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Introduction

In recent times, the COVID-19 pandemic and the Russian invasion of Ukraine have resulted
in clear increases in volatility and overall insecurities in the energy markets [12]. As a
consequence, effective risk management has become of paramount importance for investors
and financial institutions. To perform effective risk management, accurate modelling
of dependencies between financial variables plays a critical role. Historically, the linear
correlation approach has been used to determine dependence structures. However, studies
have demonstrated that copula models, which provide a flexible and powerful framework
for capturing the dependence structure between random variables, are a considerably more
useful tool in financial risk management [13]. In particular, the correlation approach fails
to capture dependence in extreme events, whereas many copula models do not suffer from
this limitation. Hence, copulas are ideal candidates for modelling the joint behavior of
financial assets, as we have seen the tendency of simultaneous extreme events during the
COVID-19 pandemic and the invasion of Ukraine. However, as of writing this thesis, there
is no general consensus on choosing the optimal copula model(s) in applications regarding
risk management.

In this thesis, we propose an approach to evaluate the accuracy of copulas’ risk forecasts
and a method for identifying the most suitable copula model(s). To this end, we investigate
the joint behavior of two stocks within the energy and oil/gas markets, namely NextEra
Energy and British Petroleum, respectively. We elect to investigate these particular stocks
as the aforementioned recent crises have shown large increases in the volatility of electricity,
oil, and gas prices, which have been reflected in the prices of these stocks. In particular,
we consider an equally weighted portfolio composed of the two stocks. We then seek to
forecast value-at-risk and expected shortfall for this portfolio, and evaluate the utilized
copula models’ forecasting accuracy. After evaluating the accuracy of the copula models’
risk forecasts, the copula model(s) with the most precise risk forecasts are determined. To
this end, the so-called model confidence set is employed, which systematically eliminates
the statistically inferior models, such that the remaining copula model(s) have no significant
difference in risk forecasting performance.

This master’s thesis aims to contribute to the field of risk management by systematically
evaluating and selecting the most suitable copula model(s). The research findings will offer
practical implications for risk managers seeking accurate frameworks to measure risk in
today’s complex financial landscape.

Problem Statement

Based on the introduction above, the problem statement for the thesis is as follows:

How can copulas be employed for risk forecasting in stock portfolios, and how can one

evaluate the accuracy of these forecasts and identify the most suitable copula model(s) for

precise risk assessment?

vii
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1 Copulas

Unless explicitly stated otherwise this chapter is based on [2], [10], [16], [19] and [20].

Copulas are a powerful tool in statistics for modeling the dependence structure between
variables. Unlike traditional methods, copulas enable us to model the dependence structure
separately from the marginal distributions of the individual variables. In finance, copulas
are particularly useful for analyzing the dependencies between financial assets, such as
stocks or bonds, which is crucial for risk management. This chapter aims to provide an
overview of the necessary copula theory utilized in this thesis.

1.1 General Framework

Throughout this thesis, an arbitrary probability space p⌦,F ,Pq is fixed such that any
random variable X and stochastic process Y “ pYtqtPN0 is defined on this probability space
with state space pR,BpRqq. A distribution function F of a random variable X is described
as a monotonically increasing càdlàg function mapping the set of real numbers to the
interval r0, 1s. Furthermore, lowercase letters will be used to denote some realization of a
random variable X or stochastic process Y , that is, a realization of X will be denoted by x

and a realization of Y will be denoted by y “ pytqTt“0, where T P N0.
In econometrics, a stochastic process Y is often assumed to be decomposed in the

following manner:
Yt “ µt ` "t,

where µ “ pµtqtPN0 is considered a mean process and " “ p"tqtPN0 is an error process. This
decomposition will be utilized in the final section of this chapter. Note that the term time
series will be used synonymously for a stochastic process.

1.2 Main Definitions and Results

The fundamental definitions and results related to copulas will be introduced in this section.
To begin with, we will offer a formal definition of a copula. While a wide variety of
definitions can be found in the literature, we will be using the following.

Definition 1.1 (Copula).
A d-dimensional copula is a distribution function C : r0, 1sd Ñ r0, 1s with standard uniform
marginals that satisfies:

(i) Cpu1, . . . , udq “ 0 whenever ui “ 0 for at least one i P t1, . . . , du.

(ii) Cp1, . . . , 1, ui, 1, . . . , 1q “ ui for all i P t1, . . . , du.

3
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(iii) C is d-increasing, i.e., for all pa1, . . . , adq, pb1, . . . , bdq P r0, 1sd with ai § bi:

2ÿ

i1“1

. . .

2ÿ

id“1

p´1qi1`¨¨¨`idCpu1i1 , . . . , udidq • 0,

where uj1 “ aj and uj2 “ bj for all j P t1, . . . , du.

The third property ensures that if the random vector U “ pU1, . . . , Udq has distribution
function C, then Ppa1 § U1 § b1, . . . , ad § Ud § bdq is non-negative. For notational
purposes, we define Cd as the family of d-dimensional copulas. Also, as in the above
definition, u will denote a realization of U „ Unifp0, 1q for the remainder of this thesis. We
now recall the definition of the quantile function.

Definition 1.2 (Quantile Function).
Let F be a distribution function. The function F

´1 : r0, 1s Ñ R defined by:

F
´1p↵q “ inftx P R : ↵ § F pxqu,

is called the quantile function.

As the quantile function only coincides with the standard inverse when F is continuous
and strictly increasing1, we should point out that a small abuse of notation has been used
here. Since copulas take uniform realizations as inputs, the subsequent transformations are
highly beneficial.

Proposition 1.3 (Probability Integral Transform).
Let X be a random variable. If its distribution function FX is continuous and strictly
increasing, then:

FXpXq „ Unifp0, 1q.

Proof. By defining Z “ FXpXq, we see that:

FZpzq “ PpZ § zq “ PpFXpXq § zq “ PpX § F
´1
X pyqq “ FXpF´1

X pzqq “ z,

where the third step follows from the fact that FX is continuous and strictly increasing. ⌅

As a result, when transforming a continuous random variable by its distribution function,
a standard uniform random variable will be obtained.

Proposition 1.4 (Inverse Probability Integral Transform).
Let X be a random variable with distribution function FX . If U „ Unifp0, 1q, then:

F
´1
X pUq „ FX .

Proof. The proof is shown in the case of FX being continuous and strictly increasing. By
defining Z “ F

´1
X pUq, we see that:

FZpzq “ PpZ § zq “ PpF´1
X pUq § zq “ PpU § FXpzqq “ FXpzq,

which concludes the proof. ⌅
1
This assumption is reasonable in many financial applications since continuous distributions are typically

considered.

4



1.2. MAIN DEFINITIONS AND RESULTS Group 4.106 B1

Hence, F´1
X pUq has FX as its distribution function if U is a uniform random variable

on r0, 1s. When generating a uniform sample, this result is advantageous by allowing the
transformation of the samples to have distribution FX .

Now, suppose that X1, . . . , Xd have a joint distribution function F as well as continuous
and strictly increasing marginals F1, . . . , Fd. By the probability integral transform, it
follows that each of the F1pX1q, . . . , FdpXdq is distributed uniformly on r0, 1s. Therefore,
the joint distribution function of F1pX1q, . . . , FdpXdq is a copula which we denote C. This
copula contains all information about the dependencies among the components of X but
has no information about the marginal distribution functions of X. An expression for C

can be found in the following way:

Cpu1, . . . , udq “ PpF1pX1q § u1, . . . , FdpXdq § udq
“ PpX1 § F

´1
1 pu1q, . . . , Xd § F

´1
d pudqq

“ F pF´1
1 pu1q, . . . , F´1

d pudqq. (1.1)

By letting ui “ Fipxiq for i “ 1, . . . , d, (1.1) reads instead:

F px1, . . . , xdq “ CpF1px1q, . . . , Fdpxdqq.

This is part of the well-known Sklar’s theorem which we now formally state.

Theorem 1.5 (Sklar’s Theorem).
Let X1, . . . , Xd be random variables with joint distribution function F and let F1, . . . , Fd

be its marginals. Then there exists a d-dimensional copula C P Cd such that:

F px1, . . . , xdq “ CpF1px1q, . . . , Fdpxdqq, (1.2)

for all px1, . . . , xdq P Rd. Furthermore, if the marginals F1, . . . , Fd are continuous, then C is
unique; otherwise C is uniquely determined only on rangepF1qˆ¨ ¨ ¨ˆrangepFdq. Conversely,
if C is a copula and F1, . . . , Fd are distribution functions, then the function F defined in
(1.2) is a joint distribution function with marginals F1, . . . , Fd.

Consequently, Sklar’s theorem states that any joint distribution function can be expressed
in terms of its marginals and a copula function. This aspect makes copulas an extremely
flexible tool for statistical analysis since it is not necessary to construct a full joint model for
all variables at once. Instead, one might model each variable individually before modeling
their dependence using a copula. For a proof, the interested reader is referred to [7].

In connection with Sklar’s theorem, we introduce the notation of the copula density c

in the following manner:

cpu1, . . . , udq “ Bd

Bu1, . . . , Bud
Cpu1, . . . , udq. (1.3)

Differentiating (1.2) by use of the chain rule then yields:

fpx1, . . . , xdq “ cpF1px1q, . . . , Fdpxdqqf1px1q ¨ ¨ ¨ ¨ ¨ fdpxdq, (1.4)

where fi denotes the marginal density of Xi for i P t1, . . . , du. Thus, any joint density
function can be expressed by the product of its marginal densities and a copula density.

The version of Sklar’s theorem in Theorem 1.5 only provides a way to model the joint
distribution using a copula, without considering any conditioning variables. However, in
finance, it may be important to model the conditional dependence between stock prices

5
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given their past values or some other economic indicators. Therefore, the conditional Sklar’s
theorem, which is presented below, is often considered more useful than the unconditional
version. To this end, we consider a conditional copula denoted as Cp¨ | Fq which is defined
in a similar manner to the definition of a copula in Definition 1.1, but with the inclusion of
some conditioning set F .

Theorem 1.6 (Sklar’s Theorem for Conditional Distributions).
Let X1, . . . , Xd be random variables, F be some conditioning set, and F be the joint
conditional distribution of pX1, . . . , Xdq | F with conditional marginal distribution functions
F1, . . . , Fd. Then there exists a d-dimensional conditional copula C P Cd such that:

F px1, . . . , xd | Fq “ CpF1px1 | Fq, . . . , Fdpxd | Fq | Fq, (1.5)

for all px1, . . . , xdq P Rd. Furthermore, if the conditional marginals F1, . . . , Fd are continuous
in x1, . . . , xd given F , then C is unique. Conversely, if C is a conditional copula and
F1, . . . , Fd are conditional distribution functions, then the function F defined in (1.5) is a
joint conditional distribution function with conditional marginals F1, . . . , Fd.

Hence, the fact that any joint distribution function can be defined by means of its
marginals and a copula function holds true when considering conditional distribution
functions as well. For a proof, the interested reader is referred to [19].

Lastly, we note that any high-dimensional copula can be constructed by multiplying
bivariate copulas, that is 2-dimensional copulas, after a suitable transformation of the
marginals. Hence, it is possible to consider high-dimensional copulas by solely considering
bivariate copulas. As a result, any results shown in this thesis concerning bivariate copulas
can be taken into account even if one is considering high-dimensional copulas. For more
details, the interested reader is referred to [8].

1.3 Examples of Copulas

In the following subsections, different types of copulas will be introduced. First, the so-called
special copulas will be presented, which as the name suggests deal with copulas for special
cases of dependence structure. The presented copulas are the unconditional versions.

1.3.1 Special Copulas

Three copulas, notably the independence, co-monotonicity, and counter-monotonicity
copulas, are of particular interest. The independence copula represents independence
between variables, whereas the co- and counter-monotonicity copulas are two different
extreme cases of dependence. In particular, these copulas are of interest, as many copulas
approach special copulas in their limits. First, the independence copula is defined.

Definition 1.7 (Independence Copula).
Let C0 P Cd, then C0 is called the independence copula if:

C0pu1, . . . , udq “
dπ

i“1

ui. (1.6)

Thus, C0 is the joint distribution of d mutually independent standard uniform random
variables. The equality in (1.6) follows immediately from the fact that ui KK uj for all
i, j P t1, . . . , du, i ‰ j. Having defined a copula for independence, it is natural to consider
copulas of perfect positive and negative dependence. In the former case, the following
definition applies.

6
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Definition 1.8 (Co-Monotonicity Copula).
Let C` P Cd, then C` is called the co-monotonicity copula if:

C`pu1, . . . , udq “ minpu1, . . . , udq. (1.7)

To realize that this is the copula corresponding to perfect dependence, consider U „
Unifp0, 1q and let u1, . . . , ud be realizations of U, . . . , U . Then:

PpU § u1, . . . , U § udq “ PpU § minpu1, . . . , udqq “ minpu1, . . . , udq.

It holds that the co-monotonicity copula corresponds to the Fréchet-Hoeffding upper
bound presented in Appendix A, such that Cpu1, . . . , udq § C`pu1, . . . , udq for all C P Cd.
Equivalently, a lower bound exists for all copulas, namely the Fréchet-Hoeffding lower bound.
This bound is not a copula for d • 3, however, for d “ 2, this is indeed a copula. This
copula coincides with the bivariate copula corresponding to perfect negative dependence,
which is defined in the following.

Definition 1.9 (Counter-Monotonicity Copula).
Let C´ P C2, then C´ is called the counter-monotonicity copula if:

C´pu1, u2q “ maxpu1 ` u2 ´ 1, 0q. (1.8)

To realize that this is the copula corresponding to perfect negative dependence, consider
again U „ Unifp0, 1q and two realizations u1, u2. Then:

PpU § u1, 1 ´ U § u2q “ Pp1 ´ u2 § U § u1q “ maxpu1 ` u2 ´ 1, 0q.

As remarked above, C´pu1, u2q corresponds to the Fréchet-Hoeffding lower bound for d “ 2
which implies that C´pu1, u2q § Cpu1, u2q for all C P C2.

1.3.2 Parametric Copulas

In this subsection, we define two parametric copulas, namely the Gaussian and t-copulas.
The Gaussian copula assumes the dependence structure follows that of a multivariate
Gaussian distribution and is defined as follows.

Definition 1.10 (Gaussian Copula).
Let CN P Cd and � denote the distribution function of the standard univariate Gaussian
distribution. Then CN is called a Gaussian copula with correlation matrix R P Rdˆd if:

CN pu1, . . . , ud;Rq “ �R

`
�´1pu1q, . . . ,�´1pudq

˘
,

where �R denotes the distribution function of the multivariate Gaussian distribution with
mean zero and correlation matrix R.

In the bivariate case, it is noteworthy that a correlation matrix R can be represented
by a single scalar ⇢ P p´1, 1q. The Gaussian copula can be interpreted as transforming the
uniform realizations u1, . . . , ud to Gaussian realizations by Proposition 1.4, and evaluating
them in a multivariate Gaussian distribution. Note that a Gaussian copula reduces to the
independence copula C0 in (1.6) if R “ Id. If all correlations in R approach 1, then CN

approaches the co-monotonicity copula C` in (1.7). Furthermore, for the bivariate case,
CN approaches the counter-monotonicity copula C´ in (1.8) if the pair-wise correlation ⇢
approaches ´1.

Similar to how we are able to derive a copula from the Gaussian distribution, we can
also derive a copula from the t-distribution.

7
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Definition 1.11 (t-Copula).
Let Ct P Cd and t⌫ denote the distribution function of a univariate t-distribution with ⌫ ° 0
degrees of freedom. Then Ct is called a t-copula with correlation matrix R P Rdˆd if:

Ctpu1, . . . , ud; ⌫, Rq “ t⌫,R

`
t
´1
⌫ pu1q, . . . , t´1

⌫ pudq
˘
, (1.9)

where t⌫,R denotes the distribution function of the multivariate t-distribution with ⌫ ° 0
degrees of freedom and correlation matrix R.

Note that the degrees of freedom affect both the multivariate distribution t⌫,R and
the quantile functions t

´1
⌫ . As a consequence, both the multivariate distribution and the

quantile functions converge to those of the standard Gaussian distribution for ⌫ Ñ 8.
From this, it follows easily that Ct Ñ CN for ⌫ Ñ 8. Examples of Gaussian and t-copula
densities are displayed in Figure 1.1. It is evident that the t-copula assigns much more
probability mass to the corners when compared to the Gaussian copula. The reason for
this is clarified by considering the tail dependence of the t-copula, which is discussed in
Section 1.4.

Figure 1.1: Gaussian copula density with parameter ⇢ “ 0.3 (left) and t-copula density with

parameters ⇢ “ 0.3 and ⌫ “ 4 (right).

1.3.3 Archimedean Copulas

In this subsection, we will discuss the Archimedean copula family, which is widely used in
practice due to its simple and explicit formulas that typically rely on a single parameter.
This simplicity is particularly advantageous when estimating the copula, as opposed to
Gaussian and t-copulas which require the estimation of multivariate distributions.

Definition 1.12 (Archimedean Copula).
An Archimedean copula is a copula C P Cd of the form:

Cpu1, . . . , udq “ '
`
'

´1pu1q ` ¨ ¨ ¨ ` '
´1pudq

˘
, (1.10)

where the generator function ' : r0,8s Ñ r0, 1s is a continuous, strictly decreasing, and
convex function satisfying 'p8q “ 0 and 'p0q “ 1.

Note that the independence copula C0 is a special case of an Archimedean copula for
'puq “ e´u. There are several different Archimedean copulas, each separated by how the '

8
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function is defined. As evident from (1.10), either the generator function ' or the inverse
generator function '´1 needs to be specified. The subsequent discussion will introduce a
number of Archimedean copulas, beginning with the Frank copula.

Frank Copula

The Frank copula is an Archimedean copula with generator and inverse generator functions:

'F pu; ✓q “ ´ log
´
e´upe´✓ ´ 1q ` 1

¯
{✓, '

´1
F pu; ✓q “ ´ log

ˆ
e´✓u ´ 1

e´✓ ´ 1

˙
,

where ✓ P p0,8q. Hence, the Frank copula CF P Cd is given by:

CF pu1, . . . , ud; ✓q “ ´1

✓
log

˜
1 `

±d
i“1pe´✓ui ´ 1q
pe´✓ ´ 1qd´1

¸
. (1.11)

The Frank copula has some interesting convergence properties. First, as ✓ Ñ 0 it holds
that CF Ñ C0. Second, as ✓ Ñ 8 it holds that CF Ñ C`. Last, for CF P C2, it holds that
CF Ñ C´ as ✓ Ñ ´8.

Gumbel Copula

The Gumbel copula is an Archimedean copula with generator and inverse generator functions:

'Gpu; ✓q “ e´u
1
✓
, '

´1
G pu; ✓q “ p´ logpuqq✓,

where ✓ P r1,8q. Hence, the Gumbel copula CG P Cd can be expressed as:

CGpu1, . . . , ud; ✓q “ exp

ˆ
´

”
p´ logpu1qq✓ ` ¨ ¨ ¨ ` p´ logpudqq✓

ı 1
✓

˙
.

The Gumbel copula reduces to C0 if ✓ “ 1, as the generator function reduces to e´u whereas,
if ✓ Ñ 8 it holds that CG Ñ C`. However, unlike the Frank copula, CG cannot converge
to the counter-monotonicity copula C´. Examples of Frank and Gumbel copula densities
are displayed in Figure 1.2. Clearly, the Gumbel copula contains a greater amount of
probability mass in its tails than the Frank copula. In particular, the Gumbel copula is
skewed towards the upper tail and exhibits an asymmetric shape.

Figure 1.2: Frank copula density with parameter ✓ “ 5 (left) and Gumbel copula density with

parameter ✓ “ 4 (right).

9
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Other Archimedean Copulas

As described above, the difference between Archimedean copulas is solely determined by
the generator function. The following table displays the generator functions and copula
expressions for four additional commonly used copulas.

Generator Function Copula Parameter Space

Clayton pu ` 1q´ 1
✓

´∞d
i pu´✓

i q ` 1 ´ d

¯´ 1
✓

✓ P p0,8q

Joe 1 ´ p1 ´ e´uq 1
✓ 1 ´

´
1 ´ ±d

i“1 1 ´ p1 ´ uiq✓
¯ 1

✓
✓ P r1,8q

BB7 (Joe-Clayton) 1 ´
´
1 ´ pu ` 1q´ 1

�

¯ 1
✓

1 ´
ˆ
1 ´

´∞d
i“1p1 ´ p1 ´ uiq✓q´� ´ d ` 1

¯´ 1
�

˙ 1
✓

✓ P r1,8q, � P p0,8q

Ali-Mikhail-Haq 1´✓
eu´✓ p1 ´ ✓q{±d

i“1

´
1´✓
ui

` ✓

¯
✓ P r0, 1q

Table 1.1: Generator functions, copula expressions and parameter spaces for other Archimedean

copulas.

Similar to the Frank and Gumbel copulas it is possible to obtain convergence results for
the four copulas in Table 1.1, however, these are not presented in this thesis. From the
table, it is evident that the BB7 copula is a composition of the Clayton and Joe copulas.
Specifically, the generator function of the Joe copula is modified by substituting the term
e´u with the generator function of the Clayton copula. The BB7 copula is of particular
interest, as it includes two parameters, which allow the model to be more flexible.

1.4 Tail Dependence

In the context of modeling financial data using copulas, where the actual copula is often
unknown, it is important to choose a copula that accurately reflects the joint behavior of
the data. In this regard, tail dependence, which relies solely on the associated copula, is
used to quantify the relationship between extreme values of two random variables. This
quantification renders copulas particularly useful in risk management, where small (large)
values of tail dependence indicate a low (high) risk of simultaneous extreme returns. The
lower and upper tail dependence can be defined as follows.

Definition 1.13 (Tail Dependence).
Let X1 and X2 be random variables with continuous and strictly increasing distribution
functions F1 and F2, respectively. Then the lower and upper tail dependence coefficients
are, respectively, given by:

�l “ lim
↵Ñ0

P
`
X1 § F

´1
1 p↵q | X2 § F

´1
2 p↵q

˘
, (1.12)

�u “ lim
↵Ñ1

P
`
X1 • F

´1
1 p↵q | X2 • F

´1
2 p↵q

˘
, (1.13)

where ↵ P p0, 1q. If �l or �u are non-zero, then X1 and X2 are said to have lower or upper
tail dependence, respectively.

If we assume that X1 KK X2 then the conditional probability in (1.12) equals the
unconditional probability PpX1 § F

´1
1 p↵qq. As ↵ Ñ 0, this probability approaches 0,

indicating that �l “ 0 implies independence in the extreme left tail. Similar inferences
can be drawn from (1.13). When exploring copulas, these equations reduce to a limiting
expression including only a copula. First, consider the result for the lower tail dependence.

10
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Proposition 1.14 (Lower Tail Dependence).
Let X1 and X2 be random variables with copula C P C2 and continuous and strictly
increasing distribution functions F1 and F2, respectively. Then the lower tail dependence
coefficient is given by:

�l “ lim
↵Ñ0

Cp↵,↵q
↵

, ↵ P p0, 1q.

Proof. Consider the definition of lower tail dependence:

�l “ lim
↵Ñ0

P
`
X1 § F

´1
1 p↵q | X2 § F

´1
2 p↵q

˘

“ lim
↵Ñ0

P
`
X2 § F

´1
2 p↵q, X1 § F

´1
1 p↵q

˘

P
`
X2 § F

´1
2 p↵q

˘

“ lim
↵Ñ0

PpF2pX2q § ↵, F1pX1q § ↵q
PpF2pX2q § ↵q

“ lim
↵Ñ0

Cp↵,↵q
↵

,

where the penultimate step follows from the fact that F1 and F2 are continuous and strictly
increasing. ⌅

Deriving the tail dependence coefficients for the previously discussed copulas is beyond
the scope of this project. Nonetheless, results regarding the lower tail dependence of the
Gaussian and t-copulas are presented. For bivariate Gaussian copulas CN P C2 it holds
that �Nl “ 0. For a bivariate t-copula Ct P C2 with ⌫ degrees of freedom and correlation
coefficient ⇢, the coefficient of lower tail dependence is given by:

�
t
l “ 2t⌫`1

˜
´

d
p⌫ ` 1qp1 ´ ⇢q

⇢` 1

¸
, (1.14)

where t⌫`1 denotes the univariate distribution function of the t-distribution with ⌫ ` 1
degrees of freedom. From (1.14) it is evident that ⌫ Ñ 8 implies �tl Ñ 0, which is desired,
as Ct Ñ CN for ⌫ Ñ 8. Next, we consider the result for the upper tail dependence
coefficient corresponding to Proposition 1.14.

Proposition 1.15 (Upper Tail Dependence).
Let X1 and X2 be random variables with copula C P C2 and continuous and strictly
increasing distribution functions F1 and F2, respectively. Then the upper tail dependence
coefficient is given by:

�u “ 2 ´ lim
↵Ñ1

1 ´ Cp↵,↵q
1 ´ ↵

, ↵ P p0, 1q. (1.15)

Proof. Consider the definition of upper tail dependence:

�u “ lim
↵Ñ1

P
`
X1 • F

´1
1 p↵q | X2 • F

´1
2 p↵q

˘

“ lim
↵Ñ1

PpF2pX2q • ↵, F1pX1q • ↵q
1 ´ PpF2pX2q § ↵q

“ lim
↵Ñ1

1 ´ PpF2pX2q § ↵q ´ PpF1pX1q § ↵q ` PpF2pX2q § ↵, F1pX1q § ↵q
1 ´ ↵

“ lim
↵Ñ1

1 ´ ↵ ´ ↵ ` Cp↵,↵q
1 ´ ↵

11
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“ 1 ` lim
↵Ñ1

´1 ` 1 ´ ↵

1 ´ ↵
` Cp↵,↵q

1 ´ ↵

“ 2 ´ lim
↵Ñ1

1 ´ Cp↵,↵q
1 ´ ↵

,

where the third step follows from the fact that PpA X Bq “ 1 ´ PpAc Y B
cq ` PpAc X B

cq.
⌅

For Gaussian and t-copulas it holds that �l “ �u. This implies that the t-copula is
much better suited to model tail dependence compared to the Gaussian copula. These tail
dependence results are also clearly visible in Figure 1.1.

1.5 Copula Estimation

This section is based on [22] and [23].

There exist two distinct approaches to statistical analysis, namely the frequentist approach
and the Bayesian approach. Although the frequentist approach and the use of maximum
likelihood estimation is the most common method for copula estimation, this thesis will
concentrate on using the Bayesian approach for making inferences. Therefore, a brief
introduction to utilizing the Bayesian approach for copula parameter estimation is presented.

The typical procedure for conducting Bayesian inference involves the following steps.
First, a density function ⇡p✓q, called the prior density, is chosen to express our beliefs
regarding the parameter(s) ✓ before any data is observed. Next, a statistical model ⇡px | ✓q,
often referred to as the likelihood, is selected to represent our beliefs about the data
x “ px1, . . . , xnq given ✓ where n P N. Finally, upon observing data x, we revise our beliefs
and compute the posterior density ⇡p✓ | xq. The very essence of Bayesian inference lies
in the posterior density, which encapsulates all that we can infer about the parameter(s)
based on the observed data. Given a prior density and a likelihood function, the posterior
density can be written as follows by Bayes formula:

⇡p✓ | xq “ ⇡px | ✓q⇡p✓q
⇡pxq 9 ⇡px | ✓q⇡p✓q, (1.16)

where ⇡pxq “ ≥8
´8 ⇡px | ✓q⇡p✓qd✓ is a normalizing constant that does not depend on ✓.

Omitting this from the estimation procedure is common practice, as it reduces efficiency and
can always be recovered afterward. Now that the posterior density is obtained, a Bayesian
estimate of the unknown parameter(s) ✓ is simply the mean of the posterior density, that is:

✓̂ “ Er✓ | xs “
ª 8

´8
✓⇡p✓ | xqd✓. (1.17)

Similarly, one can find the posterior variance in the following way:

Varp✓ | xq “ E
“
p✓ ´ Er✓ | xsq2 | x

‰
“
ª 8

´8
p✓ ´ Er✓ | xsq2⇡p✓ | xqd✓. (1.18)

To provide a complete summary of the unknown parameter(s), an interval can be identified
with a specific probability of containing the unknown parameter(s), which is commonly
referred to as a credible interval. This interval serves as the Bayesian analogue of a
confidence interval. A 1´↵ credible interval is defined as a subset C Ä ⇥, where ⇥ denotes
the parameter space, such that:

Pp✓ P C | xq “
ª

C
⇡p✓ | xqd✓ “ 1 ´ ↵, ↵ P p0, 1q. (1.19)

12
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Once the posterior mean and variance, as well as the credible interval, have been determined,
we possess a complete summary of the unknown parameter(s) ✓. However, in many cases
the integrals in (1.17), (2.1) and (1.19) may not be easy to compute. Therefore, Bayesian
inference typically requires an alternative approach. One such alternative is to draw samples
from the posterior and utilize them as a foundation for inference. This method remains
effective even when we lack knowledge of the exact form of the posterior and only have
information about its unnormalized version. By generating a sample ✓1, . . . , ✓m where
m P N from the posterior, one can approximate the integrals in (1.17) and (2.1) as follows:

ª 8

´8
✓⇡p✓ | xqd✓ « 1

m

mÿ

i“1

✓i “ ✓̄,

ª 8

´8
p✓ ´ Er✓ | xsq2⇡p✓ | xqd✓ « 1

m

mÿ

i“1

p✓i ´ ✓̄q2,

whereas credible intervals can be derived from the quantiles of the posterior samples. This
allows us to approximate the posterior mean and variance, as well as credible intervals, in
situations where computing the integral of the posterior density is not feasible.

To formulate our Bayesian approach for copula parameter estimation, we need to specify
a suitable prior and likelihood. Since there is little knowledge about the parameter(s), a
uniform (flat) prior will be used to represent an uninformative prior. As a consequence
of (1.4), the likelihood of the observations x “ px1, . . . , xnq is given by ⇡px |  , ✓q “±n

i“1 ⇡pxi |  , ✓q where xi “ px1,i, . . . , xd,iq for n, d P N, and:

⇡pxi |  , ✓q “ cpui | ✓q
dπ

j“1

⇡jpxj,i |  jq.

Here ui “ pu1,i, . . . , ud,iq where uj,i “ Fjpxj,i |  jq,  “ t 1, . . . , du are any parameters
of the marginal models, ⇡jpxj,i |  jq “ B

Bxj,i
Fjpxj,i |  jq is the marginal density of xj,i,

and cpui | ✓q is the copula density of ui. We now possess all the necessary components to
determine the posterior density in (1.16). Nevertheless, this is one of the instances where
it may be challenging to compute the integral of the posterior density. As mentioned,
an alternative approach is to generate samples from the posterior and use them as the
foundation for making inferences. To accomplish this, one can utilize MCMC methods, which
create a Markov chain that has the posterior distribution as its equilibrium distribution.

1.6 Goodness-of-Fit Test

The following section is based on [3], [4] and [11].

We would like to determine whether a copula is properly specified. In order to do this,
we introduce the Cramér-von Mises test which is a commonly used goodness-of-fit test.
The null hypothesis of the test is that the estimated copula is the true underlying copula.
Suppose that we have a random d-variate vector Z where d P N. The test is then based on
a so-called pseudo-vector V “ pV1, . . . , Vnq where n P N:

Vi “ pVi1, . . . , Vidq “
ˆ

Ri1

1 ` n
, . . . ,

Rid

1 ` n

˙
,

and Rij denotes the rank of Zij amongst pZ1j , . . . , Znjq. Given a realization of Z, the
realization of V can be considered to be a sample from the true underlying copula C. The

13



Group 4.106 B1 CHAPTER 1. COPULAS

approach is further based on the empirical copula2 defined by:

Ĉpu1, . . . , udq “ 1

n ` 1

nÿ

i“1
tVi1§u1,...,Vid§udu,

where pu1, . . . , udq P r0, 1sd. The empirical copula can be considered a consistent estimator
of the true underlying copula. The idea of the test is then to compare the distance between
the empirical copula and the estimated copula. This is done by the Cramér-von Mises test
statistic which is given by:

CvM “
nÿ

i“1

!
Ĉpviq ´ Cpvi | ✓̂q

)2
, (1.20)

where Cpvi | ✓̂q is the estimated copula and v “ pv1, . . . , vnq is a realization of V . Ap-
proximate p-values can be deduced from the limiting distribution of (1.20). However, this
limiting distribution depends on unknown parameter value(s). Therefore, the asymptotic
distribution of the test statistics cannot be tabulated and approximate p-values can only be
obtained via specially adapted Monte Carlo methods. In particular, a parametric bootstrap
procedure can be used for this purpose. For more details on this, the interested reader is
referred to [3].

1.7 Marginal Distribution Modelling

This section is based on [1], [11] and [18].

As Sklar’s theorem states that any joint distribution can be expressed in terms of its
marginals and a copula function, it is of particular importance to correctly specify the
marginal distributions. When modelling marginals, or stochastic processes in general,
econometricians often default to the ARMA-GARCH type models. These models are great
for removing autocorrelation and heteroscedasticity, such that an i.i.d. innovation process
can be obtained. Recall from Section 1.1 that a stochastic process Y “ pYtqtPN0 is assumed
to be decomposed in the following manner:

Yt “ µt ` "t. (1.21)

First, we consider the mean process µ, which to account for possible autocorrelation is
assumed to follow an ARMA model. That is, (1.21) becomes:

Yt “ "t ` c `
pÿ

i“1

�iYt´i `
qÿ

j“1

j"t´j

loooooooooooooooomoooooooooooooooon
“µt

,

where 1 † |�i| for all i P t1, . . . , pu is required to maintain stationarity and c P R. The
error process " is assumed to be decomposed by the use of a GARCH type framework:

Yt ´ µt “ "t “
`
hpFt´1,#qlooooomooooon

“ht

˘1{2
Zt,

where the conditional variance ht denotes a function of the information Ft´1 gathered by
past realizations pY0 “ y0, . . . , Yt´1 “ yt´1q, and GARCH model parameters #. Furthermore,

2
Note that although it is called the empirical copula it is not a copula.
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for the innovation process Z we have that Zt | Ft´1
i.i.d.„ Dp0, 1q and thus Yt | Ft´1

i.i.d.„
Dpµt, htq. Note that the possible candidates for the conditional distribution specification
Dp0, 1q are defined in the following subsection. The conditional variance ht is modelled
using GARCH type models. This thesis will consider three GARCH type models, starting
with the standard GARCHpp, qq model, abbreviated sGARCHpp, qq:

ht “ ! `
qÿ

i“1

↵i"
2
t´i `

pÿ

j“1

�jht´j ,

where p, q P N0, ! ° 0, ↵i • 0 for i P t1, . . . , qu, and �j • 0 for j P t1, . . . , pu. Evidently, it
is assumed that ↵q ° 0 and �p ° 0. It should be noted that similar to the ARMA model,
the model order of GARCH type models is indicated by the letters p and q because this is
the standard notation in the literature.

The sGARCH model is capable of replicating the majority of stylized facts of log
return series. This includes the tendency for log returns to exhibit volatility clustering, no
autocorrelation, and a leptokurtic distribution. However, because the sGARCH model only
accounts for the squared past values of volatility, it does not consider the impact of past
values’ signs on volatility. As a result, the sGARCH model is unable to reproduce a critical
stylized fact known as the leverage effect, which refers to the disproportionate increase in
future volatility that results from negative returns compared to positive returns. In what
follows, two model extensions designed to mitigate this shortcoming are presented. The
first of these two models is the exponential GARCHpp, qq abbreviated eGARCHpp, qq:

lnph2t q “ ! `
qÿ

i“1

↵igpZt´iq `
pÿ

j“1

�j lnph2t´jq,

gpZtq “ �Zt ` �p|Zt| ´ Er|Zt|sq,
where !, ↵i for i P t1, . . . , qu, �j for j P t1, . . . , pu, �, and �, are all real numbers. The second
of the two model extensions is the threshold GARCHpp, qq abbreviated tGARCHpp, qq:

h
1{2
t “ ! `

qÿ

i“1

`
↵i t"t´i•0u ´ �i t"t´i†0u

˘
"t´i `

pÿ

j“1

�jh
1{2
t´j ,

where ! ° 0, ↵i • 0 and �i • 0 for i P t1, . . . , qu, and �j • 0 for j P t1, . . . , pu. Both the
eGARCH and tGARCH models incorporate a � parameter that effectively captures the
leverage effect.

It should be noted, that Zt | Ft´1 denotes a random variable conditioned on the set
of information at time t ´ 1 for all marginals. That is if d “ 2 we have two stochastic
processes Y

1 and Y
2, which means that Ft´1 is the set of information gathered from

pY0 “ y0, . . . , Yt´1 “ yt´1q where Yt “ pY 1
t , Y

2
t q and likewise yt “ py1t , y2t q. However, the

ARMA-GARCH specification of the marginal models above is only conditioned on the
subset F i

t´1 Ñ Ft´1 for i “ 1, 2. When using such marginal models, the copula is a true
copula if and only if:

Y
i
t | F i

t´1
d“ Y

i
t | Ft´1, (1.22)

for i “ 1, 2. That is, if (1.22) does not hold, then Yt | Ft´1 does not have the marginal
models specified above. To test if (1.22) holds, a univariate ARMAX-GARCHX model
is constructed for both stochastic processes, and a Wald test for the joint nullity of the
additional explanatory variables is performed. In the case that (1.22) holds, we can model
each marginal by an ARMA-GARCH type model before modelling their dependence using
a copula. Furthermore, the specific choice of ARMA-GARCH type models for the marginal
modelling, implies that we are in fact considering the conditional Sklar’s theorem.
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1.7.1 Distribution Specification

This subsection introduces the particular distribution specifications of the innovations
encountered in this thesis. An independent standard Gaussian distribution provides a first
specification for the conditional distribution of the innovations Z. The density function of
a standard Gaussian distribution is given by:

fNpztq “ 1?
2⇡

e´ 1
2 z

2
t .

A second specification is given by an independent Student’s t-distribution with ⌫ ° 0
degrees of freedom and scale parameter s. The student’s t-distribution has density function:

fSpzt; ⌫, sq “ �
`
⌫`1
2

˘

p⇡⌫q1{2�
`
⌫
2

˘ s
´1{2

´
1 ` z2t

s⌫

¯p⌫`1q{2 ,

where � denotes the Gamma function. The variance of Z is given by3:

VarpZtq “ s⌫

⌫ ´ 2
.

Hence, in order to ensure the existence of the variance of Z and that it equals one, it must
hold that ⌫ ° 2 and s “ p⌫ ´ 2q{⌫. Thus, the scale parameter s is completely specified by
the degrees of freedom ⌫ for a Student’s t-distribution.

A third specification is given by an independent standardized generalized error distribu-
tion (GED). The density function of a GED is:

fGEDpzt; ⌫q :“ ⌫ exp
`
´1

2

�� zt
�

��⌫˘

�2p⌫`1q{⌫�
`
1
⌫

˘ , � :“
˜
2p´2{⌫q�

`
1
⌫

˘

�
`
3
⌫

˘
¸1{2

,

where the parameter ⌫ ° 0 determines the tail-thickness. If ⌫ “ 2, the density function
corresponds to the standard normal distribution. When ⌫ † 2, the distribution of Z exhibits
thicker tails compared to the standard normal distribution, while a value of ⌫ ° 2 indicates
thinner tails.

3
Note that for ease of notation, Zt | Ft´1 is abbreviated Zt.
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2 Risk Forecasting

This chapter is based on [2], [5], [6], [14], [15], and [17] unless explicitly stated otherwise.

The subsequent sections delve into the concept of risk forecasting, which is a critical aspect
of risk management. We begin by providing an introduction to value-at-risk and expected
shortfall, including an overview of the forecasting procedure for these measures. Next, we
explore the topic of model evaluation and selection, which is based on the accuracy of risk
forecasts, with the ultimate goal of identifying the model(s) that offer the most precise risk
forecasts.

2.1 Risk Measures

One of the most commonly used risk measures in financial institutions is value-at-risk
(VaR), which can be utilized to assess the risk exposure of a portfolio. The VaR measures
the threshold value such that the probability of observing a loss larger or equal to it in a
given time horizon is smaller or equal to a specific risk level ↵ P p0, 1q. The formal definition
of VaR at time t for some realization process y given the information set Ft´1 at risk level
↵ is given by:

VaR↵pYt | Ft´1q “ inftyt P R : FYtp´yt | Ft´1q § ↵u “ ´F
´1
Yt

p↵ | Ft´1q. (2.1)

Another well-known risk measure is the so-called expected shortfall (ES), which is also
known as the conditional value-at-risk (CVaR). The ES measures the expected return below
the negative VaR level and it is hence closely related to VaR. Many risk managers opt for
ES over VaR as it captures tail risk and is a coherent risk measure. The ES given Ft´1 at
risk level ↵ is obtained as:

ES↵pYt | Ft´1q “ ErYt | Yt § VaR↵pYt | Ft´1qs “ ´ 1

↵

ª ↵

0
VaR⇣pYt | Ft´1qd⇣. (2.2)

Hence, instead of setting a specific risk level ↵, one averages VaR over all levels ⇣ § ↵,
thereby delving deeper into the tail of the distribution of Yt. For ease of notation, we denote
(2.1) and (2.2) by VaR↵

t and ES↵
t , respectively. The techniques employed to forecasts these

risk measures are explained in the following section.

2.2 Risk Forecasting Procedure

Our objective is to forecast VaR and ES on a daily basis, with a one-day-ahead horizon, for
an equally weighted portfolio composed of two stocks. Let the daily log return process of a
stock be defined by:

rt “ log

ˆ
Pt

Pt´1

˙
“ logpPtq ´ logpPt´1q, t “ 1, . . . , T, (2.3)
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for some T P N, where Pt is the price of the stock at day t. We denote by Y
1 and Y

2 the
processes of daily log returns for two specific stocks with corresponding price processes
P

1 and P
2, respectively. The return process of an equally weighted portfolio composed of

those two stocks is given by:

Pt “ 1

2
P

1
t ` 1

2
P

2
t ´

ˆ
1

2
P

1
t´1 ` 1

2
P

2
t´1

˙
“ 1

2
P

1
t´1peY 1

t ´ 1q ` 1

2
P

2
t´1peY 2

t ´ 1q. (2.4)

In order to forecast the portfolio VaR and ES, the joint distribution of the vector pY 1
t , Y

2
t q

must be investigated. We accomplish this using the previously discussed copula and ARMA-
GARCH frameworks. Because there are no simple and analytical formulas to convert
conditional mean and variance to VaR and ES of a portfolio, Monte Carlo simulation is
used. The exact procedure utilized to forecast one-day-ahead VaR and ES at risk level ↵
based on copulas is given as follows:

1. Fit an ARMA-GARCH type model to each return process and estimate marginal
distributions for the innovation processes using T realizations of Y 1 and Y

2.

2. Forecast one-step-ahead return means pµ̂1
T`1, µ̂

2
T`1q and variances pĥ1T`1, ĥ

2
T`1q.

3. Use the conditional bivariate distribution modelled by ARMA-GARCH and copula
models to simulate N Monte Carlo scenarios over the time horizon rT, T ` 1s.

(a) Estimate copula parameters by the probability integral transforms u
1
t and u

2
t of

the innovations z
1
t and z

2
t as described in Section 1.5.

(b) Simulate two random variables pu2,jT`1, u
1,j
T`1q where j “ 1, . . . , N , from the copula

function estimated in step (a)1.

(c) Obtain the simulated innovations z1,jT`1 and z
2,j
T`1 by using the estimated marginal

distributions and Proposition 1.4:
´
z
1,j
T`1, z

2,j
T`1

¯
“

´
F

´1
1,T`1pu1,jT`1;  ̂1q, F´1

2,T`1pu2,jT`1;  ̂2q
¯
.

(d) Obtain simulated log returns by using the simulated innovations from step (c)
and the forecasted means and variances from step 2:

py1,jT`1, y
2,j
T`1q “

ˆ
µ̂
1
T`1 `

b
ĥ
1
T`1 ¨ z1,jT`1, µ̂

2
T`1 `

b
ĥ
2
T`1 ¨ z2,jT`1

˙

(e) Repeat steps (b)-(d) for j “ 1, . . . N and calculate the values of Pj
T`1 using (2.4)

for j “ 1, . . . , N .

(f) Sort the N values of P
j
T`1 in increasing order and calculate ˆVaR

↵
T`1 as the

absolute value of the N↵’th ordered value.

(g) Calculate ES at risk level ↵ as the average of the values of Pj
T`1 that are smaller

than or equal to the negative VaR at risk level ↵:

ÊS
↵
T`1 “ 1

N↵

Nÿ

j“1

P
j
T`1 Pj

T`1§´ ˆVaR
↵
T`1

.

1
See [21] for a discussion about copula simulation.
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4. Repeat steps 1-3 on a rolling window basis: Let y
1
1:T`M “ py1t qT`M

t“1 and y
2
1:T`M “

py2t qT`M
t“1 , M P N denote some realizations with corresponding price processes. Then

repeat steps 1-3 iteratively, using py11:T , y21:T q, . . . , py1M :T`M´1, y
2
M :T`M´1q along with

the corresponding stock prices used in step (e). At each step, obtain the one-day-ahead
VaR and ES.

Increasing the value of N leads to greater accuracy in estimating VaR and ES. However,
larger values of N also result in longer simulation times. In this thesis, we choose N “ 100000
to strike a balance between accuracy and efficiency.

2.3 Risk Forecasting Evaluation

We would like to evaluate the risk forecasts for the different copula models obtained by the
procedure described in Section 2.2. This is done in two steps in this thesis: To determine
which (if any) of the copula models produces reasonable risk forecasts, we first analyze
the accuracy of the produced VaR and ES forecasts, separately, using two statistical tests.
After that, by introducing the so-called model confidence set, we determine which copula
model(s) produces the most accurate risk forecasts. This section will introduce the two
tests as well as the model confidence set.

2.3.1 Accuracy of VaR and ES Forecasts

The obtained risk forecasts are not necessarily correctly specified. Therefore, we introduce
two statistical tests for evaluating the accuracy of VaR and ES forecasts relative to the
realized portfolio return series given by (2.4). This is in the literature usually referred to as
backtesting. The employed tests for the VaR and ES forecast are the so-called dynamic
quantile and expected shortfall regression tests, respectively.

Dynamic Quantile Test

First, we consider the dynamic quantile (DQ) test for evaluating the accuracy of VaR fore-
casts. To this end, suppose that M P N out-of-sample VaR forecasts ˆVaR

↵ “ p ˆVaR
↵
t qT`M

t“T`1

at level ↵ P p0, 1q are given, and define the hit variable process H
↵ “ pH↵

t qT`M
t“T`1 as:

H
↵
t “ tPt§´ ˆVaR

↵
t u. (2.5)

If ˆVaR
↵

is correctly specified, then the hit variable has a mean value of ↵ and is distributed
independently over time. Hence, testing if ˆVaR

↵
is correctly specified is essentially equivalent

to testing whether all elements in H
↵ follow an i.i.d. Bernoulli distribution with parameter

↵, that is:
H

↵ i.i.d.„ Bernp↵q. (2.6)

To test (2.6) we use the DQ test, which is based on the demeaned hit variable Hit
↵
t “ H

↵
t ´↵.

The DQ test tests for joint nullity of all coefficients in the following linear regression:

Hit
↵
t “ �0 `

Lÿ

l“1

�lHit
↵
t´l ` �L`1

ˆVaR
↵
t´1 ` wt, t P tT ` L, . . . , T ` Mu, (2.7)

where � “ p�0, . . . , �L`1q P RL`2 with L P N, and wt is some error term. It should be noted
that in this thesis, the number of lags is chosen to be L “ 4 as suggested in [15]. To test
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for joint nullity, the following Wald test statistic is used:

WDQ “ �̂
1
G

1
G�̂

↵p1 ´ ↵q , (2.8)

where �̂ “ p�̂0, . . . , �̂L`1q denotes the OLS estimates, and G denotes the matrix of explana-
tory variables in (2.7). Then it can be shown that under the null hypothesis (2.6):

WDQ
dÑ �

2pL ` 2q, as M Ñ 8.

Consequently, the null hypothesis is rejected at a given choice of significance level a P p0, 1q,
if the observed DQ-statistic is in a critical region of the chi-square distribution with L ` 2
degrees of freedom.

Expected Shortfall Regression Test

Second, we consider the expected shortfall regression (ESR) test for evaluating the accuracy
of ES forecasts. For this purpose, suppose that M P N out-of-sample ES forecasts at level
↵ P p0, 1q, denoted by ÊS

↵ “ pÊS↵t qT`M
t“T`1, are given. The general testing idea of the ESR

test is to regress the realized portfolio returns on the ES forecasts and an intercept term by
using the following regression:

Pt “ �1 ` �2ÊS
↵
t ` u

e
t , (2.9)

where �1, �2 P R and ES↵puet | Ft´1q “ 0 almost surely. Since the forecasts ÊS
↵
t are

generated by using Ft´1, this condition on the error term implies that:

ES↵pPt | Ft´1q “ �1 ` �2ÊS
↵
t .

The hypotheses of the test read:

H0 : p�1, �2q “ p0, 1q, HA : p�1, �2q ‰ p0, 1q. (2.10)

Under the null hypothesis, the ES forecasts are correctly specified as it holds that ÊS
↵
t “

ES↵pPt | Ft´1q almost surely. In general, (2.9) is an example of a linear regression equation
for the ES of the form Pt “ W

J
t � ` u

e
t for some vector of covariates Wt. As per [6],

estimating � alone by maximum likelihood-type (M) or generalized method of moments
(GMM) estimation is infeasible. Therefore, one considers instead the joint regression
technique:

Pt “ V
J
t � ` u

v
t , Pt “ W

J
t � ` u

e
t , (2.11)

where Vt and Wt are covariate vectors, and where VaR↵puvt | Ft´1q “ 0 and ES↵puet |
Ft´1q “ 0 almost surely. This setup calls for an estimation of the joint parameters p�, �q
which is indeed feasible. We choose to consider the strict ESR test where Vt “ Wt “ p1, ÊS↵t q.
The regression system in (2.11) then reads:

Pt “ �1 ` �2ÊS
↵
t ` u

v
t , Pt “ �1 ` �2ÊS

↵
t ` u

e
t .

To test the hypotheses in (2.10), the following Wald-type test statistic is taken into account:

WMZ “ Mp�̂ ´ �0q⌦̂´1
� p�̂ ´ �0q1

,

where �0 “ p0, 1q, ⌦̂� is some consistent covariance estimator for the covariance of �, and �̂
denotes the M-estimate. We will not go any further into the details of the M-estimator or
the asymptotic result of the test. For more information, the interested reader is referred to
[6].
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2.3.2 Model Selection

Frequently, there exist various risk forecasting models that could be suitable, and the
objective is then to determine the optimal one. While it can be difficult to pinpoint a single
model that significantly outperforms all other models, it is possible to reduce the options
to a smaller set of models known as a model confidence set (MCS), which comprises the
top-performing model(s) with a predetermined level of confidence.

To construct an MCS, we consider a set M
0 that contains a finite number of risk

forecasting copula models indexed by i “ 1, . . . ,m0. To evaluate the models, we utilize
different loss functions and introduce the notion of a loss differential, which is defined as
follows:

dij,t “ Li,t ´ Lj,t, for all i, j P M
0
,

where Li,t denotes some loss function for model i at time t P rT ` 1, T ` M s. We will
consider two loss functions in this thesis. To construct these, hit variables similar to that
in (2.5) are defined as:

H
↵
i,t “ tPt§´ ˆVaR

↵
i,tu.

Here ˆVaR
↵
i,t denotes the VaR forecast at risk level ↵ for model i at time t. The first loss

function used is the so-called quantile loss (QL) function at risk level ↵:

QL↵
i,t “ p↵ ´ H

↵
i,tqpPt ` ˆVaR

↵
i,tq.

Hence, the QL function gives larger weights to returns that violate the VaR estimates. The
second is the so-called Fissler Ziegel loss (FZL) function at risk level ↵:

FZL↵
i,t “ 1

↵ÊS
↵
i,t

H
↵
i,tpPt ` ˆVaR

↵
i,tq ´

ˆVaR
↵
i,t

ÊS
↵
i,t

` lnp´ÊS
↵
i,tq ´ 1.

where ÊS
↵
i,t denotes the ES forecast at risk level ↵ for model i time t. Note that the QL

and FZL are non-negative functions. In order to rank models, we evaluate their expected
loss and prefer model i over model j when µij † 0 where µij “ Erdij,ts. The set of the
superior model(s) is defined by:

M
˚ “

 
i P M

0 : µij § 0 for all j P M
0
(
. (2.12)

The main goal of the MCS procedure is to identify a subset of M0 that contains all of M˚

with a specified probability, known as the coverage probability. This is done through a
sequence of significance tests, where models that are found to be significantly inferior to
other models in M

0 are eliminated. We assume that µij is finite and does not depend on t

for all i, j P M
0 for the tests to be valid and reliable. The null hypothesis that is being

tested is as follows:
H0,M : µij “ 0, for all i, j P M, (2.13)

where M Ñ M
0, meaning that under the null hypothesis, models i and j have equal

performance for all i, j P M. As a consequence, the alternative hypothesis reads:

HA,M : µij ‰ 0, for some i, j P M. (2.14)

It is worth noting that H0,M˚ is true by definition of M˚, whereas H0,M is false if M
includes elements from both M

˚ and its complement M
0zM˚.

The MCS procedure is based on two key components: an equivalence test denoted by
⇠M, and an elimination rule represented by eM. The equivalence test ⇠M is employed to
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test the null hypothesis H0,M for any M Ñ M
0, whereas the elimination rule eM identifies

the model in M to be removed if the null hypothesis H0,M is rejected. We assign the values
⇠M “ 0 and ⇠M “ 1 to indicate the acceptance and rejection of the null hypothesis H0,M,
respectively. The following steps outline the procedure for the MCS procedure:

1. Set M “ M
0.

2. Test H0,M using ⇠M at level a P p0, 1q.

3. If H0,M is accepted, define M̂
˚
1´a “ M; otherwise use eM to eliminate a model from

M and repeat the procedure from step 2.

The collection of surviving model(s), denoted as M̂
˚
1´a, is referred to as the model

confidence set. To create an MCS with the desired coverage probability a, it is important
to make suitable choices of ⇠M and eM. However, determining such measures can be
challenging. The following result specifies the assumptions that need to be met for ⇠M and
eM to be chosen appropriately.

Theorem 2.1.
For any M Ñ M

0 and a P p0, 1q, we assume the following about the equivalence test ⇠M
and elimination rule eM:

(a) lim supMÑ8 Pp⇠M “ 1 | H0,Mq § a,

(b) limMÑ8 Pp⇠M “ 1 | HA,Mq “ 1,

(c) limMÑ8 PpeM P M
˚ | HA,Mq “ 0,

where M
˚, H0,M, and HA,M are given by (2.12), (2.13), and (2.14), respectively. Then, it

holds that:

(i) lim infMÑ8 PpM˚ Ñ M̂
˚
1´aq • 1 ´ a, (ii) limMÑ8 Ppi P M̂

˚
1´aq “ 0 @i R M

˚,

where M̂
˚
1´a is the model confidence set.

The assumptions about ⇠M in Theorem 2.1 are standard requirements for hypothesis
tests. In some cases, there may be several candidate models that perform similarly well,
making the model selection problem challenging. However, in other cases, there may be a
unique true model that provides the best risk forecasts. Identifying this model with high
probability is crucial for making accurate predictions and informed decisions. The following
result addresses this scenario.

Corollary 2.2.
For any M Ñ M

0, suppose that the assumptions about the equivalence test ⇠M and
elimination rule eM in Theorem 2.1 holds and that M

˚, given by (2.12), is a singleton.
Then:

lim
MÑ8

PpM˚ “ M̂
˚
1´aq “ 1,

where M̂
˚
1´a is the model confidence set.

Proof. When M
˚ is a singleton, M˚ “ ti˚u, it follows from Theorem 2.1 (ii) that i

˚ will
be the last surviving element with probability approaching one as M Ñ 8. The result now
follows because the last surviving element is never eliminated. ⌅

22



2.3. RISK FORECASTING EVALUATION Group 4.106 B1

This result has significant practical implications, as it ensures that the MCS procedure
is a reliable tool for model selection in situations where a unique true model exists. The
earlier asymptotic results do not depend on any explicit connection between the equivalence
test ⇠M and the elimination rule eM. However, there is a benefit of having a degree of
connection between them, called coherency, when the MCS procedure is implemented in
finite samples. The result below provides a finite sample version of Theorem 2.1 (i) by
assuming a particular coherence between ⇠M and eM.

Theorem 2.3.
For any M Ñ M

0, let ⇠M and eM be an equivalence test and elimination rule, respectively.
Assume that Pp⇠M “ 1, eM P M

˚q § a, then:

PpM˚ Ñ M̂
˚
1´aq • 1 ´ a,

where a P p0, 1q, M˚ is given by (2.12), and M̂
˚
1´a is the model confidence set.

The assumption Pp⇠M “ 1, eM P M
˚q § a states that a bounds the probability that

an element from M
˚ is eliminated. In practice, hypothesis tests often rely on asymptotic

results that cannot guarantee that this assumption holds in finite samples. Therefore, a
definition of coherency that is useful for situations where testing is based on asymptotic
distributions is needed.

Definition 2.4 (Coherency).
For any M Ñ M

0, there is said to be coherency between the equivalence test ⇠M and
elimination rule eM if:

Pp⇠M “ 1, eM P M
˚q § Pp⇠M “ 1 | H0,Mq,

where M
˚ and H0,M are given by (2.12) and (2.13), respectively.

The combination of coherency and asymptotic control of the Type I error, expressed
as lim supMÑ8 Pp⇠M “ 1 | H0,Mq § a, leads to an asymptotic version of the assumption
stated in Theorem 2.3.

Hence, coherency imposes limitations on the possible test and elimination rule combina-
tions we can utilize, extending beyond the asymptotic conditions in Theorem 2.1 (a)-(c).
In fact, coherency serves to reduce the reliance on asymptotic properties and prevents
nonsensical combinations of tests and elimination rules that could lead to distorted outcomes
in finite samples.

Construction of Equivalence Test and Elimination Rule

We will now consider a specific equivalence test and corresponding elimination rule based
on t-statistics, that satisfies Definition 2.4 and the assumptions outlined in Theorem 2.1. To
construct the t-statistics, the relative loss statistics are defined as d̄ij “ M

´1∞T`M
t“T`1 dij,t

and d̄i “ m
´1∞

jPM d̄ij , where M P N denotes the number of samples and m P N the
number of models in M. Here d̄ij is the relative loss between model i and j, whereas d̄i

is the loss of model i relative to the average of all models in M. From d̄i the following
statistic is constructed:

ti “ d̄i
´

yVarpd̄iq
¯1{2 , for i P M,

where yVarpd̄iq denotes some consistent estimate of the asymptotic variance of d̄i. These
t-statistics have respective null hypotheses H0,i : µi “ 0, where µi “ Erd̄is, which generate
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a basis for testing H0,M. Moreover, H0,M is equivalent to tµi § 0, for all i P Mu, as we
are only interested in excluding significantly poor performing models. This formulation of
the null hypothesis maps into the test statistic:

TM “ max
iPM

ti.

It should be noted that the statistic TM follows a non-standard asymptotic distribution, as
it depends on nuisance parameters. To combat this issue, a bootstrap method is utilized to
estimate the relevant distribution. For more information regarding the bootstrap method,
the interested reader is referred to [17].

Next, we consider the construction of the corresponding elimination rule. The natural
elimination rule associated with TM is eM,T “ argmaxiPM ti, because a rejection of the null
hypothesis is identified as µi ‰ 0 for i “ eM,T . In this case, eM,T is the model contributing
the most to the large test statistic. In particular, this model has the largest excess loss
relative to the average across all models in M and is therefore eliminated. This combination
of equivalence test and elimination rule meets the criteria outlined in Definition 2.4 and
fulfills the assumptions stated in Theorem 2.1. For a proof of this, the interested reader is
again refereed to [17].
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3 Data Presentation

In this applications part, we seek to forecast value-at-risk and expected shortfall, evaluate
these forecasts, and determine the most suitable copula model(s). The forecasting is
achieved by utilizing the presented ARMA-GARCH and copula models as described in
the procedure in Section 2.2. The accuracy of the obtained forecasts is evaluated by the
dynamic quantile and expected shortfall regression tests and the top-performing model(s)
is identified by constructing model confidence sets.

This research is conducted for an equally weighted portfolio composed of the stocks of
NextEra Energy (NEE) and British Petroleum (BP). NextEra Energy is a leading clean
energy company that generates and distributes electricity from renewable sources such as
wind and solar, whereas British Petroleum is a multinational oil and gas company. We
consider the daily closing prices of each stock. The full samples for the two stocks start
on the 1st of January 2015 and end on the 25th of April 2023. These two full samples are
divided into in-sample and out-of-sample periods where the 31st of December 2020 serves
as the last in-sample date. Therefore, the in-sample and out-of-sample periods consist of
T “ 1510 and M “ 580 observations, respectively.

To justify the marginal distribution modelling choice of ARMA-GARCH type models,
we have to examine the stylized facts, briefly noted in Section 1.7, for the full sample of
both the NextEra Energy and British Petroleum data. To do this, an exploratory data
analysis is carried out in the following. First, plots of the daily closing prices of the two
stocks are considered.

Figure 3.1: Daily closing prices of NEE (left) and BP (right) from 2015-01-01 to 2023-04-25.

The periods of both positive and negative trends in the two series indicate that they are
both non-stationary. An augmented Dickey-Fuller test is used to more thoroughly determine
whether this is the case. The null hypothesis of the augmented Dickey-Fuller test is that the
given series is non-stationary. The p-values of the test for all lags l P t1, . . . , 10u for both
series are shown in Figure 3.2. For any tested lag, it is obvious that the null hypothesis of
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non-stationarity cannot be rejected, indicating that both series are non-stationary.

Figure 3.2: p-values for the ADF test for the daily closing prices of NEE (left) and BP (right).

Next, we consider the daily log return series of the full samples defined by (2.3). These
are shown in Figure 3.3.

Figure 3.3: Log returns of NEE (left) and BP (right) from 2015-01-01 to 2023-04-25.

There are periods of low volatility and periods of high volatility for both stocks, which
indicates that volatility changes over time and has a tendency to persist. The COVID-19
pandemic outbreak at the beginning of 2020 is clearly accompanied by a period of high
volatility. The Russian invasion of Ukraine in 2022 also caused a spike in volatility for NEE,
whereas the volatility of BP seems to be less affected.

CI %95.0

CI %99.0

CI %95.0

CI %99.0

Figure 3.4: Correlogram of the log return series for NEE (left) and BP (right).
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To ensure that the series are now stationary, we run the ADF test again. By doing
this, we get that the p-values for all lags l P t1, . . . , 10u are less than 0.05 for both stocks,
indicating that they are both stationary at a 5% significance level. Furthermore, we consider
whether the correlograms of the two return series show any autocorrelation. Figure 3.4 shows
the correlograms along with the confidence bands calculated as ˘�´1p1 ´ ↵

2q{?
T ` M ,

where a significance level of ↵ “ 0.01 and ↵ “ 0.05 is chosen and �´1 signifies the quantile
function of the standard normal distribution. For both stocks, there are several correlations
rising above the confidence bands suggesting that there might be some autocorrelation in
the log returns. In order to examine this more explicitly, the null hypothesis that there is no
autocorrelation is tested using the Ljung-Box test. The p-values for all lags l P t1, . . . , 10u
are shown in Figure 3.5.

Figure 3.5: p-values for the Ljung-Box test for log return series of NEE (left) and BP (right).

For NEE, the plot shows that we reject the null hypothesis at a 5% significance level
for all lags since the p-values are all below 0.05. This suggests that autocorrelation exists
in this series. For BP, the p-values are above 0.05 for the first four lags and below for the
remaining lags, which means that we cannot rule out the possibility that there is some
autocorrelation present in this series as well. In light of the fact that ARMA models can be
used to account for autocorrelation in stationary time series, they seem to be a suitable
modelling choice for both the log return series of NEE and BP.

Subsequently, we examine whether the empirical distributions of both log return series
are leptokurtic. To do this, the empirical histograms of the log returns of the two stocks
are plotted in Figure 3.6 along with the normal density with mean and standard deviation
given by the series.

Figure 3.6: Histograms of log returns of NEE (left) and BP (right) with theoretical normal

densities.
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It is clear that both log returns’ empirical distributions have higher peaks than their
respective normal distributions. Additionally, it seems that the empirical distributions have
heavier tails. To support this second claim, we consider QQ-plots in which the sample
quantiles are compared against the quantiles of a normal distribution in Figure 3.7.

Figure 3.7: QQ-plots of sample quantiles against normal quantiles for log returns of NEE (left)

and BP (right).

It is evident that both stocks’ log returns have heavier tails than their respective normal
distributions. When we calculate the sample kurtosis of the two stocks, we find values of
12.7 and 14.7 for NEE and BP, respectively. All of this points to a leptokurtic empirical
distribution for both log return series.

Next, we examine the existence of leverage effects in the return series. To do this, we
consider whether the absolute log returns |yt| are correlated with y

`
t´h “ maxtyt´h, 0u and

y
´
t´h “ maxt´yt´h, 0u where h P t1, . . . , 30u. The results of this are seen in Figure 3.8.

Figure 3.8: Sample cross-correlations of NEE (left) and BP (right) between |yt| and y
`
t´h (blue),

and |yt| and y
´
t´h (red).

For both stocks, we see that there is a larger correlation between |yt| and y
´
t´h than

between |yt| and y
`
t´h for almost all lags. This suggests that the leverage effect exists for

both log return series because negative log returns tend to increase volatility by a greater
amount than positive log returns of the same magnitude.

Finally, an ARCH-LM test is used to determine whether heteroscedasticity is present, by
fitting an ARCHplq model to the log return series and testing for joint nullity of the ARCH
parameters. The null hypothesis of the test is that the innovations are homoscedastic, while
the alternative hypothesis is that they exhibit heteroscedasticity. When performing the
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test, we get p-values approximately equal zero for any specified lag l P t1, . . . , 30u. Hence,
the test indicates that the innovations exhibit heteroskedasticity. This feature, along with
the fact that both series’ leverage effects exist and that their distributions are leptokurtic,
suggests that the GARCH framework is a suitable option for modelling the log returns of
NEE and BP. The general conclusion of this chapter is hence that the ARMA-GARCH
type models seem to be suitable modelling options for the log return series of NEE and BP.
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4 In-Sample Model Diagnostics

The objective of this chapter is to examine the empirical results from modelling the in-
sample parts of the log returns for the stocks of NextEra Energy and British Petroleum
using the discussed copula and marginal modelling frameworks. Several packages developed
in the Julia programming language have been used to obtain the results. Therefore, we
will first provide a brief overview of the key packages that have been used before presenting
the in-sample model diagnostics.

4.1 Introduction to the Main Packages Used in Julia

The risk forecasting procedure described in Section 2.2 is first and foremost performed
by use of the BivariateCopulas package in Julia. More specifically, the package is used
to estimate the copulas and to sample from them. As described in Section 1.5, Bayesian
inference is used for the copula estimation. To implement this estimation procedure in
Julia, we take into consideration the Turing package in addition to the BivariateCopulas
package. The usage of these packages for copula estimation is demonstrated in the example
below.
@model function fit_Clayton_copula(W; epsilon = 1e-6)

gamma „ Uniform(epsilon ,1-epsilon)

theta = -log(gamma)

for i in 1: length(W[1,:])

W[:,i] „ Clayton(theta)

end

end

Clayton_chain = sample(fit_Clayton_copula(W), NUTS(), 1000)

theta = -log.(vec(Clayton_chain [:gamma]))

Clayton_par = mean(theta)

Here, a bivariate Clayton copula is fitted to two uniform series contained in the matrix
W. In doing this, 1000 samples are obtained from the posterior using the No-U-Turn Sampler
(NUTS), which is a Hamiltonian MCMC method. For more information on this specific
sampler, we refer to [9]. The prior is represented by the uniform distribution, and a
parameter space transformation is performed using the log function. The mean of the
transformed chain provides the parameter estimate for the copula. The following example
shows how to sample from the copula using the BivariateCopulas package.
C = Clayton(Clayton_par)

rand(C ,100000)

In this case, 100000 samples are collected from the Clayton copula using the previously
discovered parameter. In addition to being used to estimate copulas and sample from them
in the risk forecasting procedure, the BivariateCopulas package can be used for a variety
of other tasks, e.g., evaluating the copula density given by (1.3). To do this, the function
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pdf(C,[u,v]) is used, where C is some specified copula and [u,v] is some evaluation point.
The figures in Section 1.3 have copula densities that have been evaluated using this function.

The marginal modelling procedure, which is carried out using the ARMA-GARCH
framework, is another crucial step in the risk forecasting procedure. We use the ARCHModels
package to implement this in Julia. The usage of this package is demonstrated in the
example below.
fit = selectmodel(GARCH , returns; meanspec=ARMA , criterion=aic , maxlags=3,

dist=StdT)

residuals(fit)

predict(fit , :return)

predict(fit , :volatility)

In this example, the function selectmodel fits and chooses the optimal ARMA-sGARCH
model based on AIC for a certain return series where p, q P t0, . . . , 3u1 and the innovations
are t-distributed. Additionally, the residuals function returns the innovation series. Using
selectmodel, we can consider all the model specifications considered in Section 1.7. As
a result, these functions provide us with the innovation series and the corresponding
distribution function, both of which are necessary for the copula estimation. The predict

function forecasts the means and variances of one-step-ahead return values based on fit,
which is also used in the risk forecasting procedure.

4.2 Marginal Modelling

To model the log return series of NextEra Energy and British Petroleum, we consider the
ARMA-GARCH framework, which was the subject of Section 1.7. We limit ourselves to
the case where p, q P t0, . . . , 3u for all ARMA-GARCH type models. In doing so, we take
into account a total of 2304 models per series. These models are fitted to the two series
using maximum likelihood estimation. We utilize the Akaike information criterion (AIC) to
select one model out of all the model specifications for each series. If the AIC cannot be
determined, the corresponding model is disregarded.

Figure 4.1: Histograms of innovations for NEE (left) and BP (right) along with estimated

t-distribution densities.

We discover that the ARMAp3, 3q-sGARCHp1, 1q model with t-distributed innovations
is the most suitable model for the log return series of NEE, whereas the ARMAp2, 2q-
tGARCHp1, 1q model with t-distributed innovations is the most suitable model for the log

1
Note that p and q describes the order of both the ARMA and GARCH models. Hence we restrict both

the ARMA and GARCH models to have a maximum of 3 lags in this case.
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return series of BP. The parameters for these models are seen in Table B.1. In Figure 4.1, the
histograms of the two innovation series are shown, plotted against their respective estimated
t-distributions. Evidently, the t-distributions do not fit the respective innovation series
well. In particular, the theoretical distributions are less leptokurtic and have heavier tails
than those of the innovation series. Finding suitable marginal models is critical when using
copulas, as wrongly specified distributions of the innovations may lead to misspecification
of the copula model when transforming the innovations into uniform realizations by the
probability integral transform.

In light of these observations, we elect to also investigate the ARMA-GARCH type
models with GED innovations. Specifically, this is done because the GED includes a shape
parameter that allows for a more leptokurtic distribution. In this case, the number of
possible model specifications amounts to a total of 768 per series. Based once again on
AIC, we choose the most suitable ARMA-GARCH type models with GED innovations.
With this alternative approach, we find that the ARMAp3, 3q-sGARCHp1, 1q model is the
most suitable model for NEE, and that the ARMAp2, 2q-tGARCHp1, 2q model is the most
suitable model for BP. For the remainder of this section, the results for the GED innovation
models will be presented, whereas the results for the t-distributed innovation models are
found in Appendix B. The parameters of the GED innovation models are shown in Table
4.1.

NextEra Energy
ARMAp3, 3q-sGARCHp1, 1q

British Petroleum
ARMAp2, 2q-tGARCHp1, 2q

Mean equation parameters
c -4.1e-07 (3.9e-07) -0.0002 (0.0005)
�1 0.6992 (0.1286) 0.5062 (0.0346)
�2 0.7108 (0.1138) -0.9672 (0.0347)
�3 -0.4178 (0.0555) -
1 -0.7771 (0.1240) -0.4909 (0.0367)
2 -0.7386 (0.1044) 0.9551 (0.0423)
3 0.5071 (0.0351) -

Volatility parameters
! 4.7e-06 (1.6e-06) 4.6e-06 (2.1e-06)
↵1 0.0968 (0.0221) 0.0409 (0.0217)
�1 0.8692 (0.0270) 0.5759 (0.3182)
�2 - 0.3195 (0.2924)
�1 - 0.1017 (0.0394)

Distribution parameters
⌫ 1.3013 (0.0690) 1.1968 (0.0769)

Table 4.1: Parameter estimates and standard errors of the most suitable models with GED

innovations for the log return series of NEE and BP.

We will not delve into the particular parameter estimates. We only mention that the
AIC suggests a model that takes into account the leverage effect for the log returns of BP
which is reflected by the �1 parameter. Additionally, the GED parameters are somewhat
similar since they only differ by approximately 0.1.

Next, the histograms of the innovation series associated with the models in Table 4.1 are
plotted against their respective estimated GEDs in Figure 4.2. It is evident that compared
to the estimated t-distributions in Figure 4.1, the estimated GEDs seems to provide a
better fit to their respective innovation series.
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Figure 4.2: Histograms of innovations for NEE (left) and BP (right) along with estimated GED

densities.

We complement these findings with Ljung-Box tests of the innovations and squared
innovations in order to ensure that no autocorrelation and heteroskedasticity are left in the
GED innovations. The p-values of the tests are seen in Figure 4.3.

Figure 4.3: Ljung-Box tests of the GED innovations (top) and squared innovations (bottom) for

NEE (left) and BP (right).

Evidently, there is no serial autocorrelation present in the innovations and squared
innovations for both innovation series, as the null hypothesis of no autocorrelation cannot
be rejected. The same conclusions are drawn for the t-distributed innovations from Figure
B.1. The lack of autocorrelation in the squared innovations implies homoscedasticity. This
is tested more formally by an ARCH-LM test on each innovation series which produces p-
values above 0.05 for any specified lag l P t1, . . . , 30u for both the GED and the t-distributed
innovations. These results indicate that the innovation series exhibit no autocorrelation
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and heteroscedasticity.
Lastly, we note that since we condition on different information sets when modelling

the marginals, it should be tested whether lagged values of one series affect the other as
described in Section 1.7. This is done by first fitting an ARMAXp3, 3q and ARMAXp2, 2q
model to the log returns of NEE and BP, respectively. We test the significance of cross-
equation effects by performing a Wald test for the joint nullity of the additional explanatory
variables. The parameters of the ARMAX models are fixed as in Table 4.1. The tests
yield p-values of 0.43 and 0.92 for NEE and BP, respectively, indicating that there are
no significant cross-equation effects. The same conclusion is drawn when considering
the ARMA parameters for the t-distributed innovations shown in Table B.1. Thus, it is
reasonable to assume that the marginals can be modelled by univariate ARMA-GARCH
type models. Note that, as described in Section 1.7 the proper test would be to fit an
ARMAX-GARCHX to each log return series and test for the joint nullity of all additional
explanatory variables, however, due to time constraints this was not possible.

Nonetheless, an overall conclusion is that, regardless of whether we are considering
GED or t-distributed innovations for the univariate ARMA-GARCH framework, the models
provide reasonable marginal modelling choices.

4.3 Copula Modelling

The goal of this section is to use Bayesian inference to estimate copula parameters and
to do a simulation study where we compare samples of the estimated copula with the
innovation series. Since we have no initial knowledge of the parameter estimates, we use a
uniform prior for all copula parameters. It should be noted that, as the different copulas
have different parameter spaces, these uniform prior realizations should be transformed by
some suitable transformations. E.g. for the Clayton copula, the log function is used as
shown in Section 4.1. The No-U-Turn Sampler is used to generate posterior samples of the
copula parameters given the innovations and the prior distribution. The sampler is run
with 1000 iterations and the samples are used to compute posterior estimates of the means
and variances alongside the credible intervals of the parameters.

Figure 4.4: MCMC samples of posterior distribution, credible intervals, and estimate of ⇢ for the

Gaussian copula with GED innovations.
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The mean estimate and credible intervals for the parameter of the Gaussian copula with
GED innovations are shown in Figure 4.4. The histogram shows the distribution of the
MCMC samples, the outer lines represent the credible intervals, and the middle line depicts
the mean of the distribution. This procedure is performed for all the specified copulas,
and the resulting histograms are found in Figure B.2 and B.3 for GED and t-distributed
innovations, respectively. It should be noted that parameter estimation of the t- and
BB7 copulas are performed by maximum likelihood estimation, as the BivariateCopulas

package does not support Bayesian estimation of these copulas as of writing this thesis.
Table 4.2 shows a comprehensive statistical summary for all the specified copulas

with GED innovations. The Bayesian and maximum likelihood estimation summary is
shown, along with the p-values of the Cramér-von Mises goodness-of-fit test2, and the tail
dependencies. When inspecting the correlation parameters of the Gaussian and t-copula, it
is evident that the correlation between the two innovation series is estimated to be low.
Although these two copulas somewhat agree on the level of correlation, the t-copula is
estimated to have approximately 7 degrees of freedom, which is too low to represent a
Gaussian copula. The estimate of degrees of freedom is supported by the Cramér-von
Mises test, which could suggest that higher degrees of freedom provide a worse fit since the
t-copula converges to the Gaussian copula for ⌫ Ñ 8.

When inspecting the p-values of the Cramér-von Mises test, we note that the Frank, Joe,
Ali-Mikhail-Haq, and t-copulas are all well-specified at a 5% significance level, according
to the null hypothesis of the Cramér-von Mises test described in Section 1.6. Hence, any
of these four copula models exhibit a reasonable fit with the marginal modelling choice of
GED innovations. Out of these four well-specified copulas, only two exhibit tail dependence,
namely, the Joe and t-copulas. This indicates there is no clear connection between the
well-specified copulas with GED innovations and copulas with tail dependence.

Copula Parameter
estimate Variance Credible

interval
Cramér-von Mises

p-value
Lower tail
dependence

Upper tail
dependence

Gaussian ⇢̂ 0.1619 0.0013 [0.0930, 0.2329] 0.0058 0.0000 0.0000
t ⇢̂ 0.1367 - - 0.1132 0.0411 0.0411

⌫̂ 6.8450 - -
Frank ✓̂ 0.6887 0.0391 [0.2882, 1.0641] 0.0573 0.0000 0.0000
Gumbel ✓̂ 1.1228 0.0007 [1.0713, 1.1819] 0.0305 0.0000 0.1461
Clayton ✓̂ 0.1637 0.0020 [0.0802, 0.2550] 0.0115 0.0145 0.0000
Joe ✓̂ 1.1758 0.0014 [1.1023, 1.2528] 0.2398 0.0000 0.1969
BB7 ✓̂ 1.1404 - - - 0.0020 0.1636

�̂ 0.1112 - -
Ali-Mikhail-Haq ✓̂ 0.1467 0.0008 [0.0895, 0.2023] 0.1983 0.0000 0.0000

Table 4.2: Estimation summary for all specified copulas with GED innovations.

In Table 4.3 the estimation summary for all specified copulas with t-distributed innova-
tions is shown. When inspecting the p-values of the Cramér-von Mises test, we note that
as in Table 4.2, the Frank, Joe, Ali-Mikhail-Haq, and t-copulas are well-specified at a 5%
significance level. Therefore, any of these four copula models exhibit a reasonable fit with
the marginal modeling choice of t-distributed innovations as well. The large p-value of
the Ali-Mikhail-Haq is especially noticeable, as it indicates that this copula is particularly
well specified. These results indicate that there is also no clear connection between the
well-specified copulas with t-distributed innovations and copulas with tail dependence.

2
Note that the p-value of the Cramér-von Mises test is missing for the BB7 copula due to incompatibility

with the package used. Due to time constraints, this test was not implemented manually.

38



4.3. COPULA MODELLING Group 4.106 B1

Copula Parameter
estimate Variance Credible

interval
Cramér-von Mises

p-value
Lower tail
dependence

Upper tail
dependence

Gaussian ⇢̂ 0.1805 0.0015 [0.1063, 0.2570] 0.0012 0.0000 0.0000
t ⇢̂ 0.1435 - - 0.1735 0.0783 0.0783

⌫̂ 4.8961 - -
Frank ✓̂ 0.7758 0.0453 [0.3662, 1.2256] 0.1480 0.0000 0.0000
Gumbel ✓̂ 1.1443 0.0009 [1.0850, 1.2020] 0.0009 0.0000 0.1674
Clayton ✓̂ 0.2011 0.0022 [0.1174, 0.3007] 0.0257 0.0319 0.0000
Joe ✓̂ 1.1940 0.0017 [0.0017, 1.1203] 0.1909 0.0000 0.1969
BB7 ✓̂ 1.1599 - - - 0.0068 0.1823

�̂ 0.1390 - -
Ali-Mikhail-Haq ✓̂ 0.1639 0.0009 [0.1061, 0.2177] 0.7212 0.0000 0.0000

Table 4.3: Estimation summary for all specified copulas with t-distributed innovations.

To visually compare the goodness-of-fit for the copulas with GED innovations, we
conduct a simulation study which is shown in Figure 4.5. Given the parameter estimations
in Table 4.2, we create 10000 samples from each copula, transform them via Proposition
1.4, and compare them to the 1510 in-sample innovations. Since the number of samples
is larger than the number of innovations, it seems as if the variations in the samples are
larger than in the innovation series. When considering Figure 4.5, the dispersion structure
seems to be reasonable for all copulas, however certain copulas such as the Gumbel and
BB7 copulas seem to overestimate the upper tail dependence. Hence, although the null
hypothesis of the Cramér-von Mises test is rejected for the Gaussian and Clayton copulas,
these copulas seem to reproduce the innovations reasonably well.

A similar simulation study is conducted for the copula models with t-distributed
innovations, which is shown in Figure 4.6. For the Joe, Gumbel, and Ali-Mikhail-Haq
copulas, there are a few outliers. Excluding these outliers, the Joe and Ali-Mikhail-Haq
copulas seem to fit the t-distributed innovations well. In fact, the only models which
seem to have poor fits are again the Gumbel and BB7 copulas. As a result, it is clear
once again that even while the null hypothesis of the Cramér-von Mises test is rejected
for the Gaussian and Clayton copulas, these copulas appear to rather well reproduce
the innovations. Furthermore, the larger Cramér-von Mises p-value associated with the
Ali-Mikhail-Haq copula is supported by the simulation study, as it seems to best resemble
the dispersion structure of the innovations.

As was discussed in Section 4.2, the estimated t-distributions seem to poorly fit the
associated innovations which may lead to misspecification of the copulas. This is reflected
in the simulation study, as certain copulas seem to overestimate the extreme observations,
which could be a sign of misspecification. However, when inspecting the Cramér-von
Mises test results, there is no clear difference between the copula models with GED and
t-distributed innovations in terms of goodness-of-fit. Therefore, although the GED seems
to provide a better fit to its innovations than the t-distribution does, there seems to be no
significant difference in the copula modelling performance on the in-sample data.
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Figure 4.5: Scatter plots of copula samples (blue) and GED innovations (orange).
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Figure 4.6: Scatter plots of copula samples (blue) and t-distributed innovations (orange).
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5 Out-of-Sample Risk Forecasting

In this chapter, we seek to perform out-of-sample forecasting of value-at-risk and expected
shortfall, evaluate these forecasts, and determine the optimal risk forecasting copula model(s).
As mentioned, the risk forecasts are obtained for the equally weighted portfolio consisting of
the stocks of NextEra Energy and British Petroleum. In order to perform risk forecasting,
the presented ARMA-GARCH and copula models are utilized as described in the procedure
in Section 2.2. We simulate N “ 100000 scenarios of the portfolio return series and
sample 1000 times from the posterior, similar to the examples in Section 4.1. To evaluate
whether the specified copula models provide reasonable forecasts, the obtained forecasts are
evaluated by the DQ and ESR tests described in Section 2.3.1. To determine which model
specification(s) produces the most accurate risk forecasts, model confidence sets, introduced
in Section 2.3.2, are constructed. Again, we will both consider the specified copula models
with GED innovations and the models where the distributions of the innovation series are
determined entirely by AIC.

First, we consider plots of the portfolio returns alongside the one-day-ahead VaR and
ES forecasts for the t-copula with GED innovations at risk level ↵ “ 0.01 and ↵ “ 0.05 in
Figure 5.1. These plots are included to provide a visual representation of the VaR and ES
forecasts. The negative values of the VaR forecasts have been used in order to compare
them to the returns and ES forecasts. By definition of VaR, the return series should
subceed the negative forecasts of VaR0.01 and VaR0.05 for approximately 1% and 5% of the
out-of-sample dates, respectively, if the VaR forecasts are properly determined. Although it
can be challenging to see visually from the graphs below, this appears to approximately be
the case. The ES is defined as the expected return below the negative VaR level. Therefore,
it makes sense that the ES forecasts are lower than the negative VaR forecasts. Similar
plots for the remaining copula models with GED innovations are found in Figure B.4-B.5.
All of the plots resemble those in Figure 5.1 quite closely.

Figure 5.1: VaR (blue) and ES (red) forecasts at risk level ↵ “ 0.01 (left) and ↵ “ 0.05 (right)

plotted against the portfolio return series (black) for the t-copula with GED innovations.
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To consider more rigorously whether the obtained VaR and ES forecasts from the copula
models with GED innovations are reasonable, we consider now the results of the DQ and
ESR tests. The p-values are summarized in Table 5.1. If we consider first the DQ test
of the VaR forecasts, we see that all p-values are above 0.05 at risk levels ↵ “ 0.01 and
↵ “ 0.05, indicating that the null hypothesis of the DQ test cannot be rejected for any
model specification at a 5% significance level for both risk levels. As a result, it is implied
that all copula models offer accurate VaR forecasts at both risk levels. The p-values for the
VaR forecasts at risk level ↵ “ 0.01 are all almost equal to 1. This indicates that these
VaR forecasts are particularly accurate. Next, we observe that all p-values at both risk
levels ↵ “ 0.01 and ↵ “ 0.05 are also above 0.05 for the ESR test of the ES forecasts.
Therefore, the ESR test’s null hypothesis cannot be rejected for any model specification
at a 5% significance level for either of the risk levels. This suggests that all the specified
copula models also provide accurate ES forecasts at both risk levels. Again, it should be
noted that the p-values for the forecasts at risk level ↵ “ 0.01 are noticeably greater than
the p-values for the forecasts at risk level ↵ “ 0.05, indicating that these forecasts are
particularly accurate. This leads us to the conclusion that, according to the DQ and ESR
tests, the copula models with GED innovations produce reasonable VaR and ES forecasts
at both risk levels ↵ “ 0.01 and ↵ “ 0.05 at a significance level of 5%.

Copula DQ 1% VaR
p-value

ESR 1% ES
p-value

DQ 5% VaR
p-value

ESR 5% ES
p-value

Gaussian 0.9483 0.4637 0.3956 0.0836
t 0.9963 0.5260 0.4061 0.0908
Frank 0.9479 0.4655 0.3951 0.0782
Gumbel 0.9532 0.4754 0.3952 0.0849
Clayton 0.9973 0.5199 0.3161 0.0990
Joe 0.9553 0.4631 0.3915 0.0787
BB7 0.9978 0.4878 0.3105 0.0958
Ali-Mikhail-Haq 0.9976 0.4566 0.3924 0.0779

Table 5.1: p-values for the DQ and ESR tests for VaR and ES forecasts at level ↵ “ 0.01 and

↵ “ 0.05 for the copula models with GED innovations.

Figure 5.2: VaR (blue) and ES (red) forecasts at risk level ↵ “ 0.01 (left) and ↵ “ 0.05 (right)

plotted against the portfolio return series (black) for the t-copula with distributions of innovations

determined entirely by AIC.

Next, we consider plots of the portfolio returns alongside the obtained VaR and ES
forecasts at risk level ↵ “ 0.01 and ↵ “ 0.05 for the t-copula where the distributions of the
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innovations are determined entirely by AIC in each roll of the risk forecasting procedure.
This is seen in Figure 5.2. Plots for the remaining copula models with distributions of
innovations determined entirely by AIC are found in Figure B.6-B.7. It is still difficult
to draw any conclusions from these plots, but visually, the VaR forecasts appear to be
plausible. The ES forecasts are still lower than the VaR forecasts which, as previously
mentioned, makes sense given the definition of ES.

Copula DQ 1% VaR
p-value

ESR 1% ES
p-value

DQ 5% VaR
p-value

ESR 5% ES
p-value

Gaussian 0.9921 0.3850 0.2583 0.1651
t 0.9930 0.8347 0.4045 0.1871
Frank 0.9947 0.8199 0.2684 0.1593
Gumbel 0.9945 0.8383 0.2647 0.1785
Clayton 0.9908 0.1976 0.2693 0.1346
Joe 0.9948 0.8144 0.3384 0.1037
BB7 0.9928 0.8120 0.2707 0.1897
Ali-Mikhail-Haq 0.9946 0.8022 0.2730 0.1056

Table 5.2: p-values for the DQ and ESR tests for VaR and ES forecasts at level ↵ “ 0.01 and

↵ “ 0.05 for the copula models with distributions of innovations determined entirely by AIC.

The results of the DQ and ESR tests for the risk forecasts obtained from the copula
models where the distributions of the innovations are determined entirely by AIC are seen
in Table 5.2. The results are very similar to the results in Table 5.1. The DQ test of the
VaR forecasts reveals that all p-values are above 0.05 at both risk levels, indicating that
all copula models provide precise VaR forecasts at both risk levels at a 5% significance
level. For the ESR test of the ES forecasts, we notice that all p-values at both risk levels
are also above 0.05. As a result, it is also suggested that all of the copula models give
precise ES forecasts at both risk levels. As in Table 5.1, the p-values for the VaR and ES
forecasts at risk level ↵ “ 0.01 are all considerably larger than the p-values for the forecasts
at risk level ↵ “ 0.05, demonstrating that these forecasts are again particularly accurate.
We can therefore draw the conclusion that the copula models with innovation distributions
determined entirely by AIC also give acceptable VaR and ES forecasts for both risk levels
of ↵ “ 0.01 and ↵ “ 0.05 at a significance level of 5%.

Knowing that all copula models provide acceptable VaR and ES forecasts, it is of great
interest to find the model(s) which provide the most accurate VaR and ES forecasts. To
this end, the MCS described in Section 2.3.2 is employed. That is, we seek to determine the
true set of the best model(s) M

˚ by iteratively removing the least suitable model from M.
In Table 5.3 the results regarding the copulas with GED innovations are shown. The table
shows the MCS M̂

˚
1´a for a P t0.01, 0.05, 0.25u derived from the FZL and QL functions at

risk levels ↵ “ 0.01 and ↵ “ 0.05. For a risk level of ↵ “ 0.05, the MCS for both the FZL
and QL functions consists of only the t-copula. This is evidence that the t-copula excels at
VaR and ES forecasting compared to the other copula models. At risk level ↵ “ 0.01, the
results vary depending on which coverage probability and loss function the MCS is based
on. First, we see that all copula models are included in the MCSs M̂

˚
0.99 and M̂

˚
0.95 based

on the FZL function. This could indicate that the restrictions regarding which models are
eliminated are too harsh. When considering the remaining MCSs, it is evident that the
Frank, Joe, and Ali-Mikhail-Haq copulas all are selected as superior models when based
on the QL and FZL functions. Thus, the conclusion to be drawn from Table 5.3 is that
the t-copula is superior when forecasting VaR and ES at risk level ↵ “ 0.05, whereas the

45



Group 4.106 B1 CHAPTER 5. OUT-OF-SAMPLE RISK FORECASTING

Frank, Joe, and Ali-Mikhail-Haq copulas are superior when forecasting VaR and ES at risk
level ↵ “ 0.01.

FZL 1% FZL 5% QL 1% QL 5%

M̂
˚
0.99

Best model(s) All copulas t-copula Gaussian copula t-copula
Frank copula
Joe copula
AMH copula

M̂
˚
0.95

Best model(s) All copulas t-copula Frank Copula t-copula
Joe Copula
AMH copula

M̂
˚
0.75

Best model(s) Frank copula t-copula Frank copula t-copula
Joe copula Joe copula
AMH copula AMH copula

Table 5.3: Model confidence sets with coverage probabilities a “ 0.01, a “ 0.05, and a “ 0.25 for

the FZL and QL functions evaluated at risk level ↵ “ 0.01 and ↵ “ 0.05 for the copula models with

GED innovations.

Now consider the MCSs from the copula models with distributions of innovations
determined entirely by AIC in Table 5.4. Evidently, the MCSs again only consist of the
t-copula for both loss functions at risk level ↵ “ 0.05. This is again evidence that the
t-copula is outperforming the other copula models.

FZL 1% FZL 5% QL 1% QL 5%

M̂
˚
0.99

Best model(s) All copulas t-copula Frank copula t-copula
Joe copula
AMH copula

M̂
˚
0.95

Best model(s) Gaussian copula t-copula Frank copula t-copula
Frank copula Joe copula
Gumbel copula AMH copula
Joe copula
BB7 copula
AMH copula

M̂
˚
0.75

Best model(s) Frank copula t-copula Frank copula t-copula
Joe copula Joe copula
AMH copula AMH copula

Table 5.4: Model confidence sets with coverage probabilities a “ 0.01, a “ 0.05, and a “ 0.25 for

the FZL and QL functions evaluated at risk level ↵ “ 0.01 and ↵ “ 0.05 for the copula models with

distributions of innovations determined entirely by AIC.

At risk level ↵ “ 0.01, many of the same conclusions can be drawn as from Table 5.3.
That is, for M̂

˚
0.99 and M̂

˚
0.95 based on the FZL function, the elimination restrictions seem

46



Group 4.106 B1

to be too harsh since all and almost all models are included, respectively. Again, the Frank,
Joe, and Ali-Mikhail-Haq copulas are contained in all MCSs. This indicates that the Frank,
Joe, and Ali-Mikhail-Haq copulas likely are the most suitable models for VaR and ES
forecasting at risk level ↵ “ 0.01.

Since the purpose of this thesis is to find the most accurate risk forecasting copula
model(s), it is of particular interest to compare the models considered in Tables 5.3 and 5.4.
The resulting MCSs are found in Table 5.5. For ease of notation, we let t-copulaGED denote
the t-copula with GED innovations. Similarly, we let t-copulaAIC denote the t-copula with
distributions of innovations determined entirely by AIC. This notation is also used for all
other specified copulas in Table 5.5.

FZL 1% FZL 5% QL 1% QL 5%

M̂
˚
0.99

Best model(s) All copulas t-copulaGED Frank copulaGED t-copulaGED
Joe copulaGED t-copulaAIC
AMH copulaGED

M̂
˚
0.95

Best model(s) Gaussian copulaGED t-copulaGED Frank copulaGED t-copulaGED
Gaussian copulaAIC Joe copulaGED t-copulaAIC
t-copulaGED AMH copulaGED
Frank copulaGED
Frank copulaAIC
Gumbel copulaGED
Gumbel copulaAIC
Joe copulaGED
BB7 copulaGED
BB7 copulaAIC
AMH copulaGED
AMH copulaAIC

M̂
˚
0.75

Best model(s) Frank copulaGED t-copulaGED Frank copulaGED t-copulaGED
Joe copulaGED Joe copulaGED
AMH copulaGED AMH copulaGED

Table 5.5: Model confidence sets with coverage probabilities a “ 0.01, a “ 0.05, and a “ 0.25 for

the FZL and QL functions evaluated at risk level ↵ “ 0.01 and ↵ “ 0.05 for all the specified copula

models.

It is evident that at risk level ↵ “ 0.05 the MCSs based on the FZL function consist
only of the t-copulaGED. This is supported by M̂

˚
0.75 based on the QL function, however,

M̂
˚
0.95 and M̂

˚
0.99 based on the QL function consist of two models, namely the t-copulaGED

and the t-copulaAIC. This suggests that the t-copulaGED outperforms the t-copulaAIC when
the MCSs are based on the FZL function, whereas they are almost statistically similar in
performance when the MCSs are based on the QL function. When considering the risk
level ↵ “ 0.01, the M̂

˚
0.99 and M̂

˚
0.95 based on the FZL function suggest that all and almost

all copulas are not significantly different in performance, respectively. However, for M̂
˚
0.75

based on the FZL function and all the MCSs based on the QL function, the superior models
are the Frank copulaGED, Joe copulaGED, and AMH copulaGED. In fact, these models are
part of all MCSs based on either the FZL or QL function, which indicates that they are
the superior models when forecasting VaR and ES at risk level ↵ “ 0.01.

Although no single copula model significantly outperforms the remaining copula models
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when considering all risk levels and coverage probabilities, the t-copula is superior at risk
level ↵ “ 0.05, and the Frank, Joe, and Ali-Mikhail-Haq copulas are superior at risk level
↵ “ 0.01. The most suitable copulas also tend to have GED innovations. This is in
line with the in-sample model diagnostics, which showed that the GED appeared to fit
its innovation series better than the distributions determined entirely by the AIC. This
highlights the importance of proper marginal distribution modelling, as discussed in Chapter
4. It is important to note that, despite the fact that copulas with GED innovations tend to
outperform those with distributions of innovations determined entirely by AIC, the latter
nevertheless generate acceptable VaR and ES forecasts at both risk levels ↵ “ 0.01 and
↵ “ 0.05 according to the DQ and ESR tests. Furthermore, we note that the superior
copula models, i.e. the Frank, Joe, Ali-Mikhail-Haq, and t-copulas are the same copula
models that were deemed well-specified in Section 4.3 according to the Cramér-von Mises
goodness-of-fit test. This provides evidence of these four copula models being superior
in both goodness-of-fit and risk forecasting accuracy compared to the remaining copula
models.
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6 Conclusion

This master’s thesis investigates how copulas can be employed for risk forecasting in stock
portfolios, and how one can evaluate the accuracy of these forecasts and identify the most
suitable copula model(s).

In order to provide answers to these questions, we begin by outlining all the necessary
copula theory. Among other things, this includes the useful probability integral transforms,
the specific copula examples that we will consider, and the crucial Sklar’s theorem, which
enables us to model each variable individually before modeling their dependence with a
copula. In addition, we introduce the copula estimation method of Bayesian inference, the
Cramér-von Mises goodness-of-fit test, and the marginal distribution modelling choice of
ARMA-GARCH models. Based on this knowledge, we present the risk measures we would
like to forecast, namely the value-at-risk (VaR) and expected shortfall (ES), as well as the
procedure for doing so. In summary, the procedure involves fitting an ARMA-GARCH
model to each return series under consideration, estimating distributions for the innovation
series, and forecasting one-day-ahead return means and variances. The specified copulas are
then estimated and Monte Carlo simulations of the return process for an equally weighted
portfolio are performed. These results are used to obtain estimates for VaR and ES.
Following that, this process is repeated on a rolling window basis. In addition to forecasting
VaR and ES, our goal is to assess the forecasts’ accuracy. In order to accomplish this, we
present the dynamic quantile (DQ) and expected shortfall regression (ESR) tests, which test
the accuracy of the VaR and ES forecasts, respectively. Both tests depend on a particular
regression and a Wald-type test statistic. Finally, we introduce the theory of the model
confidence set (MCS) in order to determine the most suitable copula model(s). The goal of
the model confidence set is to identify a set of models which contain the best model(s) with
a specified level of confidence. This is achieved through a sequence of significance tests,
where the models that are significantly inferior to the other models are eliminated.

An equally weighted portfolio composed of the stocks of NextEra Energy and British
Petroleum is then subjected to the theoretical solution to the problem statement described
above. Prior to applying the risk forecasting procedure to this portfolio, we confirm that
the ARMA-GARCH framework is an appropriate modeling choice. To do this, we take into
account histograms, ADF tests, ACF plots, Ljung-Box tests, among other things. All of
them point to the ARMA-GARCH framework as being reasonable. Marginal and copula
model diagnostics are then performed for the in-sample data which consists of 1510 daily
observations between the 1st of January 2015 and the 31st of December 2020. Here we find
that ARMA-GARCH type models with t-distributed innovations have the lowest AIC values.
However, it appears that the estimated t-distributions do not suit their innovation series
well. We decide to also take into account ARMA-GARCH type models with exclusively
GED innovations since the GED seems to provide a better fit for its innovations. In both
instances of distribution specifications, the innovation series show no autocorrelation or
heteroscedasticity, indicating that the aforementioned ARMA-GARCH type models are
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appropriate options for marginal modelling. Following this, we fit the given copulas using
the GED and t-distributed innovations and consider the Cramér-von Mises test results.
From this, we find that the Frank, Joe, Ali-Mikhail-Haq, and t-copulas are all well-specified
at a 5% significance level for both distribution choices.

Finally, we reach the out-of-sample risk forecasting part. Here, we apply the risk
forecasting procedure to the 580 out-of-sample daily observations that fall between the 1st
of January 2021 and the 25th of April 2023. Again, we take into account both the scenario
where the distributions of innovations are determined entirely by AIC and the scenario
where the distributions are fixed to be GED. We find, that both the VaR and ES forecasts
are accurate for the risk levels ↵ “ 0.01 and ↵ “ 0.05 in both of the innovation distribution
scenarios, according to the results of the DQ and ESR tests. As a result, the risk forecasting
procedure provides reasonable risk forecasts for both distribution specification scenarios.
For the model confidence set, we find that the t-copula is the most suitable model for
risk assessment at risk level ↵ “ 0.05, while at risk level ↵ “ 0.01, the Frank, Joe, and
Ali-Mikhail-Haq copulas appear to be the most suitable ones since they are included in all
the MCSs. These four copula models are also the models that are deemed well specified by
the Cramér-von Mises test. When all risk levels and coverage probabilities are taken into
account, no single set of copula models significantly outperforms the other copula models.
Therefore, we are unable to determine a single set of superior models at both risk levels,
however, we can infer that the most suitable copula models typically have GED innovations.

To sum up, we first provide a theoretical response to the problem statement by introduc-
ing the necessary copula theory, the risk forecasting procedure, as well as the VaR and ES
backtests and the model confidence set. All of this is then applied to a portfolio composed
of the two stocks of NextEra Energy and British Petroleum. From this, we discover that
the VaR and ES estimates are accurate regardless of whether the innovation distributions
are determined entirely by AIC or fixed to be GED. Additionally, we find that no particular
copula model outperforms the others in terms of risk assessment in general, nevertheless, the
t-copula and the Frank, Joe, and Ali-Mikhail-Haq copulas appear to be the most suitable
ones at risk levels of ↵ “ 0.05 and ↵ “ 0.01, respectively. Additionally, copula models
with GED innovations typically outperform those with innovation distributions determined
entirely by AIC.
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7 Future Considerations

The research of this thesis could be extended in the following ways to provide a more
nuanced answer to the problem statement.

We showed that the use of univariate ARMA-GARCH type models was justified when
modelling the marginal distributions. As mentioned in Section 1.7 this is not the case in
general, as the conditioning set is the information set of all considered series. Hence, if
the series have cross-equation effects, multivariate ARMA-GARCH type models must be
utilized. In this case, the proposed risk forecasting procedure in Section 2.2 should be
modified to instead fit and forecast from a multivariate ARMA-GARCH type model. It is
worth mentioning that we only tested cross-equation effects in the first moment (ARMA)
and did not explore the second moment (GARCH) due to time constraints. Consequently,
the implementation of an ARMAX-GARCHX type model was not performed, which presents
an extension to be considered.

We chose to investigate Archimedean and parametric copulas. A second extension would
be to incorporate other copula models available in the BivariateCopulas package, i.e.
convex, discretized, non-parametric, rotated, and vine copulas. Additionally one could test
for time-varying dependence between the investigated stocks. As suggested by [20], one can
compute quantile dependence coefficients at different quantiles to obtain more information
about the dependence structure. If necessary, copula models can be extended to capture
time-varying dependence, often referred to as time-varying copulas in the literature.

When ARMA-GARCH type models were fitted to the marginals we elected to only
consider the models with the lowest AIC values and p, q P t0, . . . , 3u. A fourth extension
would be to perform risk forecasting based on all ARMA-GARCH type models regardless of
AIC values and for larger values of p, q. In doing so, the MCSs would be the only method
of model selection, selecting among thousands of copula models. Note that this is likely
infeasible, as the complexity of the procedure would be massively increased.

In Section 4.2, the marginal model diagnostics were presented. Initially, the ARMA-
GARCH distribution specification was determined entirely by AIC. However, it was observed
that this choice resulted in a poor fit to the associated innovation series. As we emphasized,
a proper specification is of paramount importance as incorrectly specified marginals can lead
to misspecification of the copula models. To address this issue, we enforced a generalized
error distribution (GED) as the distribution specification, which exhibited a better fit to
the associated innovations. Throughout the applications part of the thesis, we found that
the copulas with GED innovations seemed to outperform the copulas with distributions of
innovations determined entirely by AIC in terms of risk forecasting. This leads to the fifth
extension of including several more flexible distributions e.g. the normal inverse Gaussian
(NIG) distribution, which can account for the shape, skewness, and scale of the distribution
through its parameters. With a flexible distribution such as the NIG distribution, it should
be possible to fit distributions to the marginals that ensure the innovations properly adhere
to the distribution specification.
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In Tables 5.3-5.5 the most suitable risk forecasting copula model(s) are presented. By the
construction of the model confidence set (MCS), see Section 2.3.2, the coverage probability
of the MCS determines the confidence that the true best model(s) is not excluded from
the MCS. We chose the coverage probabilities to be a “ 0.01, a “ 0.05, and a “ 0.25, in
accordance with [17]. As a consequence, the MCS for a “ 0.01 is much more inclined to
include an unsuitable model than to exclude a suitable one. Hence, a sixth extension to
be considered would be to expand the range of a and to determine a sweet spot for the
coverage probability.

In the risk forecasting procedure, we considered an equally weighted portfolio consisting
of two stocks. An interesting final extension would involve portfolio allocation based on risk
forecasting. This can be accomplished by considering PpPt † bq where Pt is an arbitrary
portfolio return series and b P R. The copula models would then be used to determine the
probability PpPt † bq. Subsequently, any portfolio satisfying PpPt † bq † r where r P r0, 1s
would be considered a favorable portfolio for appropriate values of b and r. It should be
noted that some alterations in the risk forecasting procedure are required in this case.
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A The Fréchet-Hoeffding Bounds

Theorem A.1 (The Fréchet-Hoeffding Bounds).
For every copula C P Cd, we have the bounds:

max

#
dÿ

i“1

ui ` 1 ´ d, 0

+
§ Cpu1, . . . , udq § mintu1, . . . , udu.

Proof. For the first inequality, we observe that:

Cpu1, . . . , udq “ P
˜

d£

i“1

tUi § uiu
¸

“ 1 ´ P
˜

d§

i“1

tUi ° uiu
¸

• 1 ´
dÿ

i“1

PpUi ° uiq “ 1 ´
dÿ

i“1

p1 ´ uiq “
dÿ

i“1

ui ` 1 ´ d,

where the third step follows from Boole’s inequality. For the second inequality, we see that:

d£

j“1

tUj § uju Ñ tUi § uiu, i “ 1, . . . , d,

which implies that:

Cpu1, . . . , udq “ P
˜

d£

j“1

tUj § uju
¸

§ min
iPt1,...,du

tPpUi § uiqu “ minpu1, . . . , udq.

⌅
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B Miscellaneous Tables and Figures

NextEra Energy
ARMAp3, 3q-sGARCHp1, 1q

British Petroleum
ARMAp2, 2q-tGARCHp1, 1q

Mean equation parameters
c 0.0003 (0.0002) -1.9e-5 (0.0005)
�1 -0.5128 (0.0451) 0.5081 (0.0202)
�2 0.2845 (0.0638) -0.9725 (0.0328)
�3 0.9032 (0.0452) -
1 0.4781 (0.0362) -0.4958 (0.0258)
2 -0.3321 (0.0509) 0.9616 (0.0410)
3 -0.9482 (0.0364) -

Volatility parameters
! 4.8e-06 (1.6e-06) 3.5e-06 (1.3e-06)
↵1 0.0978 (0.0230) 0.0334 (0.0157)
�1 0.9213 (0.0165) 0.9272 (0.0130)
�1 - 0.0712 (0.0223)

Distribution parameters
⌫ 5.4194 (0.7226) 5.0090 (0.7110)

Table B.1: Parameter estimates and standard errors of the most suitable models for the log return

series of NEE and BP determined entirely by AIC.

Figure B.1: Ljung-Box test of the t-distributed innovations (top) and squared innovations (bottom)

for NEE (left) and BP (right).

57



Group 4.106 B1 APPENDIX B. MISCELLANEOUS TABLES AND FIGURES

Figure B.2: MCMC samples of the posterior distributions, credible intervals, and parameter

estimates for the remaining copulas with GED innovations.
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Figure B.3: MCMC samples of the posterior distributions, credible intervals, and parameter

estimates for all specified copulas with t-distributed innovations.
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Figure B.4: VaR (blue) and ES (red) forecasts at risk level ↵ “ 0.01 (left) and ↵ “ 0.05 (right)

plotted against the portfolio return series (black) for the Gaussian, Frank, Gumbel, and Clayton

copulas with GED innovations.
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Figure B.5: VaR (blue) and ES (red) forecasts at risk level ↵ “ 0.01 (left) and ↵ “ 0.05 (right)

plotted against the portfolio return series (black) for the Joe, BB7, and Ali-Mikhail-Haq copulas

with GED innovations.
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Figure B.6: VaR (blue) and ES (red) forecasts at risk level ↵ “ 0.01 (left) and ↵ “ 0.05 (right)

plotted against the portfolio return series (black) for the Gaussian, Frank, Gumbel, and Clayton

copulas with distributions of innovations determined entirely by AIC.
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Figure B.7: VaR (blue) and ES (red) forecasts at risk level ↵ “ 0.01 (left) and ↵ “ 0.05 (right)

plotted against the portfolio return series (black) for the Joe, BB7, and Ali-Mikhail-Haq copulas

with distributions of innovations determined entirely by AIC
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