
Aalborg Universitet

Plug-and-Play Control – Modifying Control Systems Online

Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

Published in:
I E E E Transactions on Control Systems Technology

DOI (link to publication from Publisher):
10.1109/TCST.2011.2174060

Publication date:
2013

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Bendtsen, J. D., Trangbæk, K., & Stoustrup, J. (2013). Plug-and-Play Control – Modifying Control Systems
Online. I E E E Transactions on Control Systems Technology, 21(1), 79-93.
https://doi.org/10.1109/TCST.2011.2174060

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.1109/TCST.2011.2174060
https://vbn.aau.dk/en/publications/fc9182a7-9007-421b-991a-94dcc7c39762
https://doi.org/10.1109/TCST.2011.2174060


Plug-and-Play Control – Modifying Control Systems Online
Jan Bendtsen,Member, IEEE, Klaus Trangbaek, Jakob Stoustrup,Senior Member, IEEE

Abstract—Often, when new sensor or actuator hardware be-
comes available for use in a control system, it is desirable to
retain the existing control system and apply the new control
capabilities in a gradual fashion rather than decommissioning
the entire existing system and replacing it with an altogether new
control system. However, this requires that the existing controller
remains in action, and the new control law component isadded to
the existing system. This paper formally introduces the concept
of Plug-and-Play control and proposes two different methods
of introducing new control components in a smooth manner,
providing stability guarantees during the transition phase as well
as retaining the original control structure. The applicability of the
methods is illustrated on two different practical example systems,
a livestock stable climate control system and a laboratory-scale
model of a district heating system.

Index Terms—Variable structure systems, Youla-Kucera pa-
rameterization, Observer-based control

I. I NTRODUCTION

All medium- to large-scale automation systems, such as
power plants, refineries, factories, supermarkets or even large
ships, are equipped with control systems to handle various
automated processes, such as production facilities [1], [2],
chemical batch processing [3], climate control [4], or power
production [5]. Most practical control systems tend to be
designed at the time of commissioning of the plant and quite
often rely on PLCs or similar hardware to implement classi-
cally designed (and often conservatively tuned) control loops.
However, as time goes by and new technology and knowledge
becomes available, it may become desirable to introduce new
sensor and/or actuator hardware for performance reasons.

The problem here is that a vast majority of control design
methodologies are “monolithic” in the sense that they embark
from a full-scale model of an uncontrolled (open-loop) system
and outputs a full, multi-variable control system, which does
not exploit any knowledge or functionality from previous
designs. If components or sub-systems are added to existing
systems, however, the design in principle has to be re-done
from scratch, which is likely to be very expensive in terms of
engineering man-hours, operation stop, and commissioningof
the new system.

Thus, when new sensor and/or actuator hardware becomes
available for use in a control system, it is often desirable to
retain the existing control laws and apply the new control
capabilities in a gradual, online fashion rather than decom-
missioning the entire existing control system and replacing it
with the new system, [6], [7], [8].
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Furthermore, from an industrial application-oriented point
of view, the ability to switch back to an existing, proven
control design in case a new, more complex design proves un-
satisfactory in practical operation, for instance if uncertainties,
nonlinear effects or similar causes the performance to degrade,
is a significant advantage. In many cases there may also be
other arguments for maintaining the existing control system
in place, such as it being part of a safety-critical interlocking
circuit.

We hereby define the concept of adding devices to an exist-
ing control system while it is running, and having the system
(preferably automatically) utilize the new devices online, as
“Plug-and-Play Control”.

While the idea of expanding a controller by adding to an
existing control law is not, as such, new—see e.g., [9], [10]—
the subject of incorporating newsignalsor even subsystems
into an existing system has not received much attention
in the literature before. [11] and [12] used the “Plug and
Play” terminology in a networked control framework, but
the basic idea was quite different; it revolved around semi-
autonomous agents and the emphasis was primarily on fault-
tolerance. Furthermore, the overall concept presented in [11]
and [12] seems to have more in common with the distributed
optimization schemes of [13] than with the control design-
oriented methodology proposed here, in the sense that the
agents “communicate” through cost negotiations in an attempt
to achieve global performance optimization.

Conceptually, Plug-and-Play control is somewhat related
to “Windsurfer control” [14], [15], [16]. However, while
Windsurfer control also aims for performance improvement by
learning more about the plant during online operation, there
have so far been no treatments ofstructural updates of the
closed loop.

The main contribution of this paper is toformulate the
Plug-and-Play control problemin a quite general setting.
We also propose two possible approaches to the Plug-and-
Play control problem, which can be deployed depending on
the model information available and other criteria; however,
we emphasize that these approaches are merely preliminary
suggestions for solutions to the problem.

The general assumption is that the new control laws must
be added toexisting control laws when new sensors/actuators
become available, whileleaving the existing control systems
in place. Also, we assume that an existing model is available,
either from data-driven or from first-principles modeling.

When a device is added, the first step is to identify a model
of it. As long as the new device does not involve significant
dynamics, the added model can be identified in a fairly
straightforward manner, see e.g., [17]. If, on the other hand, the
new device (sensor) involves dynamics, or if the measurement
noise of the old and new sensors is correlated, the situation



becomes more difficult. To this end, we briefly present a
modified version of the so-called “Hansen scheme” for closed-
loop system identification with open-loop-like qualities [18],
[19]. With these techniques, it is possible to update the plant
model without having to identify everything from scratch, and
without having to decommission the plant in order to carry
out dedicated experiments.

The paper then discusses two possible approaches to incor-
porating new devices into an existing control system in an
“add-on” manner. The first approach is sensor fusion based,
see e.g. [20], [21]. There is a wide range of literature on
implementation of controllers based on sensor fusion, see
e.g. [22] and the references therein. In the method presented
here, however, we specifically address the situation of fusing
new measurements with existing ones in order to modify the
inputs to an existing controller, such that the overall perfor-
mance is improved. To that end, an observer-based architecture
is proposed, which can be carried out independently of the
existing design.

The second method relies on theYoula-Kuceraparametriza-
tion of all stabilizing controllers for a given plant. This
methodology has the advantage that the performance transfer
function is affine in the design parameter, which means that
the design problem has an open-loop-like nature and good per-
formance can thus be expected during the transition between
controllers. Furthermore, certain stability guarantees can be
given for this approach.

Both methods are tested in actual implementations; a cli-
mate control system for a livestock stable and a laboratory
model of a district heating system. Note, however, that it is
not our intention to provide a rigorous comparison between the
methods, only to show that the Plug-and-Play control problem
is feasible in practice.

After some preliminaries in Section II and a general problem
statement in Section III, we discuss the identification issue in
Section IV. Section V then outlines the Youla-Kucera-based
control approach, while Section VI presents the sensor fusion-
based control approach. Sections VII and VIII show the two
practical application examples, and finally, Section IX sums
up the conclusions of the work.

II. PRELIMINARIES

This section briefly recapitulates some basic concepts of
coprime factorization and the Youla-Kucera parameterization
of stabilizing controllers, which we will use extensively in the
sequel; see [23], [24], [19], and [25] for further details. All
results presented in this section are valid in either continuous
and discrete time. Our notation is standard;RHp×m

∞
is the

Banach space of real rational stable transfer matrices mapping
m-dimensional input signals top-dimensional output signals,
while ⋆ denotes the so-calledstar product(feedback intercon-
nection) between two LTI systems [26].

Consider the setup in the left block diagram in Figure
1, wherew ∈ R

mw denotes external reference/noise input
signals andz ∈ R

pz represents performance outputs, e.g.,
deviations from reference values.u ∈ R

m and y ∈ R
p are

controllable inputs and measurement outputs, respectively. G

is the plant under consideration, whileK is a controller. Let
G be partitioned as

G =

[

Gzw Gzu

Gyw Gyu

]

(1)

The closed loop is stable iffGyu⋆K is stable. The LTI system
Gyu can be factorized as

Gyu = NM−1 = M̃−1Ñ (2)

with N ∈ RHp×m
∞

,M ∈ RHm×m
∞

, M̃ ∈ RHp×p
∞

, Ñ ∈
RHp×m

∞
. If the factors have no pole-zero cancellations, they

are calledright and left coprime factorizations, respectively.
Correspondingly,K can be factorized as

K = UV −1 = Ṽ −1Ũ (3)

where U ∈ RHm×p
∞

, V ∈ RHp×p
∞

, Ũ ∈ RHm×p
∞

, Ṽ ∈
RHm×m

∞
. These coprime factorizations can be chosen to

satisfy the doubleBezout identity
[

Ṽ −Ũ

−Ñ M̃

] [

M U

N V

]

=

[

M U

N V

] [

Ṽ −Ũ

−Ñ M̃

]

=

[

I 0
0 I

]

(4)

The Youla-Kucera parameterizationnow states thatall
stabilizing controllers for some fixed systemGyu, and hence
for G, based on some stabilizingK can be constructed by
interconnectingK with a free, stable parameter systemQ, as
indicated in the right block diagram in Figure 1.
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Fig. 1. Left: The interconnection of the systemG and the controllerK. Right:
A different stabilizing controller implemented asK(Q) = K′ ⋆ Q, whereK′

is an augmented version ofK, andQ is a Youla-Kucera parameter.

In particular,

K(Q) = (U +MQ)(V +NQ)−1

= (Ṽ +QÑ)−1(Ũ +QM̃), Q ∈ RH∞ (5)

whereQ, which can be any stable system of appropriate input-
output dimensions, is called theYoula-Kucera parameter.
These configurations are illustrated in Figure 2.

As pointed out in [27] and [28], by exploiting the Youla-
Kucera parameterization, it is possible to change between
two controllers online, say, from a nominal controllerK0 to
another controllerK1, in a smooth fashion by scaling theQ
parameter by a scalar factorγ ∈ [0; 1] without losing stability.

In fact, if a desired transfer function for a new stabilizing
controllerK1 has been obtained,K(Q) = K1 can be realized
from K0 and G by factoringK0 = Ṽ −1

0 Ũ0 = U0V
−1
0 and

K1 = Ṽ −1
1 Ũ1 = U1V

−1
1 such that

[

Ṽ1 −Ũ1

−Ñ M̃

] [

M U1

N V1

]

=

[

M U1

N V1

] [

Ṽ1 −Ũ1

−Ñ M̃

]

=

[

I 0
0 I

]

,
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Fig. 2. Left and right coprime factorization-based Youla-Kucera parameteri-
zation of all stabilizing controllers.

and setting (see [29])

Q = Ũ1V0 − Ṽ1U0 = Ṽ1(K1 −K0)V0. (6)

From Figure 2 and using the Bezout identity, it is straight-
forward to see that

z = Gzww +Gzu(U +MQ)M̃Gyww

= Gzww +GzuM(U +QM̃)Gyww

i.e., the performance transfer function fromw to z is affine in
Q:

Tzw = T1 + T2QT3 (7)

whereT1, T2, andT3 are stable transfer functions—see Figure
3. Thus, givenG andK, a control design can be carried out
by finding a stableQ that minimizesTzw in some sense. This
is known as a model matching problem [30].

T1

T2 Q T3

� w

���

6
��z

Fig. 3. Performance transfer functionTzw .

Once aQ has been designed, the affine dependence also
means that ifQ is scaled byγ as mentioned above, then the
performance will change in a predictable way for all values
of γ.

The Youla-Kucera parameterization has adual formulation,
which characterizes all (linear) plants stabilized by a (linear)
controller. This formulation can be exploited to recast a closed-
loop system identification problem (see Figure 4) into an
‘open-loop-like’ problem via the so-called “Hansen scheme”
[18]. Doing so often leads to better-posed identification prob-
lems, since the input will then be uncorrelated with the noise.

Assume that a controller, factorized asK = UV −1 =
Ṽ −1Ũ stabilizes the plant we wish to identify, and that some
nominal plant estimateG, factorized asG = NM−1 =
M̃−1Ñ , is known. Let the factorization be chosen to satisfy the
Bezout identity (4). Then the dual Youla-Kucera parametriza-
tion of all plants stabilized byK can be represented as shown
in Figure 5, whereS is a stable system denoted the dual
Youla-Kucera parameter. In the figure,v′ = (M̃ + SŨ)vy

G

K

���
y

-

u
?

vy

Fig. 4. Closed-loop system identification of a plantG in closed loop with a
controllerK. Due to the feedback, the inputu is correlated with the noisevy ,
making it difficult to identifyG reliably.

is the measurement noise that would normally affect the
measurementsy, relocated in the block diagram to affect the
output of the dual Youla-Kucera parameter instead, andr1 and
r2 are external excitation signals.

�

?-r1 - Ũ - Ṽ −1 - �

�
−

r2

u
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6
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Fig. 5. Dual Youla-Kucera parameterization used for closed-loop system
identification

By manipulating the block diagram and using (4), it is
possible to check thaty = G(S)u + vy. Furthermore, from
the block diagram, we find the following relations:

(N + V S)ζ = y − V v′ (8)

and

(M + US)ζ = u− Uv′

= r2 + Ṽ −1Ũ(y + r1)− Uv′ (9)

Applying the LTI operators̃V and Ũ to (8) and (9), respec-
tively, subtracting the bottom equation from the top equation
and using the Bezout identity then results in

ζ = Ũr1 + Ṽ r2 (10)

In a similar vein, from the block diagram, we have the relations

Mζ = u− Uz

Nζ = y − V z

Applying Ñ to the top expression and̃M to the bottom one,
subtracting one from the other and using the Bezout identity
then results in

z = M̃y − Ñu (11)

and, obviously,z = Sζ + v′. ζ andz are thus available from
filtered measurements. Furthermore, ifvy is independent of



r1 and r2, then ζ is independent ofv′ as well. Also,S is
known to be stable. Thus, it can be seen that althoughu andy
are measured in closed-loop, the identification ofS becomes
equivalent to an open-loop identification problem. We shall
utilize this technique in the sequel. See e.g., [19] for more
details, but please note that we are using positive feedback
control here.

III. PROBLEM FORMULATION

We now turn our attention to the main problem treated in
this paper. As mentioned in the introduction, the objectiveis to
incorporate a new sensor or actuator in an existing control loop
without having to re-design the existing system. There can
be various reasons for this; for instance, the existing control
system might contain supervisory logic that we do not wish
to interfere with or replicate. Also, plant operators oftentend
to be wary of replacing a known, functioning controller with
an entirely new replacement. Instead, adding a controller to
the original one and slowly turning it on tends to be more
appealing in practical applications.

Consider the situations depicted in Figure 6.
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Fig. 6. Plugging in a new sensor (left) or actuator (right).
a) Initial situation.
b) The existing system and controller are embedded in a non-minimal realiza-
tion.
c) A new sensor (left) or actuator (right) is added, providing access to a new
measurementya or a new control signalua, respectively, yielding the extended
plantG1.
d) The controller is extended to include the new signal, yieldingK1

The left column in the figure illustrates the situation wherea
new sensor is added, while the right column deals with adding
an extra actuator. Let the existing systemG have a minimal

state space realization

G =





A Bw B

Cz Dzw Dzu

C Dyw D



 (12)

with A ∈ R
n×n, Bw ∈ R

n×mw , B ∈ R
n×m, Cz ∈

R
pz×n, C ∈ R

p×n, Dzw ∈ R
pz×mw , Dzu ∈ R

pz×m, D ∈
R

p×mw andD ∈ R
p×m being constant matrices, and letK be

a stabilizing controller. For the sake of discussion, it will in the
following be assumed to be an observer-based state feedback
controller of the form

K =

[

A+BF + LC + LDF −L

F 0

]

(13)

where the matricesF andL are chosen such thatA+BF and
A+LC have stable eigenvalues; however, it could in principle
be any stabilizing LTI controller.

In both situations, the addition of the new device causes the
structureof the closed loop to be changed. Since the input-
output dimensions have to match, we embed the system and
controller in a non-minimal realization before adding the new
device (row b) ). In the following, we only write out the case
of adding a new sensor; adding a new actuator is dual, as also
indicated by the use of similar symbols in both columns of
Figure 6.

The extended versions ofG andK become

G0 =

[

G

0

]

=













A 0 Bw B

Aa1 Aa2 0 Ba

Cz 0 Dzw Dzu

C 0 Dyw D

0 0 0 0













(14)

and

K0 =
[

K 0
]

=

[

A+BF + LC + LDF −L 0
F 0 0

]

(15)
respectively. The new matrices are assumed to be real, constant
matrices of appropriate dimensions chosen to accommodate
the dimension of the added sensor signal and any dynamics
that might be revealed when adding the new device (repre-
sented byAa1 andAa2).

Note thatG ⋆ K = G0 ⋆ K0, that is, we have not changed
the closed-loop transfer function by this state space extension.
Note also thatG0 is deliberately chosen such that the states
corresponding toAa2 are unobservable.

Next, in row c), the new device is added, which causesG0

to be replaced by the system

G1 =

[

G

Ga

]

=













A 0 Bw B

Aa1 Aa2 0 Ba

Cz 0 Dzw Dzu

C 0 Dyw D

Ca1 Ca2 Daw Da













. (16)

whereCa1, Ca2, Daw andDa represent the output map of the
new sensor. Note that these parameters are, in general, not
known a priori and may thus require identification.

Finally, the problem we are faced with (in row d) of Figure
6) is the following:



Problem 1 Design an extended controllerK1 =
[

K̄ Ka

]

(or K1 =
[

K̃
Ka

]

) that

• utilizes the new measurementya (or control signalua)
• allows asmooth transitionK0 → K1, in the sense that

the shift to the new controller should not cause large
transients

• retains closed-loop stability throughout the transition
• allows recovering the old controller through the reverse

transitionK1 → K0

such that the performance transfer functionTzw is improved
in some sense.⋄

If the above problem is further restricted to be solved with
minimal human intervention, we refer to it asthe Plug-and-
Play Control Problem.

IV. I DENTIFICATION OF NEW SENSOR

In order to solve Problem 1 in an automated way, it is often
required to estimate the new parametersAa1, Aa2, . . . , Da in
the extended description above. Since we are not interestedin
stopping operation, the new parameter matrices must be iden-
tified online, while the plant is in closed-loop operation with
the existing controller. Various approaches can be considered;
in particular, if the new device is so fast that its dynamics
is negligible compared to the general plant dynamics, the
corresponding gains can be identified in a straightforward
manner, see e.g. [17]. If, on the other hand, the dynamics of the
new sensor or actuator is not negligible, it will in many cases
be advantageous to identify the new parameters in an open-
loop-like setting. We briefly recount a possible approach, first
suggested in [31].

A. Identifying a new sensor

We focus on steps b) and c) in the left column of Figure
6. The idea is to combine the Hansen Scheme (Fig. 5) with
the augmented plant and controller formulations introduced in
the previous section, which means that we have to augment
the coprime system and controller factors to accommodate the
new measurement channels. It is reasonably straightforward to
check that the following coprime factorizations correspond to
(14)–(15), and satisfy the Bezout identity:

[

M0 U0

N0 V0

]

=









A+BF B −L 0
F I 0 0

C +DF D I 0
0 0 0 I









(17)

[

Ṽ0 −Ũ0

−Ñ0 M̃0

]

=









A+ LC −(B + LD) L 0
F I 0 0
C −D I 0
0 0 0 I









(18)

for the system-controller pair before introducing the new
sensor, and

[

M1 U1

N1 V1

]

=













A+BF 0 B −L 0
Aa1 +BaF Aa2 Ba 0 0

F 0 I 0 0
C +DF 0 D I 0

Ca1 +DaF Ca2 Da 0 I













(19)

[

Ṽ1 −Ũ1

−Ñ1 M̃1

]

=













A+ LC 0 −(B + LD) L 0
Aa1 Aa2 −(Ba + LDa) 0 0
F 0 I 0 0
C 0 −D I 0
Ca1 Ca2 −Da 0 I













(20)
for the interconnection with the new sensor (dashed lines
indicate which factors the respective matrices belong to).

The following result, which allows open-loop-like identifi-
cation of the additional dynamics using a surprisingly simple
dual Youla-Kucera parameter, was shown in [31].

Theorem 1:Consider the augmented plant (16) in closed
loop with (15). The new sensor dynamics in the augmented
plant G1 is confined to a dual Youla-Kucera parameterS in
Figure 5 given by

S =

[

Aa2 Ba Aa1

Ca2 Da Ca1

]





A+BF B

F I

I 0



 (21)

The identification procedure is straightforward; first gener-
ate a data sequence by adding excitation signals throughr1
andr2 in Figure 5, then compute the necessary signalsζ and
z by filtering through the relevant factors, and compute the
input to the unknown system by filteringζ through the right
(known) factor in (21). The left factor in (21) can now be
obtained by a standard open loop identification method.

B. Simulation example

We illustrate the approach by a simple simulation example
inspired by the application example considered in Section VIII,
a simplified model of a livestock stable ventilation system.The
example in the subsequent example, which concerns changing
the control law after adding a sensor, is carried out on an
actual stable; in this example, however, we deliberately use a
simulation model in order to have a ‘truth’ model available
for illustration purposes.

A vertical cross-section view of the stable is shown in Figure
7. The figure gives a basic overview of how the ventilation part
of the climate control system operates. Ventilation inletsin the
walls of the stable are opened, allowing fresh air to enter. In the
roof, a number of ventilation fans expel air to the surroundings.
In combination, the inlets and outlets generate an air flow
circulating within the stable, yield a comfortable temperature
for the livestock in the stable and removes unhealthy gases
such as ammonia. A single temperature sensor placed centrally
within the stable is used for measurement feedback to a
controller that controls the ventilation fan.

The simulation model is based on a simple zone division
of the stable - see Figure 8. Air flows in via inlets in the side
walls, travels through the stable and exits via a chimney in
zone 3. A temperature sensor in zone 2 is used for control of
the flow qout in the figure.

However, the livestock stable is not completely airtight. Due
to cracks in the walls etc., extra air tends to leak into the stable.
This draft is not revealed by the temperature sensorT2 because
of its location; however, noticing that the livestock avoids



Fig. 7. Sketch of cross-section of the livestock stable. Fresh air enters the
stable via inlets in the side, circulates within the stable and is eventually
sucked out via the ventilation placed in the roof of the stable.

qin,1

q1−2

qout

q2−3

qin,3qin,2

T3T2T1

qleak

Fig. 8. Model setup used for the livestock stable simulation,with control vol-
umes, air temperatures and airflows indicated. Initially, only T2 is measured;
later, the extra temperature sensorT3 is installed to detect the temperature
decrease caused by the leakage flow.

one end of the stable, the farmer suspects that something
is wrong and installs a new temperature sensor,T3, at the
location indicated in Figure 8. The task is now to identify the
system parameters related to the new sensor while the system
is operating.

Let i = 1, 2, 3 denote the zone number.mi is the air mass
in zonei, qin,i(t) is the inlet flow into zonei, qout(t) is the
outlet flow, andqi−j(t) is the air flow from zonei to zonej
at time t. In addition, there is a leak flowqleak(t) into zone
3.

Assuming the air is incompressible, we have the relation

qout(t) =
∑

i=1

qin,i(t) + qleak(t)

The inlets are fixed at given positions throughout the sim-
ulation. Hence, each inlet flow is given as a certain fixed
percentage0 < αi < 1 of the outlet flow:

qin,i(t) = αiqout(t), qleak(t) = α4qout(t)

Writing the mass and energy balances for each zone and
linearizing the expressions around a suitable operating point,

we obtain the system

ẋ(t) =







− q̄1−2

m1

0 0
q̄1−2

m2

− q̄2−3

m2

0

0 q̄2−3

m3

− q̄out

m3






x(t) +







α1
T̄amb−T̄1

m1

α2
T̄amb−T̄2

m2

(α3 + α4)
T̄amb−T̄3

m3






u(t) + w(t) (22)

y(t) =
[

0 1 0
]

x(t) + v(t) (23)

Here,(̄·) denotes operating point values andx(t) = [T1(t)−
T̄1, T2(t) − T̄2, T3(t) − T̄3]

T , y(t) = T2(t) − T̄2 and
u(t) = qout(t) − q̄out denote deviations from the operating
points (“small-signals”). The animals are assumed to deliver
a stochastic heat input with a constant bias, which can be
treated as an extra addition to the zone temperature operating
point [T̄1, T̄2, T̄3]

T ; hence,w(t) andv(t) can be considered
zero-mean noise sequences.

Appropriate parameter and operating point values are sub-
stituted into the model, which is sampled using zero-order
hold with a sampling period of 10 sec. However, since the
leakage flow was not taken into consideration at the design
time, and the original temperature sensor is placed in zone 2
(centrally in the stable), the controller is designed basedon
the (x1, x2)-subsystem

[

x1(t+ 1)
x2(t+ 1)

]

=

[

0.9265 0
0.0693 0.8892

] [

x1(t)
x2(t)

]

+

[

−0.1737
−0.009814

]

u(t) +

[

w1(t)
v2(t)

]

(24)

y(t) =
[

0 1
]

x(t) + vy(t) (25)

This system represents the known model, with known noise
statistics

Rw =

[

0.02 0.01
0.01 0.02

]

andRvy
= 0.1

An observer-based state feedback controller withF =
[0.4628 1.8625] and L = [−0.2307 − 0.3306]T is applied
to maintain the temperature in zone 2 at a setpoint of21◦C.

When the new temperature sensor is added, it becomes
possible to observe the last state in the true simulation model

x(t+ 1) =





0.9265 0 0
0.0693 0.8892 0
0.01087 0.2657 0.6333



x(t) +





−0.1737
−0.009814
−0.213



u(t) + w(t) (26)

y(t) =
[

0 1 0
]

x(t) + vy(t) (27)

ya(t) =
[

0 0 1
]

x(t) + va(t) (28)

with noise statistics

Rw =





0.02 0.01 0
0.01 0.02 0.01
0 0.01 0.03



 andRvyva
=

[

0.1 0.05
0.05 0.07

]

(29)
The state and measurement noise are uncorrelated.
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Fig. 9. Closed-loop simulation. The extra temperature sensorT3 is activated
after 2000 samples. Top: temperature measurements; bottom: control signal.

Excitation is added to the reference and the input in the
form of steps with a length of 250 seconds. Various levels and
periods of excitation are examined. One example is shown in
Figure 9.

At 10000 seconds, the new sensor is introduced, and from
15000 seconds onwards, one hundred steps of random ampli-
tude with standard deviation 1 are applied as excitation on
the reference and the input. This level of excitation causes
deviations in temperature that would be acceptable for a short
time. Models of the new sensor is now obtained by:

• Performing a direct system identification on input and
output measurements, as if they had been generated in
open loop.

• Using the Hansen scheme presented above to extend the
model dynamics.

The actual system identification was carried out using Mat-
lab’s N4SID toolbox, but any standard system identification
procedure could in principle be applied.

Figure 10 compares the results to the actual simulation
model. The direct method tends to give a result that would
be unreliable for controller design, as in this example. The
frequency response of the model produced by the Hansen
scheme gets very close to that of the real system, on the other
hand.

In order to make a more thorough evaluation of the robust-
ness of the schemes, a number of tests with varying levels
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Fig. 10. Bode plots of the identified models. Solid: real. Dashed: Hansen.
Dotted: Direct identification. Note how the Hansen scheme provides much
improved identification at higher frequencies compared to direct identification.
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and lengths of excitation are made. The quality of the models
are evaluated by the unweightedν-gap between the identified
model and the real simulation model. Theν-gap expresses the
difference between two transfer functions in terms of their
similarity with respect to closed loop operation; that is, if
the ν-gap between two plant models is small, then a good
controller designed for one transfer function will also work
well with the other [32].

Figure 11 shows the results for three different levels of
excitation. In the leftmost plot, the steps have standard devia-
tion of 0.1, which means that they are hardly distinguishable
from the noise level. Thex-axis indicates the number of steps
in the excitation sequence. For the Hansen scheme, a few
hundred steps are enough to ensure a reliable model. The
direct identification method gives basically useless results for
any number of steps.

In the middle plot, the excitation has standard deviation 1,
just as in the simulation shown above. Now the Hansen scheme



gives reliable results even for a very short excitation sequence,
whereas thousands of steps are needed in order for the direct
method to yield trustworthy results.

In the rightmost plot, the steps have standard deviation of
10, which would be entirely unrealistic in a real livestock
stable. Now only a couple of steps are necessary for the
Hansen scheme, but the direct identification method can go
wrong even with 30 steps, thus illustrating that closed-loop
identification is quite troublesome for systems like the one
considered here.

V. YOULA-KUCERA-BASED CONTROLLER MODIFICATION

Assuming that a model for the added device is in place, we
will from now on turn our attention to designing an additive
controller that exploits the new information in a meaningful
manner.

Note that Problem 1 does not impose any restrictions on
how the extension shall be added to the existing control.
Indeed, if full access to the internal structure of the existing
controller is available, (6) provides a straightforward expres-
sion for computing the transfer function needed to shift from
the old to the new controller. Although not directly treating
Plug-and-Play control, [29] provides convenient state space
formulae for realizing a new controller based on an existing
one, which may be employed with little to no modification.

However, there are many cases where we wish to introduce
the new controller by accessing only theterminalsof the exist-
ing controller. This may for instance occur because the existing
controller is implemented in a dedicated microprocessor that
does not permit modifications of source code, or the internal
states of the controller are not available for other reasons.
Accessing only the terminals has the added advantage that
it is very easy to remove the control extension again, should
the need arise.

In this and the following sections, we suggest two different
approaches to Problem 1 that only access the terminals of
the existing controller. Motivated by its inherent stability
features, the first method of controller reconfiguration utilizes
the Youla-Kucera factorization.

Inspecting Figure 2, it is seen that there are two possible
ways to modify the Youla-Kucera parameterization in the
desired manner. They are shown in Figure 12.
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Fig. 12. Controller parameterization modified for connection to terminals of
existing controller; note that̄Q 6= Q̃.

Recall that, in the case of a new sensor,K0 = [K 0 ]; thus,
the original controller is kept in place and is only accessedat
the terminals. Stability of̃Q resp.Q̄ still implies stability of the
closed loop, but now it is no longerall stabilizing controllers
that can be found by inserting stablẽQ resp.Q̄.

In [33], the following theorem was presented:
Theorem 2:Let M̃−1

1 Ñ1 be a coprime factorization of the
LTI systemG1, and assume thatK0 = Ṽ −1

0 Ũ0 = U0V
−1
0 is a

stabilizing controller, i.e.G1 ⋆K0 ∈ RH∞. Assume a second
controllerK1 = Ṽ −1

1 Ũ1 = U1V
−1
1 is given. Then

G1 ⋆ K1 ∈ RH∞ ∧ V −1
0 V1 ∈ RH∞ (30)

is equivalent to the existence of a stableQ̃ such that

K1 = (I + Q̃Ñ1)
−1(K0 + Q̃M̃1) (31)

i.e., (31) is a parameterization of all stabilizing controllers that
include the right half plane pole structure ofK0.

Proof: See [33].
The parameterization above corresponds to the left part

of Figure 12. In some cases, the right part is more useful,
however, and we therefore present the corresponding theorem:

Theorem 3:Let N1M
−1
1 be a coprime factorization of the

LTI systemG1, and assume thatK0 = Ṽ −1
0 Ũ0 = U0V

−1
0 is a

stabilizing controller, i.e.G1 ⋆K0 ∈ RH∞. Assume a second
controllerK1 = Ṽ −1

1 Ũ1 = U1V
−1
1 is given. Then

G1 ⋆ K1 ∈ RH∞ ∧ Ṽ1Ṽ
−1
0 ∈ RH∞ (32)

is equivalent to the existence of a stableQ̄ such that

K1 = (K0 +M1Q̄)(I +N1Q̄)−1 (33)

i.e., (33) is a parameterization of all stabilizing controllers that
include the right half plane pole structure ofK0.

Proof: First, assume that a controllerK1 satisfying (32)
is given where, without loss of generality, we can assume that
the parameterizations given satisfy the double Bezout identity.
Define

Q̄ = Ũ1 − Ṽ1Ṽ
−1
0 Ũ0

(32) implies thatQ̄ is stable. InsertinḡQ in (33) yields:

(K0 +M1Q̄)(I +N1Q̄)−1

= (K0 +M1(Ũ1 − Ṽ1Ṽ
−1
0 Ũ0))×

(I +N1(Ũ1 − Ṽ1Ṽ
−1
0 Ũ0))

−1

= (Ṽ −1
0 Ũ0 +M1Ũ1 −M1Ṽ1Ṽ

−1
0 Ũ0)×

(V1M̃1 −N1Ṽ1Ṽ
−1
0 Ũ0)

−1

= (U1M̃1 − U1Ñ1Ṽ
−1
0 Ũ0)(V1M̃1 − V1Ñ1Ṽ

−1
0 Ũ0)

−1

= U1(M̃1 − Ñ1Ṽ
−1
0 Ũ0)(M̃1 − Ñ1Ṽ

−1
0 Ũ0)

−1V −1
1

= U1V
−1
1 = K1.

Conversely, assume thatK1 is given by:

K1 = (K0 +M1Q̄)(I +N1Q̄)−1 (34)

We rewrite (34) as

K1 = (U0V
−1
0 +M1Q̄)(I +N1Q̄)−1

= (U0 +M1Q̄V0)(V0 +N1Q̄V0)
−1

= (U0 +M1Q)(V0 +N1Q)−1



with Q = Q̄V0 ∈ RH∞, and we see thatK1 is a stabilizing
controller by comparing with (5).

In order to prove that̃V1 contains the RHP zero structure
of Ṽ0, we rearrange (34) into

Ṽ −1
1 Ũ1(I +N1Q̄) = (Ṽ −1

0 Ũ0 +M1Q̄)

and further into

Ũ1(I +N1Q̄)− Ṽ1M1Q̄ = Ṽ1Ṽ
−1
0 Ũ0 (35)

Since the left hand side of (35) is stable, so is the right hand
side. Due to coprimeness of̃U0 and Ṽ0 no RHP cancellations
occur when forming the product̃V −1

0 Ũ0, and sinceṼ1 is
stable, the product̃V1Ṽ

−1
0 itself must be stable.

To sum up, we can modify the controller at the terminals
to obtain some new desired controllerK1, provided that we
can find coprime factors forK1 fulfilling the Bezout identity
and either (32) or (30). If these assumptions are satisfied, we
can either find a stablēQ solving

Q̄V0 = Ũ1V0 − Ṽ1U0 = Ṽ1(K1 −K0)V0 (36)

or a stableQ̃ solving

Ṽ0Q̃ = Ũ1V0 − Ṽ1U0 = Ṽ1(K1 −K0)V0, (37)

respectively. Then we can construct the appropriate controller
shown in the block diagrams in Figure 12, and by gradually
increasingγ from 0 to 1, the overall behavior fromy to u

changes smoothly fromK0 to K1 without losing stability for
any value ofγ.

Remark 2The interpretation of the second condition of (32)
is that the two controllers have to have the same (closed) right-
half plane poles in open loop, as the structure would otherwise
cause a RHP pole-zero cancellation.⊳

Remark 3 Note that for a given desired controllerK1, it is
not given that both (32) or (30) can be fulfilled. In some cases,
it will only be possible to satisfy one of them. In such case we
can then only pick the corresponding terminal connection in
Figure 12. In general, if the number of (plant) outputs is higher
than the number of inputs, then (32) is easier to fulfill, and
correspondingly (30) is easier to fulfill for a higher numberof
inputs.⊳

Remark 4 If for some given desiredK1 we cannot find a
stableQ̄ or Q̃ fulfilling (32) or (30), respectively, one might
instead consider finding approximate stable solutions to (36)
or (37).⊳

VI. SENSOR FUSION-BASED APPROACH

In this approach, we replace the inputs to the existing
controller with new inputs, which are computed from both
the existing and additional measurements. Consider the system
shown in Figure 13, which is exactly an implementation of the
plant-controller interconnection (12)–(13) before augmentation
(albeit ignoring the performance channels).

Now we assume that a new sensor becomes available, which
can provide measurements of higher quality of one or more
of the plant states, e.g. with less measurement noise. Rather
than re-designing and re-commissioning the entire system,we
introduce the extra measurements through a pre-filter in the
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Fig. 13. Existing systemG and controllerK.

hope that the better measurement quality will manifest itself
in better closed-loop performance, for instance in terms of
better disturbance rejection. Note that it is assumed that the
sensor has no significant dynamics, and that a model for it is
known.

The augmented system is described by a state space model
of the form:

G1 =





A B

C 0
Ca 0



 =

[

A B

Ce 0

]

(38)

whereCe =
[

C
Ca

]

∈ R
(p+pa)×n. Furthermore, letye = [ y

ya
] ∈

R
p+pa denote the extended measurement vector. In order to

exploit the new outputs, an additional observer is introduced
as shown in Figure 14.

˙̃x = Ax̃+Bu+ Le(Cex̃− ye) (39)

ỹ = Γx̃+ Λye (40)

whereLe ∈ R
n×(p+pa), Γ ∈ R

p×n andΛ ∈ R
p×(p+pa) are

design parameters (see below).Le must be chosen such that
A+LeCe is Hurwitz; furthermore, it is clear that by choosing

Λ =
[

I 0
]

, Γ = 0

we haveỹ = y and the original closed loop is recovered.
We have the following separation principle for the proposed

architecture.
Theorem 4:Consider the configuration illustrated by Fig-

ure 14, where a system given by the state space model (38) is
controlled by an observer based compensator, designed for
an original system (12), and the input to the controller is
generated by an additional observer of the form (39).

This closed loop system has poles given by the eigenvalues
of the two matrices:

A+ LeCe and

[

A+BF BF

L(C − Γ− ΛCe) A+ LC

]

In the special case whereΓ andΛ are chosen to fulfill

Γ + ΛCe = C (41)



∫

A

Ce B ����

-

6

uxye

Le

Γ

∫

A

Ce BΛ

?

- -

? ����

6

-

6
? ��

x̃

ỹ
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Fig. 14. Architecture forG1 ⋆ K1 with additional observer.

the closed loop system satisfies a ’full’ separation principle,
i.e. the closed loop poles are given by the eigenvalues of the
three matrices:

A+BF , A+ LeCe and A+ LC

which means that the observer and feedback gains can be
designed independently, if only the closed loop poles are of
concern.

Proof: See [34].
The intuition for the condition (41) is that the new input

to the original controller is generated as an interpolation
between the original measurements and an estimate of the
original measurements based on the original and the new
measurements. Therefore, if the new measurements are of a
poor quality, i.e., the signal-to-noise ratio is low, we mayplace
stronger emphasis on the old measurements by choosing

ΛCe ≈ C , Γ ≈ 0

while still satisfying (41). On the other hand, if the new mea-
surements are highly superior to the original measurements,
we may choose

Λ ≈ 0 , Γ ≈ C.

Remark 5 Although Theorem 4 suggests that the new ob-
server can be designed independently of the existing controller,
it should be noted that the new observer can introduce a signif-
icant phase shift, which should be taken into considerationin
the design process. In fact, as will be demonstrated in Section
VII, it may sometimes be advantageous to chooseΓ and Λ
such that (41) isnot satisfied.⊳

Fig. 15. The test setup.

Remark 6It should also be noted, that if (41) is not satisfied,
x̃ is still an estimate ofx, whereaŝx cannot be assumed to be
an estimate ofx. Thus, if the original controller depends on a
reliable state estimate, thenΓ andΛ should indeed be chosen
to satisfy (41).⊳

Remark 7 It is not in itself surprising that a better result can
be achieved if (41) is not imposed as a constraint. In that case,
the combined new controller, consisting of the original con-
troller and the new observer, is allowed to increase the overall
gains of the system, based on the improved measurement
situation. The main disadvantage of pursuing a design that
does not satisfy (41) is that the link between design parameters
and design objectives becomes more complicated, and some
sort of optimization procedure will typically be required for
the design, which may be non-trivial. To sum up, the optimal
choice ofΓ andΛ is an open problem.⊳

VII. D ISTRICT HEATING SYSTEM CONTROL

In the following, the methods presented in the two pre-
ceding sections will be demonstrated on actual plants, first
a laboratory experiment on a district heating system model
and then a livestock stable. Note that the methods are not
compared directly, since the experiments mainly serve as
proof-of-concept.

A. System description

The test setup shown in Figure 15 is a scaled-down model of
a district heating system. The dynamical behavior is similar to
a real system, except that the time constants are approximately
ten times faster. For further details on pipe lengths etc., see
[35].

The configuration used in this example is shown in Figure
16. Note that all the signals in the figure are scalars, sampled
with a sampling time of 0.5 seconds.

The heat entering at the supply is distributed to the four
consumer branches using six pumps. The two middle con-
sumers have varying consumption, which is modeled by ad-
justable valves,v1 and v2. In this example, the task of the
control system is to maintain constant differential pressures,
dP1 = dP2 = 0.1 bar.
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Fig. 16. Structure of the test setup.

The test setup provides measurements of the two valve
potions, two differential pressures and two pressures (relative
to ambient atmospheric pressure).

The valve movements follow a simulated heat consumption,
but are affected by a slew rate and hysteresis, resulting in the
behavior seen in the top row of Figure 17 (solid lines). These
valve positions are not available to the controller, but canto
some extent be estimated from measurements.

The controllers are based on a model obtained through
system identification from open loop data. The model consists
of a third order innovations model of the transfer function from
pump speeds and valve settings to pressures and differential
pressures. The valves are modeled as white noise filtered
through first order filters, resulting in a model of the form:

x(t+ 1) = Ax(t) +B

[

U δ
1 (t)

U δ
2 (t)

]

+

[

KP eP (t) +KdP edP (t)
Kvev(t)

]

yP (t) = CPx(t) + eP (t)

ydP (t) = CdPx(t) + edP (t)

where x(t) =
[

x1(t) x2(t) x3(t) vδ1(t) vδ2(t)
]T

are
state and valve setting estimates andeP (t), edP (t) and ev(t)
are innovations (one-step prediction errors) forP (t) =
[P1(t) P2(t)]

T , dP (t) = [dP1(t) dP2(t)]
T and v(t) =

[vδ1(t) v
δ
2(t)]

T , respectively.(·)δ denotes “small-signals,” i.e.,
deviations from operating points. The model parameters are
as follows:

A=













0.721 −0.00251 0.0489 −0.029 −0.0497
−0.00669 0.69 −0.00249 0.0316 −0.0327
0.0921 0.0172 0.923 −0.0342 −0.0826

0 0 0 0.997 0
0 0 0 0 0.997













B=













0.161 0.0544
−0.0592 0.17
−0.0593 −0.0267

0 0
0 0













KP =





−0.0123 −0.00597
−0.0252 0.0202
−0.132 −0.136





KdP =





0.338 0.409
−0.362 0.268
1.24 1.38





CP =

[

1.97 −1.06 −0.427 0 0
2.51 1.16 −0.471 0 0

]

CdP =

[

0.478 −0.473 0.0615 0 0
0.514 0.319 0.0766 0 0

]

Furthermore, the estimated noise covariances are

E{

[

eP
edP

] [

eP
edP

]T

} =

10−4×









0.192 −0.0915 0.126 0.235
−0.0915 0.19 0.189 0.0426
0.126 0.189 2.71 0.834
0.235 0.0426 0.834 2.47









E{eve
T
v } = 10−6 ×

[

2.8 0
0 2.57

]

As system identification is not central to this example, we
will omit further details; the model will only be used for
controller design.

B. Initial controller

Initially, the differential pressure measurements are not
available to the control system, which relies onyP (t) =
[P1(t) P2(t)]

T only. Also, the pumpU2 is a constant-speed
pump, so the controlled system has 2 outputs and a single in-
put. The controller is designed as an LQG controller penalizing
the (estimated) differential pressures, i.e.QSF = CT

dPCdP ,
and the control signal,RSF = 10−4.

Figure 17 compares open-loop and initial closed-loop op-
eration. The first four plots show the valve positions and the
differential pressures. These are not available to the controller,
but the observer can to some extent reconstruct them, as
shown by the dotted lines. The next plots show the measured
pressures and the resulting control signals, i.e. pump speeds.

C. Adding sensors

Even though the estimates are not very accurate, the con-
troller is able to decrease the variation of the differential pres-
sures. However, the consumers complain about varying supply
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Fig. 17. Performance of initial controller, switched on at 360 s. Full lines
indicate measurements, while dotted lines indicate estimates. Top row: valve
settings; middle row: differential pressures; bottom row: outputs and control
signals

rates, so the differential pressure sensors are added to examine
the problem and see if the control can be improved. Thus, the
measurement vector is now expanded toye(t) =

[

yP (t)
ydP (t)

]

.

We first employ the sensor fusion method described in
Section VI. We design the new observer gainLe as LQ-
optimal according to the model. It quickly becomes clear that
almost no change in controller behavior can be achieved by
fulfilling the ’full’ separation constraint (41). Instead,we set
Λ =

[

I 0
]

and Γ =
[

0 γv
]

, where γv ∈ R
2×2 acts as

a feedforward gain from the valve position estimates and is
found from simulations to yield the same steady state errorsas
would have been achieved by replacing the internal observer
in the original controller.

From the simulations it is also clear that only small im-
provements will be achieved, and this is indeed also seen in
the resulting plot in Figure 18. Comparing with the last half
of Figure 17, the changes are difficult to identify (note that
the valve sequence is approximately the same). On the other
hand, the new measurements improve not just the estimates of
the differential pressures, but also the estimates of the valve
position (the dotted lines show the estimates in the additional
observer).
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Fig. 18. Performance of controller with additional observer. Full lines indicate
measurements, while dotted lines indicate estimates. Top row:valve settings;
middle row: differential pressures; bottom row: outputs andcontrol signals

D. Adding an actuator

Since the additional sensors revealed a problem with the
performance, it is decided to add control capabilities to theU2

pump, enabling us to control the speed. The sensor fusion filter
is removed, and instead the modification method in Section V
is applied, choosing the right-side configuration in Figure12.

An optimal controllerK1 is designed for the system with
four measurements and two control inputs. Since the original
controller K0 has an unstable pole in1.06, K1 cannot be
realized exactly. Instead, the unstablēQ found from (36) is
approximated by separating the unstable part and flipping the
unstable pole inside the unit circle. This results in a somewhat
different controller from the optimal, but the theory guarantees
stability as long the model is correct, so it is decided to test
it.

The result is shown in Figure 19. Between300s and400s
the scheduling parameterγ is increased from 0 to 1, modifying
the controller to use the new sensors and the new actuator. This
results in a much better performance, especially fordP2.

VIII. L IVESTOCK STABLE CONTROL

Finally, we document a real-life experiment where the
Youla-Kucera-based approach introduced in Section V was
employed to utilize a new temperature sensor measurement.
The test was carried out on a livestock stable located in North-
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Fig. 19. Performance of controller with terminal addition. Full lines indicate
measurements, while dotted lines indicate estimates. Top row:valve settings;
middle row: differential pressures; bottom row: outputs andcontrol signals.
From time 300s to 400s, the controller is gradually transformed the existing to
a new controller that exploits the new measurements. Stability is maintained
throughout the transition, and performance is improved, in particular for dP2

(the deviation from the reference value of0.1bar is significantly reduced
compared tot < 300s)

Fig. 20. Photograph of the livestock stable used for the experiments in
Section VIII.

ern Jutland, Denmark (Figure 20). See [36] for further details
on the test stable and the specific controller implementation.

Figure 21 shows the nominal operation of the existing
control system. A single temperature sensor,T0, is used
for measurement feedback to a PI controller that controls
the ventilation fans indicated on the figure. The controller

Fig. 21. Sketch of the livestock stable seen from above. The control system
initially relies on one centrally placed temperature measurement,T0, to control
the ventilation fans.

Fig. 22. Sketch of the livestock stable seen from above. The extra temperature
sensorT1 is installed to detect the leakage flow (indicated by the faded arrows
to the left).

maintains a fixed temperature. The situation is thus quite
similar to the simulation example in Section IV, except thata
zone model is not used in the current case.

The livestock stable is not completely airtight. Due to cracks
in the walls etc., extra air tends to leak into the stable; in Figure
22, this extra draft is indicated by faded arrows at the left end
of the stable. This draft cannot be detected byT0, but the
farmer observes that the livestock avoids that area and installs
a new temperature sensor,T1, at the location indicated in the
figure.

In the given system, the ventilation rate serves as a single
input. We would thus like to reconfigure from a SISO con-
troller to a one-by-two controller. Ideally, we would like zero
steady state error on both measurements, but since we have
only one actuator, it is necessary to compromise. Since the
temperature is lower at the new sensor, it is decided to shift
the integral action to this measurement.

The factors are based on a very simple model:

G1 =

[

G0

Ga

]

=

[

−0.72
s/1200+1
−0.88

s/800+1

]

.

As seen from Figure 23, this model provides a reasonably
good fit.

The result of applying the method presented in Section V
is shown in Figure 24. In the beginning,K0 is keepingT0 at
the set point. Whenγ is increased, the controller movesT1 to
the set point by lowering the ventilation rate.

Note that if we had wished to control the average of the two
temperatures instead, this could easily have been achievedby
just settingγ = 1

2 .

IX. CONCLUDING REMARKS

In this paper, we have considered the control aspect of
“Plug-and-Play Control.” The Plug-and-Play Control problem
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red), and the resulting control signal (solid, blue).

was formulated as the problem of designing an extended
controllerK1 =

[

K̄ Ka

]

(or K1 =
[

K̃
Ka

]

) that

• utilizes a new measurement (or actuator)
• allows asmooth transitionK0 → K1, in the sense that

the shift to the new controller should not cause large
transients

• retains closed-loop stability throughout the transition
• allows recovering the old controller through the reverse

transitionK1 → K0

such that the performance of the closed loop is improved in
some sense, e.g. by decreasing an appropriate norm.

We briefly touched upon a system identification method for
identifying parameters associated with the new sensors, which
often works well in closed-loop operation.

We then discussed two different approaches to incorporating
new control system devices. The first approach relies on
a modified Youla-Kucera parametrization of all stabilizing
controllers for a given plant. We showed how the additional
controller should be implemented while only accessing the
terminals of the existing controller, in case the internal state
of the existing controller is not available. The Youla-Kucera-
based methodology has the advantage that the performance
transfer function is affine in the design parameter, which means
that the design problem has an open-loop-like nature and good
performance can thus be expected during the transition be-
tween controllers. On the other hand, the question of actually
computing the Youla-Kucera parameter in order to achieve a
particular realization of a new controller in the general case
remains an open problem.

The other approach presented is based on sensor fusion,
in the sense that new measurements are fused with existing
ones in order to modify the inputs to the existing controller,
such that the overall performance is improved. A separation
principle was shown to hold under mild assumptions. As with
the aforementioned approach, there is still work to be done;
it is not yet clear how to find the optimal weighting between
new and old measurements.

Finally, we demonstrated the Plug-and-Play Control con-
cept, as well as the practical feasibility of the proposed
methods, on a laboratory-scale model of a district heating
system and a livestock stable climate system. In both cases
it was possible to improve operation noticeably by exploiting
new sensors and/or actuators without discarding the existing
control system.
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