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Incremental Closed-loop Identification of Linear Paramete Varying
Systems

Jan Bendtsen Klaus Trangbaek

Abstract— This paper deals with system identification for framework that relies on solution of a set of Linear Matrix
control of linear parameter varying systems. In practical |nequalities. [9] considers robust invalidation of carade
applications, it is often important to be able to identify small LPV models. [10] discusses an approach where linear local

plant changes in an incremental manner without shutting dow dels i b f fi int found b
the system and/or disconnecting the controller; unfortunaely, =~ MOUEIS IN & number oI operaling points are tound by ap-

closed-loop system identification is more difficult than ope-  Plying standard identifications procedures for linear eyst
loop identification. In this paper we prove that the so-callel in time domain. Next, an LPV model with linear fractional

Hansen Scheme, a technique known from linear time-invariah  dependency on the measured variables is fitted with the
systems theory for transforming closed-loop system iderfita- .o ngition of containing all the linear models identified in
tion problems into open-loop-like problems, can be extendéto th . t diff tial inclusi The fit i di
accommodate linear parameter varying systems as well. e prgwous s_ep (differential inc US'On)'. e fitis cadi
out using nonlinear least squares algorithms. [11] takes a
I. INTRODUCTION non-parametric approach to the LPV identification problem.
Industrial control systems are typically in operation fol12] examines interpolation methods for SISO LPV models.

extensive periods of time, amongst other things due to tHé3] shows that one can achieve bias-free estimation bygusin

fact that once a functioning system has been commission@8 instrumental variables-based approach, at least in the
and brought into operation, it is very costly in terms ofSISO case. [14] refines the instrumental variables method fo

engineering manpower and loss of production output (arfdox-Jenkins-type models. [15], [16], [17] and [18] propose

hence income) to take the system out of action in ord&arious subspace-based approaches to identification of LPV
to maintain and update it. On the other hand, most largéystems. Finally, [19] examines how to choose optimal

scale industrial systems are subject to frequent changks Sthonormal basis functions for LPV system identification.

modifications, which may change the dynamics of various The main contribution of the present paper is to show that
subsystems of the overall plant. Thus, it is often the caae ththe Hansen scheme can be formulated for LPV systems in
a control system can be improved after initial commissignin a non-conservative setting using the notiond.B¥ stability
as more actual operation data becomes available. shown viapolyhedral Lyapunov functionf20]. The work
Assuming that a good, or at least acceptable, model fgsresented here is related to results presented in [21] and
the original system already exists, however, it seems Waste [22], which presented similar results in a quite general,
to estimate the total model from scratch in case of limite@donlinear setting. However, by restricting the class ofays
structural modifications. Motivated by this observatiore w under consideration here, we are able to present an explicit
look at incremental modelling for control of plants runningmethodology for the identification and control design, vihic
in closed loop in this paper. is suitable for controller updating as it focuses on incretae
In particular, we look at the so-calleHansen scheme modelling. In principle, any of the above-mentioned method
[1], [2], [3], which, given a nominal system model andcan be employed for LPV identification of the dual Youla-
controller, allows open-loop-like system identificatidnamy ~ Kucera parameter and avoid some of the specific closed-loop
‘missing’ dynamics parameterised by a stable system in dfficulties.

particular feedback structure with the nominal syst_em and The outline of the rest of the paper is as follows. Section
controller, the so-callediual Youla-Kucera fact0r|§atlepr Il provides some important preliminary results on the notio
see t_he survey paper [4] and the references therein fore’lurthof LPV stability employed in the rest of the paper. Section
detalls.. Il then presents a Youla-Kucera parametrisation of LPV
In this paper, we show how the Hansen scheme can lge

¢ lated to deal withi i ndLPV ystems, after which Section IV shows how the Hansen
;flst:anr;ia[:] [GC]) eal wittlinear parameter varying( ) scheme is cast in this framework. Section V illustrates the

There are already a number of methods for identification pphcablhty of the method on a simple simulation example.

: : . . inally, Section VI sums up the conclusions of the work.
LPV systems available in the literature. [7] presents a 8mp y o p. _
ARX method; [8] proposes a control-oriented identification Our notation is standard; in particularand/ denote zero
and identity matrices and,, (G, A) denotes theipper linear
This work is supported by The Danish Research Council fohflelogy  fractional transformationof G wrt. A, see eg., [23, Chap.

and Production Sciences. n e
The authors are with the Department of Electronic Systems; A 10]' Furthermore, forr € R H ) ”00 denotes the 'nfm'ty

tomation and Control, Aalborg University, Denmark; emaitli mon, ~ norm defined byj|z||oc = maxi<i<n [:]. ()¢ indicates that
ktr}@s. aau. dk (-) depends on the parameter



1. LPV STABILITY matrix equalities hold for each vertex system. Furthermiore

In this work, we consider discrete-time linear parametef$ Shown in [20] that the existence of a polyhedral Lyapunov

varying (LPV) systemsG, with a minimal state space function is in factequivalentto LPV stability for polytopic
realisation given by matrix functiongly € R"™ ", By LPV systems. That is, this class of Lyapunov functions is

R"™X™ Oy € RP*" and Dy € RPX™, mapping an input non-(_:onse_rvative, as opposed to e.g. quadratic Lyapunov
signal vectoru € R™ to an output measurement Signa|funct|0ns in the sense that one may flnd.examples qf stable
y € R”. Specifically, we deal with systems of the form  Polytopic LPV systems that do not permit a quadratic Lya-
punov function, but it is not possible to find stable polytopi
Go: zpy1 = AgyTr + Boryuk (1) LPV systems that do not permit a polyhedral Lyapunov
Yo = Couxk + Doryun (2) function. We require the following technical result:
) . . Lemma 1:V(z) = |Wz|« is a (olyhedra) Lyapunov
yvheree(k) e R%is an extern_al sche_duhng parameter, Wh'_d?unction for the polytopic autonomous LPV system, ; =
is allowed to vary as a function of time but not as afunctlorhexk if and only if there exist matrice§); € R**# such

of the system states. Since we only allowd to depend on  y5¢ WA = QW and||Qy]|c < 1fori=1,....q.

k, we will simply write § rather thard(k) in the following. Proof: See [20]. -
We require that! belongs to the bounded compact set Based on Lemma 1 we can show the following simple,
q yet important result for connection of LPV systems.
0= {9 eR?| 6, >0, Zei = 1} Lemma 2:Suppose two autonomous LPV systems
i=1 Ty g1 = Aplary and zo pp1 = A3%20 ) are LPV stable;

and thatAy, By, Cy and Dy are continuous, bounded func-then for any continuous and boundef' of appropriate
tions of § € © (only). dimensions, the autonomous LPV system

For notational convenience, we will use the shorthand |:=T1 k-&-l] {Aél 0 } [561 k}

Gy = |: AO B@ :| T2, k+1 AZI AZQ X2,k
- Co | Do is also LPV stable.

. Proof: According to Lemma 1, since the systems
for the LPV system (1)—(2) in the sequel. - _ i, andgz A2, are LPV st)allble
If Dy is nonsingular, i.e.D, " is well defined for allg, ~1FF = <50 “Lk €5 2kl 17 200 <2k ; N
the LPV systent3, has an inverse operator there exist matrice$V’*, W<, Qg4, Q; of appropriate dimen-
sions with || Q4] < 1,]|Q3]| < 1 such that

®3)

Gyl = [ A”%De_lc" | B"qu_l } w04 o] _[Qb o] [w' o
Dy"Co [ Dy o w2||lo AZ|"|o0o @||o0 w2
in the sense thatiyG,' = G,'Gy = I for any trajectory for g ¢ ©. Also, we have
of 8. We will ensure invertibility by construction whenever Qb 0
necessary in the sequel. { 09 QQ] <1
With this notion of inverse LPV system in place, thgper 010

fractional transformatiorcan be naturally extended from LTI Turning to the combined system (3), if we can find a scalar
theory — see [23, Chap. 10] - to linear time varying operatorg > 0 and af-dependent matri);' such that

Next, consi_der the autonomous _LPV system; = Wl 0 AL 0 Qr o] [wt 0
Agxy along with the Lyapu_nov function cand_ldaté(:c) = [ 0 BW2:| [A31 AgQ] = [ 21 QZ] [ 0 BWQ}
[Wz||~, whereWW € R¥*™ is a constant matrix of rank.
V(z) is obviously a positive definite function witri(0) = 0.  &nd

. . . L 0
Computing the sample-to-sample difference yields H [Qzel QQ] <1
4 6
Vi(zgsr) = Vizk) = [Warllo — Wkl hold for everyd € ©, then we can conclude that the system
IW Apzkllco — Wk oo is LPV stable by invoking Lemma 1. Rewriting the matrix
which is negative ifAy is sufficiently small; this can be equality above, we get
tested via algebraic means. If the autonomous part of an [leflé;l (2) 22] _ [Q%Wll g ,
LPV system admits such a Lyapunov function for@k ©, BW=Ag"  BW=Ag Qy W™ BQgW
we say that it il PV stable which is satisfied iff312A2! = Q2! V6 € ©.

In particular, it is known that golytopicLPV system, i.e., SinceW! has full row rank, it has a left pseudo-inverse
a system wherely, By, Cy and Dy are given as convex cCom- 571t thys. we may choos@ﬁl _ ﬂWQAglwlT with 3
binations of fixed matrices\;, B;,C; and D;,i = 1,...,q, sufficiently small to satisfy

admits a polyhedral Lyapunov function if the associated L

Qp 0

Please note that this notation should not be confused witmsfer H {BWQA?W” Q3
functions”; throughout the paper we strictly consider apers defined in . . . . .
state space, as given by (1)—(2), with = 0 unless otherwise noted. which is always possible sincé?! is bounded. [ |

<1l VAe©O

o0




Il1. BASIC PARAMETRISATION Theorem 1:Let Gy = NaMgl with state space realisa-
tion (4) be LPV stabilised by a feedback controllgp =
UQVQ‘1 with state space realisation (5). L&} and Ly be
matrix functions such thaty;1 = (Ap + BeFy)zr and
Gy — [ Ay | By ] @) Fre1 = (Ag + LoCy)i, are LPV stable for alld € ©.
Co| O All such plants stabilised by, can be parametrised as

Fu(Gog,5), where

In the rest of the paper, we will assume that the plapt
is strictly proper, i.e.

and that it can be stabilised by an observer-based LPs.0 =
controller of the form

Ag + BoFy + LoCy | —Lg Goo = —Alg | _()Le BIO
Ke:[ Fy | 0 ] ©) R A
[
for all € ©, whereFy and Ly are such that,; = (Ag +
ByFy)%y, and iy, = (Ag + LyCy)iy are LPV stable. andSy = ég: B(5)=9 is any proper LPV stable system.

Any Gy that satisfies the above assumption for any tra-, .
Y o P y Sy is denoted the dual Youla-Kucera parameter.

Proof: We first show that under the given assumptions,
Ky stabilisesGgg. The upper loop in the right part of

jectory of @ € ©, can be written as a right, respectively left,
coprime factorisation of the form:

Go = NgM, ' = M, ' N, (6) Figure 1 is closed, yielding's ¢ in the left part of the figure:
where Ng,]\/f@,Mgl and Ny are LPV stab!e operators of Gso = Ful(Gos, S
a specific form given below. Correspondingli§y can be
- As.g —BgsoFy | Bs
factorised as e o B (11)
_ -1 _ yr—177 = — Lo S0 0 0
Ko =UgVy =V, Usg (7 Cso Co | 0

with LPV stableUy, Vy, Uy, Vy. The factors are given as _ _ _
and when connecting’y as shown to this system, we obtain

My Us Ao + Boky | By —Lg the autonomous LPV system
= Fy I 0 ®)
No Ve C 0 I
Ekt1 Ase —Bgs g Fy 0 &k
{ Vo —[76] _ Ao +F9LeCe —}39 Loe ©) M1 | = 0 Ap + LCy 0 Mk
—No Mo Cy 0o I Xk+1 —LoCsy  —LgCy  Ag+ BoFp| | Xk
Then, it is possible to check that where ¢ is the state vector ofSy, y is the controller
~ ~ state vector and) = x — x is the difference between the
7 0 Vo —Ug||My Up i
= = ~ state vector ofGGp ¢ and Ky. Since Ag g, Ag + LoCp and
[O I} [—Ne Me] [Ne Ve] 0,0 0 S0, Ag + LgCy

B - Ay + BpFy are all LPV stable, andBgs ¢Fy, LyCsg and

_ {Me Ue] [ Vg —[Je] (10) LyCy are bounded for boundeét] we can then conclude that
No Vo| |-No My the closed-loop system is LPV stable by applying Lemma 2

twice in succession.

holds; this equation is referred to as tkeuble Bezout ) . .
identity. We then show that, given &y = UpV, ", a nominal

o 71 oy oy
We are now able to show the following result; see Figure o = NolM, stgblllsed byK, and alis, also s'Fab|I|_sed
by Ky, there exists arby (connected as shown in Fig. 1)

such that the interconnection 6f, y and Sy is identical to

Gsﬁ.
So We construct the dual Youla-Kucera parameterSas=
5 C Fu (G@, st@), where
Ag 4+ BoFp + LoCy | —Ly By
Gs, Go.p Gy = Fy 0 I
u y —Cg ‘ I 0
u Yy
Ky Ky First, we note that thg1,1)-block subsystem oGy is
identical to Ky (cf. (5)); thus, sinceF, (Ky,Gy) is LPV

stable,Sy = F,, (Go,Gsp) is also LPV stable. Secondly, it

Fig. 1. All LPV systemsGys g stabilised by the LPV controlleKy (left) is fairly easy to see that
can be represented by a nominal syst@gly stabilised byK, and a dual
Youla-Kucera parametesy (right).

_ I
Fu (Go,p,Gy) = B O}



which is the upper fractional transformation identity. Shu of the plant during operation, it is suspected that there is
additional un-modelled dynamics, which we wish to identify

Fu(Gop 89) = Fu(Gos, ) Since K, stabilisesG's g and (12) is dull parametrisation
= (Go 0, F (097 Gs 0)) of all LPV systems stabilised bi(y, Theorem 1 ensures that
= Fu(Fu(Gop,Gs),Gs,) there exists an (LPV stable) parameter sysigyrsuch that
= Gasy. G, can be written as in (12) (or, equivalently, as in (11)).

Consider now the setup shown in Figure 3, wh&igand
which completes the proof. B Gy are shown in their factorised form as in (7) and (6),
Note that knowledge of a specific polytopic Lyapunowespectivelyn’ = (N[9+Sgﬁg)ny is the measurement noise
function is not required in the proof; we simply require thehat would normally affect the measurementsrelocated
state transformations to be independent of the systenmsstati the block diagram to affect the output of the parameter
By Theorem 1, all LPV systems stabilized B, can be system instead, ang andr, are external excitation signals.
written asGs,g = Fu (Goe,Se), With Go g given in the

theorem. By inspection, it is seen that
y insp _I it i u 2 ¢ N, N
Ag | —Lo By "2 - l Yy
Goy = | —Fg| 0 1
LG | T 0 So
o [=My 1U9 My! o
a i M_ Gy
[ MU M, L Uy Vo —
T Ve— NoM,'Up NoM,! z
where the last equality is obtained by the Bezout identity. 71 0 71
Then, it can be checked that 0 0
Fu(Gop,S9) = (Nop+ VySe)(My+ UpSp)~*

Fig. 3. ‘Hansen scheme’ setup for closed-loop system identifinatio

(]\;fe + S@U@)il (Ne + S@%)(].Z)

. . . N ) ) From the block diagram, we find the following relations:
This setup is depicted in Figure 2 and will be used in the

following. (Ng + V5 Se)¢ =y — Vo' (13)
and
B C (M9 + UeSe)C = u-— U(.)n/
u — Mo No y = 1o+ V' Up(y +71) — Upn' (14)

Applying the LPV operatordy and Uy to (13) and (14),

Sp respectively, then yields
%(M(-) + UQSQ)C = ﬁg(’l’l + y) + ‘797’2 — %U{.}TL/
Usg z 7 Ug(Ng + VySp)¢ = Uy — UgVpn'

Subtracting the bottom equation from the top equation and

using the Bezout identity then results in
Fig. 2. Dual Youla-Kucera parametrisation of 1aII proper polytopieV

plants stabilised by the LPV controliééy = UpV,, *. ¢ =Upri + Vyra (15)
In a similar vein, from the block diagram, we have the
IV. OPEN-LOOP-LIKE SYSTEM IDENTIFICATION relations
We assume that a nominal state space LPV model of My¢ = u—Upz

an existing system(zy, has been found. The system takes
control signalsu as input, and yields corresponding output ~
measurementg, which are affected by additive noisg, € ~ Applying the LPV stable filtersVy to the top expression and
RP. The parameter variatichis measurable and satisfies the)My to the bottom one, subtracting one from the other and
assumptions in the previous sections. using the Bezout identity then results in
Based on this model, a stabilising observer-based LPV o — oy — Now (16)

controller Ky of the form (5) with stable observer and state oY o
feedback dynamics has been designed, for instance using ffteus, ( and z can be obtained by filtering measurements
methods in [24]. However, for some reason, e.g., monitorintprough known, stable LPV filters. Furthermore, assuming

NgC = y—Vyz



n, is independent of; andr,, then( is independent of/ o[ “W’"” I

as well. . oe
As a consequence, although and y are measured in il
closed-loop, the identification ofy using the signal9, z o ‘ A

and¢ becomes equivalent to an open-loop LPV identification
problem. Sy can in principle be identified using any of the

200

methods mentioned in the Introduction. When the identifica- .. x|
tion is completeGsy may then be recovered by inserting =~ -

200}

Sp in (12), or, more conveniently, in (11).

4000
sample number

) V- SIMULATION EXAMPLE ] ) Fig. 4. Measurement data for system identification. Tag:); bottom:y,
~ We consider the following unstable system with a single
time varying parameted < 6 < 1:

meen T deme T B - WWWWWWWMWWMWWWWWMM
= ka +Uk7 ‘ ‘ ‘ ‘ ‘ ‘ ‘

Yk .
i 0.9 0.05 01 =03 0.4 : ‘ w w ‘ :
—02-070 09 0 0 0 - 0.5%
Ap = 0 01 09 01 —0.1 : 2 : :
0.3+0 0 0 0 03+~ ‘ ‘ * ‘ w \ ‘
L0 03 —03 0.3 092+0.050 L L e T e U
M1 —0.8
0 0.3
B = 1|,K=1| 0 [,
-1 0
-1 —0.7
c = 1[012 1 -1], ‘ ‘ ‘ : ‘ ‘
with « = 0.3 and E{vkva} — 10-5. We assume ~ ZWMWM ‘
that we already have a reasonably accurate nominal mode  *° % 30 O mper %0 w0 %0

(Am,g, Bm, Cy,) Of the deterministic partd,, ¢ is equal to

Ay, except that the model assumes= 0. while the input Fig. 5. Zoom of measurement data, indluding auxiliary signalsnitap to
' . . e bottom:ry x; 0(k); uk; yr; Cks 2k

and output matrices are correctly identified, i.B,,, = B, ’

Cn =C.
The system is open loop unstable and only barely de-

tectable and stabilisable; in fact, although the modelrerro |n order to evaluate the obtained models, thgap be-

may seem small, even a slightly larger error can in factgasitween the model and the real system is computed. 7Fhe

cause an unstable closed loop. gap is a value between 0 and 1 that expresses the difference
A stabilising LPV controller between two transfer functions in terms of their similarity
Teprr = (Amg+ BumFp + LoCu)es — Loy with respect to closed Ioop_operation; that is, if theap
between two plant models is small, then a good controller
e = Fozek designed for one transfer function will also work well with
with the other [25]. Thes-gap is only defined for LTI systems, so

the comparisons strictly speaking only hold for fixed values

Fp = [011-0270 042 —043 01240050 0.7] of . However, to the best of the authors’ knowledge, no
_0(')?276__0('5’77799 other meaningful tools for comparison of closed-loop LPV
Lo = —0.19 model fitness are known. Here, thegap is evaluated fof
0.47 +0.40 frozen at0, 0.5 and 1.
0.87 The identifications are performed using an increasing
has been designed for the system. It satisfies the requitsmepiimber of samples, in order to evaluate how much excitation
given in Theorem 1 for alb € [0; 1]. is needed.

In closed loop operation, excitation in the form of white Two identification methods, ARX and PBSIDopt, are
noise with variance 1 is added to the input {n Figure 3). tested, both in a direct form and using the Hansen scheme.
The full output measurement sequence is shown in FigureThe state space matrices are found by minimising the pre-
and a zoom of the signals along with the auxiliary signaldiction error using least squares methods. Note that we do

used in the Hansen scheme is shown in Figure 5. not assume any explicit knowledge of which entriesdip
_In all the identifications, models on the fory,,, = are erroneous, so a direct grey box approach is not possible.
Agiy + Bouy, U = Cip are assumed, withly and By The first identification method examined is the LPV ARX

depending linearly om. method found in e.g. [7] and [13]. Here, the state estimate



simply consists of delayed outputs and inputs. In the diresubspace method is used to construct the state estimates, an
application, the method is simply fed measured input anconsequently requires a lot of computational power.

putput Qatg anq .model with 5 delayed outputs and 5 dela)_/edFirst PBSIDopt (with a window length of 9) is applied
inputs is identified. We assume a zero-order polynomigfirectly to the measurements to obtain a 5th order LPV
dependence oA in the identification. The dash-dot line in model, and the result, shown by the dash-dot lines in Figure

Figure 6 shows the-gap as a function of the number of 7 i quite poor. Changing the window length did not improve
samples used. Fot = 1 the model is acceptable, but for 4 identification noticeably.

f = 0 andd = 0.5, even large numbers of samples do
not yield acceptable models. Making delayed valued of
available to the identification algorithm did not improve th
model, either.

Next, PBSIDopt (again with a window length of 9) is
applied to obtain a 7th order LPV model §§ in the Hansen
scheme. The/-gaps of the resulting model is shown with
solid lines in Figure 7; as can be seen, th@ap drops
below those of the nominal model when more then 3000
samples are used. The result is not as good as for the Hansen
ARX method, but it is a definite improvement over using
PBSIDopt directly.

Bode Diagram

Magnitude (dB)

10°
samples used for ID

Fig. 6. v-gap for different models identified using ARX methods, with 0
frozen values of. 360F

COOOODOO000000 6T - .
1802 ©©© 008G - -

Next, the ARX method is used to identify a dual Youla £ — OOQ%OO
parameter in a Hansen scheme. First the data is filtered as |, ~ o O%%
discussed in Section IV. Then the ARX method is used to |77 HansenaRrx T
identify Sp, again with 5 delayed outputs and 5 delayed Lt PSPl o oemsmmrmr =
inputs, which is then combined with the nominal model as Frequency (radisec) v

in Egn. (11). The resulting model error is shown by the solid

lines in Figure 6. The dotted lines show thegap for the Fig. 8. Bode plots for different models identified using PBSIDOpithw
nominal model (which is approximately 0.08 for all frozen” —

), indicating that a significant improvement is achievechwit

a reasonably small number of samples. ) ) )
Figure 8 shows Bode plots for all the models obtained with

the maximum number of samples, withfrozen at0.9. The
picture is similar for all other values @f the Hansen scheme

is able to capture the spike, whereas the direct methods are
not.

The reason that the Hansen scheme improves on the iden-
tification is likely different for the two different identidation
methods. For the ARX case, the closed-loop nature of the
data affects the direct ARX method, and the Hansen scheme
helps to decouple these effects. In PBSIDopt, the main
approximation lies in assuming that the state transition is
‘ zero beyond the window length; in this example this is not
samples uisa for > the case. The Hansen scheme, on the other hand, focuses on

the identification of a subsystem, where this assumption is
Fig. 7. v-gap for different models identified using PBSIDOpt, withZen  ~|oser to being satisfied. Finally, it should be noted thiat
values of9. . . . . .
is the output noise filtered through a combination of known
factors and the unknowssy. As pointed out in [26], this

The second method examined is PBSIDopt, which ismay be exploited in a grey box setup to further improve the

presented in an LPV version in [16]. In this approach, aesults with the Hansen scheme.

v-gap




VI. DISCUSSION

[10]

In this paper we considered incremental system identi-
fication of LPV systems that are modified during onling11]
operation, for instance due to replacement and/or addition
of system components (so-callptiig-and-play contrgl We
used the notion of polyhedral Lyapunov functions to provei?]
the existence of a dual Youla-Kucera parameter system for
proper polytopic LPV systems in a non-conservative manngig,
Then we showed how the Hansen scheme can be used
for incremental system identification of such LPV systems,

taking the starting point in a nominal system model ang 4

identifying the unknown dynamics by means of identification
of said dual Youla-Kucera parameter in an open-loop-lik

setting. The method is an extension of the Hansen sche

15
3l

for LTI systems. This particular approach is suited for plug

and-play control, where system dynamics is changed duri
online operation e.g. due to replacement or introducti

o

of new sensors, actuators or other components; only the
changed dynamics need to be identified, while nominal plaft’]
and controller information may be retained.

(1]

(2]

(3]

(4
(5]

(6]

(7]

(8]
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