in Figure 5, where the
graph of σ(t) is depicted for iteration 295-300. The
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Fig. 4. Graph of the switching function obtained by using the state
trajectory from the discrete optimization.

solutions switch between two different profiles, this can
be explained heuristically as follows: First, note that
the adjoint equation is solved backwards and hence an
equivalent problem can be stated as

Λ̇ = AT
Λ + c, (15)

with

c = − 2Qz(t) + 2q(t)

= − 2βqQ̃
T
γγT Q̃ + 2βq

(

Q̃
T
γyr(t) − Q̃

T
γγT b

)

+ Θ
T (t)

= − 2βqQ̃
T
γ (ye(z(t)) − yr(t)) + Θ

T (t). (16)

Now, consider c as an input to system (15). Since AT

is stable Λ(t) will track c and hence if c oscillates then
Λ(t) will oscillates. In particular, if the sign of ci changes
so does the sign of Λi(t).

Now, let i be either 3, 6, or 9 and assume, in iteration k,
that ci > 0 on an interval, T1. This will result in Λi(t) > 0
for t ∈ T2 ⊂ T1. Then in iteration k+1, σi/3(t) > 0, t ∈
T2, and according to (10) this will result in maximum
efficiency and ci will according to (16) be negative. This
will, in return, yield a negative σi/3(t), t ∈ T3 ⊂ T2; and
thus, the proposed algorithm will not converges.

Moreover, the oscillating behavior of the algorithm
described above is indicated by Figure 4. More precisely,
the initial estimate of σ(t) is less than zero in [0, 0:15].
According to (8), u(t) = 0, t ∈ [0, 0:15]. As a result,
the efficiency output ye deviates from the reference yr

causing the increase of the error calculated by (5). This
behavior is also present in the intervals [19:45, 21] and
[22:30, 24] and in the intervals [0:45, 1:05] [6, 7:30] and
[21, 22:30]. Due to the choice of βq, as discussed above,
this behavior cannot result in an optimal solution. There-
fore, subsequent iterations will not improve the estimate
of the parameters, and in particular not σ(t) as seen in

Figure 5. Remark that it is well known that numerical
problems may appear in problems with singular arcs. The
authors are not aware of any general methods (numerical
or theoretical) which prove convergence to co-states asso-
ciated to optimal solutions, see however [9]. In conclusion
the above method has to be modified in order to obtain
reference tracking as discussed above.
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Fig. 5. Graph of the switching function calculated in iterations
295-300.

Therefore, some heuristics are introduced to avoid the
reference deviations (and non-optimal behavior). From
the discrete optimization, it is observed that only one fuel
is used at the time, which has also been suggested by ear-
lier work [10], [13]. As a consequence, σi,j(t) < 0 at any
given time, where the notation xi,j means coordinates i
and j of the vector x. Therefore, the introduced heuristics
is to use only the one element of u(t) corresponding to
the largest element of σ(t). To recapitulate, item 3. in
the above algorithm is replaced by

3’. Determine the largest element of σ(t), say σl(t),
and let E(t) be the 1 × 3 matrix with 1 at place l
and zero’s elsewhere, and then, use (13) to compute
u∗(t).

Using this concept, it is possible to obtain an control
input as described in Section III, which yields better
behavior. When applied, this input strategy will provide
another state trajectory and thus a different trajectory of
σ(t). For the given case study, this procedure stabilizes5,
which might not be true in general. Remark that in order
to conduct a rigorous mathematical discussion about
the convergence properties, a mathematical model of the
above algorithm has to be devised. Such a model can only
be an approximation of the above algorithm due to the
introduced heuristics when defining E(t). This is further
complicated by the discrete behavior of σ(t) and E(t).
However, by the heuristic construction of E(t), reference

5The procedure has been executed 300 times and after step four
it stabilizes.



tracking is maintained. This implies that (16) becomes

c = −2βqQ̃
T
γǫ + Θ

T (t) (17)

for small ǫ, i.e., c is not affected by the iterations due to
reference tracking. As a result, only a small perturbation
of the stable linear system (15) is introduced in each
iteration. This results in convergence of the proposed
algorithm.

Note that it is possible to solve (15) using (17) with
ǫ = 0 without iterating the proposed algorithm.

In this paper, the first four iterations of this procedure
has been applied, where the state trajectory from the
discrete optimization is used for the initial iteration.
Figure 6 depicts the convergence of the switching func-
tion from the different iterations, where σ11 denotes
coordinate one for iteration one, σ12 coordinate one from
iteration two, etc. As seen in the figure, Coordinate three
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Fig. 6. Convergence of the coordinates of the switching function
- four iterations are depicted. Note that iteration two, three, and
four are almost on top of each other.

always converges to a value less than zero. Thus, the oil
system should not be used at all and could be omitted
when the plant is instrumented. Coordinate two is less
than zero for large periods during the day; hence, gas
should not be used during these periods. Coordinate one,
on the other hand, is zero most of the time.

The input strategy for each of the four iterations has
been applied to the model of the plant. Figure 7 depicts
the graphs of the resulting objective-function values for
the four iterations of the adjoint equation along with the
objective function value from the discrete optimizations.
The legends refer to the value of the discrete objective
function and continuous objective function from iteration
1, 2, 3, and 4. As seen in the figure, the value of
the objective function increases substantially from the
discrete to the first iteration and from the first iteration
to the second iteration. However, iteration three and
four do not change the value of the objective function
significantly.
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Fig. 7. The value of the objective function when using the
input from the discrete optimization and the four iterations of the
switching function. Note that the graph of iteration two, three, and
four are almost on top of each other.

The final input strategy is evaluated in Figure 8,
where the top figure depicts the profit and objective
function value, and the bottom figure depicts optimal
input. As seen in the top figure, the profit and objective
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Fig. 8. Result of using the optimal input from the fourth iteration.
Top: The profit and value of objective function during 24 hours.
Bottom: The control signal for the different fuel systems. The spikes
in the control signal arise from the switching between the sets S1,
S2, and S3.

function values are very close to each other. Thus, the
production tracks the reference closely when the optimal
feedback/feedforward is used. The final profit is approx-
imately 168000 [DKK] or 30% larger than what was
obtained using the input from the discrete optimization.
Furthermore, the optimal input is different from the
input obtained in the discrete optimization. This is spe-
cially seen in the usage of gas in the period 6:30-7:00 as



depicted in bottom figure. The spikes in the input signal
are due to the discontinuous switches in (3). However,
these spikes do not affect the output as they are of very
short time span. Furthermore, notice that gas is used
briefly in the period 20:20-20:40. Obviously, it might not
be feasible in practice to switch between systems within
very short time intervals. This could be circumvented by
adding a cost of switching a fuel system on, but this
is regarded as outside the scope of this work. Yet, 20
minutes is believed to be sufficient time considering a
sampling time of 10 seconds.

VI. Sensitivity to Disturbances

The performance of the two solutions presented above
will in this section be discussed with respect to sensitivity
to noise. As noted previously, a system with feedback
is typically more robust towards disturbances than with
feedforward control. To evaluate this, input noise will
be considered. In this work, the noise is assumed to be
Gaussian white noise with a standard deviation of 5% of
the maximum input signal.
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Fig. 9. The value of the objective function using the input obtained
from the discrete and continuous optimization when input noise is
present.

The value of the objective function during 24 hours
with noise is depicted in Figure 9. As seen in the figure,
the value is lower than without noise for both the discrete
case and the optimal feedback/feedforward. However,
the value of the objective function when using optimal
feedback/feedforward is substantially larger than when
using the discrete input. The reason for this is that
the optimal feedback/feedforward tracks the reference
better.

The tracking errors for the two input strategies are
depicted in Figure 10. As seen in the figure, the error
using the optimal feedback/feedforward is smaller than
the error resulting from the discrete input. The mean
tracking error is 3.40 [MW ] when using the optimal
feedback/feedforward and 14.73 [MW ] when using the
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Fig. 10. The tracking error resulting from using the input obtained
from the discrete and continuous optimization.

input from the discrete optimization. Furthermore, the
standard deviation of the signal is also smaller us-
ing the feedback/feedforward solution as the values are
2.54 [MW ] and 6.54 [MW ] for feedback/feedforward and
discrete, respectively.

The optimal feedback/feedforward is also superior
in presence of noise with respect to the profit of the
company. However, the difference it not as significant
as when the tracking term is included. This can be
observed in Figure 11 where the economical profit for
the two solutions are depicted. The difference is about
161000 [DKK]; and thus, the gain of using the optimal
feedback/feedforward is approximately 45%.
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Fig. 11. The profit obtained during 24 hours when input noise is
present.

VII. Discussion

In this work, Pontryagin’s maximum principle has
been applied to a problem dealing with profit maxi-



mization of a power plant. An optimal input strategy
consisting of a combined feedback and feedforward has
been developed such that profit is maximized over 24
hours of operation. The developed strategy is based on
properties of the optimal control input and an initial
solution of the adjoint equations obtained from discrete
optimization. The two solutions, discrete input strat-
egy and continuous feedback/feedforward, are evaluated
both with and without input noise. As a result, the
optimal feedback/feedforward yields a greater profit in
both cases. In the presence of input noise, the feed-
back/feedforward solution yields a profit 45% larger than
what is possible by using the discrete input strategy.

Future work in line with this paper would include im-
proving the initial estimate of the switching function. In
particular, a method using pseudo-spectral techniques to
obtain a solution to the adjoint equation is proposed [18].
Using this method, it might be possible to obtain a
sufficiently accurate estimate of the switching function
σ(t) within less iterations of the algorithm suggested
in this work. This could decrease the computational
complexity and solving time, which makes the proposed
method interesting for online implementation as a reced-
ing horizon.

References
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Appendix I

In this appendix, the optimal control input is found by
examining the singular solution [2], [4], i.e., the equality

σ̃(t) = E(t)BT
λ(t) ≡ 0 (18)

is considered point-wise on a nondegenerate time inter-
val. The matrix E(t) is constant in this time interval and
will in the following be denoted by E to avoid confusion
when taking the time derivative.

Some notation is introduced to simplify the equations
throughout this appendix

R(r, s, l)= 2EB
T
A

rT
Q

s
A

l (19)

D(i, t)=
iX

n=0

(−1)n
R(n, 0, 0)q(i−n)(t), (20)

where AnT =
∏n

j=1 AT , with A0T = I and q(j)(t) is the

jth time derivative with q(0)(t) = q(t).
Differentiation of (18) yields

˙̃σ(t) = EBT λ̇(t) = 0

Inserting the adjoint equation, (7), yields

˙̃σ(t)= EB
T

“

2Qz(t) − 2q(t) − A
T
λ(t)

”

= 0 ⇔

D(0, t) = R(0, 1, 0)
| {z }

0

z(t) −
R(1, 0, 0)λ(t)

2
, (21)

where R(0, 1, 0) = 0 follows from the structure of Q,
B and their sparsity, i.e., the relative degrees of the



individual fuel systems are 3; and thus, the first and
second time derivative will yield zero. Differentiating
once more and inserting the adjoint equation yields the
following equalities

Ḋ(0, t) =−
R(1, 0, 0)λ̇(t)

2

Ḋ(0, t) =−R(1, 0, 0)Qz(t) + R(1, 0, 0)q(t)

+
R(1, 0, 0)AT λ(t)

2

D(1, t) =−R(1, 1, 0)
| {z }

0

z(t) +
R(2, 0, 0)λ(t)

2
, (22)

where R(1, 1, 0) = 0 follows from the structure of Q, B,
and A as with R(0, 1, 0) = 0 above. Now, it is possible to
determine λ(t) using (18), (21), and (22). However, the
objective is to find the optimal control input; therefore,
(22) is differentiated once more which yields

Ḋ(1, t) =
R(2, 0, 0)λ̇(t)

2

Ḋ(1, t) =R(2, 0, 0)Qz(t) − R(2, 0, 0)q(t)

−
R(2, 0, 0)AT λ(t)

2

D(2, t) =R(2, 1, 0)z(t) −
R(3, 0, 0)λ(t)

2
(23)

when the adjoint equations is inserted. As R(2, 1, 0) 6= 0,
(23) is differentiated again and the adjoint and system
equations, (7) and (1), are inserted which yields

Ḋ(2, t) =R(2, 1, 0)ż(t) −
R(3, 0, 0)λ̇(t)

2

Ḋ(2, t) =R(2, 1, 0) (Az(t) + Bu(t))

−
R(3, 0, 0)

`
2Qz(t) − 2q(t) − AT λ(t)

´

2

Ḋ(2, t) =R(2, 1, 0) (Az(t) + Bu(t))

−R(3, 0, 0)Qz(t) + R(3, 0, 0)q(t)

+
R(3, 0, 0)AT λ(t)

2
D(3, t) =(R(2, 1, 1) − R(3, 1, 0))z(t)

+ R(2, 1, 0)B
| {z }

0

u(t) +
R(4, 0, 0)λ(t)

2
, (24)

where R(2, 1, 0)B = 0 is attributed the relative degree
equals 3. Equation (24) is differentiated again which

yields

Ḋ(3, t) =(R(2, 1, 1) − R(3, 1, 0)) ż(t)

+
R(4, 0, 0)λ̇(t)

2

Ḋ(3, t) =(R(2, 1, 1) − R(3, 1, 0)) (Az(t) + Bu(t))

+
R(4, 0, 0)

`
2Qz(t) − 2q(t) − AT λ(t)

´

2

Ḋ(3, t) =(R(2, 1, 2) − R(3, 1, 1)) z(t)

+ (R(2, 1, 1) − R(3, 1, 0)) B
| {z }

0

u(t)

+R(4, 1, 0)z(t) − R(4, 0, 0)q(t)

−
R(5, 0, 0)λ(t)

2
D(4, t) =(R(2, 1, 2) − R(3, 1, 1) + R(4, 1, 0)) z(t)

−
R(5, 0, 0)λ(t)

2
, (25)

and (R(2, 1, 1) − R(3, 1, 0)) B = 0 due to the relative
degree of 3. Using (23), (24), and (25), it is possible to
calculate z(t). To obtain an expression for u(t), equation
(25) is differentiated and adjoint and system equations
are inserted

Ḋ(4, t) =(R(2, 1, 2) − R(3, 1, 1) + R(4, 1, 0)) ż(t)

−
R(5, 0, 0)λ̇(t)

2

Ḋ(4, t) =(R(2, 1, 2) − R(3, 1, 1) + R(4, 1, 0)) Az(t)

+ (R(2, 1, 2) − R(3, 1, 1) + R(4, 1, 0)) Bu(t)

−
R(5, 0, 0)

`
2Qz(t) − 2q(t) − AT λ(t)

´

2
Ḋ(4, t) =(R(2, 1, 3) − R(3, 1, 2) + R(4, 1, 1)) z(t)

+ (R(2, 1, 2) − R(3, 1, 1) + R(4, 1, 0)) Bu(t)

−R(5, 0, 0)Qz(t) + R(5, 0, 0)q(t)

+
R(5, 0, 0)AT λ(t)

2
D(5, t) =(R(2, 1, 3) − R(3, 1, 2)

+R(4, 1, 1) − R(5, 1, 0)) z(t)

+ (R(2, 1, 2) − R(3, 1, 1) + R(4, 1, 0)) Bu(t)

+
R(6, 0, 0)λ(t)

2
(26)

Using (26), it is possible to obtain an expression for u(t)

Cuu(t) = Czz(t) + Cτ (t), u(t) ∈ U(t) (27)

where

Cu =− (R(2, 1, 2) − R(3, 1, 1) + R(4, 1, 0)) B

Cz =R(2, 1, 3) − R(3, 1, 2) + R(4, 1, 1) − R(5, 1, 0)

Cτ (t) =
R(6, 0, 0)λ(t)

2
− D(5, t).

(28)

We remark that Cu can be used to verify that the
generalized Legendre-Clebsch condition holds true in our
case.

Appendix II

In this appendix, we will derive the lifting of the cost
function, which is used in the discrete optimization. The



term

P (T ) =

∫ T

0

−z(t)T Qz(t)dt

︸ ︷︷ ︸

P2(T )

+

∫ T

0

2q(t)T z(t) + ϕ(t)dt

︸ ︷︷ ︸

P1(T )

is divided into two part during the discretization, i.e., the
quadratic and affine terms are treated separately.

It is assumed that q(t) and ϕ(t) can be approximated
by piecewise constant functions for each time step, i.e.,

q(t) = qk, kh < t < (k + 1)h,

ϕ(t) = ϕk, kh < t < (k + 1)h, (29)

where h is the sampling time. Furthermore, the control
is assumed piecewise constant as customary when digital
to analogue conversion is performed using sample-hold
circuits.

Using a fact from [1], the continuous time state z(t)
in the dynamic system in (1) with constant input u0 can
be described by

z(t) = eAtz0 +

∫ t

0

eA(t−s)Bu0(s)ds

=
[

I 0
]

exp

{[
A B

0 0

]

t

}[
z0

u0

]

,

(30)

where I is an identity matrix with appropriate dimension
and z0 is the initial state. Using (30), it is possible to
derive the following formula

Z
h

0

e
At

dt = e
Ah

Z
h

0

e
−A(h−t)

dt

= e
Ah

„

e
−Ah

· 0 +

Z
h

0

e
−A(h−t)

Idt

«

= e
Ah

ˆ
I 0

˜
exp

»
−A I
0 0

–

h

ff»
0
I

–

.

(31)

The affine term is lifted by first using (30) and then
(31)

P1(T ) =

Z
T

0

“

2q(t)T
z(t) + ϕ(t)

”

dt

=
N−1X

k=0

2q
T

k

Z
h

0

„

e
At

zk +

Z
t

0

e
A(t−s)

Bdsuk

«

dt

+h

N−1∑

k=0

ϕk

=
N−1X

k=0

2q
T

k

Z
h

0

ˆ
I 0

˜
e

Ãt

»
zk

uk

–

dt + h

N−1X

k=0

ϕk

=
N−1X

k=0

2q
T

k

ˆ
I 0

˜
e

Ãh
ˆ

I 0
˜
e

Âh

»
0
I

– »
zk

uk

–

+h

N−1∑

k=0

ϕk

=
N−1X

k=0

(M zk
zk + M uk

uk + hϕk) , (32)

where

Mzk
= 2qT

k

[
I 0

]
eÃh

[
I 0

]
eÂh

[
0

I

] [
I

0

]

Muk
= 2qT

k

[
I 0

]
eÃh

[
I 0

]
eÂh

[
0

I

] [
0

I

]

with

Â =

[

−Ã I

0 0

]

, Ã =

[
A B

0 0

]

,

and the matrices I and 0 are of appropriate dimensions.
Next, the quadratic term is lifted by using (30)

P2(T ) =

Z
T

0

−z(t)T
Qz(t)dt

=−

N−1X

k=0

Z
h

0

„

z
T

k e
AT

t + u
T

k

Z
t

0

B
T
e

AT (t−s)
ds

«

Q

„

e
At

zk +

Z
t

0

e
A(t−s)

Bdsuk

«

dt

=−

N−1X

k=0

Z
h

0

ˆ
zT

k uT

k

˜
e

ÃT
t

»
I
0

–

Q

ˆ
I 0

˜
e

Ãt

»
zk

uk

–

dt

=−

N−1X

k=0

ˆ
zT

k uT

k

˜
e

ÃT
h
Y (h)eÃh

»
zk

uk

–

(33)

where Ã is as above and

Y (h)=

Z
h

0

e
−ÃT (h−t)

Q̄e
−Ã(h−t)

dt (34)

Q̄=

»
I
0

–

Q
ˆ

I 0
˜

The integral in (34) is the solution to a matrix differential
equation

Y (h) =

Z
h

0

e
−ÃT (h−t)

Q̄e
−Ã(h−t)

dt ⇒

−
d

dh
Y (h) =Ã

T
Y (h) + Y (h)Ã − Q̄, Y (0) = 0. (35)

Using the Vec(·) notation which is defined as

Vec(P ) =






p1

...
pn




 , (36)

where pi is the columns of P , it is possible to formulated
(35) as

−
dVec(Y (h))

dh
=F Vec(Y (t)) − Vec(Q̄) (37)

where

F =
(

I ⊗ ÃT + ÃT ⊗ I
)

and ⊗ denotes the Kronecker product. By using the
solution to standard vector differential equation and (31),



the solution to (37) is given by

Vec(Y (h)) =

∫ h

0

eF (h−τ)dτVec(Q̄)

=eF h
[

I 0
]
eF̂ h

[
0

I

]

Vec(Q̄)

=eF hF̃ Vec(Q̄),

where

F̃ =
[

I 0
]
eF̂ h

[
0

I

]

, F̂ =

[
F I

0 0

]

.

That is (33) can be expressed as

P2(T ) =−
N−1∑

k=0

[ zT

k uT

k ]

[

N zz N zu

Nuz Nuu

] [

zk

uk

]

(38)

where

N zz =
[

I 0
]
eÃT hVec−1

(

eF hF̃ Vec(Q̄)
)

eÃh

[
I

0

]

N zu =
[

I 0
]
eÃT hVec−1

(

eF hF̃ Vec(Q̄)
)

eÃh

[
0

I

]

Nuz =
[

0 I
]
eÃT hVec−1

(

eF hF̃ Vec(Q̄)
)

eÃh

[
I

0

]

Nuu =
[

0 I
]
eÃT hVec−1

(

eF hF̃ Vec(Q̄)
)

eÃh

[
0

I

]

with Vec−1(·) denoting the inverse of the Vec-operator
in (36), i.e., reshaping the vector into a matrix.


