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A B S T R A C T

The cantilever bending test is one of the simplest and most widely used methods to estimate the bending
stiffness of textile materials. A nonlinear moment–curvature relationship can be computed from a single image
of a cantilevered textile specimen. However, the calculation of curvature involves second-order differentiation
of noisy data, which leads to noise amplification. Traditionally, this is handled by subjectively choosing one of
many functions to fit the data or by manual tuning of fitting parameters. The user choices ultimately lead to
uncertainties in the data fit. This paper presents a novel automatic data processing method for the cantilever
test using smoothing splines with automatic parameter selection through cross-validation. The method is
verified on a simulated deflection curve with known bending stiffness and then used to characterise real
textile specimens. Finally, the method is validated by simulating the deflection curve using the computed
stiffness. This method makes it possible, for the first time, to accurately predict the textile curvature even in
the presence of severe noise, without needing user inputs prone to human error. The code used for this paper
is freely available with sample data on the repository at https://doi.org/10.5281/zenodo.7376939.

1. Introduction

The stiff and strong behaviour of fibre composite materials makes
them attractive in many applications where lightweight structures are
desired. This includes the aero-space, automotive, and wind energy
industries. The desirable material properties of fibre composites come
with the cost of complex manufacturing. To accommodate this, process
simulation models may be used to predict the occurrence of manu-
facturing defects and final fibre orientation of composite parts [1–5].
Simulation of composite manufacturing processes is often done on a
macro-scale, assuming homogeneous properties of the textile, to make
them computational efficient [6]. The early models neglected the out-
of-plane properties of the textiles and primarily focused on the in-plane
shear behaviour. However, more recent literature shows that the bend-
ing stiffness of textiles plays a huge role in the manufacturing process,
especially in the formation and size of wrinkles [7]. It is known that
wrinkles may be critical for the structural strength of fibre composite
laminates [8,9], which makes the correct characterisation of textile
bending stiffness important.
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The bending behaviour of textiles is much different from homoge-
neous materials as the textile structure consists of thin fibres that can
move relative to each other. Effectively, this means that textiles sub-
jected to bending kinematically behave very differently than described
by classical beam theories, like Bernoulli–Euler and Timoshenko [10].
Despite this, the bending stiffness, 𝐵, for textile materials is often
defined as the relation between the moment, 𝑀 , and the curvature,
𝜅, of the textiles’ midline, 𝑀 = 𝐵𝜅. The effect of transverse loads on
the specimen is also often neglected. Classical beam theories define
the bending stiffness as 𝐵 = 𝐸𝐼 , where 𝐸 is Young’s modulus of
the material and 𝐼 is the area moment of inertia. Because of rela-
tive fibre movement during textile bending, the macro-scale bending
stiffness should be decoupled from the membrane stiffness in textile
modelling [11–13]. This means that the bending stiffness needs to
be characterised separately. Moreover, textiles typically have a highly
nonlinear bending behaviour with higher bending stiffness at lower
curvatures [14–16].

Different methods for characterising textile bending stiffnesses have
been proposed in the literature. One of the first and most simple

https://doi.org/10.1016/j.compositesb.2023.110763
Received 29 November 2022; Received in revised form 13 April 2023; Accepted 24 April 2023

https://www.elsevier.com/locate/composites
http://www.elsevier.com/locate/composites
https://doi.org/10.5281/zenodo.7376939
mailto:phb@mp.aau.dk
mailto:elo@mp.aau.dk
mailto:ck@mp.aau.dk
mailto:smj@mp.aau.dk
mailto:ggt@mp.aau.dk
mailto:afmt@mp.aau.dk
mailto:brianbak@mp.aau.dk
https://cracs.aau.dk
https://doi.org/10.1016/j.compositesb.2023.110763
https://doi.org/10.1016/j.compositesb.2023.110763
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2023.110763&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Composites Part B 260 (2023) 110763

2

P.H. Broberg et al.

Fig. 1. Overview of the method used for calculating the bending stiffness. The yellow boxes illustrate the modules used for calculations and validation. The key novelty aspects
are related to the image processing and the curve fit modules, together with the accurate FE-simulator. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

methods was described by Peirce in 1930 [17]. In this test, a constant
bending stiffness of a textile specimen that is cantilevering due to
its own weight is estimated. The bending stiffness can be estimated
based on the length of the specimen and the angle of an inclined
plane passing through the fixed and free end of the specimen. This
test is widely used due to its simple setup and data processing, and
slightly modified versions of it are also part of ASTM, ISO and British
standards [18–20]. The accuracy of the test was improved in [21] by
including higher order deformation modes. However, the aforemen-
tioned methods assume a linear relationship between the moment and
curvature. The Peirce test has since then been the basis for a different
kind of test referred to here as the free-hanging cantilever test. In this
test, the specimen does not make contact with an inclined plane, but
instead an image of the deflected specimen is used to estimate the
non-constant bending stiffness. This was first done in 1990 by Clapp
et al. [22]. They estimated the non-constant bending stiffness of textiles
by fitting a fifth-order polynomial to the deflection curve. More recent
literature has further extended this approach. In [23] the nonlinear
bending behaviour both during loading and unloading was estimated
by taking successive pictures of a cantilevered specimen. More recently
in [24], the accuracy of the curvature calculation was improved by
fitting a quartic (4th order) B-spline to the deflection curve. Other
cantilever methodologies consider the specimen loaded vertically to
avoid issues related to twisting of the specimen’s free end [25,26].
Another completely different type of bending test measures the moment
and curvature directly using a Kawabata testing machine [16]. This has
also been done by making a custom-made test rig that fits in a rotational
rheometer [27,28]. Other tests include the buckling test [29,30], the 3-
point bending test [31–33], and the so-called ‘‘free cantilever test’’ [34]
where a strip of textile is hung from its midpoint, i.e. with two de-
flecting free ends. A comparison of the different bending tests has been
carried out in [31,35,36].

In a previous comparison of test setups carried out by the au-
thors [36], all tests showed a fair degree of similarity in the measured
bending stiffness. Due to its simple and low-cost setup, as well as its
ability to easily adapt to textiles of different bending stiffness, the free
hanging cantilever test was considered one of the most promising. The
main advantage of using the cantilever bending test is that it is widely

accessible due to its minimal investment in equipment [36]. However,
the main challenge with this methodology is that differentiation of
noisy data is needed for obtaining the curvature of the specimen. There
is no consensus in the literature on what function should be fitted to the
deflection curve. Clapp et al. [22] use a fifth-order polynomial. Higher
order polynomials may be unstable and overfit the data, leading to os-
cillations. Furthermore, polynomials may also not be able to represent
deflection profiles of textiles consisting of piecewise curve shapes as ar-
gued by [24]. For these reasons, Liang et al. [24] use a B-spline to fit the
deflection curve, i.e. a piecewise polynomial function. However, when
using B-splines the user still needs to select spline knots, spline order
and smoothing parameters for the least squares fit. These user choices
result in uncertainties, which affect the fitted parameters. Ultimately,
the computed bending stiffness becomes dependent on the parameters
set by the user. In all cases the functions are fitted to the textile’s
position, even though the desired quantity is the curvature (second
derivative). As there is no direct measure of how good the function fits
the curvature, the accuracy of the computed bending stiffness can be
questioned. That is, low residuals of the position fit do not guarantee a
good capture of the curvature.

The aim of this paper is to present an accurate and reliable auto-
matic method for calculating the moment–curvature relation for textiles
in a cantilever bending test. The presented method includes a new
automatic algorithm for fitting the deflection curve using smoothing
splines with automatic parameter selection through cross-validation
and a novel image-processing algorithm for filtering out noise in the
deflection curve. The method is verified against a deflection curve
with known non-constant bending stiffness. The key novelty aspects
presented in this paper are:

• A robust, flexible, and fully automatic algorithm for fitting the
deflection curve in the cantilever test.

• A new and generally applicable image processing scheme.
• An accurate FE-simulator for validating the computed non-constant

bending stiffness.

The rest of the paper is structured as follows: Section 2 describes
the method used for processing the image and obtaining the bending
stiffness. This includes a presentation of the algorithm used for calcu-
lating the smoothing spline and automatically choosing the smoothing
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Fig. 2. Three steps are involved in the image processing function: thresholding, smoothing and midline extraction.

parameter through cross-validation. Section 3 presents applications of
the code, first on a numerical simulator and subsequently on real test
data. Section 4 contains a discussion on the capabilities of the method.
Finally, the method and paper are concluded in Section 5.

2. Method of measuring textile curvature and bending stiffness

The workflow of the method for measuring the bending stiffness is
illustrated in Fig. 1. The image processing and curve fitting modules
have been designed to reduce the number of parameters set by the
user compared to earlier published methods [22–24]. The inputs to the
program are an image of a cantilevered specimen and three parameters,
all with a physical interpretation: the length of the kernel (𝐿𝑘𝑒𝑟𝑛𝑒𝑙)
for filtering noise in the thresholded image, the number of regions
(𝑛𝑟) used in the image-processing, and the number of data points (𝑛)
extracted from the measured deflection curve. These three parameters
are elaborated on in later sections and all have default values that
provide accurate and reliable computations for the examples tested in
this paper. The image processing module converts the raw image to a
discrete set of coordinates (𝑥𝑖, 𝑦𝑖) for the midline deflection curve. To
filter out noise, a smoothing spline is fitted to the set of coordinates in
the curve fit module. The moment and curvature calculation module uses
the spline fit to calculate the moment and curvature along the specimen
length. The output of this program is the nonlinear moment–curvature
(𝑀 − 𝜅) relationship for the textile. This method is implemented in a
Python program, freely available at https://doi.org/10.5281/zenodo.
7376939, and once the raw image is provided, the nonlinear bending
characteristic of the textile can be computed with one click.

2.1. Image processing

The image processing module converts the original image to a
set of discrete midline deflection values. This is done in three steps:
thresholding, smoothing, and midline extraction, see Fig. 2.

During thresholding, the original greyscale image is converted to
a binary image using Otsu’s method for automatic threshold selec-
tion [37]. This method chooses a thresholding value between two peaks
in the histogram of the image’s greyscale values. For this reason, the
input image should have a high contrast between the background and
test specimen, and the test specimen should be lighted evenly. More
information on this method and implementation in OpenCV (image
processing package for python) can be found in [38]. Otsu’s method
requires no user parameters.

The thresholded image is smoothed to remove noise. As the textile
is characterised as a homogeneous material, the noise is related to
deviations from the main deflection curve of a prismatic beam. In the
investigated experimental data, the primary source of the noise was
found to be illuminated loose threads or fibres, see for example the
visible white lines emerging from the main deflection curve in Fig. 2.
This noise is removed with a morphological opening operation [38]
using a line kernel (structuring element) of length 𝐿𝑘𝑒𝑟𝑛𝑒𝑙 that locally
follows the slope of the deflection curve, see Fig. 3. In this step, the
slope is estimated automatically by fitting a fifth-order polynomial,
𝑝5(𝑥), to the thresholded image and differentiating it. Two boundary
conditions are applied to the fitted polynomial: zero rotation at the

Fig. 3. Method for smoothing the thresholded image. A line kernel following the slope
of the deflection curve is used to filter out loose fibres.

Fig. 4. Definition of region i used during smoothing of the image to estimate the slope
𝜃𝑖.

fixed end, 𝑝(1)5 (0) = 0, and zero curvature at the free end, 𝑝(2)5 (𝐿) = 0. As
the slope is changing continuously along the length of the specimen,
the image is divided into 𝑛𝑟 horizontal regions (𝑛𝑟 > 1) in which the
slope can be approximated as constant. This enables the use of a line
kernel with a constant slope, 𝑎𝑖, in each region, see Fig. 4. The following
method assumes that 𝑝(1)5 (𝑥) is monotonically decreasing. The slope of

https://doi.org/10.5281/zenodo.7376939
https://doi.org/10.5281/zenodo.7376939
https://doi.org/10.5281/zenodo.7376939
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the line kernel used in region 𝑖 is defined as,

𝑎𝑖 = 𝛥𝑎 ⋅ (𝑖 − 1), 𝛥𝑎 =
𝑎𝑚𝑖𝑛
𝑛𝑟 − 1

, 𝑖 = 1,… , 𝑛𝑟 (1)

where 𝑎𝑚𝑖𝑛 is the minimum slope of the deflection curve, which is at the
free end of the specimen. From the slope, the angle of the line kernel
at region 𝑖 can be found as 𝜃𝑖 = tan−1(𝑎𝑖). Region 𝑖 is defined on the
interval [𝑥𝑖; 𝑥𝑖+1[ where the boundaries of each region are defined by
the slopes, 𝑏𝑖,

𝑏𝑖 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑖 = 1
𝑎𝑖 −

𝛥𝑎
2 if 2 ≤ 𝑖 ≤ 𝑛𝑟

𝑎𝑚𝑎𝑥 if 𝑖 = 𝑛𝑟 + 1

(2)

from which the spatial boundaries, 𝑥𝑖, are found by solving,

𝑝(1)5 (𝑥𝑖) = 𝑏𝑖, 𝑖 = 1,… , 𝑛 + 1 (3)

By this definition, the first boundary is placed at 𝑥1 = 0 while
the last boundary is placed at 𝑥𝑛+1 = 𝑥𝑚𝑎𝑥. The slopes at all other
boundaries are between the slopes of the line kernels, 𝜃𝑖. In this way,
smaller regions are obtained close to the fixed support, which ensures a
good representation in regions of large curvature. Two user parameters
are needed for this operation: the length of the kernel, 𝐿𝑘𝑒𝑟𝑛𝑒𝑙, and the
number of regions, 𝑛𝑟. The number of regions should be chosen such
that the image is discretised finely enough to represent the continuous
change in slope, and the length of the kernel should be chosen such
that it is large enough to filter out the loose fibres. The default value
of the length of the kernel is 𝐿𝑘𝑒𝑟𝑛𝑒𝑙 = 2𝑥2, where 𝑥2 is the length
of the first region (Fig. 4), and the default value of the number of
regions is 𝑛𝑟 = 8. These values provide effective defeaturing of loose
fibres in all the tests presented in this paper. Notice that, the fifth-
order polynomial fit of the deflection curve, 𝑝5(𝑥), is only used to
choose appropriate settings for the line kernels in the image filtering
operation. This should not be confused with the smoothing spline fit
that provides a continuous function of the midline deflection for the
subsequent curvature calculation.

After the smoothing operation on the thresholded image, the mid-
line of the deflection curve is extracted from the smoothed image, see
Fig. 3. The 𝑖’th point of the midline deflection, 𝑦𝑖, at 𝑥𝑖 is determined
as 𝑦𝑖 = median(𝐲𝐱𝐢), where 𝐲𝐱𝐢 is a vector containing all 𝑦-coordinates
for the smoothed image at a given 𝑥 coordinate, 𝑥𝑖. From the discrete
midline deflection curve 𝑛 data points are picked out by linear sampling
and used in the subsequent curve fit. The default value of 𝑛 is 50 (see
Section 3).

2.2. Curve fitting through smoothing splines

The automatic curve fitting algorithm fits a continuous function
to the set of discrete coordinates (𝑥𝑖, 𝑦𝑖) of the midline deflection.
Smoothing splines are used to filter out the noise left after the image
processing. The benefit of using smoothing splines is that they are
flexible and can be used to describe a lot of different curves without
a priori assumption of the shape. The theory of the equations involved
will briefly be covered here. More information on smoothing splines
can be found in textbooks, like e.g. [39,40].

The overall idea of smoothing splines is to fit the data points while
keeping the 𝑚’th derivative low. The 2𝑚 − 1 degree smoothing spline,
𝑓 (𝑚 > 0), is given as the minimiser to the function [41,42],

min
𝑛
∑

𝑖=1
{𝑦𝑖 − 𝑓 (𝑥𝑖)}2 + 𝜆∫ {𝑓 (𝑚)(𝑥)}2𝑑𝑥 (4)

s.t. ℎ𝑘(𝑓 ) = 0, 𝑘 = 1,… , 𝐾

The first term in Eq. (4) is the squared difference between data points,
𝑦𝑖, and fitted values, 𝑓 (𝑥𝑖), for 𝑛 number of data points. The second
term penalises the 𝑚’th derivative of the function 𝑓 . The parameter 𝜆
is the smoothing parameter that determines the level of penalisation.

Fig. 5. Basis functions for a cubic spline.

The 𝐾 number of equality constraints, ℎ𝑘, which are optional, can be
used to impose conditions on the derivatives of the spline. The use of
equality constraints, ℎ𝑘, is elaborated on in the next paragraph.

In the current work, a B-spline basis is used for the smoothing spline,
meaning that 𝑓 in Eq. (4) can be expressed as,

𝑓 (𝑥) =
𝑛+2𝑚−2
∑

𝑗=1
𝛾𝑗𝐵𝑗 (𝑥) (5)

The parameters 𝛾𝑗 are the linear spline parameters and 𝐵𝑗 (𝑥) are the
basis functions. The smoothing spline 𝑓 is, therefore, a linear com-
bination of basis functions 𝐵𝑗 (𝑥) of degree 2𝑚 − 1. The 𝑥 values at
which the basis functions start and stop are called knots. For smoothing
splines, all data points are used as knots, which means that the user
does not need to preselect the knots as is the case for regular spline
fits. The algorithm used for calculating the basis functions, 𝐵𝑗 (𝑥), and
the definition of the knot vector will not be described here, but can be
found in [39]. An example of cubic (𝑚 = 2) basis functions on the data
set 𝑥 = [0, 1, 2, 3, 4, 5] is illustrated in Fig. 5. The 𝑘’th equality constraint,
ℎ𝑘, is defined as,

ℎ𝑘(𝑓 ) = 𝑓 (𝑛𝑘)(𝑥𝑘) − 𝑑𝑘 =
𝑛+2𝑚−2
∑

𝑗=1
{𝛾𝑗𝐵(𝑛𝑘)(𝑥𝑘)} − 𝑑𝑘 (6)

Where 𝑓 (𝑛𝑘)(𝑥𝑘) is the 𝑛𝑘’th derivative of 𝑓 at 𝑥𝑘, and the equality
constraint ensures that 𝑓 (𝑛𝑘)(𝑥𝑘) is equal to an arbitrary constant 𝑑𝑘.
The Lagrangian function of the problem in Eq. (4), in matrix form, is
presented in the following. It can be presented in matrix form because
the linear combination of splines in Eq. (5).

(𝛾, 𝜆, 𝜁 ) =(𝐲 − 𝐁𝜸)𝑇 (𝐲 − 𝐁𝜸) + 𝜆𝜸𝑇Ω𝐵𝜸 (7)
+ 𝜁𝑇 (𝐂𝜸 − 𝐝)

The matrices 𝐁, Ω𝐵 and 𝐂 are given by,

{𝐁}𝑖𝑗 = 𝐵𝑗 (𝑥𝑖), {Ω𝐵}𝑗𝑘 = ∫ 𝐵(𝑚)
𝑗 (𝑡)𝐵(𝑚)

𝑘 (𝑡)𝑑𝑡 (8)

{𝐂}𝑘𝑙 = 𝐵(𝑛𝑘)
𝑙 (𝑥𝑘)

𝐁𝑖𝑗 is a (𝑛 × (𝑛 + 2𝑚 − 2)) matrix with each entry being the 𝑗’th basis
function evaluated at the 𝑖’th data point, 𝑥𝑖. {Ω𝐵}𝑗𝑘 is a ((𝑛 + 2𝑚 −
2) × (𝑛+ 2𝑚− 2)) matrix, and can be evaluated efficiently by numerical
integration, see [43] for an in-depth description of this. 𝐂𝑘𝑙 is a (𝐾 ×
(𝑛 + 2𝑚 − 2)) matrix with entries being the 𝑛𝑘’th derivative of the 𝑙’th
basis function at data point 𝑥𝑘, such that 𝐂𝛾 = 𝐝 where 𝐝 is a vector
containing the constants 𝑑𝑘.

By using the Karush–Kuhn–Tucker optimality conditions [44], the
estimated parameters, �̂�, that minimises Eq. (7) can be found by solving
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Fig. 6. The smoothing parameter is chosen as the minimiser to the leave-one-out
cross-validation value.

the set of linear equations,
[

2(𝐁𝑇𝐁 + 𝜆Ω𝐵) 𝐂𝑇

𝐂 𝟎

] [

�̂�
𝜁

]

=
[

2𝐁𝑇 𝐲
𝐝

]

(9)

Before this system of equations can be solved for the unknown 𝛾 and
𝜁 , a selection of constraints, ℎ𝑘, and calculation of a suited smooth-
ing parameter, 𝜆, are required. The constraints are used to impose
physical knowledge on the fit. Textiles behave differently in bending
compared to classical homogeneous materials and may be subject to
phenomena like e.g. reverse curvature at the free end [14]. To avoid
over-constraining, the only constraint added to the fit is, therefore, zero
rotation of the specimen at the fixed end, 𝑓 (1)(0) = 0.

The smoothing parameter, 𝜆, is defined on the interval [0; ∞[. For
𝜆 → 0 the solution approaches an interpolation on the data points with
a spline of degree 2𝑚 − 1. For 𝜆 → ∞ a smooth function with the 𝑚’th
derivative of 𝑓 approaching 0 is obtained. A compromise between the
bias and variance of the fit is desired in the choice of 𝜆 [40]. Bias is
an error stemming from a priori assumptions, while variance is an error
from sensitivities to small changes in the input data. A fit with high bias
tends to underfit/oversimplify the data, while a fit with high variance
tends to overfit the data.

The smoothing parameter, 𝜆, is automatically chosen based on the
minimisation of the leave-one-out cross-validation, 𝐶𝑉 , as this provides
a trade-off between bias and variance of the fit [40],

min
𝜆

𝐶𝑉 = 1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑓 [−𝑖]

𝜆 (𝑥𝑖))2 (10)

= 1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − 𝑓𝜆(𝑥𝑖)
1 − 𝑆𝜆(𝑖, 𝑖)

)2

(11)

where the notation 𝑓 [−𝑖]
𝜆 indicates the smoothing spline fit on the data

set excluding the 𝑖’th data point. 𝐒𝜆 is the smoother matrix defined as,

𝐒𝜆 = 𝐁(𝐁𝑇𝐁 + 𝜆Ω𝐵)−1𝐁𝑇 (12)

and 𝑓𝜆 is the estimated values of f,

𝐟𝜆 = 𝐒𝜆𝐲 (13)

The cross-validation can be evaluated efficiently for each value of 𝜆
once 𝐁 and Ω𝐵 are calculated in Eq. (8).

The smoothing parameter is normalised to avoid evaluating the
parameter on an infinitely large interval when finding min𝜆 𝐶𝑉 [40,45].
The smoothing parameter 𝜆 is, therefore, transformed to the new
smoothing parameter 𝑝 defined on the interval 0 < 𝑝 ≤ 1. A normal-
isation based on the csaps package for Python [45] is used. In [45]
the normalisation of the smoothing parameter for a cubic smoothing
spline has been found empirically. In this paper the normalisation is
generalised to smoothing splines of an arbitrary degree through a small
parameter study.

𝜆 = 𝑘
1 − 𝑝
𝑝

, 𝑘 = 80𝛥𝑥
2𝑚−1

𝑛2𝑚−1
(14)

Fig. 7. Illustration of the numerical calculation of the bending moment at the 𝑖’th point.
The moment contribution from each separate section (between points) are summed up
for 𝑥𝑖 < 𝑥 < 𝑥𝑁 (red part of the curve). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

𝛥𝑥 = 𝑥𝑛 − 𝑥0 is the span of the 𝑥-values. The smoothing parameter is
chosen by minimising the 𝐶𝑉 values between 0 < 𝑝 ≤ 1, see Fig. 6.

The methodology for curve fitting with B-splines described above
is done without any parameter input by the user. A cubic smoothing
spline with a penalty on the second derivative (𝑚 = 2) is often
used if the desired fit is on the measured quantity [40]. However,
in the case of calculating the curvature of bent textiles, the second
derivative of the measured quantity is desired. Therefore, a seventh-
degree smoothing spline with a penalty on the fourth derivative (𝑚 = 4)
is used. This means that large changes in the curvature will be penalised
in Eq. (4). For a seventh-degree smoothing spline, 𝑝 = 1 gives a spline
interpolation of the data, while a curve with linear curvature is fitted on
the data for 𝑝 → 0. All 𝑝 values in-between represent a flexible function
that may provide a good fit while still smoothing out the noise. Again,
the smoothing parameter which minimises the 𝐶𝑉 value provides the
best compromise and is chosen in this work to make the approach
independent of user settings and interpretations.

2.3. Calculation of moment and curvature

From the spline fit, a continuous description of the deflection curve
is obtained, 𝑓 (𝑥). The curvature at each point can then be determined
by [46],

𝜅 =
−𝑓 (2)(𝑥)

(

1 + 𝑓 (1)(𝑥)2
)
3
2

(15)

The superscript to 𝑓 defines the derivative order. By this definition of
curvature and choice of system of coordinates, positive curvature is
obtained at the fixed end of the cantilevered specimen. The moment
at each point, due to the self-weight of the textile, can be calculated
by integration along the arc length of the specimen. A numerical
integration scheme is chosen where the moment at each point (𝑥𝑖) is
calculated by (see Fig. 7),

𝑀(𝑥𝑖) =
𝑁−1
∑

𝑘=𝑖
𝐹𝑒𝑞,𝑘𝛥𝑥𝑘, 𝐹𝑒𝑞,𝑘 = 𝑊𝑎𝑤𝛥𝑠𝑘 (16)

where 𝑊𝑎 is the areal weight of the textile, 𝑤 is the width, and 𝛥𝑠𝑘 is
the Euclidean distance between two adjacent points on the deflection
curve.

𝛥𝑠𝑘 =
√

(𝑥𝑘+1 − 𝑥𝑘)2 + (𝑦𝑘+1 − 𝑦𝑘)2 (17)
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Fig. 8. The 𝑀 − 𝜅 curve is modified by assuming a constant bending stiffness at low
curvatures to counteract the low curvature oscillations.

Thereby, 𝐹𝑒𝑞,𝑘 is the equivalent force on the 𝑘’th line section. 𝛥𝑥𝑘 is the
x-distance from the point at which the moment is calculated, 𝑥𝑖, to the
centre point of section k,

𝛥𝑥𝑘 = 𝑥𝑘 − 𝑥𝑖 +
𝑥𝑘+1 − 𝑥𝑘

2
(18)

The calculation of the moment at each separate point is illustrated in
Fig. 7.

2.4. Modification to control the method in low curvature regions

For some textiles, a classical observation in the computed 𝑀 −𝜅 re-
lationship is oscillations in the low curvature regions [23]. As a remedy
to address this issue, the first part of the 𝑀−𝜅 curve is considered linear
up until the last point where the slope of the curve exceeds the secant
as shown in Fig. 8. This is done both as this oscillation phenomenon
is an artefact of the curve fitting and as a negative slope of the 𝑀 − 𝜅
curve would not be usable in some constitutive models. Examples of
the oscillations at low curvatures are given in Section 3.1. The 𝑀 − 𝜅
curves for the tested textile are approximately bi-linear and can be
characterised by the low curvature stiffness, high curvature stiffness
and transition moment (see Fig. 8).

2.5. Experimental setup

The experiments are carried out on a simple experimental setup,
see Fig. 9. The textile specimen is placed on a box with a level flat
top high enough to let the specimen hang freely. A heavy top plate is
placed on the specimen to fix it. Spacers with the same thickness as the
specimen is placed between the top plate and the box to prevent the
weight of the plate pressing down on the specimen, leading to reduced
thickness of the specimen which may cause wrong measurements [35].
A monochrome CCD camera is used to acquire images of the side of
the specimen, which is illuminated by two NILA Zaila Daylight cool
LED white light sources. There should be high contrast between the
specimen and the background as mentioned in Section 2.1. Therefore,
a black background is chosen to contrast the white glass fibre specimens
in Fig. 10. Additional information on the specimen and materials used
are presented in Section 3.2. An example of a raw image is shown in
Fig. 10.

Care must be taken to prevent systematic errors. The camera must
be oriented such that the line of view is perpendicular to the side of the
specimen, see Fig. 9. A checkerboard pattern is located in the plane of
the specimen’s side (Fig. 10) as a sanity check to ensure that the line
of view is perpendicular to the specimen [47], and calculate the pixel
to metre conversion factor. Furthermore, the box is levelled to ensure

Fig. 9. Experimental setup.

Fig. 10. Example of an image taken during testing. Some twisting of the specimen
(grey area) can be observed at the free end of the specimen.

that the gravitational loading acts perpendicular to the undeformed
specimen. A moving platform is installed in the setup to ensure that
the specimen is not subject to deformation before testing and that the
load is applied slowly. Initially, the platform is level with the top of
the box and in the course of approximately ten seconds, the platform
is lowered until the specimen hangs freely.

The bending stiffness can readily be computed with this raw image
of the cantilevered specimen and the three parameters with default
values: Length of the kernel, 𝐿𝑘𝑒𝑟𝑛𝑒𝑙 = 2𝑥2 (where 𝑥2 is the length of the
first region, cf. Fig. 4), the number of regions, 𝑛𝑟 = 8, and the number
of data points, 𝑛 = 50.

3. Applications

The measurement errors in the test can be divided into random
errors and systematic errors, see Fig. 11. The random errors are noise
related to deviations from the midline deflection of a prismatic beam
e.g. from buckling of rovings, see Fig. 10, the accuracy of the extraction
of the midline by the median value (Fig. 3), and the accuracy of the
camera. The systematic errors are differences between the true and av-
erage measured quantity. These could for instance be due to perspective
of the camera, twist in the specimen, misplacement of the camera, poor
illumination of specimens etc. The systematic errors are mitigated by
assuring minimal twisting of the specimen and perpendicularity of the
camera, while the smoothing spline handles the random errors. In this
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Fig. 11. The measured deflection curve is subject to both random and systematic
errors. Systematic errors should be avoided by the experimenter while the random
errors are handled by the smoothing spline.

section, it is first verified that the method can compute an accurate
bending stiffness from a deflection curve with known non-constant
bending stiffness. The method is subsequently validated by computing
the bending stiffness from real textile specimens and then using the
computed bending stiffness to simulate the deflection curve, see Fig. 12.

3.1. Numerical verification

As a numerical verification, a deflection curve from a beam with
a known non-constant bending stiffness is simulated. The purpose of
this is to verify that the method, described in the previous section, can
represent the correct moment–curvature relationship and to study its
sensitivity to noise (random errors), see Fig. 12.

The deflection curve is simulated in an implicit static finite element
(FE) analysis framework for geometrically nonlinear analysis using
Bernoulli–Euler frame elements with higher order axial terms in a
co-rotational formulation [48–50], and a Newton–Raphson solver [51–
53]. The finite element analysis framework is modified to introduce
a new bending stiffness-curvature relationship. At each load step the
curvature in each beam element, 𝜅𝑖, is calculated by the difference
in nodal rotations over the arc length, 𝜅𝑖 = 𝛥𝜃

𝛥𝑆
. By assuming that

Table 1
The different test cases for testing the method’s sensitivity to
noise.

# data points Noise amplitude
[mm]

Test 1 50 0.1
Test 2 50 1
Test 3 200 0.1
Test 4 200 1

the membrane strains are negligible [23], the Young’s modulus of
each finite element is calculated from a given input bending-stiffness
curvature relationship and the element curvature. The Young’s modulus
of all finite elements are updated in each increment according to 𝐸𝑖 =
𝐵(𝜅𝑖)∕𝐼 . 𝐵(𝜅𝑖) is the bending stiffness as a function of the curvature.
For this verification, a representative bending stiffness is chosen to,

𝐵(𝜅) = 500
𝜅2 + 2000𝜅 + 1000

+ 0.01 (19)

The computed moment–curvature relationship based on the simu-
lated deflection curve is shown in Fig. 13 together with the inputted
moment–curvature relationship for comparison. The cross-validation
automatically chooses a low level of smoothing (smoothing parameter)
as there is no noise in this data. The maximum relative error between
the computed and inputted 𝑀 − 𝜅 curve in Fig. 13 is 0.77% while the
average relative error is 0.26%. Given the small relative errors, the data
processing method is verified.

To test the performance of the identification method when subject
to noise in the input data, a number of data points are picked out of
the deflection curve and normally distributed random noise is added.
An example of a simulated data set is shown in Fig. 14. The blue dashed
line is the true deflection curve, and the red and green points are data
points with normally distributed noise. The simulated test data depends
on two parameters: number of data points and amplitude of random
noise. The method is tested on four different cases with high/low levels
of noise and a high/low number of data points, see Table 1. These data
points are inputted directly into the curve fit module. The results from
the test cases also depend on the seed used in the random number
generator, which is the basis for generating the normally distributed
noise. For this reason, three sets of noise with different seeds (0, 50,
100 in NumPy [54]) are created.

The results for the four test cases with three different noise sets
each are shown in Fig. 15. For data with a low amplitude of noise,

Fig. 12. Flowchart of the verification and validation of the method. The method is verified by comparing the computed bending stiffness from a deflection curve with a known
bending stiffness. The validation is done by ensuring that the deflection curve can be represented from the computed bending stiffness from a raw image.
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Fig. 13. The input 𝑀 − 𝜅 relationship (blue solid curve), and the output 𝑀 − 𝜅
relationship from the data processing method on a simulated deflection curve using
finite element analysis (dashed orange curve). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Example of data points passed into the bending stiffness method. The blue
dashed line is the continuous simulated deflection curve, and the red points are the
data points with added normally distributed noise. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

the method, generally, gives better representations of the moment–
curvature relationship. For the test with a low level of noise and large
number of data-points (test 3) all three repeats gives very accurate
results. When the noise amplitude increases, accurate results at high
curvatures are still obtained while the bending stiffness at lower cur-
vatures, generally, gives less accurate results, and some oscillations.
Oscillations at lower curvatures are more pronounced when more data
points are used for the fit (test 4).

From these tests it is concluded that this method is capable of
accurately representing the moment–curvature relationship when there
are low levels of random noise. When the noise amplitude increases, the
method still yields accurate bending stiffnesses at higher curvatures,
but some oscillations in bending stiffnesses at lower curvatures. The
method gives accurate results when using both 50 and 200 data points.
However, when 200 data points are included, more oscillations are
observed in the computed moment–curvature relationships. The linear
approximation of the curve at low curvatures, see Section 2.4, would
give a good representation for some of the noise sets (data set 3 in test
2), while it slightly over-predicts the initial linear stiffness for other
sets (data set 1 and 2 in test 2). Based on this, accurate computations
are obtained by reducing the level of noise by measuring the deflection
curve as precisely as possible, and including only sufficiently many data
points to represent the deflection curve.

3.2. Characterisation of 𝑀 − 𝜅 curve for an UD-NCF

From the previous section it was verified that the method is capa-
ble of accurately computing the moment–curvature relationship when
subject to random noise. In this section, the method is applied on a
quasi uni-directional non-crimp fabric (UD-NCF) to validate that the
method are capable of computing a bending stiffness that can be used
to accurately simulate the test (Fig. 12).

The UD-NCF textile is a glass fibre NCF with an areal weight of
1380 g/m2. The layer consists of 96 wt% H-glass fibres with a fibre
diameter of 17 to 24 micrometres oriented at 0◦. There are 4 wt% E-
glass backing fibres with a fibre diameter of 9 micrometres oriented at
±80◦. The fibre angles are given relative to the production direction of
the textile, see Fig. 16. The stitching is a combined tricot-chain stitch of
polyester thread. The specimens have a width of 50 mm and a thickness
of approximately 1 mm.

A too small overhang length of the specimen will lead to a small
deflection and a poor signal-to-noise ratio, while a too large overhang
length will lead to hinge-like behaviour of the specimen close to the
fixed end and thus a poor resolution of curvatures. The overhang
length of the tested specimens is set to 250 mm, which was found to
yield a reasonable compromise. Two configurations of test specimens
are investigated: 0◦ direction with backing side upwards (backing up)
and roving side upwards (roving up), respectively. For each case, four
repeats of the experiment are carried out with pristine specimens. The
specimens hang freely for 2 min before the image is taken to allow them
to reach a steady state. Some twisting was observed in the specimens
during testing. This twist is due to the architecture of the UD-NCF, see
Fig. 10. This twist will cause small changes to the deflection curve in
the low curvature region close to the free end. Only the side of the
specimen closest to the camera is captured in these experiments, as
the effect of twisting is assumed to be negligible. The default values
previously specified in Section 2 are used for the image processing: the
length of the kernel is chosen as 𝐿𝑘𝑒𝑟𝑛𝑒𝑙 = 2𝑥1, where 𝑥1 is the length of
the first region, the number of segments is chosen as 𝑛𝑟 = 8, see Fig. 4,
and 50 data points are used. For all tests an initial constant bending
stiffness up to the transition moment is assumed (Section 2.4).

The results for the test with the roving up can be seen in Fig. 17. It
can be observed that there is some variability in the deflection curves
for the different specimens. Tests 1 and 3 have similar deflection curves,
while tests 2 and 4 have a more stiff response. From the computed
bending stiffnesses there are small variabilities. Tests 1, 2 and 4 have a
similar low curvature stiffness while test 3 has a slightly lower stiffness
at low curvatures. At higher curvatures, test 2, 3, and 4 have a similar
stiffness while test 1 has a slightly lower stiffness. Note that, even tough
tests 1 and 3 have a similar deflection curve the computed bending
stiffness differs, which shows that small difference in deflection can
lead to large differences in the computed curvature (second derivative).

Results for the tests with the backing up can be seen in Fig. 18. Like
for the other specimen configuration, variability can be observed in the
deflection curve and the moment–curvature relationship. The bending
stiffness at low curvatures seems to be larger than for the roving up
tests and the slope of the moment–curvatures is similar for tests 2, 3,
and 4.

The averaged bending stiffnesses for the two tested configurations
are shown in Fig. 19. There is a larger variability in the results for the
tests on the UD-NCF with the backing up. The slope of the 𝑀 −𝜅 curve
is greater for the specimens with the backing up. This applies for both
the slope at lower curvatures and at higher curvatures. However, the
transition moment is higher for the specimens with the roving up.

3.2.1. Simulation of the deflection curve
To validate the method, the computed bending stiffness is inputted

in the finite element analysis framework described in Section 3.1. The
results for simulating test 1 of the backing up configuration (blue
curve in Fig. 18) are shown in Fig. 20. The maximum and average
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Fig. 15. Resulting 𝑀 −𝜅 relationships obtained using the method on simulated deflection curves with normally distributed noise. The amplitude of the high level of noise is 1 mm
while it is 0.1 mm for the low level of noise. Three different simulated deflection curves are tested using three different realisations of random noise added.

Fig. 16. The tested UD-NCF. Backing side and roving side.

absolute and relative error between the simulated and the measured
deflection curve are listed in Table 2. The maximum relative error
is close to the fixed end, where small differences in deflection leads
to large relative differences. The maximum absolute error is at the
free end. Based on the low average errors between the measured and
simulated deflection curves, the simulation accurately represents the
deflection curve, especially close to the fixed end where the curvature
is largest. Some small discrepancies can be observed closer to the free
end with a maximum absolute error of 2.70 mm. The reason for these
discrepancies is the use of the linear approximation/modification used
at smaller curvatures (see Fig. 8) and due to accumulation of errors
along the deflection curve.

The simulated deflection curves using the averaged results from
Fig. 19 are shown in Fig. 21. The errors between the simulated deflec-
tion curves and the averaged measured curves are listed in Table 2.
Again, the maximum relative error is close to the fixed end while
the maximum absolute error is at the free end. Using the averaged

Table 2
Errors between the simulated and measured deflection curves.

Backing up Backing up Roving up
test 1 average average

Avg. relative 3.33% 1.70% 3.034%
Max relative 63.7% 26.2% 64.9%
Avg. absolute 1.19 mm 0.55 mm 0.48 mm
Max absolute 2.70 mm 3.18 mm 1.79 mm

bending stiffness the deflection curve is in-between the max and the
min experimental deflection curve. The simulated deflection curve have
a good correlation with the average deflection curve with low average
errors. This is both the case for specimens with the backing up and the
roving up. Based on the simulation of the deflection curve the entire
setup has been validated by using a complicated specimen.

3.2.2. Influence of camera misalignment on the computed 𝑀 − 𝜅 curve
The effect of systematic errors on the computed 𝑀 − 𝜅 relationship

is investigated in this section. The most common systematic error
anticipated by the authors is misalignment between the camera and
the specimen. Ideally, the line of view of the camera should be per-
pendicular to the specimen to avoid perspective effects, however, this
may be difficult to achieve in practice. In the following example,
different degrees of misalignment are simulated by applying projective
transformation on the image from test 1 with backing up (Fig. 10).
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Fig. 17. Test results for the specimens with roving up. Deflection curves for the four specimens after image-processing (left), and computed moment–curvature relationship (right).

Fig. 18. Test results for the specimens with backing up. Deflection curves for the four specimens (left), and computed moment–curvature relationship (right).

Fig. 19. Averaged 𝑀−𝜅 relationships for the textile with backing up (blue) and roving
up (orange). The shaded blue and orange regions are max and min bands for the
computed curves. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

The projective homography matrix [47] can be found from the relative
misalignment and the camera matrix, which is estimated from the focal
length of the camera (250 mm). The following four misalignments are
considered: 1◦, 3◦, 5◦, and 15◦. The distance between the specimen and
the camera is 2.5 m. After the image is transformed, it is inputted in
the one-click bending stiffness algorithm.

Fig. 20. Simulation of the deflection curve using the computed bending stiffness for
test 1 with backing up (blue curve) and the measured curve after image-processing (red
dots). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

The results are shown in Fig. 22. It can be observed that the
computed bending stiffness of the textile decreases as the misalign-
ment increases. The relative difference between the computed bending
moment at 𝜅 = 10 m−1 for the perpendicular and misplaced image is
0.02% with a misalignment of 1◦, −0.62% with a misalignment of 3◦,
−4.21% with a misalignment of 5◦, and −9.98% with a misalignment
of 15◦. From the deflection curves in Fig. 22 it is observed that the
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Fig. 21. Simulated deflection curve using the averaged bending stiffness for the tests
with roving up and backing up (black dotted and dashed line, respectively), and the
averaged deflection curve of the roving up and backing up configuration (orange and
blue solid line, respectively). The shaded areas indicate max and min bands for the
measured deflection curves. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

length of the test specimens appears shorter with increasing levels of
misalignment. This results in reduced bending moments and increased
curvatures, which causes the lower computed bending stiffness. To
investigate the effect of the decreased bending stiffness, it is inputted in
the FE-simulator. The resulting simulated deflection curves are shown
in Fig. 23. It can be observed that there is almost no difference in the
simulated deflection curve when using the bending stiffness from the
perpendicular (original), 1◦ misalignment, and 3◦ misalignment image.
However, the difference between the deflection curves obtained using
the bending stiffness from the perpendicular and 15◦ misalignment im-
age is significant. It should be noted that the difference in the measured
deflection curves (Fig. 22 (left)) not is as big as the difference in the
simulated deflection curves (Fig. 23), which highlights the importance
of always validating experimental results to ensure that the results are
reliable and to detect potential systematic errors.

4. Discussion

The method presented in this paper can compute the bending
stiffness of textile materials from a raw image of the cantilevered
specimen and three parameters (which all have default values). The
method uses a novel smoothing algorithm for removing noise related
to deviations from prismatic beams in the image and a smoothing
spline with automatic selection of the smoothing parameter to fit the
deflection curve. This method enables automatic, objective, and robust
computation of the textile moment–curvature relation in the cantilever
bending test, which removes the uncertainties and errors arising from
subjective user choices in previous methods [22–24]. The end goal
of measuring the bending stiffness of textile materials is often to use
the measured bending stiffness in a simulation model. In Section 3.2
the computed 𝑀 − 𝜅 relationship yielded accurate deflections when
inputted in a FE-model of the cantilever bending test. This simple FE-
model presents a new and accurate way of validating the measured
non-constant bending stiffness by only considering the isolated effect
of the nonlinear bending behaviour. Without this thorough validation,
the accuracy of the measured bending stiffness (which relies on second
derivatives of the curve fit) is questionable. These results demonstrates
that the data processing method can handle random errors related to
the cantilever bending test. Systematic errors due to e.g. perspective
might still be present even though the method is validated by simu-
lation of the deflection curve. The effect of camera misalignment on
the computed bending stiffness was investigated in Section 3.2. It was
found that small misalignments (1◦–3◦) have a negligible impact on

the computed bending stiffness. Severe misalignments (5◦–15◦) caused
a slight reduction in the computed bending stiffness. However, an easy
way to check (and possibly correct) for misalignments is to compare
the length of the specimen with the computed length of the deflected
specimen. Other systematic errors can be minimised by using a lens
without distortion and a large focal length.

The method can readily be used to find the bending stiffness of tex-
tile materials from a cantilever bending test. As of now the smoothing
parameter, 𝜆, that minimises the leave-one-out cross-validation, 𝐶𝑉 ,
is evaluated by choosing the minimum of 100 linearly dispersed 𝐶𝑉
values on the interval 𝑝 = ]0; 1]. As the 𝐶𝑉 function is a simple
function that only depends on a single variable, 𝑝, on the interval ]0;1],
this process can be made more efficient by implementing a simple
zeroth-order optimisation scheme, like e.g. golden section search [44].
To deal with the oscillations at low curvatures, the 𝑀 − 𝜅 curve is
assumed linear from (0,0) to the last point where the slope of the
curve exceeds the secant from the origin. This method yields reasonable
approximations that can be used to accurately simulate the deflection
curve. However, if more accurate computations of the bending stiffness
at low curvatures are desired another criterion may be defined. This
could for instance be to make a linear fit to the low curvatures or
include fewer data points close to the free end of the specimen.

The image-processing module, and the moment and curvature cal-
culation module are developed for the specific problem of determining
the bending stiffness of cantilevered specimens. However, the imple-
mentation of the smoothing spline in the curve fit module is general
and may be used in a wide array of applications where derivatives of
noisy data are desired. This includes the calculation of bending stiffness
in other test setups like e.g. the vertical bending test or the calculation
of acceleration from positional data.

The method can be directly applied to cantilever bending test im-
ages from other published studies that rely on a high contrast between
the test specimen and the background such as [23,24]. Furthermore,
deflection curve data obtained in other ways (e.g. by a structured white
light scanner [13]) can also be inputted directly in the curve fit module
and be processed. The authors encourage the research community to
test the new method on their own data to identify potential areas for
future research and improvement, and in addition, publish the raw
image data of deflected specimens. Ultimately, the authors hope that
this work will contribute to the development of more accurate and
robust methods for characterising important textile material properties.

5. Conclusion

In this paper, a novel method for determining the non-constant
bending stiffness of textiles, with the cantilever bending test, has been
proposed. The method can produce the moment–curvature relationship
from a single image of the cantilevered specimen. From the raw image,
a discrete description of the midline is obtained through thresholding
using Otsu’s automatic thresholding parameter selection. To remove
noise in the image, it is smoothed with a line kernel that follows
the slope of the deflection curve. A smoothing spline, with automatic
parameter selection using the leave-one-out cross-validation, is used to
fit the deflection curve. From the deflection curve and weight of the
textile, the moment and curvature at each point can be calculated.

The method was verified against a simulated deflection curve with
known bending stiffness and random noise added. It was concluded
that the method can successfully represent the correct bending stiffness
when small amounts of noise were present. When the amplitude of
noise increased, some oscillations occurred in the computed bend-
ing stiffness at lower curvatures. These oscillations increased with an
increasing number of data points.

Cantilever bending tests on unidirectional non-crimp fabrics were
carried out to evaluate the method on real test data. Two experiments
were carried out with the backing side up and down, respectively.
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Fig. 22. Results for test 1 backing up considering different camera misalignments. Deflection curves for the four specimens (left), and computed moment–curvature relationship
(right).

Fig. 23. Simulated deflection curves using the bending stiffness obtained from the
images with a misaligned camera.

The method was capable of measuring the non-constant bending stiff-
ness. This was validated by simulating the deflection curve with the
computed bending stiffness.

The method minimises the need for user inputs and seeks to elimi-
nate the risk of characterising user-dependent bending stiffness proper-
ties by an objective, robust, and automated selection of parameters. The
method has been compiled in a freely available Python program read-
ily available at https://doi.org/10.5281/zenodo.7376939 that enables
one-click computation of textile bending stiffness, while maintaining
the low cost and simplicity of the free hanging cantilever setup.
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