
 

  

 

Aalborg Universitet

The development of machine learning-based remaining useful life prediction for
lithium-ion batteries

Li, Xingjun; Yu, Dan; Vilsen, Søren Byg; Stroe, Daniel-Ioan

Published in:
Journal of Energy Chemistry

DOI (link to publication from Publisher):
10.1016/j.jechem.2023.03.026

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Li, X., Yu, D., Vilsen, S. B., & Stroe, D.-I. (2023). The development of machine learning-based remaining useful
life prediction for lithium-ion batteries. Journal of Energy Chemistry, 82, 103-121.
https://doi.org/10.1016/j.jechem.2023.03.026

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/j.jechem.2023.03.026
https://vbn.aau.dk/en/publications/bff538c9-6b0a-4715-b3dd-37d4c7d59d8f
https://doi.org/10.1016/j.jechem.2023.03.026


Journal of Energy Chemistry 82 (2023) 103–121
Contents lists available at ScienceDirect

Journal of Energy Chemistry

journal homepage: www.elsevier .com/ locate / jechem
Review
The development of machine learning-based remaining useful life
prediction for lithium-ion batteries
https://doi.org/10.1016/j.jechem.2023.03.026
2095-4956/� 2023 The Authors. Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Pre
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding authors.
E-mail addresses: dayu@energy.aau.dk (D. Yu), dis@energy.aau.dk (S. Daniel Ioan).
Xingjun Li a, Dan Yu a,⇑, Vilsen Søren Byg a,b, Store Daniel Ioan a,⇑
aDepartment of Energy, Aalborg University, Aalborg 9220, Denmark
bDepartment of Mathematical Sciences, Aalborg University, Aalborg 9220, Denmark

a r t i c l e i n f o a b s t r a c t
Article history:
Received 31 January 2023
Revised 16 March 2023
Accepted 18 March 2023
Available online 31 March 2023

Keywords:
Lithium-ion batteries
Remaining useful lifetime prediction
Machine learning
Lifetime extension
Lithium-ion batteries are the most widely used energy storage devices, for which the accurate prediction
of the remaining useful life (RUL) is crucial to their reliable operation and accident prevention. This work
thoroughly investigates the developmental trend of RUL prediction with machine learning (ML) algo-
rithms based on the objective screening and statistics of related papers over the past decade to analyze
the research core and find future improvement directions. The possibility of extending lithium-ion bat-
tery lifetime using RUL prediction results is also explored in this paper. The ten most used ML algorithms
for RUL prediction are first identified in 380 relevant papers. Then the general flow of RUL prediction and
an in-depth introduction to the four most used signal pre-processing techniques in RUL prediction are
presented. The research core of common ML algorithms is given first time in a uniform format in chrono-
logical order. The algorithms are also compared from aspects of accuracy and characteristics comprehen-
sively, and the novel and general improvement directions or opportunities including improvement in
early prediction, local regeneration modeling, physical information fusion, generalized transfer learning,
and hardware implementation are further outlooked. Finally, the methods of battery lifetime extension
are summarized, and the feasibility of using RUL as an indicator for extending battery lifetime is out-
looked. Battery lifetime can be extended by optimizing the charging profile serval times according to
the accurate RUL prediction results online in the future. This paper aims to give inspiration to the future
improvement of ML algorithms in battery RUL prediction and lifetime extension strategy.
� 2023 The Authors. Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
Published by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Thanks to their advantages of high energy density, long lifetime
and low self-discharging, lithium-ion batteries have been used in
many fields like electric vehicles (EV) and portable electronic
devices [1]. However, complex operation conditions including tem-
perature variation and different charging-discharging cycles can
accelerate negative changes in internal electrochemical con-
stituents of lithium-ion batteries like the loss of lithium inventory
(LLI) and active material (LAM) and the increase of internal resis-
tance. Serious negative changes in the battery are caused by com-
plex and coupled side reactions affected by internal mechanical
stresses and external factors like operation temperature, depth of
discharge (DOD), charge and discharge current magnitude, and
ambient humidity, which will lead to capacity degradation and
performance deterioration. Specifically, LLI is caused by the side
reactions consuming Li-ions like solid electrolyte interface (SEI)
formation, lithium plating, and electrolyte decomposition. LAM is
related to the active particle loss caused by the chemical decompo-
sition and dissolution reaction of transition metals. The increase of
internal resistance is caused by the SEI film formation and cracks in
particles [2]. Usually, when the capacity of the battery reaches 80%
of its initial value, it is regarded as being at its end of life (EOL) [3].
If the batteries are used beyond the EOL criterion, it might lead to
poor system performance and sometimes catastrophic events.
Therefore, to ensure reliable operation and battery safety, remain-
ing useful life (RUL) prediction is necessary. A battery management
system (BMS) can reference the RUL prediction result to control the
operation of the batteries. Users can get timely maintenance or
replacement of the battery [4]. Furthermore, the RUL prediction
based on data from early cycles can reduce the cost and time of
aging tests, which is beneficial for battery design, production,
and optimization. Besides, RUL prediction is important for the eval-
uation of batteries retired from EVs due to the deteriorated capac-
ity and complex internal characteristics [5]. The RUL prediction
result describes when the battery will fail (i.e., it will no longer
meet the requirement of the application).

The battery RUL can be expressed as:

RUL ¼ TEOL � TC ð1Þ
where TEOL represents the battery life obtained from the battery life
experiment. TC is the current usage time of the battery. Equation (1)
considers calendar aging and cycle aging at the same time. Most
research usually defines the RUL based on cycle aging only. Another
definition that can reflect RUL is expressed as:

RULi ¼ Ci � CEOL

Cnominal � CEOL
� 100% ð2Þ

where Ci, Cnominal and CEOL represent the present capacity, nominal
capacity, and end-of-life capacity respectively.

Generally, the RUL prediction is carried out by either physics-
based or data-driven methods. Physics-based methods mainly
include different types of electrochemical models and equivalent
circuit models, while data-driven methods use less physical knowl-
edge to reflect degradation information replacing it with historical
and operational data. The key to RUL prediction for lithium-ion
batteries is figuring out how to accurately learn the long-term
degradation characteristics over hundreds of cycles and thousands
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of hours of operation based on limited historical data. Machine
learning (ML) methods are a class of data-driven methods that per-
form well in modeling non-linear systems. For example, Guo et al.
used different ML methods to predict electrochemical impedance
spectroscopy (EIS) based on the battery charging voltage curve
with less predicted error. In the context of RUL prediction, ML
methods have been researched extensively. Luo et al. demon-
strated that ML methods can be used to construct fast and accurate
data-driven models for the prediction of battery performance [6].
However, many review articles about the general ML-based RUL
prediction have been published without paying attention to the
evolution of the research core of common ML algorithms [3,7-9].
Therefore, it is not easy for readers to find potential research direc-
tions. For this reason, this work tries to track the research core of
the most used ML algorithms for lithium-ion battery RUL predic-
tion based on the related literature form the past decade. The liter-
ature filter process and review goal are shown in Fig. 1.

Specifically, the keywords ‘remaining useful life’ & ‘lithium-ion
batteries’ were input in the Web of Science and the publication
time was set from 2013 to 2022 with review articles excluded,
obtaining 580 relevant publications. This review work is mainly
focused on the specific application of common ML algorithms in
RUL prediction of battery, so the literature review articles were
downloaded and analyzed individually. It is found that most of
the articles involve state of health (SOH) estimation and RUL pre-
diction at the same time. Many ML algorithms can be used to esti-
mate SOH and predict RUL with different input variables. Through
reading and filtering the title and abstract of 580 papers according
to the keywords, 380 relevant journal and conference papers were
identified to be concentrated on RUL prediction using ML methods.
The other database was also used to filter the missed and impor-
tant research articles. Based on the selected literature, the RUL pre-
diction flow of commonly used ML algorithms and their research
cores are analyzed. Fig. 2 shows the number of papers utilizing
the top ten most used ML algorithms for RUL prediction from
2013 to 2022. The recurrent neural network (RNN) is the most fre-
quently used algorithm appearing in 61 papers. Here RNNs mainly
include the basic RNN method, echo state network (ESN), long
short-term memory (LSTM), and gated recurrent unit (GRU). The
quantity of articles on the ANN algorithm follows, mainly referring
to the classical feed-forward neural network (FFNN) except RNN
and convolutional neural network (CNN) of all NN algorithms. Sup-
port vector regression (SVR), relevance vector machine (RVM),
auto-regression (AR), and gaussian process regression (GPR) were
all used in more than 25 papers. CNN and extreme learning
machine (ELM) were found to be researched 15 times, while ran-
dom forest regression (RFR) and auto-encoder (AE) were both used
in less than 10 papers.

In addition to reflecting the battery life, RUL prediction can also
be used for battery lifetime extension. Several methods to extend
the battery lifetime have been investigated, such as charging pro-
file optimization [10–12], discharging profile optimization [13],
thermal management optimization [14,15], the introduction of
additional energy storage devices like supercapacitors [16], driving
behavior optimization [17,18], and integration with grid [19]. And
other methods to reduce the current peak or shift the current peak
and fill the current valley [20,21] also attracted researchers’ atten-
tion. For example, Wu et al. proposed an artificial potential field



Fig. 1. The flowchart of the literature filter process and review goal of this study.

Fig. 2. The total number of occurrences of various algorithms during a given time.
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strategy for a battery/supercapacitor hybrid energy storage system
to reduce the battery current. The battery capacity loss can be
reduced by more than 15% under urban driving conditions [16].
Furthermore, Huang et al. demonstrated battery lifetime extension
using pulsed current charging [10]. However, most of the available
literature nowadays do not consider using RUL result to extend
battery lifetime which is of vital importance for battery applica-
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tion. Therefore, this review article also tries to explore this possi-
bility from the concept and literature perspective.

The main contribution of this work mainly includes:

(1) The application and development of the most used signal
processing method for RUL prediction are summarized.

(2) The evolution, over the years, of the research core regarding
ML-based RUL prediction is summarized in a unified form,
which helps find the recent research cores needed to be
improved and combine the advantages of different ML
methods.

(3) The methods of battery lifetime extension through optimiz-
ing charge profile are summarized and the possibility of bat-
tery lifetime extension based on RUL prediction results is
explored briefly from literature analysis.

The reminder of this article is organized as follows. Section II
presents the general flow of battery RUL prediction, relevant signal
pre-processing, and different ML methods as well as their develop-
mental trends. The performances of the different algorithms are
compared comprehensively and the limits of each algorithm are
discussed in Section III. Section IV gives an outlook on the future
direction of the ML method for RUL prediction from a new perspec-
tive and explores the possibility of extending battery lifetime
based on the predicted RUL results. Finally, Section V concludes
this article.



Fig. 4. Typical IMFs and residual result through EMD decomposition [30].
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2. Battery RUL prediction

2.1. General flow

The general structure of the RUL prediction based on ML
includes three steps as shown in Fig. 3. In the first step, data is col-
lected from battery aging tests or real operations for extracting
effective features. The aging features can be classified into direct
and indirect types. Temperature, charging or discharging current,
and output voltage are common direct features. The time interval
of an equal charge voltage difference (TIECVD), incremental capac-
ity analysis (ICA), differential voltage analysis (DVA), and differen-
tial thermal voltammetry (DTV) are examples of indirect features;
for a thorough review of extracting features, the reader is referred
to [22]. In particular, extracting features from EIS data as the input
of ML algorithms is becoming popular in recent years. Three com-
mon extraction ways are utilized based on EIS data: extracting fea-
tures from all frequency points of EIS, extracting features from
equivalent circuit models which need to obtain the model param-
eters from the EIS first, and extracting from fixed-frequency impe-
dance [23]. Using ML methods like AE to extract features from EIS
is another good way [24]. EIS response is sensitive to temperature,
state of charge (SOC), and relaxation effect, which is one research
focus and needs to be considered in RUL prediction [25]. Mona
et al. quantified the influence of temperature and SOC on the
SOH estimation accuracy based on the GPR model and EIS test. In
their research, the model without considering both SOC and tem-
perature had the poorest performance [26]. Similar research about
the degree of dependence of model accuracy on SOC and tempera-
ture was also analyzed in [27]. Correlation analysis is always used
to filter noneffective features. Signal pre-processing is adopted
sometimes to smooth the capacity or state of health (SOH) curves
or enhancement the linear relationship between the capacity and
features. Secondly, ML models will be trained to find the relation-
ship between extracted features and the battery RUL. Another way
is using the MLmodel to estimate SOH first and then using the esti-
mated SOH value in the sliding window to further recurse the next
SOH until the SOH reaches the predefined threshold value. In fact,
almost all algorithms used in SOH estimation can be used in RUL
predictions. The main difference between them is the input vari-
able. The input of SOH is usually the features related to SOH, while
most of the input of RUL is the previous SOH or capacity which is
estimated by the features first (i.e., the latter way we describe). For
the first way we introduced, it needs a lot of real RUL data from
experiments. The feature extraction is also skillful, and the applica-
tion conditions are limited. One typical research in this way can be
seen in [28], which uses discharge voltage curves from early cycles
to predict cycle life based on 124 fast-charging lithium iron phos-
phate/graphite batteries. Finally, the model will be evaluated to
quantify its performance: absolute error (AE), mean absolute per-
centage error (MAPE), mean square error (MSE), root mean square
Fig. 3. The general flow
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error (RMSE), mean absolute error (MAE), and max absolute error
(MaxAE) are common performance indexes based on the test data
set.

2.2. Signal pre-processing before machine learning

For RUL prediction of battery, most researchers mainly focused
on the degradation trend of battery. It is easy to track the RUL point
of smooth capacity or SOH curve compared with the noised curve.
The signal pre-processing method can separate the main trend
curve from the noise and fluctuant curve. Besides, the extracted
features for RUL prediction often have a linear relationship with
the capacity or SOH. If the linearity of them can be enhanced, it will
be helpful to predict RUL fast and accurately. Therefore, the main
signal pre-processing methods are introduced in the following
part.

2.2.1. Empirical mode decomposition (EMD)
EMD is an adaptive and automatic time–frequency signal pro-

cessing method presented by N. E. Huang et al. in 1998 [29].
EMD decomposes non-stationary signal data into a finite number
of high-frequency intrinsic mode functions (IMF) and a low-
frequency residual sequence (RES) [29]. In RUL prediction models,
the IMF components are usually used to reflect capacity regenera-
tion and local fluctuation in the battery capacity degradation, while
the residual is used to reflect the global capacity degradation trend
[30]. The typical decomposed result of original capacity degrada-
tion data by EMD is shown in Fig. 4. Matti et al. compared the
SOH estimation results by seven ML methods through EMD. The
gradient boosting has the best result with 0.28 RMSE, while the
extra randomized tree has the worst result with 0.43 RMSE [31].
of RUL prediction.
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The applications of EMD can be classified into two categories.
One is for eliminating the problem of capacity regeneration, i.e.,
ignoring the IMFs. The residue and the original data show a high
degree of correlation. For example in [32], Pearson correlation
coefficients between the raw capacity and the residue of different
batteries were all above 0.99. Therefore, the changes in the pre-
dicted residue can truly reflect the changes in battery capacity
and remove noise. Another is by considering capacity regeneration
and random fluctuation. Hybrid ML methods are usually used. The
first ML method (ML1) is applied to fit the IMFs for reflecting the
local regression and fluctuation, and the residual sequence will
be captured by the second ML method (ML2). The final RUL result
is the combination of two ML method results. The common pattern
is shown in Fig. 5. Although the latter case may improve the accu-
racy, the increased calculation resources caused by extra IMFs
should be considered.

Determining the optimal number of IMFs to reflect the noise is
not easy [33]. The commonly used method to choose the IMF is
correlation analysis between IMF components and the original ser-
ies, and then high relative IMFs are combined to reconstruct. In
research by Hao Yang et al., the thresholding denoising method
is applied to sift the optimal IMFs, where the amplitude of the
IMF is compared with the predefined threshold referring to the
denoise condition [34]. The reverse combination method is pro-
posed to determine the optimal IMFs in the research of Yun et al.
The difference between RES and the original data was analyzed
first in this method. If the difference is small only RES was used.
Otherwise, adding the last one or two IMFs on RES [35].

The decomposed signals by EMD mainly include extracted fea-
tures for RUL prediction (like the raw SOH series, and voltage dif-
ference of equal time interval) and preliminary prediction error
series (like the error between real data and basic RUL algorithm
prediction value). The applications of EMD with different decom-
posed signals, ML methods, and decomposed result utilization
are summarized in Table S1.
Fig. 5. RUL prediction flowchart considering EMD decomposed results.
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Although EMD has the advantages of high efficiency with no
need to predefine basis functions, mode mixing of IMFs often
occurs in its practical application. It is common to see similar time
scales in different IMFs or disparate time scales of oscillations in a
single IMF, which lose the physical meaning of IMFs. To solve this
problem, ensemble empirical mode decomposition (EEMD), a
noise-assisted data analysis method, is proposed. In EEMD, the true
IMF components are the average of ensemble trials, where each
trial is an EMD result with additional white noise. EEMD can
reduce the mode aliasing effect due to the introduction of white
noise to the original signal. Its application in RUL prediction is also
shown in Table S1.

To solve the mode aliasing problem of EMD and overcome the
low decomposition efficiency of EEMD, the complementary ensem-
ble empirical mode decomposition (CEEMD) is proposed by Torres
[36]. Complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) is also used to decompose the original
data, which adds adaptive white noise at each stage of the decom-
position and calculates a unique residual signal to obtain the mode
of each component. It is worth noting that the Pearson correlation
of EMD result sometimes is higher than that of CEEMDAN [37], so
the selection of EMD and its variant should be considered from cor-
relation and efficiency comprehensively.

2.2.2. Variational modal decomposition (VMD)
VMD algorithm adaptively decomposes the signal into a series

of sub-signal IMFs, where the summation of the IMFs is the original
signal (not the IMFs and RES like EMD) and each IMF has a limited
bandwidth in the spectral domain. It overcomes the disadvantages
of the end effect and IMFs aliasing in the EMD. In RUL prediction,
VMD is used to decompose the battery capacity degradation data
into the degradation trend series and other fluctuation series.
Through the VMD, the prediction accuracy of RUL cycles is
improved from 78% to 93% for NASA 5# battery before denoising
and after denoising [38]. The application of VMD is summarized
in Table S2.

2.2.3. Box-Cox transformation (BCT)
Owing to its ability to improve the additivity, normality, and

homoscedasticity of observations, BCT is widely used to enhance
the linear relationship between the features and RUL. The basic
form of BCT is:

yðkÞ ¼
yk�1
k ; k–0

lny; k ¼ 0

(
ð3Þ

where y is the observation. The parameter k is commonly deter-
mined by using profile likelihood and a goodness-of-fit test. After
transformation, Pearson correlation analysis is used to quantita-
tively evaluate the linear relationship between the independent
variable (extracted features) and observation (capacity in most
cases). In most cases, capacity is the transformed variable. Another
pattern for using BCT in RUL prediction is shown in Fig. 6, where
BCT is used to transform features, and then improve the linear rela-
tionship between features and capacity. The new HI is now used in
an ML method. The applications of BCT are summarized in Table S3
including the independent variable, the transformed variable, and
the prediction variables in the prediction algorithm.

2.2.4. Wavelet decomposition technology (WDT)
Wavelet analysis, also related to wavelet decomposition tech-

nology (WDT), can be used to decompose the non-stationary signal
into an approximate part and a detail part through the scaling
function and wavelet function [39]. The wavelet function serving
as a high-pass filter can generate the detailed version of the given
signal (like the local regeneration trend and fluctuations in the SOH



Fig. 6. RUL prediction flowchart considering BCT.
Fig. 7. RUL prediction flowchart considering WDT.

Fig. 8. Evolution trend of ML algorithms for RUL prediction.
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series), while the scaling function serving as a low-pass filter can
generate the approximated version of the given signal (like the glo-
bal degradation trend in SOH series). In RUL prediction, WDT is
used to separate the global degradation and local regeneration of
a battery capacity series. The approximated part is treated as a glo-
bal degradation trend and the detailed part at different scales cor-
responds to local regeneration trends and fluctuations. For the
improvement of the prediction performance, the approximated
part is used in the first ML method, and the detailed part is used
in the second ML method. Then the results from two ML methods
are combined and iterated to RUL finally, as shown in Fig. 7. It can
be found that the general idea of usingWDT to predict RUL in Fig. 7
is similar to that of using EMD in Fig. 5. The two methods are dif-
ferent in the decompose way. EMD is an adaptive decompose
method and easy to generate the mode mixing phenomenon when
decomposing the capacity or SOH, while WDT has fixed bandwidth
and its speed is fast.

In practical application, the discrete wavelet transform (DWT) is
used, where the original signal can be decomposed into several sig-
nals with different scales (i.e. global degradation trend and local
regeneration trend and fluctuations in SOH series) and can recon-
struct the signals using inverse DWT. Wang et al. proposed an
RUL prediction function based directly on the decomposed termi-
nal voltage using DWT [39]. It is worth noting that the type of
wavelet function and the number of decomposition levels will
affect the performance of the model.

Wavelet packet decomposition (WPD), able to eliminate the
noise of charge–discharge cycle data is an upgrade of the wavelet
transform [40]. The main idea of the algorithm is based on discrete
wavelet transformation, in each level of the decomposed signal.
That is, in addition to the decomposition of the low-frequency
sub-band, the high-frequency sub-band is also decomposed. The
theory of wavelet packet energy entropy (WPEE), proposed by
Chen et al., is the combination of WPD and information entropy
theory [41]. The application of WDT and its variant is summarized
in Table S4.
108
2.3. Machine learning methods

Fig. 8 shows the developmental trend of each ML algorithm
(used for RUL estimation) and their popularity year-by-year. It is
obvious that RNN algorithms were first applied to battery RUL pre-
diction in 2013, and then it has gradually become the most fre-
quently used method. The year that the ANN algorithm was first
used in RUL prediction is 2013, it also gains attention. However,
its usage drops in 2020, then its usage frequency goes up again.
SVR and AR are the first used algorithms in RUL prediction occur-
ring in 2012. The algorithms for which the total number of occur-
rences is larger than 10 in the given time (high popularity) will be
further reviewed in the next subsections.
2.3.1. Non-probabilistic method
2.3.1.1. Recurrent neural network. RNN algorithm is suitable for pro-
cessing time series data because its hidden layer makes the current
output related to the previous output. As shown in Fig. 9, its basic



Fig. 9. The basic structure of RNN. Whx is the weight matrix connecting the input
layer XðtÞ and hidden layer hðtÞ . Whh is the weight matrix connecting the hidden
layers at different times. Why is the weight matrix connecting the hidden layer hðtÞ
and output layer yðtÞ .

Fig. 11. The structure of ESN. Win is the input weight matrix. Wre is the internal
connection weight matrix. Wback is the feedback matrix. The input layer for RUL
prediction is always extracted features and the output layer is RUL.
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structure contains an input layer XðtÞ, hidden layer hðtÞ and output
layer yðtÞ. Weight matrix Whx connects the input layer XðtÞ and hid-
den layer hðtÞ. Weight matrixWhh connects the hidden layers at dif-
ferent times. Weight matrix Why connects the hidden layer and
output layer. This structure makes sure that RNN can use past
and current information to predict the future. The battery degrada-
tion data collected from charging and discharging cycles can be
seen as time series data, making RNN suitable for RUL prediction.
Kwon et al. used RNN to predict the battery RUL by learning inter-
nal resistance [42]. Ansari et al. proposed multi-channel input RNN
to predict RUL based on the combined datasets comprising ten
samples of voltage, current, and temperature for each cycle [43].
There are many variants in RNN, and their evolution over the pub-
lished year is shown in Fig. 10. ESN is a fast and efficient type due
to its simple structure. Besides, due to the memory part of the
sequence, the performance and accuracy of basic RNN on a long
Fig. 10. The evolution of RNN vari
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sequence are poor. Therefore, LSTM is proposed to use a gate
mechanism to control the information flow and solve the problem
of the vanishing gradient in the RNN. The vanishing gradient
means the gradient will disappear during the back propagation
process, which slows the weight training down and is unable to
learn the long-term memory effect. Further, GRU is a variant of
LSTM, which integrates the forget gate and input gate of LSTM into
an update gate and introduces an additional reset gate to control
the flow of information. Various RNN models, including basic
RNN, LSTM, and GRU are built to forecast the RUL of lithium-ion
batteries. It is found that the LSTM layer has the optimal RUL pre-
diction results based on the same datasets [44]. More details about
ESN, LSTM, and GRU are discussed in the remainder of this sub-
section.

Echo state network:

The ESN is composed of an input layer, a reservoir layer, and an

output layer, as shown in Fig. 11. In the figure, W in is the input
weight matrix. W re is the internal connection weight matrix.

Wback is the feedback matrix returning the output of ESN to the
reservoir layer. Wout is the output weight matrix. The reservoir
layer consists of many sparsely connected neurons and thus has
ants over the published year.
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the function of short-term memory by adjusting these neurons
[45]. The ESN is similar to the ELM because both have a very simple
and the weights of the input layer and the reservoir layer are ran-
dom and fixed after initialization. That is, only the output weights
between the reservoir and output layer need to be trained.

The research core of ESN includes deep ESN, monotonic ESN
(MONESNs), and ensemble leaning. Catelani et al. proposed the
deep ESN, where the typical ESN adds multiple reservoir layers
to improve the ability to capture the nonlinear trend of batteries.
In their research, state-space estimation was used first to generate
a big training dataset (capacity and cycles) for deep ESNs. A genetic
algorithm was employed to optimize the number of nodes of the
reservoir and the linear-weighted PSO was utilized to optimize
the network parameters [46]. Ji’s team and Liu’s team both pre-
sented the monotonic ESNs in their research by adding monotonic
constraints in the ESN output weight training process to make the
output of ESN decrease with the decrease of the input data. In Ji
et al.’s research, a self-adaptive differential evolution (SADE) algo-
rithm was used to optimize the parameters of the ESN [45]. Liu
et al. created an ensemble of many MONESN sub-models to pro-
vide uncertainty on the predictions made by the MONESN and
increase the stability of the network [47,48].

If the readers are interested in the theory and applications
behind the ESN, one guide [49] is dedicated to this method.

Long short-term memory:

LSTM uses gate structure, a method that can control the infor-
mation flow, to solve the vanishing gradient problem. LSTM con-
sists of three gates: input gate, output gate and forget gate, its
structure is shown in Fig. 12. xt, ht and Ct is the input, output,
and cell memory of the current time step. ht�1 and Ct�1 is the out-
put and cell memory of the previous time step. Sigmoid is the acti-
vation function. LSTM was introduced to capture the long-term
battery degradation tendency in 2017 [50] and 2018 [51] by Zhang
et al. They found that LSTM can achieve early RUL prediction
because LSTM only needs 20%-25% of the entire battery degrada-
tion data for accurate RUL prediction. A similar conclusion was also
obtained by Tong et al [52]. The training method, over-fitting, and
uncertainties of LSTM were mentioned in the publications of the
above two teams. The most common training methods of LSTM
Fig. 12. The structure of LSTM. xt , ht and Ct is the input, output, and cell memory of the
step. Sigmoid is the activation function.
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include adaptive moment estimation (ADAM) [53] and resilient
mean square back-propagation (RMSprop). The training method
for LSTM is chosen based mainly on the convergence speed. The
common methods to avoid over-fitting include L2 regularization
and dropout. Furthermore, the main method often quantifying
the uncertainty of the prediction made by LSTM is via Monte Carlo
(MC) simulations.

In the input features of LSTM, the one-to-one structure is
replaced by a many-to-one structure [54]. The many-to-one struc-
ture refers to the use of multiple input vectors simultaneously,
such as current, voltage, and temperature, while the one-to-one
structure uses a single input vector of historic capacity. It has been
proven that many-to-one structures can improve RUL prediction
accuracy even in the presence of capacity regeneration [55]. Zhang
et al. proposed a BLS-LSTM model which combined LSTM and
Broad Learning System (BLS) which has the additional enhance-
ment nodes from the initial feature input. Based on this, the more
effective feature can be extracted [56]. Furthermore, with the
adoption of the adaptive sliding window, LSTM can learn the local
fluctuations and the long-term dependencies simultaneously [57].

Besides, another type of LSTM that has been used in RUL predic-
tion is the Bidirectional LSTM (Bi-LSTM) [34]. Bi-LSTM uses 2 inde-
pendent LSTM layers to learn in both the forward and backward
direction. Yang et al. thought that the battery degradation series
signals were related to the current time both in forward and back-
ward directions, so they used Bi-LSTM information to extract more
information from the same signal [34]. Yuhuang et al. also used Bi-
LSTM in the discriminator of the generative adversarial network
(GAN) to predict RUL [58].

The research core of LSTM centers around gate optimization,
algorithm combinations (RUL prediction based on the signal
decomposition, measurement variable as filter algorithm, combi-
nation with CNN), ensemble learning, and transfer learning. Its
development trend is shown in Fig. 13.

Gate optimization of LSTM is an effective strategy to improve
RUL accuracy. The information controlled by the gates is an essen-
tial part of LSTM. Li et al. coupled the input and forget gate through
a fixed connection, which selects old and new information at the
same time. They also conducted the element-wise product
between the new inputs and historical cell state and added a peep-
hole connection to the output gate to mine more information and
current time step. ht�1 and Ct�1 is the output and cell memory of the previous time



Fig. 13. The development of the research core of LSTM.
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reduce the error [59]. Lin et al. connected the input gate and output
gate to better control the output information of the memory cell.
They also combined the forget and input gates into a single update
gate, which can achieve the goal of forgetting some information
and adding inputs simultaneously [60].

LSTM algorithm combination mainly includes the prediction of
decomposed signal through different signal decomposition meth-
ods like EMD [61], more details have been discussed in the above
‘Signal pre-processing’ section, as the measurement variable of PF
or KF and combining with CNN through different connection
way. UKF or KF shows advantages in processing non-linear prob-
lems. However, the problem is that the measurement values are
not easily and precisely obtained from the battery electrochemical
model. For this, Cui et al. incorporated LSTM and RBF NN in UKF,
where the LSTM predicted capacity is used as the measurement
vector and RBF NN is for approximating the traditional exponential
model as state transition [62]. Zhang et al. used PF to update the
exponential model of LIBs, where LSTM was adopted to learn the
degradation model and every particle was propagated using the
state transition learned by LSTM [63]. Hu et al. also used the LSTM
prediction mean values as the future measurement value of PF. The
mean was obtained by the Monte Carlo-dropout method by pro-
cessing the LSTM model iterating 100 times each step [64]. LSTM
is often combined with CNN to extract spatial and temporal infor-
mation from the data. More details are discussed in the sub-section
2.3.2.4 ‘Convolutional Neural Network’ part. The combined way
includes series [65] and parallel connections [66].

Ensemble learning can give a more reliable prediction result. Liu
et al. proposed to use Bayesian model averaging (BMA) to ensem-
ble LSTM sub-models obtaining higher accuracy and uncertainty
representation. The LSTM sub-models adopted different sub-
datasets derived from the degradation of training data [67]. Song
et al.’s team [68] and Wang’s team [69] both presented the ensem-
ble model based on stacked LSTM to predict the RUL, where predic-
tion values from individual LSTM were used as input to the
ensemble model. Pan et al. proposed LSTM based on transfer learn-
ing (TL-LSTM) to predict lithium-ion battery capacity and RUL
under different working conditions, where the LSTM layers are fro-
zen in the training process of the target domain. The predicted
value from TL-LSTM was also used as the measurement for the
PF updation [70].

Gated recurrent unit:

GRU is similar to LSTM but has two gates combining the forget
and input gates of LSTM to an update gate used to control the influ-
ence of the previous information on the current information and
using a reset gate to control the extent of ignoring previous infor-
mation. Profiting from a simpler structure than LSTM, GRU is faster
to train while still being able to mitigate both exploding and van-
ishing gradients.
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The research on GRU in battery RUL is majorly focused on the
basic application, deep information extraction, and transfer
learning.

Song et al. utilized the GRU to establish the battery RUL predic-
tion method, where their number of hidden layers was four and the
maximum error of the RUL prediction on the NASA B0006 battery
was 11 cycles [71]. Ardeshiri and Ma et al. adopted the ADAM algo-
rithm to optimize the network, which can reduce the training time
and the influence of the learning rate. They also proposed an early
stopping technique to deal with overfitting [72]. Wei et al. used
GRU to predict RUL with Monte Carlo Dropout (MC_dropout),
where MC was mainly used to generate the probability distribution
and 95% confidence interval of the RUL prediction point. The drop-
out method applied to the weights of the hidden layers is to avoid
over-fitting [73].

In order to extract more information on battery degradation,
Wang et al. proposed an adaptive sliding window GRU. Character-
ized by the memory units and gate mechanism, the GRU can cap-
ture the long-term dependencies of their feature. The adaptive
sliding window can learn the local regenerations and fluctuations,
as the size of the sliding window updates according to the variation
of the feature [74]. Tang et al. used IRes2Net-BiGRU-FC to predict
different frequency data through CEEMDAN. In IRes2Net-BiGRU-
FC, Bidirectional Gated Recurrent Unit (BiGRU) can capture battery
capacity information in the two directions of the past and the
future simultaneously, so it increases the diversity of characteristic
information [75].

Transfer learning can reduce training data and training time for
online applications. A combination of transfer learning and GRU
was proposed to predict the online RUL of batteries based on hav-
ing similar degradation trends [76]. The similarity of degradation
trend for different batteries is compared by Euclidean distance.
2.3.1.2. Support vector regression. SVR is suitable for RUL prediction
because it can map the non-linear relationship between input and
output data based on structural risk minimization [77]. The key is
using the kernel-trick to transform the complex nonlinear problem
into a simple linear problem. The general form of the SVR model
can be expressed as:

f xð Þ ¼ wT/ xð Þ þ b ð4Þ

where x is the input value. f xð Þ is the target value. w is the weight
vector. / xð Þ is the kernel function matrix. b represents the bias term.

Zhao et al. utilized the SVR to predict RUL integrated with fea-
ture vector selection (FVS). The FVS-SVR algorithm can narrow
down the search space of support vectors by removing redundant
data. The time interval of an equal charging voltage difference
(TIECVD), and the time interval of an equal discharging voltage dif-
ference (TIEDVD) are the extracted features in their research [78].



Fig. 14. The development of the research core of SVR.

X. Li, D. Yu, V. Søren Byg et al. Journal of Energy Chemistry 82 (2023) 103–121
The research about SVR in RUL prediction is mainly focused on
hyper-parameter optimization and model fusion as shown in
Fig. 14.

The most common hyper-parameters include the penalty factor,
the band-size (controlled by epsilon), and any kernel function
parameters. A variety of optimization methods have been applied
to optimize the hyper-parameters: differential evolution [79], par-
ticle swarm optimization [80-83], whale optimization (WOA) [84],
genetic algorithms [85-87], gray wolf optimization (GWO) [88],
improved ant lion optimization (ALO) [89], artificial bee colony
(ABC) [90], improved bird swarm (IBS) [91], and grid search [92].

The SVR is often used as the measurement equation in particles
[93] and Kalman filters [94] to realize the step-ahead prediction.
Furthermore, it has been used as an auxiliary algorithm to improve
the prediction performance of a BiLSTM-AMmodel, where the out-
put of the SVR is a prediction of the average temperature [95]. SVR
has also been fused with other methods like multi-layer percep-
tron (MLP) based on the weighting principle [96].

The combination of multiple SVR with different hyper-
parameter for different regions of one training data [97] or SVR
with mixed kernel function [98] may be the possible future direc-
tion for SVR. The SVR algorithm implementation in the vehicle’s
central controller considering load conditions also should be
researched further [99].

2.3.1.3. Auto-regression. AR is a time series model to predict the
near-future values in the series. It has the advantage of long-
term trend prediction for time series analysis [100]. For example,
Vilsen et al used AR to capture the long-term behavior change of
Fig. 15. The development of
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the internal resistance of the battery [101]. Its basic function is
as follows:

Xt �u1Xt�1 �u2Xt�2 � � � �upXt�p ¼ et ð5Þ

where p is the order of the AR model, uiði ¼ 1;2; � � � ; pÞ are param-
eters of the AR model, and et is the stationary white noise with
mean zero and variance. The determination of the order of the AR
model is important to the prediction accuracy, and common deter-
mination methods include the Box-Jenkins method, Akaike infor-
mation criterion (AIC), and Bayesian information criterion (BIC).
Long et al. proposed the RMSE order determination method using
the PSO method to search the optimal order of the AR model, and
the order can adaptively vary with the updated data [102]. The
parameter identification of the AR model is relatively simple, and
methods include least square estimation, maximum likelihood esti-
mation, Yule–Wallker method (autocorrelation method), and the
Burg method.

The main research core of AR is nonlinear degradation imple-
mentation and algorithm combination, as shown in Fig. 15.

The degradation process of lithium-ion batteries is nonlinear
because the degradation rate usually accelerates when the cycle
number increases. For improving the nonlinear ability of the AR
model, the nonlinear accelerated degradation factor is introduced
which is related to the degradation cycle and time-varied. In prac-
tice, the factor is defined as the function of the prediction step.
Therefore, it is called the nonlinear degradation AR (ND-AR) model
[103]. Guoet al.modified the factor after analyzing theND-ARmodel
and proposed a nonlinear scale degradation parameter-based AR
the research core of AR.
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(NSDP-AR)model,where the factor is related to the current percent-
age of life-cycle length and the related parameters in the formula to
calculate the factor are obtained using an EKF [104].

AR models are usually combined with different PF, where the
output of the AR model is used as the observed or measured value
in PF [105] to improve the long-term prediction and iterative pre-
diction of PF. For this, in addition to the ND-AR model, the iterative
nonlinear degradation autoregressive (IND-AR) model was pro-
posed [106]. Besides the basic PF, there are also regularized PF
(RPF) [107] and PF based on the deformed double exponential
empirical degradation model [108]. Further, AR models have been
combined with RVM, where the uncertainty quantification is based
on the mixture distribution estimation [100]. Another proposing
combination method was proposed by Lin et al [109]. In their
research, the degradation trajectory is regarded as the multiple-
change-point linear model rather than the fixed shape. The AR
model with covariates is used to obtain the slope change between
segments.

2.3.1.4. Convolutional neural network. CNN generally consists of
convolutional layer, pooling layer, and fully connected layer, as
shown in Fig. 16. It uses a filter to perform a convolution operation
to extract spatial information from the previous layer. The
extracted neurons are referred to as the receptive field, and the
convolution is performed by:

F i; jð Þ ¼
X
m

X
n

Z i�m; i� nð Þ � Kðm;nÞ ð6Þ

where F is the obtained feature map, Z is the input matrix, and K is
the filter. Then the pooling layers are used to extract local features,
and the fully connected layer can be used for regression.

The main purpose of using CNN is to extract the spatial informa-
tion or interrelations of the inputs and reduce it to a lower dimen-
sional space [110]. Hsu et al. used two CNNs to reduce the
dimension of the input data and combined these new features with
human-constructed features. The MAPE by their deep neuron net-
Fig. 16. The basic st
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work (DNN) to predict battery RUL is 6.46% with only one cycle as
testing [111]. Rui et al. proposed one semi-supervised method of
capacity degradation estimation. Raw EIS data were directly fed
into the CNN for feature extraction and then capacity was esti-
mated without corresponding capacity labels [112].

The research core of CNN mainly includes hyperparameter opti-
mization, combining CNN with LSTM, dilated CNN ensemble learn-
ing, and transfer learning, as shown in Fig. 17.

The hyperparameter is set before the training process from dif-
ferent datasets, which can influence the performance of CNN. The
optimization methods used for hyperparameters include Bayesian
optimization [113] and SSO [114].

Considering that LSTM can learn the temporal correlations
between the past and future RUL, CNN is often integrated with
LSTM to learn the spatial and temporal information of input data
at the same time [113]. Zraibi et al. used capacity data at each cycle
to train the proposed CNN-LSTM-DNN model to improve the accu-
racy of battery RUL prediction compared with single LSTM and
CNN-LSTMmodels, the RMSE was 0.0204 [65]. However, it is worth
mentioning that the CNN, LSTM, and integrated model required a
lot of data to achieve this higher accuracy. For this, Ren et al. inte-
grated an autoencoder with the CNN-LSTM model, where the
autoencoder was used to increase the dimension of the data fed
into the CNN. An autoencoder learns the time-domain characteris-
tics between adjacent charging and discharging cycles from their
analysis [66]. Zhang et al proposed the usage of CNN-LSTM in gen-
erating realistic time-series with convolutional recurrent GAN. In
their model, the generative model took full use of the advantage
of CNN extracting spatial information and the advantage of LSTM
extracting the temporal information, enriching the data and reduc-
ing the prediction error of the model [115]. Yang et al. further com-
bined CNN with Bi-LSTM to improve the learning effect and the
generalization ability [34].

Compared with regular CNN which has a linearly growing num-
ber of receptive fields as the number of layers increases, the dilated
CNN has an exponentially growing number of receptive fields, as
ructure of CNN.

he research core of CNN.
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shown in Fig. 18. Hong et al. proposed a framework using 5 dilated
CNN layers which can improve the RUL prediction performance
using less than four operation cycles [116]. Zhou proposed a tem-
poral convolutional network (TCN) for battery SOH monitoring,
where causal convolution and dilated convolution techniques were
used in the model to improve the ability to capture local capacity
regeneration, improving the overall prediction accuracy of the
model [37].

Transfer learning is the way to make up for a small dataset and
improve the training efficiency for CNN. In the research of Shen
et al., a 10-year daily cycling data of eight implantable Li-ion bat-
teries was used as the source dataset to pre-train eight deep con-
volutional neural network (DCNN) models. Then the obtained
parameters of the pre-trained DCNN models were transferred to
the target domain, which was used to generate eight DCNN with
transfer learning (DCNN-TL) models. These DCNN-TL models were
finally integrated into an ensemble model called the DCNN with
ensemble learning and transfer learning (DCNN-ETL). The proposed
DCNN-ETL method has higher accuracy and robustness than GPR,
RF, and DCNN [117].

In the future, how to use limited datasets to achieve a fast and
stable RUL prediction is still worth keeping an eye on.

2.3.1.5. Extreme learning machine. An extreme learning machine
(ELM) is a kind of feedforward neural network, which contains a
single hidden layer between an input layer and an output layer.
The weights and biases between the input and hidden layer are
generated randomly and, therefore, do not need to be trained. That
is, the output weights are the only parameters that need to be
trained during the learning process. The training of the output
weights is usually performed using the generalized Moore-
Penrose matrix inverse, so it has the advantages of fewer training
Fig. 18. From regular convolution to dilated conv

Fig. 19. The development of t

114
parameters and fast learning speed. For online and fast RUL predic-
tion, ELM could be considered.

There are many applications of ELM in the field of battery RUL
prediction. Roozbeh et al. introduced an integrated ELM-based
framework for RUL prediction in situations of missing observations
or features [118]. The degradation path of the lithium battery can
be approximated as having two different degradation rates
(phases), Chen et al. adopted the two-phase Wiener process to
derive the mathematical formula of RUL and an ELM to construct
the feature of RUL and detect the change point of the model by
the feature adaptively [119].

The research focus of ELM mainly includes the initial optimiza-
tion of the input parameter, online sequential ELM (OS-ELM), and
quasi-RNN. It is summarized in Fig. 19.

As mentioned before, the input weights and the bias of ELM are
given. In order to improve the accuracy, PF [120], improved PSO
with considering mutation factors [121], Genetic algorithm ant
algorithm (GAAA) [122], and Hybrid Grey Wolf Optimization
(HGWO) (which combines differential evolution (DE) and grey wolf
optimization (GWO) [38]) are used to optimize initial weights and
bias.

If the ELM model parameters can be updated based on the new
data, rather than the retraining model, the prediction time of RUL
will be reduced. In order to reduce the required training data to
train ELM, an online sequential-extreme learning machine (OS-
ELM) is proposed. It consists of 2 phases: the initialization phase
and the sequential learning phase. The function of the sequential
learning phase is to use the new data samples to update the output
weights obtained in the initial phase. Tang et al. proposed a faster
online sequential pooling extreme learning machine (OS-PELM)
where the full connection between the input layer and hidden
layer is replaced by convolution and pooling based on the
olution. Xt is the input and Yt is the output.

he research core of ELM.
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OS-ELM [123]. Fan et al. further proposed Forgetting Online
Sequential Extreme Learning Machine (FOS-ELM). Besides the
dynamic incremental update function applied when new data is
received, it also includes a forgetting mechanism that will gradu-
ally ignore any outdated data in the learning process [38].

Zhang et al. proposed a deep adaptive continuous time-varying
cascade network based on extreme learning machines (CTC-ELM)
under the condition of a small amount of data, as shown in
Fig. 20. A CTC-ELM is similar to the RNN in terms of the time-
varying nature because the input of each sub-network is composed
of the output of the previous network and the original time series
data. But it retains the advantage of ELM of being fast [124].

Although the ELM has many advantages, its shallow structure
may restrict its ability to capture the features of high-
dimensional data and not meet the requirement of increasing-
size battery datasets of increasing size. Therefore, the broad
learning extreme learning machine (BL-ELM) is proposed by Ma.
The BL-ELM does not increase the number of layers but expands
the input layer by widening the number of nodes in this layer.
The ability of ELM to capture effective feature information in big
data is greatly improved [125].
2.3.2. Probabilistic methods
2.3.2.1. Relevance vector machine. RVM is a sparse probability
model based on Bayesian inference. The general form of its model
is similar to that of SVR and can be expressed as Equation (4). Dif-
ferent from SVM, RVM is not restricted by Mercer’s theorem. RVM
owns the advantages of uncertainty expression and can establish
Fig. 21. The development of t

Fig. 20. The structure of CTC-ELM.
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multiple kernel functions. In addition, RVM reduces computation
because of the smaller number of hyper-parameters and the spar-
sity in the number of relevance vectors [126]. In online prediction
applications, relevance vectors (RVs) are the capacity degradation
data of lithium-ion batteries in specific cycles corresponding to
non-zero weights containing the core information of the data
[127]. From this point of view, it can be regarded as a
dimension-reduction method due to the smaller number of sample
points at the end. Zhang et al. used RVM to extract the features as
relevance vectors which were then used to fit the aging exponen-
tial model [128].

The RVM used in RUL prediction is to build the relationship
between features and capacity, where the common choices for fea-
tures include the sample entropies of current and voltage [129],
charging current change rate in CV stage (CCCR_CV) [130], constant
current charge time (CCCT) and ambient temperature [131], the
duration of equal discharging voltage difference (DEDVD) and the
duration of equal charging voltage difference (DECVD) [132].
RVM is usually integrated with the Kalman filter (KF) or unscented
Kalman filter (UKF) [133]. Zheng et al. used RVM to predict the
future evolution of the UKF residuals [134]. RVM was also used
to predict the new error series to correct the prediction result by
UKF [33]. For giving the posterior probability distributions of the
output, RVM is always used to fuse the outputs of different meth-
ods without probability distributions or different prediction start-
ing points to improve the overall prediction performance [32].

As for the evolution of the research core of RVM, it includes 3
parts by statistics in this review as shown in Fig. 21, namely the
kernel parameter optimization, kernel function combination, and
long prediction performance improvement.

The kernel parameters of an RVM are normally selected based
on empirical knowledge. The kernel function of optimized RVM
[135] is the Gaussian kernel function with 5 kernel parameters.
In order to improve prediction accuracy, Cai et al. introduced the
artificial fish swarm algorithm (AFSA) to find the optimal kernel
parameter [136]. Zhou et al. used the PSO method to optimize
the kernel function bandwidth r of RVM, and the average error
of their model was less than 2.18% [137]. An optimized PSO
method is utilized to search for the optimal parameter of the RBF
kernel function in Ref. [138].

Multiple kernel learning, which combines the advantages of
multiple different kernel functions, is another way to improve
the kernel function of RVM. The key to this method is the weights
determination of the selected kernel function. Zhang et al. used the
PSO algorithm to achieve multiple kernel RVM [139], while Sun
et al. used the grid search method to optimize the parameters of
their multiple kernel RVM [36]. Some researchers tried to achieve
the kernel parameter optimization and kernel function combina-
tion simultaneously. The ensemble weight coefficient of the differ-
ent kernel functions and parameters was optimized by using a
discrete PSO algorithm in [140], which realized the choice of some
effective kernel and optimization of kernel parameters of RVM. The
he research core of RVM.
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prediction accuracy of this discrete PSO method was better than
the single kernel RVM and RVM model ensembling all kernel func-
tions. Chen et al. adopted the Cuckoo Search (CS) algorithm to find
all kernel parameters and the ensemble weights of each kernel
function. It was found that CS was more effective and accurate than
the discrete PSO algorithm [141].

Poor performance of long-term prediction is one significant lim-
itation of RVM. The main reason is that the relevance vectors and
coefficients matrix of RVM cannot update at the same time in the
single-step prediction. An incremental learning strategy is intro-
duced to improve the precision of multi-step prediction of RVM,
the key of which is that the input data of RVM contains the new
online data sample in addition to the relevance vector [142,143].
A KF can be used to optimize the RVM result for better long-term
prediction accuracy, by using each step result to update the train-
ing dataset and retrain the RVM model based on the new and
online training dataset [144]. Zhao et al. used Deep Belief Network
(DBN) to extract the features as the inputs of RVM to improve the
stability of longer prediction [145]. The RVM and gray model (GM)
are alternately adopted for long-term prediction considering the
capacity regeneration in [146]. More details about GM and the
algorithm structure for RUL prediction can be found in [146].

In the future, one ideal way is using RVM is used to generate
RVs which are then input into other algorithms with better perfor-
mance in long-term prediction. Also, the hardware implementation
of RVM is important such as the architecture proposed in [147].

2.3.2.2. Gaussian process regression. The GPR model is a nonpara-
metric and probabilistic method. It can be regarded as a collection
of a limited number of random variables following a joint Gaussian
distribution described by its mean and covariance. The Gauss pro-
cess can be expressed as follows:

f xð ÞvGPðm xð Þ; kf ðx; x0 Þ ð7Þ
where f xð Þ is the target output, m xð Þ is the mean function and
kfðx; x0 Þ is the covariance function.

The general use of GPR when modeling RUL is to extract rele-
vant features as input, which is then fed to a GPR to obtain the
RUL. The most common features are the peaks, regional area, slope,
and other geometric features from incremental capacity analysis
(ICA) curves as described in [148-151]. Other features include
voltage-dependent features from partial voltages [152] and
thermal-dependent features [153], error series through CEEMD
[154], and EIS spectrum [155].

Researchers working with GPR are mainly focused on kernel
function enhancement, model combination, and pseudo-transfer
learning. Their development over the last few years is shown in
Fig. 22.

It can be quite effective to enhance kernel functions by consid-
ering electrochemical, or empirical elements, as was demonstrated
by Liu et al. [156], who coupled the Arrhenius law and a polyno-
mial equation with the covariance function in the kernel function.
Fig. 22. The development of t
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The improved kernel function can reflect the temperature, DOD,
and capacity, and achieve an MAE and RMSE less than 0.07 Ah
(0.3%), and 0.09 Ah (0.4%). They also modified the basic squared
exponential (SE) function serving as a covariance function with
the automatic relevance determination (ARD) to remove the irrel-
evant inputs of the GPR. Richardson et al. used an exponential
model which can reflect battery degradation as a mean function
rather than 0, and improved the predictive performance of basic
GPR [157]. Another method to enhance kernel functions is to com-
bine different kernel functions. In the research of Liu et al. [158],
the square exponential covariance function and periodic covari-
ance function were added for better ability, because the former
can describe the capacity degradation and the latter can describe
the regeneration phenomenon. Peng et al. also proposed a similar
hybrid GPR to improve the accuracy of RUL prediction [159]. In
[157], 10 different compound kernel functions are evaluated to
choose a suitable kernel function with the best performance. Neu-
ral Gaussian Process (NGP) is proposed to solve the difficulty of
selecting the kernel function of the Gaussian process through expe-
rience based on the advantages of the neural network function
approximation [160].

The model combination means that the final prediction result is
made up of multiple GPR results adopting different kernel func-
tions based on different inputs. In [161], the input of the GPR
was the residual sequences of a VMD and the sub-GPR models uti-
lized the squared exponential covariance functions to describe the
monotonicity and periodic covariance functions to describe recur-
rent sequences respectively. In Qiao et al.’s research, the GPR with
the input of time index was used to capture the global trend and
that with the lag vector was used to reflect the local regeneration
and fluctuations [162]. Li et al. used multiple exponential and lin-
ear models as the trend function of a GP model to reflect the capac-
ity degradation of Li-ion batteries under different degradation
stages [163]. The combination or weighting strategies of multiple
GPR models include the weighting strategy based on prediction
uncertainty [164], and induced ordered weighted averaging
(IOWA) operators [165].

In this review, the concept of pseudo-transfer learning is refined
first, the key point of which is to research the correlation or covari-
ance of the capacity between different batteries and to use the
prior knowledge of similar batteries. Through sharing similar rela-
tionships between different batteries or different cycles, the model
generalities and prediction speed can be improved. When the bat-
teries have strong similarities, their prediction result will also be
similar. In [166], the co-kriging surrogate is adopted to employ
the low- and high-fidelity data to forecast the degradation of the
primary cell, where the high-fidelity data is corresponding to the
capacity degradation profile of the primary battery under cycling
load and the low-fidelity data is corresponding to the capacity
degradation profile of a related cell. In addition, multiple-output
GPs models can be regarded as pseudo-transfer learning, because
they can effectively exploit correlations among data from different
he research core of GPR.
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cells and cycles by modifying the covariance in kernel function to
reflect the similarity between multiple batteries. Herein, the
covariance is the product of a label covariance and a standard
covariance.[157]. Chehade et al. proposed a multi-output con-
volved gaussian process (MCGP) model, which tried to use the con-
volution process to learn the correlations of capacity between
different batteries under similar conditions [167].

In the future, kernel functions that can reflect physical informa-
tion and the covariance between different sources and different
cycles should be further explored.
3. Comparison of RUL prediction methods

The ML algorithms are evaluated from the perspective of accu-
racy, and algorithm characteristics including online updating per-
formance (time-varying characteristic), uncertainty quantification,
generalization, and ease of implementation. The accuracy and
Table 1
Performance overview of different ML methods for RUL prediction.

Year ML method Ref. Feature

2021 RVM [126] rate of discharge surface temperature

2021 BLS-RVM [32] capacity by EMD

2017 RVM [33] capacity

2021 GPR [153] slope and intercept of dv and T

2019 Multidimensional
GPR

[158] charge time interval of voltage varying from 3.9
to 4.2 V, the charge voltage varying from 3.9 V
the
voltage after 500 seconds, the CV charge
current drop between 1.5 A (the CC charge
current) and the
current after 1000 s.

2021 GPR [151] optimized peak height, position, and area

2021 RNN [43] capacity

2021 SADE-MESN [45] capacity

2021 B-LSTM [54] RES of SOH

2021 GRU [72] capacity

2022 SVR-PSO [80] the integral of the voltage over time (IVT)

2013 AR [102] capacity

2022 CNN [111] human-picked feature;
data-driven features

2020 hybrid
parallel residual
CNNTCN

[37] capacity

2021 OS-PELM [123] singular values of the battery-measured
parameters

2022 CTC-ELM [124] capacity

2020 BL-ELM [125] capacity
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algorithm characteristic results are summarized in Table 1. It is
found that all ML algorithms show high accuracy.

The algorithm characteristics of different ML methods are fur-
ther presented in the form of a radar map in Fig. 23. It can be con-
cluded that RVM and GPR can be used to quantify the uncertainty
with higher accuracy but relatively poor generalization perfor-
mance. RNN and CNN present good performance and information
extraction ability with high accuracy. SVR and ELM exhibit a good
online updating ability and fast prediction. And AR is found to be
the simplest algorithm with acceptable accuracy which is also easy
to implement.

However, almost every algorithm has limitations for RUL pre-
diction of batteries. The SVM method is not suitable for long-
term dependency prediction, and always has weak accuracy [72].
It shows the overfitting [168] or non-convergence trend sometimes
[169], especially with insufficient full-life data. SVM also cannot
capture the capacity regeneration phenomenon of batteries [170],
Battery Accuracy Characteristics

lithium cobalt
oxide batteries
(LCO)

4.37e-06
RMSE

� high accuracy
good robust performance

LCO/graphite
(NASA 5#)

0.0105
RMSE

� high prediction stability
long-term prediction ability
uncertainty expression

LCO/graphite
(CALCLE 0.9Ah)

5cycles � higher accuracy than GPR
narrow confidence intervals

LFP/graphite
(MIT124#battery)

93.27
(5.17%)
cycles

� more accurate and convenient than
existing feature extraction methods

V
to

LCO/graphite
(NASA 5#)

1 cycle � high accuracy
reliability
output being probabilistic
better in tracking the variation
curve of actual value than the basic
GPR model.

CALCE CS2-35# 5 cycles � high accuracy and robustness in a
different type of battery

LCO/graphite
(NASA 5#)

0.0030
RMSE

� good generalization performance

LCO/graphite
(NASA 5#)

3 cycles � high prediction accuracy
stable output

CALCE CS2-34# 0.0017
RMSE (1
cycle)

� small accumulated error
high accuracy in different batteries
and different test conditions

LCO/graphite
(NASA 5#)

0.0156
RMSE

� high accuracy and efficiency
early stop technology

LCO/graphite
(NASA 5#)

0.0133
RMSE

� online method
high accuracy

CALCE 26 cycles � high accuracy,
easy to implement

LFP/graphite
(MIT)

6.46% MAPE � high accuracy based on one cycle
only

LFP/graphite
(MIT)
LCO/graphite
(NASA 5#)

0.009RMSE � high accuracy
early-stage prediction
local fluctuation capture

LCO-
NCO/graphite
(Oxford)
NMC /graphite
(NASA)
LFP/graphite
(MIT)

0.2972
RMSE
0.0038
RMSE
0.0027
RMSE

� online sequential learning
updation of network parameters

LCO/graphite
(NASA)
LCO/graphite
(Oxford)

0.000036
MSE
0.000001
MSE

� good time-varying characteristics
high prediction accuracy

NASA
CALCE

0.0145RMSE
0.0161RMSE

� more nodes of the input layer
accurate, fast, and robust



Fig. 23. Comparison of the different ML methods from different perspectives
(where a higher number indicates a better performance).
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and the prediction error fluctuation is large when used in different
batteries [73]. The GPR method also cannot capture the capacity
regeneration phenomenon of batteries [170] and its prediction
curves sometimes show little similarity with real data. For exam-
ple, the prediction curve is almost a straight line with higher RMSE
in [126]. The prediction range of applicability of RVM is narrow
[33], and it may lose accuracy in RUL prediction with a short length
of training data [71]. In fact, the setting of the kernel function of
SVM, RVM, and GPR has a significant influence on the RUL predic-
tion result. If they are not set properly, the prediction result will be
far from the real data. Researchers always like to set the mean of
the kernel function as zero, which needs to be improved in the
future. The AR lacks long-term memory capacity or SOH [171].

For the deep learning method, ELM has larger predictive errors
[78]. Using CNN alone makes the prediction result far away from
the real measurement data in Ref. [75]. The execution speed of
LSTM is not fast because it needs more training iterations [171
72]. It predicts the future degradation trend based on historical
data, so it omits short-term fluctuations. However, the short-
term fluctuation will affect the network parameters of LSTM and
thus reduce the accuracy of RUL prediction [172]. Similar limits
occur in GRU which just generates a steady decline prediction for
the overall trends [171]. The prediction error of GRU is higher than
that of LSTM because GRU has only two gates. For deep learning
methods, a large number of data points are necessary. If the train-
ing data points are limited, the predicted curve for capacity will be
almost a horizontal straight line and the RUL prediction result will
not be present.
4. Challenges and outlook

4.1. Improvements to the method

Plenty of research about RUL prediction based on the ML algo-
rithm has been done in the last 10 years, mainly including ML algo-
rithm parameter optimization, ML structure optimization, and
algorithm fusion. Through the review of the typical algorithm, it
is believed the following five aspects should be improved.

Early prediction: Early prediction means using fewer initial
cycle data to predict RUL. Accurate early RUL prediction can detect
failures earlier and reduce the consumption of batteries. However,
it is still a challenging task because the effective degradation infor-
mation available is limited in the early operation of the battery,
and the electrochemical characteristics of the battery are greatly
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influenced by the following operating conditions. The related
research about early prediction mainly exists in the LSTM [51]
and CNN [111] algorithms as mentioned above. The prerequisite
for early prediction is the effective extraction of the feature. One
possible approach for realizing early RUL prediction is using the
ML method to extract features directly rather than picking features
manually. Another approach is inputting more features each time
like adopting the broad learning method mentioned in the ELM
part. Early broad learning can be extended to other ML methods
in the future.

Local capacity regeneration modeling: The local capacity regen-
eration phenomenon exists in almost all battery aging tests. The
capacity sometimes suddenly increases after a complete
charging-discharging cycle or a long idling time. Guo et al. tried
to explore this phenomenon from the full cell, electrodes, and
materials levels. The results showed that large DODs and high tem-
peratures can accelerate capacity regeneration [173]. If the ML
algorithm can learn this phenomenon, the accuracy of RUL predic-
tion especially for that based on the SOH estimation will be
improved. As summarized above, signal decomposition methods
are usually adopted to obtain a high-frequency signal to reflect
capacity regeneration. ML algorithms then used the decomposed
signal to predict future regeneration, which is the most common
modeling method for local capacity regeneration. The essence of
other methods including using sliding windows, dilated convolu-
tion, and many-to-one RNN structures is to obtain more informa-
tion about local regeneration. The ideal situation is to keep the
signal undistorted. In the future, identifying the regeneration inter-
val from the whole degradation process followed by using a suit-
able ML method in this interval can be considered. In that case,
different ML algorithms are responsible for different battery
intervals.

Physical information fusion: Integrating physics information
with ML algorithm has many advantages like higher accuracy,
stronger long-term prediction performance, better generalization
ability, etc. Now physics informed NN has been introduced
[174,175], which still deserves further study. In fact, all ML algo-
rithms have the possibility of physical information fusion. For
example, modification of kernel function format can be taken into
consideration when applying ML algorithm with kernel functions
according to the Arrhenius law, polynomial equation with the
covariance function, and periodic covariance function to reflect
the temperature, DOD, and local regeneration respectively. More
fusion formats need to be explored in the future.

Generalized transfer learning: It is proposed in this review that
generalized transfer learning contains transfer learning and incre-
mental learning. This approach is to maintain most of the RUL pre-
diction model parameters when the distribution of data is similar
rather than to retrain the model, where the similarity of the data
can be measured by the correlation coefficient. Transfer learning
can fine-tune model parameters in the target domain based on
the source domain results. Incremental learning uses the new
online data sample and previous data as the input data without
rebuilding the model. This idea can improve the learning efficiency
of ML algorithms and is realistic for online applications in the
future.

Hardware implementation: Although great progress has been
made in algorithmic research, the research about hardware imple-
mentation of the RUL ML algorithm is still not mature. We only
found the relevant software and hardware architecture in [147].
The hardware conditions of EVs or other practical applications will
be different from the experimental lab. The industry acceptance of
computationally demanding RUL prediction algorithms is
dependent on the cost and availability of hardware platforms. So,
the ML algorithm implementation deserves further study from a
hardware perspective.



Fig. 25. Strategy of extending battery lifetime based on RUL prediction through
optimizing charging profile.
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4.2. RUL prediction for lifetime extension

Among all methods to extend the battery lifetime, charging pro-
file optimization is the most realistic from the end-user perspec-
tive. Its essence is to minimize the irreversible capacity loss
caused by side reactions for the entire charging process without
reducing the amount of charging capacity. Huang et al. researched
the influence of low-frequency positive pulsed current (PPC) charg-
ing on the lifetime extension of NMC-based batteries experimen-
tally. Compared with the constant current (CC), the PPC charging
at 0.05 Hz can extend the battery lifetime by 81.6% by reducing
the LLI, LAM, and kinetic hindrance at different stages [10]. Lee pre-
sented a four-stage constant current (4SCC) charging strategy
based on an aging-level, where the charge current was decided
by the SOH, and the lifetime was increased by around 40 cycles
[11]. Li et al. studied the multi-step fast charging protocol and
the aging mechanism behind it. Compared to the standard constant
current-constant voltage (CC-CV) profile, one of their proposed
multi-step fast charging protocols can increase 200 full equivalent
cycles and the charging time is reduced by 20% [176]. Maia opti-
mized the conventional CC-CV charging profile for Li-ion batteries
based on the electrochemical model that can calculate the irre-
versible capacity loss. The optimized charging profile is shown by
the blue line in Fig. 24, which displayed that the lifetime can be
increased by around 27% [12]. Most of the methods mentioned
considered SOH in the model.

RUL can be regarded as an index to evaluate the lifetime
extension. Peter et al. used the RUL prediction result and Baye-
sian optimization method to find the optimal fast charging pro-
file with long cycle life from 224 charging profiles with low
Fig. 24. The proposed charging profile in Ref. [12].
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experiment cost [177]. A possible method for extending the life-
time of the battery is optimizing the charging profile serval times
according to the accurate RUL prediction results online in the
future. The strategy is shown in Fig. 25. For EVs, different users
will generate different discharging patterns and different RULs.
For example, the new optimized charging strategy should be pro-
posed when the RUL is reduced by 5% every time. The electro-
chemistry model reflecting the charging current profile and
irreversible loss like SEI growth will be built. The optimized
charging profile will be obtained using optimization algorithms
based on the electrochemical model. Then the optimized charg-
ing profile is operated with a few cycles and RUL prediction
results are used to judge whether the battery life can be
extended. If the predicted RUL is increased, the optimal charging
profile can be executed until the next optimization. The RUL
upper bound needs to be determined.
5. Conclusions

Utilizing ML algorithms to predict the RUL of lithium-ion has
made great progress in the last decade. This review systematically
summarizes the research core and its development trend of com-
mon ML methods for battery RUL prediction, briefly overview the
methods to extend the lifetime of a battery, and analyzes the pos-
sibility of extending the lifetime of a battery based on RUL
prediction.

The ten most used RUL ML algorithms from 2012 to 2022 and
their occurrence frequency in publications over years are analyzed.
The RNN is the most frequently used algorithm with 61 occur-
rences in papers from the indexed database. The characteristics
of the four most used signal processing methods and their applica-
tion with ML methods are introduced in detail. The research cores
changing with the publication year of the top-used ML algorithms
are provided in unified figures to help the readers to understand
the ML method development fast and clearly. Generally, the
research of all algorithms is focused on parameter optimization,
algorithm fusion, structure design, and transfer learning. Based
on the analysis of the mentioned algorithms, the specific improve-
ment direction and the possibility of RUL prediction are outlined:
early prediction, local regeneration modeling, physical information
fusion, generalized transfer learning, and hardware implementa-
tion. End-users can extend battery lifetime by optimizing the
charging profile based on the online RUL prediction results.
Through this paper, the authors hope to help researchers to have
a clear understanding of the research core development of different
ML algorithms in RUL prediction and to propose more useful algo-
rithms in the future. We also hope the lifetime extension part of
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this review article can give some inspiration in using RUL results to
extend battery lifetime.
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