
forside

Locally Recoverable Codes
Construction and Properties of Locally Recoverable Codes

Master Thesis Discrete Mathematics

Aalborg University
tenth Semester v/ Faculty of Engineering and Science

Skjernvej 4a • 9220 Aalborg

Figure 1: Locally recoverable cod.

Aalborg University

Institute of Mathematical Sciences
Mathematics
Skjernvej 4a
9220 Aalborg Øst
http://math.aau.dk

Title:

Locally Recoverable Codes

Project:

Master Thesis

Project period:

01/02-2021 - 2/06 - 2021

Project group:

Group Mat DISK

Authors:

Rasmus Bod Olesen

Supervisor:

Oliver Wilhelm Gnilke, Matteo Bonini

Pages: 44 + Formalities and appendix.
Finishing date: 02/06-2021
Front page image: Taken from
https://andreacullenhealthsolutions.com

Abstract:

This paper analyzes and constructs Locally re-
coverable codes. The paper initially defines
Reed Solomon codes and redundant residue
codes and shows the limitations of this partic-
ular encoding. The paper then defines locality
and constructs Reed Solomon-like locally re-
coverable codes. Related to this construction
is the concept of a nice polynomial and the pa-
per provides several ways of constructing nice
polynomials. The paper shows several exten-
sions of the initial construction of locally re-
coverable codes. Furthermore, the paper also
describes how locally recoverable can be con-
structed by combining several Reed Solomon
codes. The paper also proves a singleton-like
bound on the minimum distance and shows
that almost all the locally recoverable codes
constructed in this paper meet this bound with
equality. Lastly, the paper defines cyclic lo-
cally recoverable codes and describes their sub-
field subcodes, and shows several results con-
cerning the size of recovering sets for subfield
subcodes.

The paper’s content is freely available, but publication (with citation) may only occur with permission from
the paper’s authors.

2

http://math.aau.dk

Aalborg University

Preface

I developed this master thesis in the period 01-02-2023 to 02-06-2023. It is written by
me, Rasmus Bod Olesen. I have had the pleasure of working with my two supervisors
Matteo Bonini and Oliver Wilhelm Gnilke and I would like to thank both of them for their
invaluable assistance and insight.

Since this is (hopefully) my last project I would also like to extend my thanks to my family
who have been unwavering in their support they are my recovering set.

Signature

Rasmus Bod Olesen

i

Contents Aalborg University

Contents

Preface i

1 Introduction 2

2 Reed Solomon Codes and Redundant Residue Codes 3

3 Locally Recoverable Codes Definition and Properties 5

4 Generalization 15
4.1 Systematic Encoding . 18
4.2 Removal of Division Assumption . 19
4.3 Redundant Residue Codes . 21

5 Multiple Recovering Sets 24
5.1 LRC Product Codes . 27

6 Proof of Singleton-like Bound 30

7 Cyclic LRC Codes 33
7.1 Intro to Cyclic Codes . 33
7.2 Cyclic LRC Codes . 34
7.3 Subfield Subcodes . 38

A Bibliography 49

ii

Contents Aalborg University

List of Symbols

• Fq. A finite field with q = pm elements for some prime p and integer m

• F. A finite field with arbitrarily many elements.

• xi. The i′th coordinate in the vector x

• CI the code C with the entries not in I removed. So if I = {1} we remove entry 1 in
all codewords of C

• ⊔. The disjoint union which retains set membership. So A ⊔B = (A× 0) ∪ (B × 1)

1

Introduction Aalborg University

1 | Introduction

In recent years distributed storage systems have become increasingly common. On such
data storage systems, people often have to access the same data multiple times we refer
to such data as "hot data" and when the demand for the data exceeds server capacity a
temporary failure can occur which causes the "hot data" to become inaccessible (Li & Li
2013). To facilitate access to hot data specific encoding of the data is required. One of
the more common encoding methods for data recovery is replication where several copies
of the data fragment are stored at different storage nodes. Note here that by a node, we
mean a storage unit. However, this type of encoding is insufficient in many cases since a
large amount of overhead is required. Therefore different encoding techniques are utilized
to achieve lower overhead with similar or comparable resistance to failure. For example,
to minimize storage overhead Reed Solomon codes (RS-codes) are often utilized (Tamo &
Barg 2014).

When a file is encoded using RS-codes the file is first partitioned into k fragments which
are then encoded so n − k fragments are added as redundancy and the n data fragments
are stored over n nodes. This type of encoding is already implemented in several storage
systems. For example, Hadoop Distributed File System uses a (9, 6) Reed Solomon code
which means that the storage overhead is n

k
= 9

6
= 3

2
(Ramkumar et al. 2022).

Although RS-codes are great one of the main issues in terms of node failure is that in
order to recover a single node we must read k other nodes which is time-consuming (Tamo
2015) (Tamo & Barg 2014). Therefore, locally recoverable codes were constructed to fix
this issue. A locally recoverable code is a code in which each symbol of the codeword can
be recovered from r other symbols where r ≤ k. The downside to utilizing these codes is
that the code constructed no longer meets the MDS bound with equality. However, a new
MDS-like bound is achieved and most of the LRC codes constructed in this paper meet
this bound with equality (Tamo & Barg 2014) Ramkumar et al. (2022).

2

Reed Solomon Codes and Redundant Residue Codes Aalborg University

2 | Reed Solomon Codes and Redun-
dant Residue Codes

This chapter is based on (MacWilliams 1983) and (Tamo 2015). We initially discuss Reed
Solomon codes as the initial construction of locally recoverable codes (shortened LRC
codes) is an extension of Reed Solomon codes. The general definition is given in Definition
2.0.1.

Definition 2.0.1
Given a message m ∈ Fk define the encoding polynomial

fm(x) =
k−1∑
i=0

mix
i. (2.1)

For a given evaluation vector α = (α1, ..., αn) ∈ Fn we define the RS encoding function
as RSn,k(α,m) = (fm(α1), ..., fm(αn)). The set {RSn,k(α,m),m ∈ Fk} is then defined as
the Reed Solomon code.

One of the reasons the Reed Solomon codes are interesting is that the code obtains equality
in the singleton bound which is stated here without proof.

Theorem 2.0.2
For a linear (n, k) code with minimum distance dm the following bound holds.

dm ≤ n− k + 1.

As mentioned the RS code obtains equality in this bound. Codes that meet the singleton
bound are called Maximum Distance separable codes shortened MDS codes.
We illustrate the problems with RS-codes in Figure 2.1.

3

Reed Solomon Codes and Redundant Residue Codes Aalborg University

(a)

Figure 2.1: The figure describes the Reed Solomon encoding. We have a polynomial of
degree k − 1 evaluated at 8 points. If a symbol is lost it can be recovered by performing
polynomial interpolation through the remaining points. To perform the interpolation we
must access at least k points. This is the problem with the RS-codes in order to recover
we must access k symbols which when k is large or when several recoveries are necessary
is not feasible.

So the problem with reed Solomon codes is that you must read k symbols. So the future
constructions of locally recoverable codes will utilize a similar recovery procedure based on
polynomial interpolation but will read fewer symbols.

4

Locally Recoverable Codes Definition and Properties Aalborg University

3 | Locally Recoverable Codes Defini-
tion and Properties

The following chapter is based on (Tamo & Barg 2014) and Lauritzen (2003). Initially,
the definition of locality is given. A code C is said to have locality r if every symbol of the
codeword x ∈ C can be recovered from a subset of r other symbols. More formally locality
is given in Definition 3.0.1.

Definition 3.0.1
Consider a ∈ Fq and define a set of codewords as

C(i, a) = {x ∈ C : xi = a}, i ∈ 1, ..., n.

The code C has locality r if for every i ∈ {1, ..., n} there exists a subset Ii ⊂ {1, ..., n}\i
where |Ii| ≤ r such that

CIi(i, a) ∩ CIi(i, a
′) = ∅, a ̸= a′.

A code with the locality property is called a locally recoverable code. For each codeword, we
have a unique recovering set Ii of size at most r; from this set, the symbol of the codeword
can be recovered. We also note that the locality parameter must satisfy 1 ≤ r ≤ k because
if we read k symbols we can always recover the codeword. For these codes, we can establish
the following minimum distance and rate.

Theorem 3.0.2
Let C be an (n, k, r) LRC code then:

k

n
≤ r

r + 1
(3.1)

d ≤ n− k − ⌈k
r
⌉+ 2. (3.2)

This theorem is proved in Chapter 6. We now construct a linear code with the locality
property. This construction relies on a polynomial g with the following properties:

• deg(g) = r + 1

5

Locally Recoverable Codes Definition and Properties Aalborg University

• There exists a partition of the set A ⊆ Fq denoted A = {A1, A2, ..., A n
r+1

} such that
for all i ∈ 1, ..., n

r+1
and any α, β ∈ Ai we have that

g(α) = g(β).

So g is constant on each set Ai. A polynomial with this property is called nice. Here it
is assumed that r + 1|n. We will later show that such a polynomial and such a partition
can almost always be found. We now state the construction of a linear locally recoverable
code.

Construction 3.0.3
Let n ≤ q be the target code length and let A ⊂ Fq where |A| = n and let g(x) be a nice
polynomial for the partition A. If we wish to encode the message m ∈ Fk

q we write it as
m = (mij, i = 0, ..., r − 1; j = 0, ..., k

r
− 1). We then define the encoding polynomial as

fm(x) =
r−1∑
i=0

fi(x)x
i, (3.3)

where

fi(x) =

k
r
−1∑

j=0

mijg(x)
j (3.4)

The codewords from this encoding polynomial is then defined as

C = {(fm(α), α ∈ A) : m ∈ Fk
q}

Where (fm(α), α ∈ A) is an evaluation vector defined from the set A.

Note here that this construction relies on k|r however this assumption can be neglected as
Proposition 3.0.4 suggests.

Proposition 3.0.4
The assumption r|k is not necessary.

Proof. Assume that r ∤ k and let k = d · r + R. We start by indexing our message vector

6

Locally Recoverable Codes Definition and Properties Aalborg University

in a new way which is represented in the following vectors:

mi,j =

(m0,0, ...,m0,⌊ k
r
⌋)

...

(mR−1,0, ...,mR−1,⌊ k
r
⌋)

(mR,0, ...,mR,⌊ k
r
⌋−1)

...

(mr−1,0, ...,mr−1,⌊ k
r
⌋−1).

By indexing, this way it is clear that all k symbols are preserved as the number of message
symbols in this new set of vectors is k. We now define our coefficient polynomial in the
following way utilizing our new indexing.

fi(x) =

s(k,r,i)∑
j=0

mijg(x)
j, i = 0, 1, ..., r − 1.

Here s(k, r, i) is defined by the following function.

s(k, r, i) =

{
⌊k
r
⌋ if i < R

⌊k
r
⌋ − 1 if i ≥ R

.

Using this function we still encode all k elements from our message vector m.

The notation for this is cumbersome so for future proofs we just assume r|k. We can also
state Proposition 3.0.5.

Proposition 3.0.5
The code constructed in Construction 3.0.3 is linear.

Proof. We show that the encoding polynomial is linear for a given evaluation α as this
implies that the set of codewords is linear. So let p ∈ Fq,m,m′ ∈ Fk

q then consider the

7

Locally Recoverable Codes Definition and Properties Aalborg University

following:

(fm(α)) + (fm′(α))

=
r−1∑
i=0

fi(α)α
i + fi(α)α

i

=
r−1∑
i=0

αi

k/r−1∑
j=0

mijg(α)
j +m′

ijg(α)
j

=
r−1∑
i=0

αi

k/r−1∑
j=0

g(α)j(mij +m′
ij)

= fm+m′(α) ∈ C.

Now consider the following:

p · fm(α)

=
r−1∑
i=0

pfi(α)α
i

=
r−1∑
i=0

αi

k/r−1∑
j=0

g(α)j · (p ·mij)

= fp·m(α) ∈ C.

We also require a way to decode the codewords in Construction 3.0.3 to do this consider
a codeword cα ∈ C. An erasure occurs at a symbol corresponding to α ∈ Aj now let
(cβ, β ∈ Aj\α) denote the symbols in the set Aj of size r. We must find the value cα = fm(α)
therefore we construct the unique polynomial δ(x) given as:

δ(x) =
∑

β∈Aj\α

cβ
∏

β′∈Aj\{α,β}

x− β′

β − β′ . (3.5)

Let cα = δ(α). Note here that δ(β) = cβ. We will now state the following theorem
concerning the recovery procedure and the locality.

Theorem 3.0.6
The Code C constructed in 3.0.3 has dimension k, obtains equality in Equation (3.2) and
has locality r.

Proof. First, note that all the polynomials g(x)jxi are all of distinct degrees for all i =
0, ..., r − 1; j = 0, ..., k

r
− 1. Therefore polynomials g(x)jxi are linearly independent. This

8

Locally Recoverable Codes Definition and Properties Aalborg University

then implies that the mapping m → fm(x) is injective. Also the degree of fm(x) can be
determined to be at most

(
k

r
− 1)(r + 1) + r − 1 = k +

k

r
− 2.

This follows from the fact that deg(g(x)j) = (k
r
−1)(r+1) for j = k

r
−1. Since the mapping

is injective two distinct polynomials fm, fm′ give two distinct codewords. Therefore the
dimension of the code must be k. Also, the encoding is linear therefore the distance of the
code must satisfy

dH((fm(α), α ∈ A), (fm′(α), α ∈ A))

= n− wt((fm(α)− fm′(α)), α ∈ A)

= n− wt((fm−m′(α), α ∈ A))

≥ n− (k +
k

r
− 2) = n− k − k

r
+ 2.

Because the mapping from Fk to Fn is injective we get that the weight is non-zero and
since this holds for the hamming distance it must hold for the minimum distance and so
we get.

dm ≥ n− max
fm(α),m∈Fk

q

deg(fm) = n− k − k

r
+ 2. (3.6)

Together with Equation (3.2) it is now clear that the code constructed obtains equality in
the desired bound. We must also prove the code satisfies the locality property. Assume
that the symbol cα = fm(α) has been lost where α ∈ Aj ⊂ Fq. We define a new polynomial
∂(x) and show that it is equal to the polynomial given in Equation (3.5).

∂(x) =
r−1∑
i=0

fi(α)x
i.

Since g(x) is constant on the sets Aj so are the fi(x) this implies that

∂(β) =
r−1∑
i=0

fi(α)β
i =

r−1∑
i=0

fi(β)β
i = fm(β).

Note that deg(∂(x)) ≤ r − 1 so the polynomial can be interpolated from the r symbols in
cβ, β ∈ Aj\α. Therefore it is equal to the polynomial δ(x) since they were interpolated
from the same symbols. So the lost symbol cα can be recovered by using r other symbols
in the code word which is the definition of locality.

We now compare this construction with the Reed Solomon codes in Figure 3.1.

9

Locally Recoverable Codes Definition and Properties Aalborg University

Figure 3.1: The encoding polynomial in blue. In RS codes if the coordinate C is lost
we would need to perform interpolation from 4 other coordinates. However, because the
code has locality 2 we know that a polynomial of degree 1 passes through our point and
so the coordinate C can be recovered from the points B,G. So for all points, there exists
a polynomial of degree 1 from which the point can be recovered.

The main issue with this construction is finding a polynomial g which is constant on Ai.
To do this more systematically we shall rely on the multiplicative subgroups and additive
subgroups of Fq. We will show that such a polynomial and such a set can be formed by
Proposition 3.0.7.

Proposition 3.0.7
Let H be a subgroup of F·

q or F+
q and. The polynomial

g(x) =
∏
h∈H

(x− h)

is constant on each coset of H.

Proof. Let a, ah̄ be two elements of the coset aH then:

g(ah̄) =
∏
h∈H

(ah̄− h) = h̄|H|
∏
h∈H

(a− hh̄−1) =
∏
h∈H

(a− h) = g(a).

For a multiplicative group, this can be further reduced. For any group G we have that
g|G| = 1 for g ∈ G. Therefore every element of the multiplicative subgroup H is a root in
the polynomial p(x) = x|H| − 1 and since the polynomial can have at most |H| roots and
since they are both monic we get the following:

g(x) =
∏
h∈H

(x− h) = x|H| − 1. (3.7)

10

Locally Recoverable Codes Definition and Properties Aalborg University

Example 3.0.8.
In this example, we utilize Proposition 3.0.7 to construct a (14,12,6) LRC code over the
field F29. Note first that 7 is a r + 1 = 6 + 1 = 7th root of unity and consider the
multiplicative subgroup generated by 7 ⟨7⟩ = {1, 7, 20, 24, 23, 16, 25} and the coset 2 · ⟨7⟩ =
{2, 14, 11, 19, 17, 3, 21}. These two sets make up our partition A.

A = {{1, 7, 20, 24, 23, 16, 25}, {2, 14, 11, 19, 17, 3, 21}}.

Our nice polynomial is x7− 1 as given in Equation (3.7). The encoding polynomial will be
as follows

fm(x) =
5∑

i=0

fi(x)x
i =

5∑
i=0

(mi,0 +mi,1(x
7 − 1))xi.

The codeword is generated by evaluating fm(x) for all x ∈ A.

As the next example shows, we can also construct a field based on the additive subgroup.

Example 3.0.9.
In this example, we generate an LRC code (14,12,6) code over the field F16. Let α be a
primitive element of the field F16 so every element of F16 can be written as αi for some
i ∈ N. We then form the additive subgroup H = {x + yα : x, y ∈ F2}. We can calculate
the polynomial g as

g(x) = x(x+ 1)(x+ α)(x+ α + 1).

Similarly to Example 3.0.8 we can form the encoding polynomials fm(x).

Combining these two methods results in a more general construction method of nice poly-
nomials. To construct such polynomials we need Definition 3.0.10.

Definition 3.0.10
For two subsets H,G ⊂ Fq we say that H is closed under multiplication by G if

{hg : h ∈ H, g ∈ G} ⊆ H.

So multiplying elements of G with elements from H results in an element still contained
in H. Using this definition we can state Theorem 3.0.11.

Theorem 3.0.11
Let l, s, w ∈ N be given such that:

• l|s.

• pl mod w = 1, where p is prime.

Let H be an additive subgroup of Fps closed under multiplication by Fpl and let α1, ..., αw

be the w w-th degree roots of unity in Fpl which we know exist since pl mod w = 1. Then

11

Locally Recoverable Codes Definition and Properties Aalborg University

for any b ∈ Fps the polynomial:

g(x) =
w∏
i=1

∏
h∈H

(x+ h+ αi) (3.8)

is constant on the union of cosets ∪1≤i≤wH + bαi. Furthermore, the cardinality of this
union is.

| ∪1≤i≤w H + bαi| =

{
|H| if b ∈ H

w|H| if b /∈ H.

Proof. Let h̄ ∈ H and let h̄+ bαj ∈ H + bαj. We can then do the following calculation:

g(h̄+ bαj) =
w∏
i=1

∏
h∈H

(h̄+ bαj + h+ αi)

=
w∏
i=1

∏
h∈H

(bαj + h+ αi)

= α
−w|H|
j

w∏
i=1

∏
h∈H

(b+ hα−1
j + αiα

−1
j)

=
w∏
i=1

∏
h∈H

(b+ hα−1
j + αi)

=
w∏
i=1

∏
h∈H

(b+ h+ αi)

= g(b).

Where the second-to-last equality holds because H is closed under multiplication by ele-
ments of Fpl , the size of the union follows from the series of equivalences. Take two distinct
roots of unity αi, αj then

H + bαi = H + bαj ⇐⇒ b(αi − αj) ∈ H ⇐⇒ b ∈ H

Here the last iff statement holds because αi−αj is an element of Fpl and H is by definition
closed under multiplication by elements in Fpl . This implies that if b ∈ H then all the
cosets are equal and thus | ∪1≤i≤w H + bαi| = |H|. If b /∈ H then H + bαi ̸= H + bαj.
By group theory, this implies that H + bαi ∩H + bαj = ∅ See Lemma 2.2.6 in Lauritzen
(2003). Since the intersection is empty we get that | ∪1≤i≤w H + bαi| = w|H|.

In order to use Theorem 3.0.11 we need to find a subgroup H of Fps which is closed under
multiplication by Fpl . So we utilize the fact that Fps can be viewed as a vector space over
the field Fpl of dimension s

l
. So if we pick a subspace H of the vector space Fps then H is

12

Locally Recoverable Codes Definition and Properties Aalborg University

an additive subgroup which is closed under multiplication by Fpl where dim(H) = t ≤ s
l

and |H| = (pl)t = ptl.
Furthermore, the polynomial g(x) takes distinct values on all sets U where U = ∪1≤i≤wH+
bαi if it did not we would have that the polynomial g(x)− c would have more than w|H|
roots for some c ∈ Fps . This is not possible as deg(g(x)) = w|H|. This means that from
g(x) we can partition Fps into ps−|H|

w|H| sets of size w|H| and one set of size |H|. Again we
do an example to illustrate how to find a nice polynomial using Theorem 3.0.11.

Example 3.0.12.
Consider p = 7 and say we wish to construct a (30, 14) = (n, r) LRC code. We set
m = 3, l = 1, s = 3 the three 3rd roots of unity over F7 are 1, 2, 4. If t = 1 we can set
H = F+

7 as the additive subgroup since it is closed under multiplication by the field F7. So
we can construct our nice polynomial g using Equation (3.8).

g(x) =
3∏

i=1

∏
h∈H

(x+ h+ αi).

This polynomial will then split the field F73 into 16 sets of size 21 and one set of size 7.

We can summarize the ways of constructing nice polynomials suppose we have a finite field
Fpl and wish to construct a nice polynomial that is constant on disjoint sets of size wpt

where gcd(w, p) = 1.

• If t = 0 we can use the multiplicative subgroup can be used as is done in Example
3.0.8. This can be done if pl mod w = 1.

• If t > 0 and w = 1 the additive subgroup can be used as is done in Example 3.0.9.

• If t, w > 1 and t is a multiple of l one can use Theorem 3.0.11. Provided that l is the
smallest integer such that pl mod w = 1. This is done in Example 3.0.12

There are a few cases where we are not able to construct LRC codes. Consider the LRC
code over the field F2l with locality r = 5. This can not be done as the size of the set must
be r + 1 = 6 = 2 · 3 so w = 3 and so the smallest solution l to the equation 2l mod 3 = 1
is l = 2 but if we pick t = 1 this is not a multiple of 2 and so no such code can exist. We
now state a proposition related to the existence of nice polynomials.

Proposition 3.0.13
Let Fq be a finite field. There exists a nice polynomial g where deg(g) = r + 1 which is

constant on at least ⌈(
q

r+1)
qr

⌉ sets of size r + 1.

Proof. We first define the set

Mq,r = {f ∈ Fq[x]|f =
r+1∏
i=1

(x− αi)},

13

Locally Recoverable Codes Definition and Properties Aalborg University

where αi varies over the
(

q
r+1

)
choices of subsets of size r+1. This means that Mq,r becomes

the set of monic polynomials where deg(f) = r + 1 for f ∈ Mq,r and where f has r + 1
distinct roots in Fq. We now define an equivalence relation on Mq,r for two polynomials
f(x) = xr+1 +

∑r
i=0 aix

i and g(x) ∈ Mq,r we say that f(x) ∼ g(x) if they differ by a
constant. ∼ defines a equivalence relation over Mq,r.
The number of equivalence classes is at most qr because we have q choices for each ai.

This implies that there is an equivalence class of size at least ⌈(
q

r+1)
qr

⌉ because there are
(
q
r

)
choices for a polynomial from Mq,r. Now we let f, g be two elements of this equivalence
class by the transitive property we have that f g so f, g differ by a constant and so f is
constant on the set of roots of g. This implies that f is a nice polynomial that is constant

on sets of size r + 1 and the amount of sets is at least ⌈(
q

r+1)
qr

⌉.

Proposition 3.0.13 gives us certainty that nice polynomials exist provided that q is large
enough.

14

Generalization Aalborg University

4 | Generalization

In this chapter, we extend LRC codes and construct a family of codes that are not nec-
essarily linear to do this we utilize a map from the set of polynomials given in Equation
(3.3) to Fn. To do this we first define the following set of polynomials.

FA[x] = {f ∈ F[x]|f is constant on Ai, i, ..., w; deg(f) < |A|}.

So this is the set of polynomials with deg(f) < |A| such that f is constant on each of the
sets Ai. This set of polynomials can form a commutative algebra if calculated modulo a
polynomial h(x). The polynomial h(x) is defined as follows.

h(x) =
∏
a∈A

(x− a).

So h(a) = 0 if a ∈ A. So in the following section, we will take fg to mean fg mod h. We
can now state Proposition 4.0.1 which concerns the properties of the algebra.

Proposition 4.0.1

• If f ∈ FA[x] is non-constant then maxi |Ai| ≤ deg(f).

• We have that dim(FA[x]) = w. Furthermore, the w polynomials fi, i = 1, ..., w with
the following properties: fi(Aj) = ∂i,j where ∂i,j = 1 if i = j and ∂i,j = 0 if i ̸= j
and deg(fi) < |A|. Form a basis if x ∈ A and the polynomials of this basis can be
written explicitly as:

fi(x) =
∑
a∈Ai

∏
a∈A\a

x− b

a− b
.

• Let αi, ..., αw ∈ F and let g ∈ F[x] be the polynomial where deg(g) < |H| and
g(Ai) = αi for all i = 0, ..., w given explicitly as:

g(x) =
w∑
i=1

αi

∑
a∈Ai

∏
b∈A\a

x− b

a− b
.

Then the polynomials 1, g, ..., gw−1 form a basis of FA[x] if x ∈ A.

15

Generalization Aalborg University

• There exists w integers 0 = d0 < d1 < d... < dw−1 < |A|. Such that for all f ∈ FA[x]
and some di we have that deg(f) = di.

Proof. • Consider a polynomial f ∈ FA[x] and a set Ai ∈ A, then the polynomial
f(x)−f(Ai) has at least |Ai| roots in F and so deg(f) ≥ |Ai| and since we can choose
Ai such that |Aj| ≤ |Ai| for all Aj ∈ A it follows that maxi |Ai| ≤ deg(f) < |A|.

• The polynomials are linearly independent if x ∈ A. As the following calculation
shows.

w∑
i=1

λifi(x) = 0

We must show that this implies that λi = 0. So for any j ∈ {1, ..., w}.
w∑
i=1

λifi(Aj) =
w∑
i=1

λi∂i,j = λj = 0.

Since the f1, ..., fw span all FA[x] we have that dim(FA[x]) = w.

• Let βj ∈ F be given and then assume

w∑
j=1

βjg
j−1(x) = 0.

We can write this sum as a Vandermonde matrix multiplied by a vector so let (vi,j) =
(gj−1(Ai)). We can then write the equation above as V ◦ (b1, ..., bw)T = 0. But since
V is a Vandermonde matrix it is invertible because it is defined from m distinct
elements αi and so βi = 0 for all i.

• Now let f0, ..., fw−1 be a basis for FA[x]. We can assume without loss of generality
that the polynomials all have distinct degrees. If they did we can simply perform
row operations on the matrix whose rows consist of the coefficient vectors from the
polynomials f0, ..., fw−1. This w × |A| matrix would have reduced row echelon form
and form a basis with polynomials of distinct degrees di = deg(fi). Furthermore,
the constant polynomials are contained in FA[x] this means that d0 = 0 and so this
concludes the proof.

Before we state the extended construction we first prove Corollary 4.0.2.

Corollary 4.0.2
Assume the partition satisfies |Ai| = r + 1 and that there exists a polynomial deg(g) =

16

Generalization Aalborg University

d1 = r + 1 then di = i(r + 1) for all i ∈ 0, ..., w − 1 and the polynomials 1, g, .., gw−1

defined in Proposition 4.0.1 form a basis for FA.

Proof. If the polynomial exists then it takes distinct values on distinct sets of the partition
A. Because if it did not the polynomial g(x) − c where c ∈ F would have at least 2(r +
1) roots which is not possible since deg(g) = r + 1 and so g satisfies the conditions in
Proposition 4.0.1 part 3 and so the polynomials form a basis.

Since r + 1|n we can always find a nice polynomial in FA[x] with degree r + 1. This is
because there exists a unique subgroup of order r + 1 and thus g(x) = xr+1 − 1 is such a
polynomial of degree r + 1. Now that we have described the properties of the algebra we
will now use it to construct a (n, k, r) LRC code.

Construction 4.0.3
Let A ⊂ F, |A| = n and let A be a partition of A into w = n

r+1
sets of size r + 1. Let Φ

be an injective map from Fk to the space of polynomials:

F r
A = ⊕r−1

i=0FA[x]x
i.

Note here that Φ exists iff k ≤ wr = nr
r+1

. This is because dim(F r
A) = wr because it is a

direct sum of spaces.

The function Φ maps messages m ∈ Fk to a set of polynomials that encode the message.
The code is then given by evaluating the polynomials f ∈ Φ(Fk) at the points of A. If
Φ is linear then the code is also linear. We state a proof similar to Theorem 3.0.6 for
Construction 4.0.3. Note here that we write Φ(m,x) to denote the unique polynomial
which corresponds to our message m evaluated at x.

Theorem 4.0.4
The code constructed in 4.0.3 is an (n, k, r) LRC code satisfying

d ≥ n− max
m,m′∈Fk

(deg(Φ(m,x)− Φ(m′, x)) ≥ n− max
m∈Fk

deg(Φ(m,x)).

Proof. The proof of locality is similar to the proof of locality in Theorem 3.0.6. But it is
stated here for completion. Let m ∈ Fk be a given message. We let

Φ(m,x) =
r−1∑
i=0

fi(x)x
i. (4.1)

This holds because F r
A is a direct sum of the spaces FA[x]x

i for i = 0, 1, ..., r − 1. We now
pick j ∈ {1, ...,m} and suppose an erasure occurs at Φ(m,α). We then define the decoding

17

Generalization Aalborg University

polynomial

δ(x) =
r−1∑
i=0

fi(α)x
i.

We note that δ(α) = Φ(m,α) and because fi ∈ FA[x] we have that for any β ∈ Aj the
following holds Φ(m,β) = δ(β). Also deg(δ(x)) ≤ r − 1 which means that δ(x) can be
interpolated by utilizing the r symbols Φ(m,β) = δ(β) where β ∈ Aj\α.
For proof of the inequalities consider the following:

dH(Φ(m,x),Φ(m′, x))

= wt(Φ(m,x)− Φ(m′, x))

= n− |{α|Φ(m,x)− Φ(m′, x) = 0}|
≥ n− deg(Φ(m,x)− Φ(m′, x))

≥ n− max
m,m′∈Fk

(deg(Φ(m,x)− Φ(m′, x))

≥ n− max
m∈Fk

(deg(Φ(m,x))).

Since the inequality holds for the hamming distance it must hold for the minimum distance.

4.1 Systematic Encoding

A code C is said to encode systematically if the input data is embedded in the encoding
output. For linear codes, this can be done by utilizing the following generator matrix
G = (I, P) where I is a k×k identity matrix. This is a desirable characteristic as it makes
the retrieval of the message easier, therefore we discuss a modification of the LRC codes
which ensures systematic encoding.

So let A = {A1, ..., Aw} where w = n
r+1

be a partition of the set A into sets of size r + 1.
For i = 1, .., k

r
define the subset of Ai:

Bi = {βi,1, ..., βi,r}

and note that the size of the subset is r. By Proposition 4.0.1 we have that fi(Aj) = ∂i,j for
i, j = 1, ..., w forms a basis for the algebra FA[x]. For each set Bi we define r polynomials
ϕi,j where deg(ϕi,j) < r

ϕi,j(βi,l) = ∂j,l.

Note that such polynomials can be found using Lagrange Interpolation. Let the message
m = (mi,j), i = 1, ..., k

r
; j = 1, ..., r be given. The following encoding polynomial is then

defined.

fm(x) =

k
r∑

i=1

(
r∑

j=1

mi,jϕi,j(x)

)
.

18

Generalization Aalborg University

Again the codeword is given as the vector (fm(α), α ∈ A). The code has locality r as
fm ∈ F r

A. Finally, we have that
fm(βi,j) = mi,j

for i = 1, ..., k
r

and j = 1, ..., r. So this implies that the code is systematic. Even though
the encoding is systematic there is a problem with the encoding, as the minimum distance
is not optimal in terms of Equation (3.2). This is because we can only guarantee that
deg(fm) < n. However, this problem can be alleviated by utilizing a nice polynomial g
whose powers generate FA[x] this is possible because of Proposition 4.0.1 part 3. So we
can replace the polynomials in fi with polynomials f̄i which are a linear combination of
the nice polynomials 1, g, .., g

k
r
−1 which satisfy f̄i(Aj) = ∂i,j. Note that this is possible

because the matrix V = (gj−1(Ai)) is a k
r
− 1× k

r
− 1 Vandermonde matrix and is therefore

invertible. To see this consider the solution to the equation
1 g(A1) g2(A1) . . . g

k
r
−1(A1)

1 g(A2) g2(A2) . . . g
k
r
−1(A2)

...

1 g(A k
r
) g2(A k

r
) . . . g

k
r
−1(A k

r
)


λ1

...
λ k

r

 = ei

and so if we pick the solution (λ1, ..., λ k
r
) as the coefficients for our linear combination we

get the function f̄i which has the desired property. Note also that deg(fi) ≤ (k
r
− 1)(r+1)

which then implies that deg(fa) ≤ k + k
r
− 2 and so because of the inequality established

in Theorem 4.0.4 we get optimality.

4.2 Removal of Division Assumption

So far we have assumed that r + 1|n. This assumption makes the code construction less
flexible so we will modify the construction in order to facilitate arbitrary code length.
However, this means that we will no longer obtain optimality in Equation (3.2). We still
assume that r|k but this assumption is still nonessential. The code is stated in Construction
4.2.1

Construction 4.2.1
Let F be a finite field and let A ⊂ F such that |A| = n and n mod (r + 1) = s ̸= 1.
Now let w = ⌈ n

r+1
⌉ and let A = {A1, ..., Aw} be a partition of A such that |Ai| = r + 1

for i = 1, ..., w − 1 and let |Aw| = s < r + 1 be the elements in A\ ∪w−1
i=1 Ai. Now let

Φi : Fk/r → FA[x], i = 0, ..., r− 1 be injective map and assume that Φs−1 is a map whose
range is the space of polynomials where {f ∈ FA[x] : f(α) = 0 for α ∈ Am}.
We write our message vector in the following way m = (m0, ...,mr−1) where each mi is a

19

Generalization Aalborg University

vector with k
r

entries and so m ∈ Fk. We define the encoding polynomial as:

fm(x) =
s−1∑
i=0

Φi(mi, x)x
i +

r−1∑
i=s

Φi(mi, x)x
i−shAw(x).

Where h is the annihilator polynomial for Aw defined as hAw =
∏

α∈Aw
(x − α). Again

the code is defined as C = {(fm(α), α ∈ A) : m ∈ Fk}.

Again we must prove that the code constructed is a (n, k, r) LRC code.

Theorem 4.2.2
Construction 4.2.1 defines a (n, k, r) LRC code.

Proof. If an erasure occurs at fm(α), α ∈ {A1, ..., Aw−1} then it can be recovered by the
same recovery procedure described in the proof of Theorem 4.0.4 due to the fact that
fm(x) ∈ F r

A. But we must consider the case where α ∈ Aw In this case we define the
polynomial δ(x) =

∑s−2
i=0 Φ(m,α)xi and note here that δ(α) = Φ(m,α) due to hAm(x)

being an annihilator polynomial. Furthermore since Φ(m,x) ∈ FA[x] we have that δ(β) =
Φ(m,β) and from these values s− 1 the polynomial δ(x) can be interpolated. So Φ(m,α)
can be recovered from s− 1 < r symbols.

Before we prove the bound on the code some modifications and assumptions are necessary
they are listed below:

• We assume that |A| = n such that n mod (r + 1) ̸= 0, 1.

• We also assume that r|k + 1 however this assumption is simply for ease of notation.

• Let A = {A1, ..., Aw} be given as in Construction 4.2.1. Let g(x) be a polynomial
where deg(g) = r+1 whose powers 1, g, ..., gw−1 span FA[x]. We can assume W.l.o.g
that g(α) = 0 for α ∈ Am if this is not true we can pick the powers of the polynomial
g(x) − g(Am) as a basis for the algebra and these polynomials will satisfy the same
condition.

• We split our message m ∈ Fk in the following way. We write m = (m0, ...,mr−1)
where each mi is a vector of length k+1

r
for i ̸= s− 1 and ms−1 is a vector of length

k+1
r

− 1.

We are now ready to state the modified encoding polynomial.

fm(x) =
s−2∑
i=0

(k+1
r

−1∑
j=0

mi,jg(x)
jxi +

k+1
r

−1∑
j=1

ms−1,jg(x)
jxs−1

)
+

r−1∑
i=s

k+1
r

−1∑
j=0

mi,jg(x)
jxi−shAm(x).

(4.2)

20

Generalization Aalborg University

Once again the codeword for a message m is defined as (fm(α), α ∈ A). We are now
ready to state Theorem 4.2.3 concerning the minimum distance of the constructed code.

Theorem 4.2.3
The code defined by the encoding function in Equation (4.2) satisfies the following in-
equality.

d ≤ n− k − ⌈k
r
⌉+ 1 (4.3)

Proof. We initially note that the encoding is linear. This implies that the inequality given
in Equation (3.6) still holds. So for any polynomial we fm(x) we have that:

dm ≥ n− max
fm(α),m∈Fk

deg(fm) =

= n− ((
k + 1

r
− 1)(r + 1) + (r − 1)) = n− k − ⌈k

r
⌉+ 1.

The recovery process is exactly the same as in the proof of Theorem 4.2.2.

4.3 Redundant Residue Codes

In this section, we will construct an LRC code that can be partitioned into several MDS
codes. To do this we first define the following integers:

k ≤
∑
i

ki and n =
∑
i

ni where ki ≤ ni for all i.

From this and the Chinese remainder theorem stated in the appendix, we state Construc-
tion 4.3.1

Construction 4.3.1
Let A be a subset of F where |A| = n and consider the following partition A = {A1, ..., At}
where |Ai| = ni for i = 1, ..., t. Define the injective map

Φ : Fk → Fk1 [x]× ...×Fkt [x].

This function takes our message m ∈ Fk and maps to the set of encoding functions
(M1, ...,Mt) where Mi is defined from the Chinese remainder theorem. Note also that
Fki [x] is the space of polynomials where the degree is less than ki. We define the following
annihilator polynomial for i = 1, ..., t

Gi(x) =
∏
α∈Ai

(x− α).

21

Generalization Aalborg University

All these polynomials are pairwise coprime this is because they all have distinct roots.
The encoding polynomial is then defined as the unique solution to the equations

fm(x) ≡ Mi(x) mod Gi(x).

Note here that the Mi(x) are uniquely determined from the injective map Φ Again the
code is then defined as the following set of vectors C = {(fm(α), α ∈ A) : m ∈ Fk}.

Once again we prove that Construction 4.3.1 yields an LRC code.

Theorem 4.3.2
Construction 4.3.1 yields a (n, k) LRC code with t disjoint local codes Ci where each Ci

is an (ni, ki) MDS code.

Proof. The encoding from Fk to Fn is unique because if it is not then for two messages the
polynomial fm − fm′ would have n roots while the degree is less than n. This implies that
the mapping from Fk to Fn is injective and by Construction 4.0.3 we have that this defines
an LRC code because it is defined over the same algebra. For the second part concerning
the disjoint local codes consider the set Ai, i = 1, ..., t. We note that

fm(x) = h(x)Gi(x) +Mi(x)

and since Gi is an annihilator polynomial we get that fm(α) = Mi(α) for α ∈ Ai. So if
we restrict our code to the subset of locations that correspond to Ai we can view the new
code as the evaluation of a polynomial with degree less than ki at ni points. This implies
that the vectors {(fm(α), α ∈ Ai)|m ∈ Fk} form an (ni, ki) MDS code.

Since the code can be viewed as several local MDS codes we have that the dm ≥ min1≤i≤t(ni−
ki + 1). This also means that we can construct an LRC code by combining several MDS
codes this is shown in Example 4.3.3.

Example 4.3.3.
Let F17 be our base field and consider the evaluation vector for two RS-codes (3, 4, 7, 2)
and (5, 6, 9, 10). Also let k1, k2 = 3 the RS encoding polynomial is thus:

ϕm(x) =
2∑

i=0

mix
i

Evaluated at (3, 4, 7, 2) for C1 and (5, 6, 9, 10) for C2. By the Chinese Remainder theorem
and Construction 4.3.1 we know that the encoding function for the LRC code can be found
as the solution to the set of equations:

fm(x) ≡ ϕm(x) mod Gi(x).

22

Generalization Aalborg University

and thus the code is the set

{(fm(α), α ∈ {3, 4, 7, 2, 5, 6, 9, 10}),m1,m2 ∈ F3
17}

We note that the code has locality 3 because each symbol can be recovered from three
other symbols in the sets (3, 4, 7, 2) and (5, 6, 9, 10).

Combining codes can be a powerful tool as is shown in the next section where we can
construct LRC codes with multiple recovering sets from several LRC codes.

23

Multiple Recovering Sets Aalborg University

5 | Multiple Recovering Sets

We now extend the definition of locally recoverable codes to include multiple recovering
sets. We state the definition in Definition 5.0.1. Note here that we once again assume that
r + 1|n.

Definition 5.0.1
A code C ⊂ Fk is locally recoverable with t recovering sets if for every i ∈ {1, ..., n}
there exists disjoint subsets Ai,j ⊂ [n]\i, j = 1, ..., t with size |Ai,1| = r1, ..., |Ai,t| = rt
such that for any codeword c ∈ C the value of ci is a function of every subset of symbols
{cl, l ∈ Ai,j}, j = 1, ..., t.

We refer to such codes as LRC(n, k, {r1, ..., rt}) codes. In order to construct a code with
multiple recovering sets we require two partitions of A. So let A,A′ be two partitions
where the size of each set in A and A′ is r + 1 and s+ 1 respectively. We can now define
the two subspaces:

F r
A = ⊕r−1

i=0FA[x]x
i and F s

A′ = ⊕s−1
i=0FA′ [x]xi (5.1)

We note that the dimension of each subspace is:

dim(F r
A) = r

n

r + 1
, dim(F s

A′) = s
n

s+ 1
(5.2)

This holds because there are n
s+1

and n
r+1

sets where our function must be constant by the
definition of FA. Now define the following intersection:

Vw = F r
A ∩ F s

A′ ∩ Pw

Where Pw = {p ∈ F[x]| deg(p) < w}. Vw is therefore the space of polynomials with
degree less than w which also belongs to F r

A and F s
A′ . This leads us to Construction

5.0.2.

Construction 5.0.2
First let A ⊂ F where |A| = n and let A1,A2 be partitions of A into sets of size r + 1
and s + 1 respectively. Assume also that dim(F r

A ∩ F s
A) ≥ k and let w be the smallest

integer such that dim(Vw) = k. Let Φ : Fk → Vw be an injective map. We once again
construct the code as the set of vectors:

{(Φ(m,α), α ∈ A),m ∈ Fk}.

24

Multiple Recovering Sets Aalborg University

Here Φ(m,α) denotes the evaluation of the polynomial from Vm at α.

An additional assumption is required before we can state the theorem concerning the
locality and recovery procedure. We say that two partitions are orthogonal if

|X ∩ Y | ≤ 1, For all X ∈ A1, Y ∈ A2

With this definition we are now ready to state Theorem 5.0.3.

Theorem 5.0.3
Assume that A and A′ from Construction 5.0.2 are orthogonal. Then the construction
gives an (n, k, {r, s}) LRC code with distance dH ≥ n− w + 1

Proof. For the claim concerning the distance, we do the following argument.

dH(Φ(m,x),Φ(m′, x))

= wt(Φ(m,x)− Φ(m′, x))

= n− |{α|Φ(m,x)− Φ(m′, x) = 0}|
≥ n− deg(Φ(m,x)− Φ(m′, x))

≥ n− w + 1

Where the last equality holds because the degree of the polynomial is less than w.
Next, we must prove the locality. First, we note that since Φ(m) ∈ F r

A we have that there
exists r polynomials f0, ..., fr−1 ∈ FA[x] such that:

Φ(m,x) =
r−1∑
i=0

fi(x)x
i. (5.3)

So the recovery procedure is similar to the one presented in the proof of Theorem 4.0.4.
Again we state it here for completion. First, consider the indexing of our partitions

A = {A1,r, ..., Aa,r},A′ = {A1,s, ..., Ab,s}

Assume that the symbol which must be recovered corresponds to Φ(m,α) where α ∈ Ai,r.
We define the decoding polynomial as

δ(x) =
r−1∑
i=0

fi(α)x
i

Again we have that Φ(m,α) = δ(α) and for any β ∈ Ai,r we have Φ(m,β) = δ(β) the
degree of δ is at most r − 1 so δ can be interpolated from the r values fm(β) = δ(β) for
β ∈ Ai,r\α. the exact same argument can be made for the partition A′.

25

Multiple Recovering Sets Aalborg University

We will now illustrate the use of this construction in Example 5.0.4.

Example 5.0.4.
We wish to construct a (10, 4, {4, 1}) LRC(2) code with distance dH ≥ 2 so consider
the field F11 and let A = F11\{0} we define a partition by considering the cosets of the
multiplicative cyclic groups generated 3 and 10.

A = {{3, 9, 5, 4, 1}, {6, 7, 10, 8, 2}}

A′ = {{10, 1}, {9, 2}, {8, 3}, {7, 4}, {6, 5}}
In order to find nice polynomials for each partition we note that g(x) = x2 is a nice polyno-
mial for the partition A′ therefore by Proposition 4.0.1 part 3 we have that 1, g, g2, ..., gw−1

forms a basis and so FA′ [x] = ⟨1, x2, x4, x6, x8⟩ and similarly we have that FA[x] = ⟨1, x5⟩
since x5 is a nice polynomial for A. From Proposition 4.0.1 we also get that dim(FA[x]) = 2
and dim(FA′ [x]) = 5. We must now determine the intersection of the spaces F r

A and F s
A′ .

F4
A ∩ F1

A′ = ⟨1, x, x2, x3, x5, x6, x7, x8⟩ ∩ ⟨1, x2, x4, x6, x8⟩
= ⟨1, x2, x6, x8⟩.

If w = 9 we get that Vw = ⟨1, x2, x6, x8⟩. If we assume that the encoding function Φ(x) is
linear we get that we can write the encoding for a given message m ∈ F5

11 as

Φ(m,x) = m0 +m1x
2 +m2x

6 +m3x
8.

To illustrate how both recovering sets can be utilized to recover a lost symbol we must
first rewrite our encoding polynomial Φ(m,x) so that it has the form as in Equation 5.3.
So we note that

Φ(m,x) =
3∑

i=0

fi(x)x
i (5.4)

where f0 = m0 +m4x
5, f1 = m1, f2 = m2, f3 = m3 where each fi ∈ FA[x]. Similarly for

gi ∈ FA′ we get that

Φ(m,x) =
0∑

i=0

gi(x)x
i.

Where g0 = m0 + m1x
2 + m2x

6 + m3x
8. Assume we would like to recover the codeword

associated with Φ(m, 3). This can be done in two ways. Either we can access the symbol
in {3, 9, 5, 4, 1} ∈ A or we can access the symbol in {8, 3} ∈ A′.
If we choose A we find the polynomial δ(x) with deg(δ) ≤ 3 such that δ(9) = Φ(m, 9),
δ(5) = Φ(m, 5) , δ(4) = Φ(m, 4) and δ(1) = Φ(m, 1). The lost symbol can then be
determined as δ(1).
If we use the partition A′ we would do the following. Find the polynomial δ′(x) with
deg(δ′) = 0 such that δ′(8) = Φ(m, 8). Finally, we note that by Theorem 5.0.3 the bound
on the distance holds.

26

Multiple Recovering Sets Aalborg University

The main problem with this construction and theorem is finding orthogonal partitions.
However, this problem is alleviated by Proposition 5.0.5 which states necessary and suffi-
cient conditions.

Proposition 5.0.5
Let H,G be two subgroups of a group then the cosets partitions H and G are orthogonal
iff

H ∩G = 1.

When the group is cyclic this is equivalent to stating that gcd(|H|, |G|) = 1.

Proof. Start by assuming H ∩ G = 1 we will show that this implies the partitions are
orthogonal. So take a coset of H, Hp, and a coset of G, Gp′, and assume two elements
x, y ∈ Gp′ ∩ Hp. Since x, y are in the same coset we have that Hx = Hy and Gx = Gy
which is equivalent to requiring xy−1 ∈ H and xy−1 ∈ G. By assumption, we have that
H ∩G = 1 and so xy−1 = 1 and x = y which implies that all elements in the intersection
of the cosets have at most one element.
Now assume that the group is cyclic and let x, y be distinct elements in the group and
note that x, y belong to the same coset iff the element xy−1 is a |H|-th and |G|-th root
of unity. This is the cast iff ord(xy−1) divides both |H| and |G| which is equivalent to
stating ord(xy−1)|gcd(|H|, |G|) and since x, y are distinct we have that ord(xy−1) > 1 and
so gcd(|H|, |G|) ̸= 1.

5.1 LRC Product Codes

One of the more simple ways to construct LRC codes with multiple recovering sets is to
utilize product codes this type of construction is described in this section.

Construction 5.1.1
Consider two LRC codes constructed with Construction 4.0.3 with parameters (n1, k1, r1)
and (n2, k2, r2) and assume that the two codes C1 and C2 are linear. Since they were
both constructed using Construction 4.0.3 we have 2 injective maps Φ1 and Φ2 which are
both linear. We then define the linear map using the tensor product.

Φ = Φ1 ⊗ Φ2 : Fk1k2 → ⊕r1−1
i=0 FA1 [x]x

i ⊗⊕r2−1
j=0 FA2 [y]y

j

So once again Φ sends messages m ∈ Fk1k2 to the set of encoding polynomials
⊕r1−1

i=0 FA∞ [x]xi ⊗⊕r2−1
j=0 FA2 [y]y

j. We denote the evaluation of the corresponding polyno-
mial as Φ(m,x, y) and set this as our encoding polynomial so our code C = C1 ⊗ C2 is
the set

C = {(Φ(m,x, y), (x, y) ∈ A1 × A2) : m ∈ Fk1k2}

We state a proposition related to the distance of these product codes.

27

Multiple Recovering Sets Aalborg University

Proposition 5.1.2
Given two LRC codes (n1, k1, r1) and (n2, k2, r2) Construction 5.1.1 yields a code C with
parameters (n1n2, k1k2, {r1, r2}) and distance d = d1d2.

Proof. We denote A1 = ⊔j≥1A
(1)
j and A2 = ⊔j≥1A

(2)
j as the partition of the evaluation set

A1 and A2. Let m ∈ Fk be given and let Φ(m,x, y) be the corresponding encoding poly-
nomial. Given some point (x0, y0) ∈ A1 × A2 We need to be able to calculate Φ(m,x0, y0)
by using r1 symbols and r2 symbols from one of the partitions A1 or A2. We observe that
the polynomial Φ(m,x, y0) ∈ ⊕r−1

i=0FA1x
i and so the symbol can be found from the symbols

in the set {Φ(m,α, y0), α ∈ A
(1)
t \x0} where At is the set which contains x0. To see this we

refer to the proof of Theorem 4.0.4.

This argument can be repeated for the polynomial Φ(m,x0, y) ∈ ⊕r2−1
j=0 FA2 [y]y

j and so it
the symbol Φ(m,x0, y0) can be recovered from the set {Φ(m,x0, β) for β ∈ A

(2)
l \y0} where

A
(2)
l is the set which contains y0. So the symbol can be recovered either from A

(1)
t \x0

or A
(2)
l \y0 which means that the code is an (n, k{r1, r2}) LRC(2) code. Concerning the

distance d consider the following:

d = dH

(
(Φ(m,x, y)), (Φ(m′, x, y))

)

= dH

(
(Φ(m,x, y0), x ∈ A1), (Φ(m

′, x, y0), x ∈ A1)

)

· dH

(
(Φ(m,x0, y), y ∈ A2), (Φ(m

′, x0, y), y ∈ A2)

)
= d1d2.

Where the first equality holds because we are utilizing a tensor product.

Let us do an example to illustrate how one can utilize LRC product codes.

Example 5.1.3.
We take the encoding function in Example 3.0.8 with a small modification instead of
the nice polynomial x7 − 1 we simply take x7 which is also a nice polynomial. We now
see that the encoding function can be written in the following way based on the vector
b = (1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12)

fm(x) =
11∑
i=0

mix
bi .

28

Multiple Recovering Sets Aalborg University

Given a vector m ∈ F144
29 ,m = (mi,j) for i, j = 0, ..., 11 we can define the encoding function

for the product code C ⊗ C as:

fm(x, y) =
11∑

i,j=0

mi,jx
biybj .

The set of codewords is then defined as {(fm(x, y)), (x, y) ∈ A × A} for all m ∈ F144
29 . We

need to show that both sets can be used to recover a lost symbol. So assume that the
symbol lost corresponds to fm(1, 2) is lost. We can recover the symbol in two ways:

• Find the polynomial δ1(x) with degree less than or equal to 5 such that:

δ1(7) = fm((7, 2)

δ1(20) = fm(20, 2)

δ1(24) = fm(24, 2)

δ1(23) = fm(23, 2)

δ1(16) = fm(16, 2)

δ1(25) = fm(25, 2).

Lastly calculate δ1(1) = fm(1, 2).

• Find the polynomial δ2(x) with degree less than or equal to 5 such that:

δ2(14) = fm(1, 14)

δ2(11) = fm(1, 11)

δ2(19) = fm(1, 19)

δ2(17) = fm(1, 17)

δ2(3) = fm(1, 3)

δ2(21) = fm(1, 21).

Lastly calculate δ2(2) = fm(1, 2).

29

Proof of Singleton-like Bound Aalborg University

6 | Proof of Singleton-like Bound

In this chapter, we will prove Theorem 3.0.2. To do this we will need Theorem 6.0.1

Theorem 6.0.1
Let G be a directed graph on n vertices then there exists an induced directed acyclic
subgraph G′ whose set of vertices U satisfies:

|U | ≥ n

1 + 1
n

∑
i d

out
i

Where U is the set of vertices of G′ and douti is the outgoing degree of vertex i.

Theorem 6.0.1 is stated without proof. We will also need Proposition 6.0.2.

Proposition 6.0.2
Let C be an (n, k, r) LRC code then we can write the minimum distance in the following
way:

dm = n−max
I⊆[n]

{|I| : |CI | < qk}.

Proof. Let G be a generator matrix for the code C and let c ∈ C be given such that
wt(c) = dm and assume w.l.o.g that (c1, ..., cdm) ̸= 0 and that (cdm+1 , ..., cn) = 0 if not then
we can simply switch the columns in the generator matrix. Now let I ⊆ {dm +1, ..., n} we
now have that.

dm = wt(c) = n− |{dm + 1, ..., n}| = n−max
I

|I|

and the result follows.

We will now prove Theorem 3.0.2.

Proof. We construct a directed graph G = (V,E) where V is the set of coordinates [n] of
C and say that there is a directed edge from i to j iff j ∈ Ii. Since our code C has locality
r this means that the outgoing degree of each vertex i satisfies the following inequality
douti ≤ r. From this inequality and Theorem 6.0.1 we get that there exists a subgraph
G′ = (U,E ′) whose set of vertices must satisfy:

|U | ≥ n

1 + 1
n

∑
i d

out
i

≥ n

1 + 1
n

∑n
i=1 r

=
n

1 + r
.

30

Proof of Singleton-like Bound Aalborg University

Now let i be a coordinate in U without outgoing edges then i is a function of the coordinates
[n]\U this is because the coordinate i has locality r. We can iterate on this argument by
considering the induced subgraph G = (U\i, E ′′) this is also an acyclic directed subgraph.
Let i′ ∈ U\i with douti′ = 0 again this implies that i′ is a function of the coordinates [n]\U .
Since we can do this argument for all coordinates i ∈ U this implies that any coordinate
i ∈ U is a function of the coordinates in [n]\U . This means that the amount of redundancy
n− k is bounded from below by |U | ≥ n

r+1
from this we get the following inequalities.

n− k ≥ n

r + 1

1− k

n
≥ 1

r + 1

−1 +
k

n
≤ − 1

r + 1
k

n
≤ r + 1

r + 1
− 1

r + 1
k

n
≤ r

r + 1
.

This proves Equation (3.1). We now prove the singleton-like bound given in Equation
(3.2). First, note that the minimum distance for LRC codes can, by Proposition 6.0.2, be
written in the following way.

dm = n−max
I⊆[n]

{|I| : |CI | < qk}. (6.1)

Next, we consider a subset of our vertex set U ′ ⊆ U with size |U ′| = ⌊k−1
r
⌋ and we note

that such a subset exists because of the inequality in Equation (3.1) this is shown below.

|U | ≤ n

r + 1
≤ k

r
≤ ⌊k − 1

r
⌋.

We now define the set N to be the set of coordinates that have at least one incoming edge
from a coordinate in U ′ and we see that |N | ≤ r|U ′| = r⌊k−1

r
⌋ ≤ k − 1 where the first

inequality holds because each coordinate from U to N can be at most connected to r other
coordinates in N . Now define N ′ to be a set with k− 1 elements defined as the union of N
with k − 1− |N | elements from the set [n]\(N ∪N ′). We can now establish the following
bound on the cardinality of the code restrictions.

|CN ′∪U ′| = |CN ′| ≤ qk−1.

We can also see that |N ′ ∪U ′| = k− 1+ ⌊k−1
r
⌋. We can now determine the following lower

bound on the restriction of the code:

max
I⊆[n]

{|I| : |CI | < qk} ≥ k − 1 + ⌊k − 1

r
⌋.

31

Proof of Singleton-like Bound Aalborg University

This implies from Equation (6.1) that

d ≤ n− k − ⌈k
r
⌉+ 2.

32

Cyclic LRC Codes Aalborg University

7 | Cyclic LRC Codes

7.1 Intro to Cyclic Codes

The following section is based on (Calderbank 2008) and (MacWilliams 1983) In this
chapter, we will construct cyclic codes with the locality property. Before we state the
construction let us define cyclic codes.

Definition 7.1.1
A code C is called cyclic if the shifted codeword

Si(c) = (cn−i, cn−i+1, ..., cn−1, c0, ..., cn−1−1)

is still a codeword so Si(c) ∈ C for all i ∈ {0, ..., n}.

Usually, cyclic codes are defined by ideals of the ring Rn = Fq[x]\(xn − 1), which are
generated by the polynomials g(x) where g(x)|xn− 1. We note that a codeword in a cyclic
code can be described by the following polynomial c(x) = f(x)g(x) where deg(f) < k
and deg(g) = t = n− k where we associate each coefficient of the polynomial c(x) with a
symbol of the codeword ci.
In order to understand the construction of cyclic LRC codes and the proof of optimality
we need Definition 7.1.2 concerning cyclotomic cosets.

Definition 7.1.2
Let n be relatively prime to the field size q the cyclotomic coset of q mod n containing i
is defined as:

Ci = {(i · qj mod n)|j = 0, 1...}.

Furthermore, a subset {i1, ..., iu} of Zn is called a complete set of representatives of
cyclotomic cosets if Ci1 , ..., Ciu are all distinct and

u⋃
j=1

Cij = Zn.

There is an important theorem that relates to cyclic codes known as the BCH bound which
is a lower bound on the distance. It is stated here without proof.

33

Cyclic LRC Codes Aalborg University

Theorem 7.1.3
Let C be a cyclic code with generator polynomial g(x) such that for some integers b ≥
0, δ ≥ 1 we have

g(αb) = g(αb+1) = ... = g(αb+δ−2) = 0.

Then dm ≥ δ. I.e the minimum distance is bounded from below by δ.

7.2 Cyclic LRC Codes

The following section is based on Tamo et al. (2015). We modify Construction 3.0.3 in the
following way: We let the polynomial g(x) be the annihilator of a subgroup of F·

q and let
n|q− 1. We note that the encoding polynomial given in Construction 3.0.3 can be written
in the following way:

fm(x) =

k
r
(r+1)−2∑
i=0,

i ̸=r mod (r+1)

mix
i, (7.1)

provided that our message m is indexed as m = (m0, ...,mk−1). We evaluate our function
on the set A = {1, α, ..., αn−1} where α is a primitive n-th root of unity. We now state
Proposition 7.2.1 regarding the cyclic nature of the code.

Proposition 7.2.1
The code defined as (fm(1), fm(α), ..., fm(α

n−1)) for m ∈ Fk
q is cyclic.

Proof. Let m ∈ Fk
q and let c be the associated codeword and consider the following cyclic

shift of our code word c:

S(cm) = (fm(α
n−1), fm(1), ..., fm(α

n−2)).

We wish to find a message m′ ∈ Fk
q such that the corresponding codeword c′ satisfies

c′ = S(c) for this we consider that the following equations must hold for m′.

fm′(1) = fm(α
n−1)

fm′(α) = fm(α
n−1)

...

fm′(αn−1) = fm(α
n−2)

From this set of equations, we get that

fm′(1) = fm(α
n−1) =⇒

∑
m′

i =
∑

mi(α
n−1)i

34

Cyclic LRC Codes Aalborg University

therefore set m′
i = mi · (αn−1)i and note that this is unique because the roots of unity are

unique. With our m′ defined, we see that

fm′(αj) = fm(α
j−1)

for a arbitrary 1 ≤ j ≤ n. Which is what we needed to show.

Now that we have proven that the code constructed using the primitive n-th roots of unity
as evaluation points are cyclic let us define the set of roots of the polynomial g used to
define our code. We let

Z = {αij , j = 1, ..., t}
be the roots of the polynomial g. Now the set of unique representatives of cyclotomic
cosets in Z with respect to the field Fq is defined as the defining set of zeroes. We now
establish Theorem 7.2.2 that defines sets L and D which account for the code’s locality
and distance.

Theorem 7.2.2
Let α be a primitive n-th root of unity where n|(q−1), let l be an integer where 0 ≤ l ≤ r
and let b ≥ 1 be an integer such that gcd(b, n) = 1 we now define the sets L,D

L = {αi, i mod r + 1 = l} and (7.2)

D = {αj+sb, s = 0, ..., n− k

r
(r + 1)}. (7.3)

Where αj ∈ L. The cyclic code with the defining set of zeroes L∪D is an optimal (n, k, r)
LRC code over the field Fq.

We need two lemmas and a proposition to prove Theorem 7.2.2. First, we recall the
following property of n-th roots of unity.

n−1∑
i=0

αi = 0 if α ̸= 1 (7.4)

n−1∑
i=0

αi = n mod p if α = 1.

We are now ready to state Lemma 7.2.3.

Lemma 7.2.3
Consider the cyclic code C constructed using the polynomial in 7.1 and the set A, The
rows of the generator matrix G are all of the form:

(1, αj, α2j, ..., α(n−1)j). (7.5)

35

Cyclic LRC Codes Aalborg University

For all
j ∈ {0, 1, ..., k

r
(r + 1)− 2}\{s(r + 1)− 1, s = 1, ...,

k

r
− 1}.

Furthermore, the defining set of zeros of C has the form R = D ∪ L̄ where:

D = {αi|i = 1, ..., n− k

r
(r + 1) + 1} (7.6)

L̄ = {αn−(k
r
−l)(r+1)+1, l = 1, ...,

k

r
− 1}. (7.7)

Also, the code C is a cyclic (n, k, r) LRC code with distance d = n − k
r
(r + 1) + 2 with

the defining set of zeroes R.

Proof. We initially prove the statement concerning the generator matrix. it is clear that
the indices s(r + 1)− 1, s = 1, ..., k

r
− 1 it is clear that s(r + 1)− 1 mod r + 1 = r so these

indices account for the indices that we don’t sum over in Equation (7.1) and therefore
by removing them we obtain that G is indeed a generator matrix. Next, we prove the
statement concerning the zeroes note here that it is sufficient to show that

(1, αj, α2j, ..., α(n−1)j) · (1, αt, α2t, ..., α(n−1)t) = 0

for t ∈ R. Note: When we say t ∈ R we mean that we take the elements in the representa-
tives which is a set of integers so taking t ∈ D means taking t ∈ {1, ..., n−k− k

r
+1}. Now

take the generator element αj which generates a row of G. We must show that αj+t ̸= 1
or equivalently that j + t is not a multiple of n. This holds because if t ∈ D we have that
the maximum value that the indices can attain is j + t = k− 2+ n− k+1 = n− 1 and so
we get that j + t is not a multiple of n. Now for t ∈ L̄ we have:

j + t = j + 1 + n− (
k

r
− l)(r + 1). (7.8)

This is because j = n− (k
r
− l)(r + 1) + 1 is a representative of L̄. The last two terms on

the RHS of Equation (7.8) are both multiples of r + 1 so the entire RHS is a multiple of
r + 1 iff j + 1 is a multiple of r + 1 however there are no rows in G that would make this
possible and so r+1 ∤ (j + t). Lastly, for the claim concerning the distance we refer to the
BCH bound stated in Theorem 7.1.3 when this is applied on the set of zeroes D we get
the desired bound.

Lemma 7.2.4
Let 0 ≤ l ≤ r and define the n

r+1
× n matrix H whose rows are

hm = (1, αm(r+1)+l, α2(m(r+1)+l), ..., α(n−1)(m(r+1)+l))

36

Cyclic LRC Codes Aalborg University

where m = 0, ..., n
r+1

. Also, Consider the vector

v = (1, 0, ..., 0, αl n
r+1 , 0, ..., 0, α2l n

r+1 , 0, ..., 0, ..., αrl n
r+1 , 0, ..., 0).

Where v is the vector where wt(v) = r+1 and where there are n
r+1

−1 zeros interspersed
between each non-zero entry. All cyclic shifts of the vector v are contained in the row
space of H.

Proof. First we show that av =
∑ n

r+1

m=0 hm where a = n
r+1

. To see this consider the following
for a given coordinate j we have that:

n
r+1∑
m=0

αj(m(r+1)+l) = αlj

n
r+1

−1∑
m=0

(αj(r+1))m.

From this, we get that we can establish the following based on the values that j takes.

j = 0, αlj

n
r+1

−1∑
m=0

(αj(r+1))m = n mod p

j = 1, αlj

n
r+1

−1∑
m=0

(αj(r+1))m = αl

n
r+1

−1∑
m=0

(α(r+1))m = 0

This follows from the fact that αr+1 is a n
r+1

primitive root of unity and so by using
Equation 7.4 we get the desired result. Expanding this argument for j we get that if j is
a multiple of n

r+1
we have that the sum

∑ n
r+1

−1

m=0 (αj(r+1))m = n mod p and therefore the

result av =
∑ n

r+1

m=0 hm follows. This means that the vector av is contained in the row space
of H and since the row space H is closed under cyclic shifts then so is the vector av.

Now the cyclic shifts of the vector v partitions the support of the code into disjoint subsets
of size r+1 which then become the recovering sets of the local recovering sets of the code.
To illustrate this consider the support of codeword v

supp(v) = {0, n

r + 1
+ 1, 2

n

r + 1
+ 1, ..., r · n

r + 1
+ 1}

This set becomes a recovering set for our code. we continue this for all the cyclic shifts of
the vector v. We now state the following proposition which describes the locality of the
code.

Proposition 7.2.5
Let C be a cyclic code with defining set of zeroes Z and let r be given such that r + 1|n
if Z contains a coset of the n

r+1
roots of unity then C has locality at most r.

37

Cyclic LRC Codes Aalborg University

Proof. This follows from the fact that v partitions the support of the code and Lemma
7.2.3 and 7.2.4.

We can also construct cyclic LRC codes with multiple recovering sets. To do this we need a
defining set of zeros that contains cosets of subgroups k1

r1
, k2
r2
, ..., where all the ki

ri
are pairwise

coprime. For example, if n = 35 we choose a complete defining set Z which contains the
5-th and 7-th roots of unity the code will have two disjoint recovering sets of size 4 and 6.
We are now finally ready to prove Theorem 7.2.2

Proof. The minimum distance for the code C is bounded from below by the BCH bound
stated in Theorem 7.1.3 applied on the set of zeroes D. We also know by Proposition 7.2.5.
Lastly, the dimension of the code equals n− |D ∪ L| = k.

Let’s do an example

Example 7.2.6.
First, we define the following integers n = 21, k = 12, r = 2, q = 64, b = 11 and note that

n

r + 1
= 7 and

k

r
= 12.

We can now define the sets L and D from Theorem 7.2.2.

L = {1, α3, α6, α9, α12, α15, α18}
D = {1, α1, α2, α3}.

If we wish to construct an LRC code from the set of zeroes R = D ∪ L we simply find a
polynomial g(x) which has R as its set of roots and choose this as our generator polynomial.
We then encode a message m(x) by calculating c(x) = m(x) · g(x).

7.3 Subfield Subcodes

In this section, we will describe subfield subcodes of cyclic LRC codes. We first define
subfield subcodes.

Definition 7.3.1
Given a code C over a field extension Fqm the subfield subcode is defined as C ′ := CFq

which consists of all the codewords c ∈ C whose coordinates are in Fq.

Usually, we look at subfield subcodes through the dual of the code using the trace map
which we also define.

38

Cyclic LRC Codes Aalborg University

Definition 7.3.2
Consider the polynomial from Tm from Fqm to Fq given as:

Tm(x) = x+ xq + ...+ xqm−1, x ∈ Fqm .

Given a vector v = (v1, ..., vn) ∈ Fn
qm we use the notation Tm(v) = (Tm(v1), ..., Tm(vn)).

The trace of a code is obtained as the set

Tm(C) = {Tm(c), c ∈ C}.

We state and prove a central theorem concerning the trace map called Delsarte’s the-
orem. It is stated in Theorem 7.3.3 and the proof is adapted from (DELSARTE 1975).

Theorem 7.3.3
For a subfield subcode C|Fq we have that:

(C|Fq)
⊥ = Tm(C

⊥).

Proof. First, we let u ∈ C⊥ and v ∈ C|Fq . We can then do the following:

Tm(u) · v = T (u · v) = T (0) = 0

From this we get that Tm(u) ∈ C⊥
|Fq

for u ∈ C⊥ and therefore Tm(C
⊥) ⊆ C⊥

|Fq
. Next, take

u ∈ (T (C⊥))⊥ and v ∈ C⊥. We know that C⊥ is closed under multiplication by elements
in Fqm so we can do the following

T (λ(u · v)) = u · T(λv) = 0

From this, we get that u ∈ C and so the vector u is also in C|Fq . So we get that C⊥
Fq

⊆ T (C⊥)

which along with Tm(C
⊥) ⊆ C⊥

|Fq
shows that Tm(C

⊥) = C⊥
|Fq

.

Now note that by utilizing the fact the (C⊥)⊥ = C we can study the code C|Fq as
(Tm(C

⊥))⊥. When studying cyclic LRC codes and their subfield subcodes we can see that
d⊥(C) = r+1 this is true because d⊥ is the minimum number of linearly dependent columns
in the generator matrix which means that if a symbol is lost we can recover the column and
thereby the symbol. We state this fact in the following Proposition 7.3.4.

Proposition 7.3.4

39

Cyclic LRC Codes Aalborg University

Let C be a cyclic LRC code with locality r then the following holds:

d(C⊥) = r + 1.

Also, we can see that the subfield subcode in general must have a locality less than r. This
is because any coordinate in the dual code is contained in the support of a codevector of
weight ≤ r + 1.
Now let C be a code and C ′ = C|Fq as defined above. By Proposition 7.2.5 we have that
if Z contains a coset {αi : i mod (r + 1) = l} of the subgroup generated by αr+1 then the
code has locality at most r because αr+1 is a n

r+1
root of unity. Also because of Lemma

7.2.3 we know that the dual code C⊥ must contain the vector v which was defined as

v = (1, 0, ..., 0, αl n
r+1 , 0, ..., 0, α2l n

r+1 , 0, ..., 0, ..., αrl n
r+1 , 0, ..., 0).

We note that v ∈ C⊥ because it is contained in the row space of the parity check matrix.
We define the following vector:

y := Tm(γv) ∈ (C ′)⊥.

Where γ ∈ Fqm and because the vector v has weight r + 1 we get that wt(y) ≤ r + 1. For
future analysis, we will from now on consider the following subspace of our code (C ′)⊥:

V = ⟨Tm(γv), γ ∈ Fqm⟩

Also from now on we neglect the zeroes of v and view the vector as a vector of length r+1.
So we write v as the following vector:

v = (1, αl n
r+1 , α2l n

r+1 , ..., αrl n
r+1).

There exists a special type of cyclic codes called irreducible cyclic codes they are defined
in Definition 7.3.5 and are needed to understand the next theorems.

Definition 7.3.5
Consider the factorization of the polynomial xn − 1 = f1f2...fm where each fi is a monic
irreducible factor over Fq the cyclic code generated by the polynomial xn−1

fi
is called an

irreducible cyclic code.

We now state a theorem related to the concept of irreducible codes and the trace function
from (Lint 1998).

Theorem 7.3.6
Let s > 0 be a given integer and m = ords(q) be the multiplicative order of q modulo s.

40

Cyclic LRC Codes Aalborg University

Next, let β be a primitive s-th root of unity in Fqm the set of vectors:

V = {(Tm(γ), Tm(γβ), ..., Tm(γβ
s−1)) : γ ∈ Fqm} (7.9)

is a (s,m) linear irreducible cyclic code over Fq.

Proof. We know that the code is linear by Freshman’s dream. Also the code is cyclic
because the vector (Tm(q), Tm(qβ), ..., Tm(qβ

s−1)), where q = γβ−1 corresponds to the
cyclic shift of the vector (Tm(γ), Tm(γβ), ..., Tm(γβ

s−1)) for a given γ ∈ Fqm .
For the claims concerning the dimension and irreducibility consider the following. Because
of the requirement that ords(q) = m we have that β does not belong to any subfield of Fq.
We know that β is a zero of an irreducible polynomial h(x) = h0 + h1x + ... + hmx

m and
thus we can form a parity check equation utilizing this fact

m∑
i=0

cihi

=
m∑
i=0

Tm(γβ
i)hi

=
m∑
i=0

Tm(γβ
ihi)

= Tm(γ
m∑
i=0

βihi) = 0

where the linearity of the trace function is utilized. We now see that the polynomial
xmh(x−1) becomes a check polynomial and thereby the code V becomes an irreducible
(s,m) cyclic code because h is irreducible.

We first analyze a special case where in our vector v we set l = 0. We then know by
Theorem 7.2.2 that the defining set of zeroes Z contains the group Gr+1 = ⟨αr+1⟩. Note
also that our vector v becomes the vector consisting of the all one vector v = (1, 1, 1, ..., 1)
with r + 1 entries this vector will span the subspace V . This vector is also contained in
(C ′)⊥ because the identity element is always contained in a subfield and by Lemma 7.2.4
the vector v is contained in the row space of the parity check matrix. We also see that
raising an element β ∈ Gr+1 to the power of q still results in an element in Gr+1 this is
stated below.

β ∈ Gr+1 =⇒ βq ∈ Gr+1.

This holds for all β ∈ Gr+1. This means that Gr+1 is a union of cyclotomic cosets. This
implies that a cyclic code where Gr+1 ⊆ Z has locality property.

41

Cyclic LRC Codes Aalborg University

Example 7.3.7.
Let C ′ be a (n = 45, k = 30, d = 4) binary cyclic code with zeroes {0, 3, 5, 9} in the field
F212. So the complete set of zeroes are

Z = {3 · 2j} ∪ {5 · 2j} ∪ {9 · 2j} ∪ {0}

for j = 0, 1.... We now see that the set of zeroes contains the subgroup G9. This means
that d⊥ ≤ 9. This is because we know that the vector v is contained in the dual code.
Therefore the locality parameter must also satisfy r ≤ 8 because of the relation r+1 = d⊥.
Now consider (C ′)⊥ this code will have defining set {1, 3, 7, 15} this is because the dual
code must be generated by the polynomial xkh(x−1) where h(x) = xn−1

g(x)
where g(x) is the

generator polynomial for C ′. The polynomial h(x) has the roots that are remaining in
the set {0, 1...n − 1}\Z and the inverse of these elements are the roots of our generator
polynomial for the dual code xkh(x−1). So we can finally say that the set of roots for (C ′)⊥

is {1, 3, 7, 15}.

Now we analyze the case where l > 0 and note that we can now split our code into two
cases namely where gcd(l, r + 1) = 1 and gcd(l, r + 1) > 1. However, the case where
gcd(l, r + 1) generates a degenerate code where each symbol is repeated. This is because
α

n
r+1 is a r + 1 root of unity. In further analysis, we, therefore, assume l = 1. In order to

prove several results concerning the case where l = 1 we need Theorem 7.3.8.

Theorem 7.3.8
Let V be a cyclic irreducible code over Fq as given in Theorem 7.3.6 with length s. Recall
that t is the degree of the generator polynomial and assume that N = qm−1

t
is a whole

number and assume gcd(q
m−1
q−1

, N) = 1 then V is a constant weight code over Fq with
weight (q − 1)qm−1/N .

The proof of this theorem is beyond the scope of this project but can be found in Ding &
Yang (2011). We use Theorem 7.3.8 to prove a bound on the locality and the number of
recovering sets.

Proposition 7.3.9
Let z ≥ 1 be an integer so 2z − 1|n and let α be an n-th root of unity. Let C be an
(n, k) binary cyclic code if the complete defining set Z contains the coset αG2z−1 where
G2z−1 = ⟨α2z−1⟩ then the locality parameter satisfies:

r ≤ 2z−1 − 1. (7.10)

Also each symbol has at least 2z−1 recovering sets Ai with size 2z−1 − 1.

Proof. First, let Fqz be a subfield of Fqm and let Tm/z := TFqm/Fqz
be the trace map which

takes elements in Fqm to elements in the subfield Fqz and recall that the map TFqm/Fq is

42

Cyclic LRC Codes Aalborg University

denoted as Tm. We now define two subspaces based on these two maps.

Vz = {(Tz(γ), ..., Tz(γβ
s−1)) : γ ∈ Fqz}.

Here z = ords(q) and β is still a s-th root of unity. We also define:

Vm = {(Tm(γ), ..., Tm(γβ
s−1)) : γ ∈ Fqm}.

We will prove that Vm = Vz and show that this implies the bound. First, we show that
Vm ⊆ Vz. We first note that Tm = Tz ◦ Tm/z is true because of the transitive property of
the trace function. The proof is on page 56-57 in (R. Lidl 1989). Using this we can do the
following calculation for a given vector (Tm(γ), ..., Tm(γβ

s−1)) ∈ Vm:

(Tm(γ), ..., Tm(γβ
s−1))

= (Tz(Tm/z(γ)), ..., Tz(Tm/z(γβ
s−1)))

= (Tz(Tm/z(γ)), ..., Tz(Tm/z(γ)β
s−1)) ∈ Vz.

We also need to prove Vz ⊆ Vm. Because the function Tm/z is surjective we know that
there exists a γ′ ∈ Fqm such that Tm/z(γ

′) = α for a given α ∈ Fqz\{0}. Now let
(Tz(δ), ..., Tq(δβ

s−1)) ∈ Vz we will show that this vector is also contained in Vm. We
first construct the following vector:

(Tm(
γ′δ

α
), ..., Tm(

γ′δ

α
βs−1)).

Where γ′δ
α

∈ Fqm . we then do the following calculation:

(Tm(
γ′δ

α
), ..., Tm(

γ′δ

α
βs−1))

= (Tz(Tm/z(
γ′δ

α
)), ..., Tz(Tm/z(

γ′δ

α
βs−1)))

= (Tz(
δ

α
Tm/z(γ

′)), ..., Tz(
δβs−1

α
Tm/z(γ

′)))

= (Tz(
δ

α
α), ..., Tz(

δβs−1

α
α))

= (Tz(δ), ..., Tz(δβ
s−1))

and so Vm = Vz. Now the result follows from Theorem 7.3.8 where we set q = 2 used on the
set Vz. and the claim concerning the locality and recovering sets follows from Proposition
7.2.5 because 2z − 1|n and because Z contains the coset αG2z−1.

We can prove a better bound on the locality using Proposition 7.3.10.

43

Cyclic LRC Codes Aalborg University

Proposition 7.3.10
Let V be a q-ary (s,m, d) irreducible cyclic code then the minimum distance must satisfy:

dm ≤ s(1− qm−1 − 1

qm − 1
).

Proof. We first define the linear mapping Tm,γ : Fm
q → Fq given as α → Tm(γα) for an

element γ ∈ Fm
q and α ∈ Fm

q where Fqm is viewed as an m-dimensional vector space over
Fq. There are qm linear mappings and these exhaust the set of linear maps from Fm

q to Fq.
This means that for any given γ we can find a vector vγ such that:

Tm,γ(α) = vγ · α.

Where · is the dot product. We now define the following set of indicator random variables

Xi = 1(Tm,γ(β
i) = 0).

Where i = 0, ..., s − 1. So this function indicates 1 if the condition Tm,γ(β
i) = 0 is met.

Now we see that
P (Xi) ≥

qm−1 − 1

qm − 1
.

This holds because there are qm − 1 choices for a non-zero vector vγ which makes the
map Tm,γ non-zero. Also there are at least qm−1 − 1 possible choices because if for some
i ∈ {0, ..., s − 1} we have vγ,iβ

i ̸= 0 we must compensate somehow in the other entries
of vγ. We now realize that this implies the following bound on the expected value of
i ∈ {0, ..., s− 1}:

E|{i : Xi = 1}| ≥ s
qm−1 − 1

qm − 1
.

From this, we can conclude that there exists a γ such that the following bound holds on
the weight of a codeword.

wt(Tm(γ), Tm(γβ), ..., Tm(γ · βs−1)) ≤ s(1− qm−1 − 1

qm − 1
).

We now state the proposition concerning the bound on the locality.

Proposition 7.3.11
Let C be an (n, k) cyclic code over Fq if the complete defining set contains the coset αGs

where α is a primitive n-th root of unity where s|n then

r < s(1− qm−1 − 1

qm − 1
).

44

Cyclic LRC Codes Aalborg University

Here m is the multiplicative order of q mod s.

Proof. This follows from the fact that r(C) < dm(V), which is true because r(C) = dm(C
⊥)

and dm(C|Fq) ≥ dm(C).

So far we have analyzed binary codes we now analyze cyclic ternary codes that are locally
recoverable. To begin we state Theorem 7.3.12.

Theorem 7.3.12
Let N = qm−1

t
and assume gcd(q

m−1
q−1

, N) = 2 then V is a code of block length t and
dimension m and each non-zero codeword has weight:

(q − 1)(qm ± qm/2)

Nq

and there are (qm − 1)/2 codewords of each weight.

Again this is stated without proof for proof consider Ding & Yang (2011). We now state
Proposition 7.3.13 concerning ternary codes.

Proposition 7.3.13
Let C ′ be an (n, k) ternary cyclic code with defining set Z such that Z contains the coset
αGt for some t|n and where α is n-th degree root of unity. Also let N = 3m−1

t
where

m = ord3(t) and assume that gcd(3m−1
2

, N) = 2 then each symbol of C ′ has at least
3m−1 − 3m/2−1 recovering sets of size less than 2(3m−3m/2)

3N
.

Proof. We know that the complete defining set contains αGt and so the (n = (3m −
1), k = m) irreducible cyclic code V is a shortened code of (C ′)⊥ because of Theorem
7.3.3 and by Theorem 7.3.12 V contains 3m−1

2
codeword with weight 2(3m−3m/2)

3N
. Since

the code is cyclic each non-zero coordinate appears as often as non-zero coordinate of the
codewords with weight 2(3m−3m/2)

3N
. This is because the cyclic shifts of these codewords are

still codewords. This implies that each coordinate is non-zero in 3m−1 − 3
m
2
−1 codewords

with weight 2(3m−3m/2)
3N

. We now note that this must also hold for our vector v and thus we
get the result.

Example 7.3.14.
Let C ′ be a ternary cyclic code with defining set:

Z = {1, 2, 41}

and length n = 80. From the cyclotomic cosets mod 3, we get that the dimension of the
code is k = 80 − 12 = 68. We now note that the coset αG41 is contained in the defining

45

Cyclic LRC Codes Aalborg University

set of zeros and so we set t = 40. Now all the conditions for Proposition 7.3.13 are met so
we calculate m = ord3(40) = 4 and so N = 2. So this means that there are 34−1 − 3 = 24
recovering sets of size less than:

2 · (34 − 32)

3 · 2
= 24.

For each coordinate.

46

Cyclic LRC Codes Aalborg University

Appendix 1

In this paper we refer to interpolation one way to do this is using Lagrange interpolation
which is defined below. Taken from (Kwak 2011)

Definition .0.15 Lagrange Interpolation
Given a set of nodes {α0, ..., αk} where αi ̸= αj for j ̸= i. We form the Lagrange basis
for the polynomial {l0(x), l1(x), ..., lk(x)} where each lj is defined as

lj(x) =
∏

0≤m≤k,m̸=j

x− xm

xj − xm

note here that lj(xj) = 1 and lj(xi) = 0 for i ̸= j. This implies that lj(xi) = ∂i,j where
∂i,j is the Kronecker delta function. The Lagrange polynomial for the corresponding
evaluation points {y0, ..., yk} is the unique polynomial

L(x) =
k∑

j=0

yjlj(x).

This polynomial satisfies L(xm) = ym.

Furthermore, we define an algebra

Definition .0.16
An algebra over F is an ordered pair (A, ⋆) where A is a vector space over F and ⋆ is a
bilinear map

⋆ : A× A → A

We also construct redundant residue codes. To define redundant residue codes we first
note that

fm(x) mod x− αi = f(αi).

Using this fact we can encode our function as

M0,M1, ...,Mn−1

where Mi = fm(x) mod (x−αi) the polynomial fm(x) can be recovered using the Chinese
remainder theorem.

47

Cyclic LRC Codes Aalborg University

Theorem .0.17 Chinese Remainder Theorem
Let G1, ..., Gk ∈ F[x] be polynomials where gcd(Gi, Gj) = 1 for i ̸= j then for any k

polynomials M1, ...,Mk there exists a unique polynomial with deg(f) <
∑k

i=1 deg(Gi)
such that

f(x) ≡ Mi(x) mod Gi(x) for all i = 1, ..., t.

Note that only M1, ...,Mk are required to recover fm(x) so the remaining symbols in the
codeword are redundant residues that are included to protect against errors. Codes that
are defined this way are called redundant residue codes.

48

Bibliography Aalborg University

A | Bibliography

Calderbank, M. (2008), ‘An introduction to linear and cyclic codes’, Website for math
university of Chicago.
URL: http://www.math.uchicago.edu/ may/VIGRE/VI-
GRE2008/REUPapers/Calderbank 33

DELSARTE, P. (1975), ‘On subfield subcodes of modified reed-solomon codes’, IEEE
Transactions on Information Theory 21(5), 575–576.
URL: https://ieeexplore.ieee.org/document/1055435 39

Ding, C. & Yang, J. (2011), ‘Hamming weights in irreducible cyclic codes’. 42, 45

Kwak, D. Y. (2011), ‘Lagrange interpolation’, Korea Advanced Institute of Science and
Technology.
URL: https://mathsci.kaist.ac.kr/ dykwak/Courses/Num365-11/LeadMain-chap4.pdf
47

Lauritzen, N. (2003), Concrete Abstract Algebra, From Numbers to Gröbner Bases, Cam-
bridge University Press. ISBN: 078-0-521-82679-2. 5, 12

Li, J. & Li, B. (2013), ‘Erasure coding for cloud storage systems: A survey’, Tsinghua
Science and Technology 18, 259–272. 2

Lint, J. H. (1998), Introduction to Coding Theory, Springer Berlin, Heidelberg. ISBN:
978-3-540-64133-9. 40

MacWilliams, J. (1983), theory of error correcting codes, North Holland. ISBN:
9780444851932. 3, 33

R. Lidl, H. N. (1989), Finite Fields Encyclopedia of Mathematics and its Applications,
Addison-wesley publishing company. ISBN: 978-1604779806. 43

Ramkumar, V., Balaji, S. B., Sasidharan, B., Vajha, M., Krishnan, M. N. & Kumar, P. V.
(2022), ‘Codes for distributed storage’, Foundations and Trends® in Communications
and Information Theory 19(4), 547–813.
URL: http://dx.doi.org/10.1561/0100000115 2

Tamo, I. (2015), ‘Locally recoverable code constructions and some extensions’, Uploaded
to Youtube.
URL: https://www.youtube.com/watch?v=B9pm1Mk0g2wt=472sabchannel =
SimonsInstitute2, 3

49

Bibliography Aalborg University

Tamo, I. & Barg, A. (2014), ‘A family of optimal locally recoverable codes’, IEEE Trans-
actions on Information Theory 60(8), 4661–4676.
URL: https://arxiv.org/abs/1311.3284 2, 5

Tamo, I., Barg, A., Goparaju, S. & Calderbank, R. (2015), ‘A brief history of the devel-
opment of error correcting codes’, 2015 IEEE International Symposium on Information
Theory (ISIT) 10(3), 1262–1266.
URL: https://ieeexplore.ieee.org/document/7282658 34

	Titelblad
	Preface
	Introduction
	Reed Solomon Codes and Redundant Residue Codes
	Locally Recoverable Codes Definition and Properties
	Generalization
	Systematic Encoding
	Removal of Division Assumption
	Redundant Residue Codes

	Multiple Recovering Sets
	LRC Product Codes

	Proof of Singleton-like Bound
	Cyclic LRC Codes
	Intro to Cyclic Codes
	Cyclic LRC Codes
	Subfield Subcodes

	Bibliography

