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A B S T R A C T   

The energy transition rests on several pillars including the electrification of heating, transportation, and industry 
to enable the better exploitation of renewable energy sources. This changes the geography of the energy system, 
where power changes from being centrally produced to being more geographically distributed. The electrifica-
tion will add new, large point demands to the electricity system. The distributed generation, point demands and a 
higher level of electricity transit all suggest grid impacts beyond design levels. Concurrently, the transition relies 
on coordinated actions at local and national levels with potential mismatch issues. This article probes into these 
developments for a larger Danish region. Based on a survey of local actions, it investigates whether the trans-
mission grid can withstand the changes and to what extent grid limitations create barriers for industrial 
development. The work is based on geographical information system (GIS)-based analyses of production and 
demand, survey-based stakeholder consultation to unveil expected demand and production development, and 
grid analyses. Results indicate that the transmission system limits the development, and that permissions should 
not only be based on local conditions as reported by municipalities but should also factor in spatially distributed 
national targets. This thus calls for improved coordination between administrative levels.   

1. Introduction 

The transition to carbon-neutral or carbon-negative energy systems 
changes the general setup of the energy system. From a system charac-
terized by few power producers and distributed demand, a system is 
evolving in which production is much more geographically dispersed 
while demands are growing fast due to ongoing electrification. 

The electrification of transportation [1,2], heating demands, and 
industrial demands [3] is also changing the geography of the electricity 
system with increasing demands in dwellings for heating and home 
charging of electric vehicles and the potential production of synthetic 
fuels in power-to-x processes [4,5]. Depending on the fuel in question, 
such power-to-x facilities may appropriately be located near point 
sources of carbon dioxide. Thus, new electricity demands do not 
necessarily follow the population density and the main population 
centres. 

There is already a substantial body of work on the geography of 
heating demands in, e.g., Europe [6] and Chile [7], as well as work with 
a more methodological focus on the approach to the assessment of the 

geographical distribution of heating demands [8,9]. However, there 
needs to be more focus on the geography of electricity systems as per-
formed by e.g. Hülk et al. [10]. 

In terms of the production of electricity, there are different de-
velopments. On the one hand, there is the dispersion of small units such 
as home installations of photovoltaic (PV) panels and single or even 
domestic wind turbines. On the other hand, there is also an increase in 
larger wind farms and PV fields. For wind turbines, this includes 
offshore, typically implying the installation of new offshore transmission 
grids. As found in a review by Sarkar and Odyou, several issues are 
arising including issues regarding capacity, losses, and operation of the 
system [11]. 

A new survey underlines the uneven distribution of wind power and 
PV developments in Denmark with main development in sparsely 
populated areas [12], resulting in significant per-capita installations in 
the north and west of the country, while the east sees less development – 
see Fig. 1. There is more agricultural land for installations of PV and 
wind power projects in these western areas – but PV installations should 
not be ruled out in urban landscapes. Rooftops in the residential, service, 
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and industrial sectors hold promise and would give a better spatial 
distribution of production compared to demands. Such an uneven and 
generally uncoordinated development impacts transmission needs[13]. 

Many energy system transition papers consider only electricity flows 
to and from the system while using a copper-plate representation of the 
object of the investigation, such as ̌Sare’s work on the Dubrovnik Region 
[14], Thellufsen’s work on cross-border or cross-sector integration [15], 
Bamisile’s work on Nigeria [16], Dorotic’s island work [17], or Marc-
zinkowski’s island studies of Madeira, Samsø, and Orkney [18]. This is 
typical for model work using, e.g., the EnergyPLAN model that does not 
consider internal restrictions in the electricity system [19]. 

An area of importance is the integration of local and national energy 
systems to ensure that local actions and national targets are in compli-
ance [20–23]. While the importance is stressed and case studies are 
analysed to support this in Refs. [20,21], we have not been able to 
identify work identifying actual mismatches in electricity grids in these 
articles or in the scientific literature in general. Another area of 
importance is that of sector or smart energy system integration. In smart 
energy systems, the development and operation of the electricity system 
is seen in conjunction with the rest of the energy system [24,25]. Thus, 
multiple sectors may be coordinated, including desalination [26–29], 
wastewater [30,31], industry [3,32], district cooling [33,34], district 
heating [35,36], and transportation [37]. One of the drivers in the 
trends towards smart energy systems is the exploitation of flexibility or 
low-cost storage outside the electricity system [38] – but in terms of 
transmission system, sector integration also enables a more local and 
controlled use, thus reducing transmission needs. 

Transmission systems clearly set a barrier for the development of the 

energy system. A strong transmission system would enable a more 
diverse use of the electricity system; however, in addition to being 
costly, transmission grid expansions are also facing opposition [39,40]. 

Becker et al. analyse transmission system expansion on a European 
level from the perspective of renewable energy transition [41], finding 
that transmission may have to increase in the order of four-fold for a 
wind and PV-based Europe. This is supported by Taseska-Gjorgievska 
et al. finding that grid capacity limitations are underestimated in 
long-term energy planning [42]. On the other hand, Baecker and Candas 
[43] investigate the coordinated optimisation of transmission and dis-
tribution grids and how demand side flexibility can help reduce grid 
expansion needs. 

Lund [44] previously assessed the impacts of a large-scale electrifi-
cation of the energy system and used this as an argumentation for dis-
trict heating and smart energy system integration, and Blarke presented 
a similar analysis regarding grid requirements in future renewable en-
ergy systems with his work on “Smart grid vs super grid” [45], finding 
that smart grids offered fewer requirements in terms of new grid infra-
structure. Oropeza-Perez et al. [46] analysed the Mexican electricity 
system with dispersed PV on individual buildings finding that it would 
free “the transmission and distribution grid [..] during certain hours of the 
days”. 

Different approaches to modelling transmission system expansion 
requirements have been presented [47] on a European level using the 
Balmorel model [48] – flow-based versus net transfer capacity as well 
integrating electricity market impacts. In another work, Østergaard 
investigated the geographical distribution of production and demand 
within the country finding that proper integration using local 

Fig. 1. Wind and PV capacity in Denmark in 2022. Note that the regions do not coincide with the political division of Denmark into regions – however the 
granularity here captures the uneven distribution of wind and PV better. Source of capacity data [12]. 
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cogeneration of heat and power (CHP) stations actively [49,50] could 
limit transmission grid expansions to a level where underground cables 
could suffice. Menges demonstrated how underground cables are 
generally more accepted [51] – but also, that the willingness to pay 
among citizens does not necessarily match their cable preference. 

Lastly, there is a discourse on microgrids [52] and their integration 
with distribution and transmission grids. 

There is thus an important body of literature on transmission grid 
requirements for different energy system transition scenarios as well as 
on the spatial aspects of energy demand and supply, but much of the 
transition study work in general is copper-plate work. Also, much 
research focuses on large scale systems of, e.g., country, or continental 
scale. In addition, the studies primarily focus on researcher-based sce-
narios, and there is little if any work on actual developments in potential 
mismatches between national targets and local developments, or on 
questions whether transmission grids can accommodate the actual de-
velopments. This is thus leaving room for the development and analysis 
of co-designed scenarios and/or scenarios based on stakeholder 
consultation. 

Any imbalances between the spatial distribution of production and 
demand will have impacts on transmission and distribution grid needs – 
and on the other side – the existence of a strong transmission grid allows 
for certain developments and modes of operation of energy systems. This 
calls for analyses with high temporal and spatial resolution as well as 
analyses coupling transmission system and energy system 
developments. 

In this article, we investigate the link between regional development 
with a focus on actual plans among stakeholders and the constraints 
imposed on the system development through grid restrictions. A point of 

departure is taken in the North Denmark Region (see Fig. 2) with near- 
term scenarios in 2025 and 2030, respectively. This region provides a 
good representation of the Danish development in general, as it is 
characterized by an abundance of renewable energy sources as well as a 
larger urban area (Aalborg) with both central power production units 
and large industrial electricity demands. The region consists of 11 mu-
nicipalities or varying characteristics. 

The article proceeds with Section 2 where methods, tools and data 
are presented. Section 3 presents the analyses performed and, finally, 
the conclusions are synthesized in Section 4. 

2. Methods and data 

In this article, three approaches are combined. A stakeholder 
consultation based on a survey with all municipalities in Northern Jut-
land; simplified energy systems analyses; and transmission grid ana-
lyses. These approaches are further detailed in this section. 

2.1. Stakeholder consultation 

To be able to represent expected developments in the regional energy 
system as accurately as possible – both capacity wise and in terms of 
geography, a stakeholder consultation process was chosen, which 
involved a survey being sent to all municipalities. The objective was to 
increase the accuracy of the analysis and model, but also to increase the 
relevance of the model results for the participating municipalities. 

The survey focused on the following topics: 1) plans for electrifica-
tion of industry; 2) large new electricity consumers; 3) new electricity 
producing units. These topics were divided into a short (2025) and 

Fig. 2. Transmission grid of North Denmark Region with indication of lines, nodes and municipalities.  
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medium (2030) time horizon resulting in six survey questions. For each 
question three response categories were given: description; estimated 
demand/production; address/coordinates. The survey was sent as an 
editable document to the municipalities with the possibility to provide 
written answers instead of multiple-choice type of responses. This was to 
ensure that relevant additional information could be provided under 
each topic in the survey. The survey was sent out through North 
Denmark Region to relevant employees in the municipalities with a view 
to increasing the response rate. Earlier versions were discussed and 
updated in the project working group where, amongst others, three of 
the region’s municipalities participated. This was done to minimize 
potential misunderstandings in the survey design. Moreover, North 
Denmark Region facilitated contact to the authors, which proved helpful 
in one case, where the survey was answered directly via email to one of 
the authors after prior consultation on the phone. 

North Denmark Region was also helpful in following up on the sur-
vey request, which eventually resulted in a 100% response rate from the 
eleven municipalities. Also important for increasing the accuracy of the 
survey results was the possibility for iteratively following up on the 
provided information. Again, North Denmark Region was helpful in 
sending out clarifying questions from the authors to selected munici-
palities where necessary. Information from the returned survey docu-
ments was transferred to a spreadsheet and then used to make the 
electricity demand and production projections. 

2.2. Transmission system analyses 

The transmission system analyses are conducted using PandaPower 
[53]; a free software package that has previously been applied to, e.g., 
Sweden [54] but which has also formed the basis for more advanced 
tools as exemplified by Antic [55] and Wang [56]. 

PandaPower models a given grid as a series of connections in the 
form of lines or transformers between nodes. All components are 
described using their electrical parameters – e.g., impedance, suscep-
tance, maximum current – and the resulting set of equations is solved 
numerically. 

For these analyses, PandaPower is applied to the 150 and 400 kV grid 
in the area (See Fig. 2), thus distribution grids – here defined as 60 kV 
nominally and less – are not calculated. They are however considered as 
they are main connection points to more potential expansion sites. 

Redundancy is not considered as would be in transmission system 
operator n-1 analyses. Thus, results are not worst-case contingency sit-
uations, but rather ordinary operations situations, but with analyses 
across the year, the variance in demands and productions show the 
system response to different development paths. Contingency and 
redundancy considerations are expected to impact different scenarios 
similarly. 

The full list of node labels and full node names is included in Table 2 
in the Appendix. The list also notes which nodes cannot be seen in, e.g., 

Fig. 2 due to graphical congestion. 

2.3. Spatial and temporal energy systems analysis 

Electricity demand and production are estimated in all nodes of the 
system with annual aggregated numbers with a basis in data from the 
Danish Transmission System Operator (TSO) Energinet [57]. Hourly 
values are not available from the TSO with the same nodal resolution, 
hence data are combined with more general data on hourly temporal 
resolution from Ref. [58] which is available with a much coarser spatial 
granularity – e.g., Western Denmark. 

The two panels in Fig. 3 show the modelled hourly demand profile 
for the classical demand and heat pumps respectively. The classical 
demand is based on the TSO data while the heat pump demand data is 
based on outdoor temperature data. In addition to these demands, 
electric vehicles are modelled using the temporal profile of the classical 
demand and industry and electrolytic converters (power-to-x) are 
modelled with a constant rate. 

Lund and Kempton [59] showed how the charging of electric vehi-
cles affects energy system dynamics and that a smarter charging is 
beneficial for the system, however for the present analysis, it is decided 
not to consider a smart charging scheme – or vehicle-to-grid capability 
for that matter – in order to investigate plausible near-future scenarios. 
As for industry, the hourly demand is modelled with a flat rate due to the 
circumstance that energy intensive industry tends to be operated 
continuously. 

Power-to-x is so far only installed in at limited scale in Denmark, and 
no data is available regarding temporal load profile, however, with high 
investment costs it is assumed that these units will be operated at near- 
constant load. If actual power-to-x stations are not operated at constant 
load, then the systems and grid analyses will indicate the need for 
curbing production and reducing electricity demand. I.e., if grid ana-
lyses indicate a grid overload of a certain duration per year, the same 
duration would be a reasonable indication of the need for curbing or 
shutting down power-to-x production entirely. 

Fig. 4 shows the power production profiles which are based on TSO 
data as mentioned before. For the one large-scale central power station – 
the 400 MW Nordjyllandsværket – the temporal distribution is only 
relevant in the near-term 2025 scenario, as the station is planned to be 
decommissioned in 2028. Both local and central CHPs show some 
annual variation with higher productions during the colder seasons. As 
Andersen [60] found, CHP systems are important for load balancing, 
however their operation is clearly affected by heating needs. The tem-
poral distributions also show that PV mainly produce in the summer 
months while the wind production is available all year, but with large 
fluctuations. 

Fig. 3. Temporal distribution of electricity demands.  
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2.4. Demand and production projections 

The classical electricity demand is modelled with a basis in 2020 
data, and no evolution is modelled within the years modelled here in the 
existing buildings. Due to the construction of new buildings, however, 
the aggregate demand is modelled increasing at a rate of 0.42% per year 
[61]. For the electric vehicles, the evolution is based on assumptions 
from the Danish Energy Agency [62], with demand at 2.8% and 8.36% 
respectively of the classic electricity demands in 2025 and 2030 
respectively. Outside district heating areas, heat pumps will be installed 
for individual house heating and at the same time, energy efficiency 
measures are carried out amounting to 20% savings in 2025 and 30% in 
2030 [61]. 

Large new point demands in the form of industry (either new or 
electrification of existing industry), data centres or power-to-x are 
introduced based on the consultation with the municipalities in the 
areas. The same applies to new PV and wind power capacity. As the data 
from the municipalities is confidential, they have been aggregated for 
the purpose of this analysis. Not all the reported data from the munici-
palities has been included though, as some municipalities’ expectations 
by far exceed reasonable levels as outlined in e.g. Ref. [63]. For instance, 
in terms of PV, the plan outlined in Ref. [63] calls for 5 GW in 2030 and 
10 GW in 2045. The Danish Energy Agency assumes somewhat higher 
levels – 8.4 GW in 2045 and 13.1 GW in 2040 [62] on a Danish national 
scale. This corresponds to approx. 1.7 TWh from PV in 2030 in the 
modelled region – while the 2025 scenario already has an annual PV 
production of 2.3 TWh following the survey data from the 
municipalities. 

An expected carbon dioxide storage facility was assessed, however 
prompting no relevant demand changes. This was for storage only – i.e., 
not for the more energy intensive capturing process, however the stor-
age facility was expected by a municipality – but with no direct link to a 
site requiring capturing. 

2.5. Yearly nodal balance 

Table 1 shows yearly aggregated demands and production in the 
individual nodes of the 150 kV transmission grid. Numbers are aggre-
gated across the aforementioned sectors and time. While the annual load 
in some nodes remains fairly constant over the years, it is also clear that 
for some nodes, productions and/or demands show strong de-
velopments, and also, that for some nodes, the annual imbalance be-
tween demand and production gets more pronounced – as shown 

graphically in Fig. 4. For the NNV node, corresponding to the city of 
Aalborg, for instance, production starts out in 2020 at a level of 260% of 
the demand and ends in 2030 at a level of 16% of the demand. This is 
due to the closing down of the power station Nordjyllandsværket in 
2028, located in the vicinity of Aalborg. 

On an aggregated level for the entire region, demand supersedes 
production by far as seen by the totals in Table 1. This is because some of 
the future capacity is planned as offshore wind farms not connected to 
the grid of this region. For these analyses, this offshore wind power 
contribution is neither quantified nor distributed spatially but will 
clearly reach the region through the transmission grid. Transmission 
grid loading from connecting the large demands with offshore wind 
farms will thus not differ from any other loading of the transmission grid 
caused by imbalances between production and demand within the 
region. 

In Fig. 5, the development in production and consumption from 2020 
to 2030 is presented. A strong demand increase is seen in BDK, DYB, 
KAG, NOR, SBA, THØ and NNV while production primarily increases in 
FRD, HVO, KAG, KLT, MOS, VHA and VIL. 

The bar charts in Fig. 5 shows the differences in annual production 
and demand, which are then used to estimate hourly profiles for each 
node. Fig. 6 presents two examples of the hourly profiles for 2025 and 
2030. The first example shows the BDK node, where the electricity de-
mand increases by a factor three while production is constant, when 
comparing 2025 to 2030. The other example shows the NNV node, 
where the production is reduced significantly due to the expected 
closure of the central power station, which means that the production 
profile is dominated more by PV. For all nodes, similar hourly input 
profiles are established. 

3. Analyses and results 

In the following, the analysis starts with the reference situation in 
2020, proceeds with the 2025 and 2030 scenarios, and concludes with a 
discussion on developments beyond the transmission grid area and, 
thus, areas only reached by distribution grids. 

3.1. Analyses and results for the 2020 reference and the 2025 scenario 

The analyses demonstrate that there unsurprisingly are not many 
issues with overloading in the reference situation. There are though 
some occurrences for a specific line in the western part of the region. 
This is a relatively sparsely populated area with good wind power 

Table 1 
Aggregated annual production and demand of electricity in the nodes of the electricity system in 2020, 2025 and 2030.  

Node 2020 2025 2030 

Demand [GWh] Production [GWh] Demand [GWh] Production [GWh] Demand [GWh] Production [GWh] 

BDK 416 415 503 485 1118 485 
BED 362 213 406 213 425 213 
DYB 176 220 1011 567 1019 367 
FER 180 57 218 57 227 57 
FRD 129 104 179 268 185 268 
FRØ 134 173 146 173 154 173 
HVO 140 181 159 509 166 509 
KAG 275 658 538 658 891 924 
KLT 36 447 46 473 48 473 
MOS 265 164 317 627 330 627 
NOR 202 262 238 262 2288 262 
NIB 342 276 407 391 525 391 
SBA 410 117 1359 117 3182 274 
SIN 179 240 226 240 238 240 
SKA 88 3 136 205 100 205 
THØ 220 331 3703 331 3744 559 
VHA 163 219 202 927 209 927 
VIL 198 291 236 1153 243 1153 
NVV 832 2.162 4195 2766 4216 659 
Sum 4746 6533 14,225 10,223 19,309 8766  
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Fig. 4. Temporal distribution of power production. Note that the central power station is only present in the existing system as it is planned to be shut down in 2028.  

Fig. 5. Geographical distribution of the foreseen changes in electricity consumption and production at the transmission grid nodes. In the map the demand and 
production for NNV is a compilation of FER, HVO, NVV, SKA and VHA due to the proximity of these nodes and due to confidentiality concerns of some data in 
the area. 
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resources. 
Figs. 7 and 8 show the 2020 situation, which is the reference situa-

tion. As expected, most of the lines are not overloaded, only the line 
from BED to NOR shows overloading in 0.7% of the hours. 

The 2025 scenario shows a more pronounced overloading with 
several lines exceeding a 100 %-line load during multiple hours of the 
year. Fifteen out of 35 lines are overloaded in some hours of the year. For 
most of these lines, however, overloading is limited to a few hours, while 
for specific lines overloading is a more consistent issue (See Figs. 9 and 
10). 

The FER-THØ line, for instance, is overloaded 100% of the time (see 
Fig. 11), while a line like VHA-ÅBØ is overloaded 31.2% of the time. The 
VHA-ABØ line is not shown in Fig. 11 as it is a relatively short line in the 
congested area under the ÅBØ label. The overloading on these lines is 
primarily due to a large demand increase in 2025. The demand also 
increases significantly in DYB and SBA from 2020 to 2025 but does not 

create overloaded lines. 

3.2. Analyses and results for the 2030 scenario 

For the 2030 situation (See Fig. 12), overloading increases further, 
with more lines overloaded in the west, in the centre and now also in the 
northern part of the area. A total of 22 out of 35 lines are overloaded for 
a smaller or larger part of the year, and some lines are overloaded more 
than half of the time. Again, as in the 2025 scenario, the line to THØ is 
always overloaded. The primary reason for the increase in the number 
overloaded lines are further demand increases in NOR, BDK, SBA be-
tween 2025 and 2030. 

With the phasing out of the Nordjyllandsværket power station, more 
power is transmitted from outside to the region causing, e.g., the load to 
exceed the capacity for the 400 kV line from TJE to FER in some hours. 

It should be noted, that for computational reasons, 6996 h are 
simulated here. For the remaining hours, PandaPower was unable to 
compute a solution – probably due to loading beyond model design 
parameters. 

Fig. 13 shows as the same results as in Fig. 12 focusing on the average 
yearly load and standard deviation of line loads. It is noticed that some 
lines are hardly used – the 150 kV connection MOSV-TJE and the 400 kV 
line NVV-VHA. In the former case, this is a line running in parallel with a 
400 kV line and in the latter case, this is due to simplifications of the 
assignment of loads in the Aalborg area. Note that the NVV-VHA line is 
not discernible in Fig. 12 due to graphical congestion in the Aalborg 
area. For other lines, the result is the same as in Fig. 12 with a few lines 
with consistent overloading - FER-THØ, BED-NOR and NVV-SBA. 

3.3. Transmission and distribution grids 

The grid analyses presented in the previous section only address the 
transmission grid at 150 and 400 kV levels, however, the transmission 
grid does not reach all corners of the region. A particular focus of the 
region’s development plan is industrial ports and ferry ports where 
either power-to-x may find appropriate locations from a logistics’ 

Fig. 6. Hourly production and demand in two sample nodes in 2025 and 2030.  

Fig. 7. Hourly node balance and line loading in the 2020 situation. All nodes 
and lines are shown with separate colours, but not all are visible due to 
graphical congestion. 
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perspective or where ferries may demand power for charging in the 
future. Major ports lie in Hirtshals (mainly ferries), Skagen (Europe’s 
largest landing site for pelagic fish [64]), Frederikshavn (ferries and 
industry [65]), Hanstholm (fishery [66]) and Aalborg (cement and an 
increasing focus on land-side activities [67]) (See Fig. 12). Of these, Port 
of Aalborg is the only one with relatively strong connections to the 
transmission grid. The port of Frederikshavn is connected to the SBA 
node through two 5–6 km 60 kV distribution lines. Port of Skagen – at 
the very tip of Denmark – is connected through 60 kV lines to SBA and 
BDK at a distance of 35–40 km. The Port of Hirtshals is also connected to 
BDK through 60 kV lines – both directly and meshed, and the Port of 
Hanstholm is similarly located 12 km north of NOR and 21 km west of 
FRT. 

Where 150 kV lines under Danish conditions typically have a 
transmission capacity in the range of 200 MW, and a 400 kV trans-
mission line a capacity of 1100 MW, distribution lines at 60 kV have far 
lower capacities. Here, the capacity is typically around 50 MW. As with 
other voltage levels, this of course depends on the conductors as well as 
the number of parallel systems, i.e., the number of systems on a line of 
transmission towers. 

Fig. 8. Transmission grid of the modelled 2020 situation with colours representing nodal voltage (bus voltage) and line loading. Simulation results from hour 8735 
are presented (a December evening). 

Fig. 9. Hourly node balance and line loading in the 2025 scenario. All nodes 
and lines are shown with separate colours, but not all are visible due to 
graphical congestion. 

Fig. 10. Transmission grid of the modelled 2025 situation with colours representing nodal voltage (bus voltage) and line loading. Simulation results from hour 5000.  
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The distribution grid thus also forms a barrier for development in a 
region like the one modelled here. There are definitive bottlenecks, but a 
closer survey of these issues has not been carried out. Whether ports can 

get an increased access to electricity through distribution or trans-
mission grids is also not assessed, but clearly, the larger the demand, the 
more the motivation for expansion at transmission level. In terms of grid 

Fig. 11. Transmission grid of the modelled 2025 situation with colours representing the number of hours the individual lines are overloading during the entire year.  

Fig. 12. Transmission grid of the modelled 2030 situation with colours representing the number of hours the individual lines are overloading during the entire year. 
It should be noted that the simulation is based on hours representing only about 80% of the year. In addition, major ports referred to in Section 3.3 are indicated. 
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and energy system planning this is relevant, since ad-hoc (i.e., linked to 
new production) transmission grid upgrades or expansion by the 
transmission system operator typically take in the order of 3–5 years, 
while distribution grid expansions have shorter time horizons. 

For the grid analyses conducted here, expected future demands and 
productions have been adhered to the nodes of the transmission grid, 
thus no higher spatial resolution is considered. Likewise, the trans-
mission grid analyses have only addressed actual specific lines; not po-
tential or planned, but currently non-existing lines. This issue could be 
addressed in further research on the topic. 

4. Conclusion 

This paper has presented a survey of future electricity productions 
and demands and assessed whether these expected developments are 
compatible with existing grid infrastructures. Most new demands are not 
problematic at the transmission system level. This applies to heat pumps 
for district heating or individual heating, electrification of the industry, 
and carbon dioxide storage facilities. On the other hand, if the ambitions 
of the eleven municipalities of the region are to be fulfilled in terms of 
electricity intensive processes like power-to-x, then demand will exceed 
present grid capacity. In some cases, even by far. 

The analyses also suggest that several of the prime sites for devel-
opment are beyond the feasible as they are only connected through 
distribution grids. 

There are significant new productions planned from RES in the area – 
primarily PV. The production of these planned sites however does not 
only exceed what there is room for in the grid but also what is an 
appropriate share from a national perspective. A clear sign that not only 
should planning permission involve grid considerations, but it should 
also include consideration for national developments and appropriate 
shares across municipalities. If planning permissions are simply granted 
without regard for a reasonable spatial distribution of national aims or 
appropriate levels, then the survey shows that expansion can exceed the 
reasonable. A further coordination between administrative levels is thus 
also required and emphasized by the distributed nature of future energy 
systems and the good feasibility of, e.g., PV installations. Conversely, the 
analysis indicates that if new industrial developments involving elec-
trification of energy-intensive industries and power-to-x should be 
supported at a more or less equal level in all municipalities, there may be 
a need to update the current “reactive” transmission grid expansion 
paradigm towards a more proactive paradigm. 

Some of the areas where the analyses have identified particular is-
sues – or mismatches between expected developments and current 

transmission capacity – is for the line leading south to THØ which shows 
significant overloading already in the 2025 scenario. In the 2030 sce-
nario, also the line heading north to SBA, the line between BED and NOR 
in the western part of the area show overloading in more than 60% of the 
hours. Most other lines will be overloaded fewer hours. 

It should be noted that this is without taking contingency into 
consideration, but perhaps grid resilience and contingency in the future 
will need to adapt to a new reality, i.e., not necessarily whether the 
system can operate without a critical line or transformer, but rather 
which loads needs to be shed under contingency situations. 

It should also be noted that the calculation engine applied – Pan-
daPower – has not been able to simulate all load situations. It is therefore 
expected that the duration of overloading is larger than what resulated 
from the simulations. 

Taking the point of departure in one Danish region, the approach 
explored in this paper is applicable and relevant beyond the Danish 
context. Further work could explore the interfaces between transmission 
and distribution grids – especially, regarding the need to upgrade dis-
tribution lines to transmission lines, which has not been included in the 
present analysis, but is likely to become an issue in remote industrial 
areas, e.g., ports. 

While the specific results clearly apply to the analysed case, there is 
no reason to assume that results would look different elsewhere with 
what may be labelled uncoordinated development. If investment de-
cisions and planning permissions are only based on local conditions, 
good feasibility in e.g., wind power and PV projects can cause de-
velopments beyond appropriate levels and thus grid impacts that are 
unnecessarily significant. 

Future studies could contrast this uncoordinated development with 
coordinated development, where local expansion plans are scaled to 
match national plans and targets. Furthermore, future studies could 
touch upon a more coordinated operation of the energy system, where 
the analyses in this study have not stressed the flexibility options of the 
energy system but has rather assumed e.g., constant power-to-x opera-
tion to optimise operating hours. 
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Fig. 13. Average yearly line loading of the transmission grid with the modelled 2030 situation with indication of standard deviation.  
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Appendix  

Table 2 
Node labels and full names  

Label Full name Note 

ADL Ådalen Not shown on maps 
BDK Bredkær  
BED Bedsted  
DYB Dybvad  
FER Ferslev  
FRD Fredensdal  
FRØ Frøstrup  
HVO Hvorupgård  
HVV Håndværkervej Not shown on maps 
KAG Kærbybro  
KLF Klimfjordholme 2 Not shown on maps 
KLT Klimfjordholme  
MOS Mosbæk  
NVV Nordjyllandsværket Not shown on maps 
NOR Nors  
NSP Nibstrup  
RSL Roslev  
SBA Starbakke  
SIN Sindbjerg  
SKA Skansen  
THØ Tinghøj  
VHA Vester Hassing  
VIL Vilsted  
ÅBØ Aalborg Øst   
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