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Procrustes cross-validation of multivariate regression models 

Sergey Kucheryavskiy a,*, Oxana Rodionova b, Alexey Pomerantsev b 

a Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark 
b Federal Research Center for Chemical Physics RAS, Moscow, Russia   

H I G H L I G H T S  

• A generalization for Procrustes cross-validation approach. 
• Can be used for validation of most chemometric methods. 
• Provides additional tools for exploring the data heterogeneity and validation quality.  

A R T I C L E  I N F O   

Handling Editor: Prof. L. Buydens  

A B S T R A C T   

A generalization of Procrustes Cross-Validation — recently introduced novel approach for validation of che-
mometric models — is proposed. The generalized approach is faster than its predecessor by several orders of 
magnitude and can be used for validation of a wider range of models. Furthermore, it provides new tools for 
exploring the heterogeneity of the dataset, quality of cross-validation splits, presence of outliers, etc. The paper 
describes methodological aspects of the generalized approach, based on using Procrustean rules, the mathe-
matical background, as well as presents practical results obtained using real chemical datasets.   

1. Introduction 

Validation — testing of a model performance for exploration, opti-
mization and developing — is one of the corner stones in chemometrics 
[1]. There are two main validation approaches currently in use [2]. The 
first is based on employing a dedicated set of measurements or obser-
vations — a validation set. Data for the validation set can be obtained 
independently, similar to the test set, or, if the original dataset is large 
enough, it can be split randomly to the training and the validation 
subsets. 

Using the dedicated validation set is preferable for several reasons. 
First of all, it mimics the use of the model in real life — making pre-
diction for a new data — and, if properly taken, it estimates the sampling 
error in the optimal way [1]. Second, it explicitly evaluates the perfor-
mance of the model and provides all possible outcomes (e.g. scores, 
explained and residual variances, etc.) in a direct unambiguous form. 

Alternative to the validation set is cross-validation, which is based on 
iterative resampling of the training set [3]. Cross-validation does not 
directly evaluate the performance of the model of interest (from now on 
referenced as the global model). Instead, it develops several local models, 
with the same parameters as the global model, and collects the 

performance results from these different models together. This limits the 
cross-validation outcomes to the performance statistics mainly. How-
ever, in most of cases, this is acceptable for optimization purposes, 
assuming that the performance of the final model will be later assessed 
using an independent test set. 

Another drawback is that cross-validation is an iterative procedure, 
in which the local models are calibrated and validated at each cross- 
validation step. This can take a long time for large datasets as well as 
in case of complex optimization processes, which involve not only 
estimation of the optimal model complexity, but also the selection of the 
best combination of preprocessing methods and/or the most important 
variables. 

Recently we proposed a new approach for validation of Principal 
Component Analysis (PCA) and Soft Independent Modeling of Class 
Analogies (SIMCA) models — Procrustes cross-validation (PCV), which 
can be considered as an alternative to the conventional cross-validation 
(CCV) [4]. The idea of the approach is to utilize cross-validation to 
obtain variation between the global and the local models. Then this 
variation is introduced into the training set, thus creating a new set of 
data — pseudo-validation (PV) set. Once created, the PV-set can be 
applied for validation of the global model similar to the dedicated 
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validation set. Since the first publication, the method has been applied 
by several researchers for solving different problems and has proven its 
efficiency [5–8], especially in the case of short datasets, when the 
number of objects is much smaller than the number of variables [9]. 

This paper reports recent developments of this approach. First of all, 
we present a new algorithm for PCV, which is in by several orders of 
magnitude faster than the original one proposed in Ref. [4]. Second, we 
generalize the PCV approach, so that it can be used for validation of 
regression models, in particular, principal component regression (PCR) 
and partial least squares regression (both PLS1 and PLS2). Finally we 
show that PCV also provides additional tools for exploration and quality 
control of both data and models. 

All calculations and plots in this paper are done using R (v. 4.2.2) 
supplemented with package mdatools [10] (v. 0.13.1) and several 
additional scripts. All presented algorithms are implemented as an R 
package and a MATLAB Toolbox. Both can be installed from official 
repositories (CRAN for R and File Exchange for MATLAB). The source 
code for both as well as all technical details are freely available from 
GitHub (https://github.com/svkucheryavski/pcv). We also made an 
interactive web-application where anyone can upload data as a CSV file 
and create a PV-set: https://mda.tools/pcv/. The application works 
directly in a user’s browser and does not send the uploaded data 
anywhere. 

2. Methods and algorithms 

2.1. Cross-validation 

Cross-validation is an iterative resampling method, where at each 
iteration, k, k = 1, ...K, the original (global) training set, represented as 
the I × J matrix X, is split into local validation set, the Ik× J matrix Xk, 
and local calibration set, the (I − Ik) × J matrix X̃k (Ik = I/ K). The split 
can be done using random or systematic approach (e.g. venetian blinds); 
more details about the implementation of cross-validation can be found 
elsewhere [3]. 

For the response variables, which are represented by the I× L matrix 
Y, we use a similar notation: the (I − Ik) × L matrix Ỹk for a local cali-
bration set and the Ik × L matrix Yk for a local validation set. This no-
tation is used for both uni- and multivariate response, assuming that L =

1 in case of a single response. 
After splitting the data, the local calibration set is used to train a local 

model, M k, which is then applied to the local validation set, resulting in 
a structure with outcomes, Rk. This structure contains matrices/vectors, 
such as the predicted response values, the orthogonal and score dis-
tances, etc. The outcomes obtained for all K iterations are combined into 
performance characteristics (e.g. the total residual distance or the root 
mean squared error) or used as they are. 

2.2. Procrustes cross-validation 

Our original approach for Procrustes cross-validation was based on 
Procrustean rotation [4]. In this paper we propose a generalization of 
this approach, based on Procrustean rules, which are defined as standards 
that are enforced uniformly without regard to individuality. In this case the 
principles of Procrustes cross-validation can be defined as follows. 

Let’s consider a global training set X (or {X,Y} in case of regression). 
For the sake of clarity we continue the description using X matrix only. 
The global training set is used to train a global model, M , with A latent 
variables. The model is represented using a set of its parameters (e.g. 
loadings, weights, regression coefficients, etc.). 

In the conventional cross-validation (CCV) procedure, the global 
training set, X, is split into K segments. For a particular segment k we 
have a local calibration set, X̃k, and a local validation set Xk. The local 
calibration set, X̃k, is used to develop a local model, M k, which is then 
applied to the local validation set, Xk, producing a set of outcomes, Rk, 

which has the same number of elements as the number of rows (objects) 
in Xk (Ik). 

Let us suppose that we have developed a pseudo-validation set that is 
the I × J matrix Xpv. Then for any segment, k, we take a subset of Xpv, the 
Ik × J matrix Xpvk that has the same rows as in Xk, and apply the global 
model M to this subset. This results in a set of outcomes Rpvk . The goal is 
for all values in Rpvk to be as close as possible to the corresponding 
values from Rk: 

Rpvk ≈ Rk (1) 

This should be held for any number of components, a = 1, ...,A, and 
for all segments k = 1, ...K. Or in a more general way: 

Rpcv ≈ Rccv (2)  

In other words, when a pseudo-validation set is used to validate the 
global model, the outcomes should be as close as possible (ideally, 
identical) to the CCV outcomes for any level of complexity (the number 
of latent variables) up to the selected limit of A. 

The choice of the outcomes to be included in R (and hence constrain 
the PV-set calculations) depends on a particular method and re-
quirements. For example, it can include orthogonal and score distance in 
case of PCA or SIMCA, or y-residuals in case of regression models. In the 
next sections we present the implementation of this general approach for 
several different cases. 

2.3. Procrustes cross-validation for PCA/SIMCA models 

The PCA method decomposes a matrix X using A principal compo-
nents as follows: 

X=TPT + E = X̂ + E (3)  

Here we assume that the columns of X are mean centered or autoscaled. 
The loadings matrix, P, whose columns are orthonormal vectors, 

defines the direction of the principal components. They can be found as 
the eigenvectors of XTX using, for example, the truncated Singular 
Values Decomposition (SVD) [11]. The score matrix, T, is computed by 
projecting the matrix X using the loading matrix P: 

T=XP (4) 

The amount of variation, captured by each component, can be esti-
mated using the eigenvalues that are collected in vector λ. Hence a PCA 
model is unambiguously represented by a set of three model parameters, 
M = {A,P,λ}. 

For any object xi, which can be new or part of a training set, the 
prediction is made by using the following procedure:  

1. Compute vector with scores: ti = xiP.  
2. Compute vector with residuals: ei = xi − tiPT. 

The results are then summarized by computing two distances. These 
are the orthogonal distance, qi, which is the squared Euclidean distance 
between the original data point and its projection: 

qi =
∑A

a=1
e2

ia (5)  

and the score distance, hi, which is the squared Mahalanobis distance 
between the projection and the PC space origin: 

hi =
∑A

a=1

t2
ia

λa
(6)  

Here tia and eia are the elements of vectors ti and ei, and λa are the ele-
ments of vector λ. 

Hence the relationship between a data point, xi, and any PCA model, 
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M = {A, P, λ}, can be determined using two vectors of distances, q =

{qi} and h = {hi}. These two distances are the outcomes that are 
included into the set R, introduced in the previous section. 

Now we can define the requirements for the PV-set that is used to 
validate PCA and SIMCA models. For a given cross-validation segment k, 
the local PCA model, M k = {A,Pk,λ}, is as follows: 

X̃k = T̃kPT
k + Ẽk (7) 

This model is applied to the local validation set: 

Tk =XkPk (8)  

Ek =Xk − TkPT
k (9)  

And the vectors of two distances are obtained: 

qk =
∑A

a=1
e2

ia

hk =
∑A

a=1

t2
ia

λa

(10)  

Here tia and eia are the elements of matrices Tk and Ek. The two distance 
vectors are now included into the matrix of outcomes Rk. Note that we 
do not compute vector λ for the local models but just reuse the one 
obtained from the global model. 

Now we can create matrix Xpvk , such as: 

Tpvk =Xpvk P (11)  

Epvk =Xpvk − Tpvk PT (12) 

The Procrustean rule is that the both distances, qpvk 
and hpvk , should 

be equal to the local distances qk and hk for any number of PC, a, less 
than or equal to A (a ≤ A). 

If the full PCA decomposition is used (A equals to rank of X), the h 
distances are equal if: 

Tpvk PT =TkPT
k (13) 

Since the columns of both P and Pk are orthonormal (PTP = PT
k Pk =

I) the exact solution for Tpvk is as follows: 

Tpvk =TkPT
k P (14) 

Geometrically this is equivalent to the rotation of the projected data 
points between the coordinate systems associated with the two models 
(local and global). The explained part of Xpvk is computed as: 

X̂pvk =Tpvk PT = TkPT
k PPT = XkPkPT

k PPT (15) 

However, if the decomposition is truncated, in order to meet the 
second rule, qpvk

= qk, we should create matrix Epvk , which has the same 
sum of squared row elements as Ek. Assuming that the PV-set is created 
using large enough number of components, A, which ensures that no 
systematic variation is left in the residuals, this can be done using the 
following procedure:  

3. Create a matrix Z of size Ik × Ik as a set of random values from any 
distribution with zero expectation.  

4. Project the columns of Xk: E(1)
pvk

= ZXk and normalize the columns of 

E(1)
pvk 

to the unit length.  

5. Orthogonalize the columns relative to the global PC space: E(2)
pvk

=

E(1)
pvk

(I − PPT) and normalize the rows of E(2)
pvk 

to the unit length.  

6. Scale the rows of E(2)
pvk 

to meet the requirement: Epvk = E(2)
pvk

Qk, 
where Qk is a diagonal matrix with elements equal to the square root 
of elements from qk. 

The final Xpvk is computed as: 

Xpvk = X̂pvk + Epvk (16) 

It can be noticed that residuals, Epv, can be computed outside the 
cross-validation loop, for the entire PV-set, Xpv. In this case we just need 
to collect all the qk together and apply the procedure described above. 

It is also important to notice that if we create two PV-sets, one using 
A = A1 components and the second one using A = A2 components and 
apply each for validation of a PCA/SIMCA model developed for A = A3 
components, then the results of the validation will be identical if A3 ≤

A2 ≤ A1. This makes generation of PV-set independent of the selection of 
optimal number of components. One just should use the number of 
components, A, which is large enough to include the optimal number. 

The original algorithm for PCV of PCA/SIMCA model, presented in 
Ref. [4] was based on rotation of the data points from X in the original 
variable space. This requires an additional internal loop over the prin-
cipal components in order to build a rotation matrix. The new algorithm 
described above provides identical results (in terms of the two dis-
tances), but is faster and can be generalized for the regression models as 
it is shown in the next sections. 

2.4. Procrustes cross-validation for PCR models 

The regression problem is defined as: 

Y=XB + E(y) = Ŷ + E(y) (17)  

which is solved subject to minimization of the sum of squared elements 
of E(y) (errors of prediction). Because the minimization of the sum is the 
main objective of optimization, it is reasonable to use E(y) as the 
outcome object in R, which can be further utilized for constraining of 
PV-set as: 

E(y)
pvk

≈ E(y)
k (18) 

This rule should hold for any number of components a = 1, ...,A. 
Here E(y)

k is the matrix with the prediction residuals obtained at k-th 
segment of cross-validation by applying a local regression model M k to 
the local validation set, {Xk, Yk}. Matrix E(y)

pvk 
contains the prediction 

residuals, obtained by applying a global regression model, M , to the 
corresponding PV-subset {Xpvk ,Yk}. equation (18) can be rewritten as 
follows: 

Xpvk B ≈ XkBk (19)  

In other words, in case of regression, the pseudo-validation set is created 
using only predictors, Xpv. In this section we show how to implement 
this rule for Principal Component Regression (PCR). 

PCR is a multiple linear regression method based on the PCA 
factorization of the original predictor matrix X and a response matrix Y. 
It can be defined as follows: 

X = TPT + E(x)

Y = TCT + E(y) (20)  

Here T, P are the scores and loadings obtained from the PCA decom-
position of X. If Y has only one response, the matrix C has the size 1 × A 
and is considered as a vector with regression coefficients, which may 
also be interpreted as the Y-loadings. It is computed as follows: 

CT =
(
TTT

)− 1TTY (21) 

Therefore, we can rewrite the requirement from Equation (19) as 
follows: 

Tpvk CT =TkCT
k (22)  

Or, for each principal component a: 

S. Kucheryavskiy et al.                                                                                                                                                                                                                        
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tpvka ca = tkacka (23) 

Note that in this case both ca and cka are scalars. This provides a 
simple solution for Tpvk : 

Tpvk =TkDk (24)  

where Dk is the A × A diagonal matrix containing the ratios cka/ ca as its 
diagonal elements: 

Dk =

⎛

⎜
⎜
⎝

ck1/c1 0 ... 0
0 ck2/c2 ... 0
... ... ... ...

0 0 ... cka/ca

⎞

⎟
⎟
⎠ (25) 

The explained part of the PV-set is calculated as follows: 

X̂pvk =Tpvk PT = XkPkDkPT (26) 

Assuming that the maximum number of components, A, used for 
calculation of the explained part, is large enough to capture all possible 
systematic variation, the residuals, Epvk can be computed using the same 
procedure as described for PCA in the previous section. 

By repeating this procedure for all k = 1, ...,K and combining Xpvk 

together, the entire pseudo-validation set is obtained. Fig. 1 shows the 
algorithm schematically. 

2.5. Procrustes cross-validation for PLS models 

Partial least squares (PLS) regression can be presented in a form 
similar to PCR: 

X = TPT + E(x)

Y = TCT + E(y) (27) 

However, in contrast to PCR, the scores T are calculated by taking 
into account the covariance between columns of X and Y. The covari-
ance pattern is captured by a matrix of weights, W which is computed 
iteratively for each latent variable. This can be done using NIPALS [12] 
or SIMPLS [13] algorithms. 

Once the matrix of weights is obtained, one can calculate the score 
matrix T and complete the decomposition in different ways. Thus, 
originally, it has been proposed to compute both the weights W and the 
loadings P, so the scores are found as: 

T = XW
(
PTW

)− 1

X = TPT + E(x) (28) 

This way is often referenced in literature as Wold’s factorization. 
Martens [14] proposed a PLS factorization without using the loadings P: 

T = XW
X = TWT + E(x) (29)  

In this case, the weight matrix, W, has the orthonormal columns. There 
are also other factorizations, such as Biorthogonal PLS, proposed by Rolf 
Ergon [15]. 

In any case, once the score matrix is obtained, the matrix of Y- 
loadings, C can be found similar to PCR: 

CT =
(
TTT

)− 1TTY (30) 

This can be done for any number of responses (columns of Y). 
In case of single response (PLS1), the algorithm for calculation of PV- 

set for a PCR model, described in the previous section, can be applied as 
is. Note that in case of Marten’s factorization, the W matrix should be 
used instead of the P matrix. 

In case of multiple responses (PLS2), matrix C has more than one 
column and thus Equation (23) does not contain scalars anymore: 

tpvka cT
a = tkacT

ka (31)  

However, this equation can be solved as: 

tpvka = tkacT
kaca

(
cT

a ca
)− 1 (32) 

Apparently Equation (23) is a special case of Equation (32) when 
both ca and cka have one element. Here cT

kaca(cT
a ca)

− 1 is a scalar as well, 
which can be used as a diagonal element of matrix D: 

Dk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

cT
k1c1

(
cT

1 c1
)− 1 0 ... 0

0 cT
k2c2

(
cT

2 c2
)− 1

... 0
... ... ... ...

0 0 ... cT
kAcA

(
cT

AcA
)− 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(33)  

In the case of Wold’s factorization the explained part of the PV-set can be 
found as follows: 

X̂pvk =Tpvk PT =XkWk
(
PT

k Wk
)− 1DkPT (34)  

In the experimental part it is shown that in case of single response we 
obtain the exact equivalence of the prediction errors (E(y)

pvk
= E(y)

k ) and in 
the case of multiple responses the equivalence is held approximately 
(E(y)

pvk
≈ E(y)

k ). 

2.6. Matrix D as a diagnostic tool in PCV 

It should be noted, that the diagonal elements of matrix Dk can also 
be used as an additional source of information about the quality of the 
dataset, the homogeneity of the cross-validation segments and the 
robustness of the model. Thus, if the global and the local models for a 
given segment k are identical, then Dk = I as cka/ca = 1 (or 
cT

kaca(cT
a ca)

− 1
= 1 in case of multiple response). In practice, values cka 

vary around values ca. This variation depends on the heterogeneity of 
the dataset, similarity of the subsamples from different splits, as well as 
on the importance of a particular latent variable for a prediction. 

If the variation is relatively small, the values cka/ca are randomly 

Fig. 1. Algorithm for creating a PV-set for Principal Component Regression.  
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distributed around 1. Very large, small or negative values could indicate 
a large discrepancy between the local and global models. This difference 
can be explained by one of the following reasons:  

7. Wrong splitting strategy, for example, all objects with large response 
values are located in one segment.  

8. Presence of one or several extreme observations in one of the 
segments.  

9. Current latent variable explains irrelevant systematic variation or 
large random variation. 

In the experimental section it is shown that the exploration of the 
diagonal elements of Dk can identify such situations. We suppose that 
this approach adds a new useful tool to the chemometric toolbox. 

3. Datasets 

3.1. NIR spectra of corn samples 

The Corn dataset consists of Near Infrared (NIR) spectra of 80 corn 
samples. Each spectrum contains the absorbance values for 750 wave-
lengths covering the range from 1100 to 2498 nm. The spectra were 
downloaded from Eigenvector Research, Inc. Website, where they are 
publicly available (https://eigenvector.com/resources/data-sets/). 

The original data contains several subsets of spectra acquired using 
different instruments (m5, mp5 and mp6). The mp5 spectra are used in 
this paper. The spectra were corrected using Standard Normal Variate 
(SNV) normalization. 

The dataset also contains the moisture, oil, protein and starch re-
sponses for each of the corn samples. 

The Corn dataset is used in order to demonstrate that PCA, PCR and 
PLS1 algorithms, described in the previous section, work as intended. 

3.2. Tecator 

Another dataset, Tecator, is also well known (http://lib.stat.cmu.ed 
u/datasets/tecator/). It consists of 215 Near Infrared Transmission 
(NIT) spectra recorded in the range of 850–1050 nm using Tecator 
Infratec Food and Feed Analyzer. The spectra were acquired for finely 
chopped pure meat samples with different moisture, fat and protein 
contents. The dataset is split into the training set (172 samples) and the 
test set (43 samples). 

The spectra are affected by strong light scattering effect and hence 
require proper preprocessing in order to get a model with decent pre-
dictions of the response values. 

This dataset is used for demonstration of how PV-set can be applied 
for the grid search of the best combination of preprocessing methods, 
and also to show how PCV works in case of multiple responses (PLS2). 

4. Results 

4.1. PCA analysis of corn data 

This short section aims at confirming that the proposed modification 
of the PCV algorithm for PCA models provides results identical to the 
original algorithm, described in Ref. [4]. In this case two PV-sets are 
created using the two algorithms (the old and new) for A = 20, and 
Venetian blinds split with K = 4 segments. Both sets are used for vali-
dation of a PCA model developed for the mean centered Corn spectra. 

Fig. 10 (available in supplementary materials) shows the distance 
plots created for both sets with A = 2 and A = 20 (data points for cali-
bration set are shown in all plots as well). The obtained results are 
identical (also confirmed numerically), showing a clear overfitting 
pattern for A = 20. However, generation of the PV-set using the modi-
fied algorithm was more than 300 times faster (58.2 s vs. 0.16 s average 
time for repeating the generation procedure 30 times for each algorithm 
on the same computer). 

The modified approach was also applied to reproduce all examples 
from Ref. [4] and resulted in the identical outcomes (not shown here). 

4.2. PCR analysis of corn data 

A PCR model with A = 20 PCs was created using the NIR spectra 
from the Corn dataset as predictors and the moisture content as the 
response. The CCV procedure based on Venetian blinds split with K = 4 
segments was applied to the model. A PV-set was developed using the 
approach proposed in Section 2.4, with A = 20 and the same split as in 
CCV. 

Fig. 2 shows spectral plots (after mean centering) both for the cali-
bration set, X, and the pseudo-validation set Xpv for visual inspection. 
The spectra are color coded based on the corresponding response value 
using the gradient from blue to red (the color map legend is shown in all 
plots). As one can notice, although the common trends are quite similar 
in the two datasets, the spectra do not look identical. The difference is 

Fig. 2. Calibration set (left) and pseudo-validation set (right) for the Corn spectra. The PV-set was created using PCR based algorithm.  
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especially clear for two spectra, which look extreme in both sets. 
The PV-set was used as a validation set to validate the global PCR 

model. Fig. 3 shows the predicted vs. measured plots for a = 3, a = 7 
and a = 20. In all plots points shown as blue squares correspond to the 
prediction computed for the calibration set, orange circles stand for the 
CCV predictions and red crosses represent the PCV predictions. As one 
can notice, the last two results are identical regardless the number of 
components, although in case of PCV the prediction was obtained by 
applying the global model to the whole PV-set. 

Fig. 4 shows the overall model performance using the total explained 
variance (TEV) plots for X and Y, as well as the root mean squared error 
(RMSE) values. Same color coding is used. In case of the explained X- 
variance, the CCV results are not shown as it is not possible to compute 

them correctly. As expected, the TEV and RMSE computed for CCV and 
PCV outcomes are identical. This proves that the algorithm works as 
intended. 

4.3. PLS1 analysis of corn data 

A PLS model with A = 20 was developed and the corresponding PV- 
set was created using the same data and rules as for PCR, described in the 
previous section. SIMPLS was used as the algorithm for PLS factorization 
(both for the global model and for the PV-set generation). 

Fig. 5 contains three plots with main outcomes obtained for cali-
bration, CCV and PCV. The first one shows RMSE values. The other two 
plots show predicted vs. reference response values obtained for a = 10 

Fig. 3. Predicted vs. reference moisture content obtained for the PCR model of Corn data for different number of PCs.  

Fig. 4. Total explained variance for predictors and responses and the root mean square error for the PCR model of Corn data.  

Fig. 5. Root mean squared error vs. number of components and two plots with predicted vs. measured response values (a = 10 and a = 20) for the PLS1 model of 
Corn data. 
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and a = 20. In all cases the results obtained for PCV and CCV are 
identical. 

Fig. 6 contains plots which illustrate the behaviour of the ck/ c values 
for individual LV (abscissa axis in all plots). The plots are made using the 
PCV procedure with different number of segments K = 4, 10, 20 and 80. 
The top four plots are the heatmaps of the ratios, where the values ck/

c < 1 are shown as the shades of blue and the values ck/ c > 1 are shown 
as the shades of red color. Values ck/c = 1 are shown in white. The 
bottom plots are the box-and-whisker plots developed using all ck/ c 
values for each LV. 

It can be seen that the ratio values vary randomly around 1, as ex-
pected. The variation depends on the number of segments. Thus in case 
of the leave-one-out splits (K = 80, the most right plots), the most of the 
values are very close to 1 with a few extremes. In case of fewer segments 
(e.g. for K = 4, the most left plots), the variation magnitude is larger. 
This effect is in line with our knowledge about the cross-validation, 
which underestimates the sampling error when too many segments are 
used. 

Therefore, we can conclude that the ck/c plots can provide an 
additional information about the quality and homogeneity of the dataset 
and the splits. For example, the presence of negative or large positive 
values (above 2) indicates the lack of stability for a particular LV. This 
means that exclusion of a small part of data leads to local Y-loadings that 
are significantly different from the Y-loadings of the global model ob-
tained for the same LV. This effect has been observed earlier when PCV 
was applied for short datasets in SIMCA classification models [9]. 

Negative values would indicate that the corresponding Y-loading 
vector (or a value in case of a single response) swapped its direction. It 
means that an LV, which gives a positive contribution to the predicted 
response values in the global model, contributes negatively in the local 
model and vice versa. The large absolute values would indicate that the 
magnitude of the contribution in the local model is very much different 
from the contribution of this LV in the global model. 

These effects can be caused by the presence of several extremes or 
even outliers in the same segment or by the case when an LV explains a 
large but non-relevant variation. None of these effects are observed for 
this dataset. 

The additional exploration of the local model makes it clear that for 

a = 4 the ratio is persistently positive, even in the case of larger number 
of splits. This situation is unlikely for a random selection of samples in 
the segments. Investigation of the PLS weights obtained using the global 
and the local models for this particular LV confirms this effect (Fig. 11, 
available in supplementary materials) for both K = 4 and K = 10 cases 
(two top plots in the figure). As one can see, in the range of 1500–1650 
nm the weights obtained for most of the local models are consistently 
smaller than the global weights. The bottom plots show the weights for 
a = 5 for comparison, in which the weights from the local models vary 
more randomly around the global model weights. 

Thus, the Procrustes cross-validation of PLS models not only provides 
all capabilities of the conventional validation set but also gives the 
additional tools for deeper exploratory analysis of the datasets and the 
models. 

4.4. PLS1 analysis of tecator data 

This example demonstrates how PV-set can be used for a faster grid 
search of the best preprocessing method. As it was already mentioned, 
the spectra from Tecator dataset suffer from the scattering effect and 
therefore preprocessing is necessary. The selection of methods to tackle 
this problem is quite wide, from Standard Normal Variate (SNV) or 
Multiplicative Scatter Correction (MSC) to Savitzky-Golay (SG) filter for 
the first or second derivative. In case of SG two additional parameters 
have to be tuned — the filter width and the degree of polynomial. 

When such a broad selection of possible preprocessing methods ex-
ists, the grid search application, in which all the methods and their 
combinations are tested in order to find the best one, is quite common. 
Thus, if 20 different combinations should be tested and the CCV with 
K = 4 is employed, then 100 PLS models are to be calibrated in total (1 
global and 4 local models for each combination) during the grid search. 
Moreover, cross-validation itself gives the additional overhead related to 
the local predictions, combining all results together, etc. 

Using PCV in this case makes possible to create a single model for 
each combination since the PV-set can be created only once, for the 
original, non-preprocessed dataset. However, in this case the prediction 
performance of the CCV and the PCV will be different as the first is based 
on already preprocessed data. 

Fig. 6. Visualization of ck/c ratios for different splits and individual components in case of K = 4, 10, 20 and 80 (Corn data).  
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In order to compare the two methods, the grid search with 17 
combinations of SNV and SG filter with different settings was carried 
out. The full list of combinations with all details is shown in Table 1. 

Fig. 7 shows the original training set (left) and the corresponding PV- 
set (right) that was generated using K = 4 and A = 20. Similar to the 
previous cases, the plots show mean centered spectra. The scattering 
effect is clearly visible in both sets. 

Fig. 8 presents the bar plot developed for the RMSE values obtained 
using the CCV (orange) and the PCV (red) of the PLS-models based on 
the preprocessed spectra. In both cases the optimal number of LVs 
(shown as a number on the top of each bar) was identified as the first 
local minimum of the corresponding RMSE values. The highlighted bars 
correspond to the combination of preprocessing methods that resulted in 
the smallest RMSE (best two results for each method). 

It is clear that the results obtained using the two validation ap-
proaches are very similar with small deviations of the individual RMSE 
values. 

The combination of preprocessing methods that provide two best 
results is identical: in both cases it is a combination of SG filter for the 
second derivative (filter width 7 and 9) followed by SNV normalization 
(last two rows in Table 1). Both approaches also suggest the same 
optimal number of components (a = 8) although PCV is more pessi-
mistic in the estimation of the RMSE values. 

We suppose the result to be quite impressive taking into account that 
PV-set was created for the raw spectra of the original training set while 
the CCV is based on already preprocessed spectra. It should be also 
mentioned that the overall procedure was on average 7 times faster in 
case of PCV compared to CCV. The procedure was repeated 30 times for 
each approach on the same computer. In the case of CCV it took from 6 
to 8 s to complete the grid search, while in case of PCV the computa-
tional time was around 1 s. 

4.5. PLS2 analysis of tecator data 

The PLS based method for PCV, suggested in Section 2.5, is versatile 
and can be applied to both PLS1 and PLS2 factorizations. Although in 
case of PLS2, the RMSE values computed using the CCV and the PCV are 
not completely identical. 

In order to demonstrate how PCV works for PLS2 and how large the 
difference between the PCV and the CCV results is, the Tecator data is 
used again, but this time all three responses (moisture, fat and protein 
content) are utilized in the model. 

Similar to the previous section, the PV-set was generated using the 
PLS based algorithm with A = 20 and K = 4, however the response 
matrix Y consists of three columns in this case. Fig. 9 shows the RMSE 
values vs. the number of LVs for each response. As one can see, the RMSE 
values, which are obtained using PCV and CCV, are almost identical for 
the first three LVs, which capture 96% of the relative Y-variance in total. 
There is a larger difference in RMSE values for the later LV; however, it is 
obvious that the qualitative behaviour of the RMSE vs. number of 
components is similar for the two approaches. 

5. Discussion and conclusions 

We demonstrated that Procrustes cross-validation, proposed recently 
for validation of PCA and SIMCA models, can be presented in a more 
general way, which makes it more versatile and flexible. The proposed 
generalization allowed us to develop the more efficient PCA imple-
mentation, which is by several orders of magnitude faster, compared to 
the original version. In addition, it made possible to use PCV approach 
for validation of the multivariate regression models based on latent 
variables decomposition, such as PCR and PLS. 

The pseudo-validation set, generated by PCV, can be used for vali-
dation of a global model providing a full set of outcomes in contrast to 
CCV in which the outcomes are collected from several local models. At 

Table 1 
Preprocessing methods used for grid search.  

Method Abbreviation 

SNV snv 
SG filter (width = 3, polynomial degree = 1, first derivative) sg311 
SG filter (width = 5, polynomial degree = 1, first derivative) sg511 
SG filter (width = 7, polynomial degree = 1, first derivative) sg711 
SG filter (width = 9, polynomial degree = 1, first derivative) sg911 
Combination of sg311 and SNV sg311 + snv 
Combination of sg511 and SNV sg511 + snv 
Combination of sg711 and SNV sg711 + snv 
Combination of sg911 and SNV sg911 + snv 
SG filter (width = 3, polynomial degree = 2, second derivative) sg322 
SG filter (width = 5, polynomial degree = 2, second derivative) sg522 
SG filter (width = 7, polynomial degree = 2, second derivative) sg722 
SG filter (width = 9, polynomial degree = 2, second derivative) sg922 
Combination of sg322 and SNV sg322 + snv 
Combination of sg522 and SNV sg522 + snv 
Combination of sg722 and SNV sg722 + snv 
Combination of sg922 and SNV sg922 + snv  

Fig. 7. Calibration set (left) and pseudo-validation set (right) for the Tecator spectra. The PV-set was created using PLS based algorithm with K = 4 and A = 20.  
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the same time, using pseudo-validation set makes possible to speed up 
the process of model optimization, for example, in case of the grid search 
for selection of the best combination of preprocessing methods. 

Procrustes cross-validation also provides additional tools, which help 
an analyst to get the better insights about the heterogeneity of the 
dataset, quality of cross-validation splits, presence of outliers, etc. 

The general idea of PCV is to emulate a new set of objects/mea-
surements taken from the same population as the training set. In case of 
multivariate data, it is important to consider the internal structure of the 
data, in particular, the relationship among variables. Projection 
methods, such as PCA and PLS makes this possible via utilizing the 
variance-covariance structure. This makes the PCV algorithms, proposed 
in the paper, simple and straightforward. 

The idea of Procrustean rules, also introduced in this paper, in the-
ory, let PCV be implemented for other machine learning methods as 
well. However, some of the ML methods, e.g. Support Vector Machines, 
do not take the internal structure of the whole data into account. Other, 
such as artificial neural networks, often model this structure in a very 
complex way, which is difficult to utilize. Based on our experience, PV- 

sets, generated using the projection methods can be successfully applied 
for validation and exploration of more sophisticated models, however 
this requires additional investigation. 
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Fig. 9. Root mean square error vs. number of components obtained for each response using PLS2 model for the Tecator dataset.  
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Data availability 

All data is from public datasets, the code is available on GitHub 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.aca.2023.341096. 
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