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Virtual Reality (VR) users typically
spend only 15 to 20 minutes per ses-
sion due to simulation sickness. This
sickness is often caused by locomotion
systems that don’t allow natural phys-
ical movement, leading to a mismatch
between visual and vestibular systems
and also disrupt the immersive experi-
ence. Walk in place (WiP) locomotion
systems offer a controlled and natu-
ral way to move in VR by simulating
walking while remaining stationary.
However, existing WiP solutions such
as expensive treadmills or tracking
sensors are not practical for average
users. Software-based WiP solutions
lack freedom of movement and strug-
gle with occluded body parts. Also
none of these solutions have explored
a deep learning approach for motion
identification. This thesis proposes a
webcam-based WiP VR locomotion so-
lution using Mediapipe Pose estima-
tion and deep learning. The solution
aims to provide intuitive and flexible
walking-based locomotion. The so-
lution was tested on flat and sloped
terrains to assess user acceptance, ex-
perience, and cybersickness compared
to traditional controller-based locomo-
tion.
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Chapter 1

Introduction

The purpose of this chapter is to provide a brief overview of VR locomotion sys-

tems, their drawbacks and the proposed walk in place solution.

1.1 Locomotion in VR

Locomotion in VR implies the method of simulating movement. VR simulations

and games provide users with a virtual world to explore, requiring them to engage

in physical actions. Locomotion systems facilitate this movement in the virtual

world. The most natural way of moving in a simulation would be to physically

walk which would require a large enough space which is seldom available. Thus,

locomotion systems are designed to facilitate motion in the simulation while being

physically stationary.

A plethora of locomotion systems exists with varying philosophies and usability.

A widely used locomotion system in games and other simulations is a controller-

based movement. It is simple, intuitive and physically less intense. However,

its biggest drawback is being cognitively intense and can result in severe cyber-

sickness. This limits users ability to stay in the scenario for long and breaks the
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proverbial immersion in VR[1].

Another commonly used VR locomotion technique is point and teleport. It is used

in simulations that require less physical interaction and is a more visual experi-

ence. This method mitigates the problem of cybersickness as users don’t actually

feel the movement but teleport to the desired location[14]. This, however, isn’t very

immersive and provides minimal interactive motion. Its not efficient enough for

two of the most popular VR usecases, video games and training simulators. It is

also not intricate enough to lead to research[11].

Walk in place is a very intuitive method of locomotion in VR that requires the user

to perform a walking motion while being stationary in the physical world. WiP

reduces the risk of cybersickness to a great degree while maintaining immersion

and providing quite an interactive experience of the virtual world[11][1]. WiP can

be implemented using a multitude of technologies each of which can be hardware

based, software based, or a blend of both. Chapter 2 explores existing WiP solu-

tions in detail. The hardware based solutions require specialised hardware like a

treadmill or a platform that can be space consuming and expensive and therefore

isn’t the most reasonable solution for most home users. Cheaper and compact spe-

cialised hardware like sensors can be used to track users motions. However, these

sensors need constant maintenance, charging and also may not be affordable. To

reduce the dependency on specialised hardware, computer vision based WiP solu-

tions used pose tracking and a simple webcam. These methods generally would

use human pose tracking models like openpose[2] or YOLOv7[19] and then calcu-

late difference between joints to identify walking. However, these methods tend to

fail with the drawbacks of their underlying pose tracking algorithms. Simple cal-

culation based methods also do not account for varying walking patterns among

different people.
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The proposed solution in this thesis explores Mediapipe Pose[4] estimation as a

base for tracking in a WiP solution for locomotion in VR. Mediapipe is known to

be lightweight, CPU-accelerated, can work at high fps, and provides optimized

pre-trained models making it an ideal solution for detecting the walking motion

for VR locomotion. Mediapipe Pose provides landmarks or key points which are

then passed through an LSTM model to predict walking motion. This information

is then communicated to the VR locomotion system. This solution was tested to

assert the advantages of WiP locomotion including reduced cybersickness, intu-

itive control and increased immersion. The tests required candidates to navigate

through a linear passage and an inclined surface using WiP and a controller-based

locomotion system. The candidates were also asked to fill out questionnaires to

rate both locomotion systems.



Chapter 2

Literature Review

This chapter dives into the existing WiP solutions, exploring both software and

hardware-based approaches. It also examines the different pose estimation algo-

rithms and evaluates their effectiveness for WiP locomotion. Furthermore, it also

explains the concept of cybersickness, how to measure and mitigate it.

2.1 Hardware Based Solutions

Omni by Virtuix[17], Kat-Walk C2[5], and many more treadmill based solutions

exist to provide the best WiP solutions as it relates users walking, directly to their

VR avatar’s motion in the simulation. These solutions, however, are very expensive

and not reasonable for home use. They also need their own power source which

tend to be quite exhaustive. Omni One can be seen in fig 2.1 and Kat-Walk C2 can

be seen in fig 2.2.

5



6

Figure 2.1: Omni One[17] Figure 2.2: KatWalk C2[5]

Compact hardware based WiP solutions with remarkable accuracy are also avail-

able like a wrist worn sensor suggested by Park et al.[13] or a set of up to five

sensors by WalkOVR[18] seen in figure 2.3 that can track more than just walking.

These solutions also however require constant charging and generic upkeep of spe-

cialised hardware. They also tend to be quite expensive.

Figure 2.3: WalkOVR Mocap[18]
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2.2 Software Based Solutions

Software based solutions for WiP are affordable, customized to usecases and re-

quire generic or no additional hardware.

A WiP solution based on movements of HMD proposed by Lee et al tracks the

VR HMD(Head Mounted Display) and identifies walking based on a pattern of

movement created as the user walks in place[10]. However, to get a proper range

of values, the user needs to jog in place to generate a series of values that can be

identified as a step. This can be quite exhausting and not really feel like walking.

Further, its requires significant speed in movement to identify fast walking which

not only causes fatigue but also increases the risk of cybersickness.

Kim et al[7] proposed an OpenPose[2] based WiP solution that requires a Microsoft

Kinect camera to calibrate users position which is then fixed. The camera can then

calculate the movement of user’s ankle and identifies a walking pattern. The re-

search tests out multiple Force Integration Driven(FID) based solutions where one

unit of force is applied to push the user in the simulation based on movements of

their ankles as seen in figure 2.4. The motion of ankles is identified using Open-

Pose pose tracking and the force is applied on the avatar in the simulation as the

ankle is moved over a predefined threshold. The walking speed is kept in check

by an opposing resistant force.However this method only considers movements of

ankles as features to identify walking. This could attribute to the reduced accuracy

when the user weren’t looking straight at the camera as OpenPose does not per-

form well in case of occlusion. This method also requires users to take some steps

to calibrate the camera and the users also need to stand on a mat thus making it a

very rigid system to deploy.
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Figure 2.4: Visualization of FID WiP[7]

2.3 Pose Estimation

The motivation behind this thesis is to find a low cost WiP solution that doesn’t

require specialised hardware, is accurate enough and adaptable for most VR use-

cases. No existing solutions have explore MediaPipe Pose Estimation[4] to track

walking as other pose estimation methods like OpenPose and YOLO have shown

sufficient performance. However, with recent advancements, MediaPipe supports

CPU-acceleration, has less computational complexity and yet provide better FPS.

Even though OpenPose and MediaPipe have identical accuracy, MediaPipe per-

forms better when a part of body is occluded and has better accuracy for 3D pose

estimation[3]. YOLOv7[19] is another similarly accurate pose estimation technique

but also lacks behind MediaPipe in the same metrics as OpenPose. YOLOv7 tracks

pose in each frame of the video feed resulting in low frame rates. It is also CPU

accelerated but uses significantly more resource. MediaPipe outperforms YOLOv7

in low light conditions and with occluded body parts.[9]. Table 2.1 compares

YOLOv7, OpenPose and MediaPipe pose tracking.
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Feature OpenPose YOLOv7 MediaPipe

Resource use CPU and GPU GPU CPU

FPS 15-20 25-30 30-40

Accuracy on COCO dataset 70% 80% 90%

Latency 100-200 ms 50-100 ms 20-50 ms

Memory usage 1 GB 2 GB 512 MB

Model size 100 MB 200 MB 50 MB

Inference time 100 ms 50 ms 20 ms

Batch size 1 8 16

Table 2.1: Comparison of pose estimation models[2][4][9][19][3]

Thus, the drawbacks of OpenPose based solution by Kim et al.[7] can be over-

come by using MediaPipe instead. The low accuracy in side poses can be due

occluded ankles which can are tracked better by MediaPipe. MediaPipe will also

enable the solution to work without GPU and still churn out significant FPS.

2.4 Activity Tracking

Unlike pose estimation, detecting walking motion requires identifying a series of

poses that collectively count as a step. Thus, pose estimation algorithms, by them-

selves cannot identify a walking motion. Walking being a very humane activity, the

patterns can vary person to person drastically. Therefore, pose estimation needs to

be paired with another component that can process the results of the pose estima-

tion over time to predict walking and similar complex motions.

Putra et al. presented a comparison of different LSTM architectures for human

activity tracking using MediaPipe pose landmarks.[15] All of the compared LSTM

architectures yielded highly accurate results with VA-LSTM-SYSU performing the

best out of the five models. The goal was to recognise multiple human activities
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like run, skip, jump and also walk. Thus, MediaPipe pose estimation along with

an LSTM is a feasible solution for walk in place detection.

2.5 Cybersickness

Cybersickness has existed in the relms of VR locomtion since its inception and

persists to hold back large scale adaption of VR. When moving in VR simula-

tions, users experience multiple undesirable effects like fatigue, nausea, strained

eyesight, breathlessness, disorientation, and more. These symptoms and their in-

tensity can vary based on factors such as age, gender, and pre-existing physical

conditions or disabilities.

Cybersickness, similar to motion sickness is the result of sensory mismatch termed

as Vection. Vection is the sensation of experiencing physical motion due to visual

percetion of motion while being stationary. This is attributed to the mismatch of

what users see to the signals perceived by user’s vestibular and proprioceptive sys-

tems, which contribute to their sense of balance and body position[6].

Simulations that involve locomotion often try to minimise the cybersickeness based

on user tests. The severity of cybersickness experienced in a VR simulation can be

quantified using a cybersickness quotient, calculated using a survey that assess

symptoms like nausea and disorientation. These symptoms are indicative of visual

strain, fatigue, dizziness, and other related experiences.

To measure cybersickness in a coherent manner, Kourtesis et al. proposed the

Cybersickness in Virtual Reality Questionnaire (CSQ-VR)[8]. CSQ-VR consists of

six questions, with two questions for each of nausea, vestibular and oculomotor

senses. Users can rate their feeling of those symptoms from a range of 1 to 7,

representing the absence to extreme presence of the symptom. The cybersickenss
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score is just the sum of all the values assigned to each response. For further refer-

ence, Appendix A contains the CSQ-VR questionnaire.

A cybersickness study can help understand the underlying drawbacks of the sim-

ulation and locomotion system. These drawbacks can be mitigated to some extent

through simple measures like surround audio, speed control, turn control and

other visual aids. However, some locomotion systems might further stray away in

terms of an immersive experience trying to reduce cybersickness. Thus, the CSQ-

VR will be used to measure the cybersickness score of the proposed WiP solution

to find the trade off between minimal cybersickess and maximum immersion.



Chapter 3

Methodology

This chapter delves into the various solutions explored in order to accomplish the

set objectives. The drawbacks encountered during the implementation of each so-

lution are highlighted along with how they were resolved by adopting different

approaches. Section 3.1 explains MediaPipe and LSTM based solutions and pro-

gression through various LSTM architectures and datasets. Section 3.2 explains

programmatic coupling of MediaPipe with Unity to relay WiP to the user in simu-

lation. Section 3.3 describes the simulation development.

3.1 Preliminary Solutions

3.1.1 Manual landmark processing

A real-time system such as a motion based locomotion requires light weight solu-

tions. So as part of having minimal processing, an initial solution tried involved

getting MediaPipe pose landmarks seen in figure 3.1and calculating the difference

between knee landmark y values to detect walking. This solution would detect any

motion of the knees as walking and didn’t account for difference in height of the

users and produced false positive errors at a very high rate. Thus, for robustness,

ankle and heel landmarks were also considered which didn’t make a huge differ-

12
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ence. To account for relative movement of the legs, difference of either ankle’s y

value with knee’s y value under a threshold was used to detect walking. Since

the threshold was set manually, this solution was also sensitive and produced false

positive results.

Figure 3.1: Mediapipe Pose landmarks

3.1.2 LSTM based solutions

With no signs of coherent results from simply processing landmarks, a more en-

gineered solution based on LSTM was explored. MediaPipe pose estimation was

used to extract joint landmarks from videos of people walking in place. Workout

videos from YouTube where a person was walking in place were used to extract

landmarks. Screenshots from these videos can be seen in figure 3.2. The videos

were edited to only include walking in place movements, labeled as ’walking’ and

rendered at 1920x 1080 at 60fps. Videos where people did other activities were also

used and labeled as ’not_walking’. The label also included a three digit number as

identifier.
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Figure 3.2: Screenshots of workout videos used for training

The preprocessing involved reading each video, one frame at a time and extract-

ing the mediapipe pose landmarks, then dropping the z coordinate and visibility

of each landmark and then adding the video identifier, frame number, the x and

y coordinates of each landmark and label from the video name and writing it to

a file. 10 percent of this data was used as validation and rest as training. This

data was used to train a LSTM based on the VA-LSTM-SYSU as described in [15].

This LSTM was trained with a batch size of 32 for 350 epochs at a learning rate

of 0.01. The resulting training accuracy was 0.97 and 0.084 loss along with 0.88

validation accuracy but a 0.65 validation loss. These metrics pointed to a overfit

model and upon testing the results were far from expected and didnt work well on

live camera feed. The architecture was then modified with various combinations of

parameters of learning rate, batch size and dropout rates. A better accuracy rate of
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0.98 for training and 0.92 over validation data was achieved, however, this model

also overfit the training data and performed equally worse on live camera feed.

Another notable problem with this LSTM was it wouldn’t just focus on the move-

ment of the legs but the upper body as well and the testing over video feed showed

quite low fps than expected. Thus, to reduce data load and make the system invari-

ant to upper body movements, landmarks for joints above the hips were dropped

and only hips, knees, ankles, heels and toes were considered. Dropping 22 out of

32 reduces the training time and could provided better fps on live camera feed.

This new data, preprocessed in the same way, was used to train the LSTM with

0.01 learning rate, 32 batch size, 0.2 dropout rate on the 3 dropout layers and two

dense layers for 350 epochs. The training and validation accuracy for this model

was identical to the one before with more landmark data, however, the camera feed

was able to predict steps improved minimally but the lack of fps persisted.

The workout videos where people would walk in place were quite similar to one

another in the way that people would lift their legs and the time to take a step was

identical. Thus It could be hypothesised that the data didn’t have enough variety

or balance. The ROSE Labs action recognition dataset "NTU RGB+D" and "NTU

RGB+D 120" contains videos for "A99: run on the spot" as seen in figure 3.3which

could be used to extend the training dataset[16][12]. 50 videos from this class were

added to the training dataset and 4 to the validation set. These videos were also

edited to be 1920x1080p at 60fps and the LSTM model was trained with the last

mentioned parameters. Adding these videos also didn’t change the training or val-

idation accuracy as these videos were only 1 to 2 seconds long while the workout

videos ranged from 20 to 60 seconds. Thus the aggregate frame count of the new

videos is negligible to the older workout videos.
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Figure 3.3: Screenshots from video with label A99: run on the spot from ROSE Dataset[16][12]

To find even more diversity in training data, 5 subjects were recorded walking and

standing in place. The subjects were recorded using a webcam with 1920x1080 at

60fps. The subjects would first walk and then stand facing the camera, then at a

45◦, looking to the left side then 135◦, facing backwards, at 225◦, looking to the

right side of the camera and finally at 315◦(All the rotation values in degrees are

approximations). This was done to account for omnidirectionality. These videos

were also edited to only have walking parts or not walking parts and renamed

as such. To add more variety to this dataset, the videos were passed through a

augmentation pipeline. The videos would be left shifted or right shifted at random

without moving the subject out of the frame. The total size of this new dataset

came out to be 527 videos comprising of 236 not walking and 291 walking videos

all 1920x1080 at 60fps. The validation set contained similar 23 such videos with 10

not walking and 13 walking videos.

A new LSTM was defined to be trained on this larger dataset. The model has

3 LSTM layers, 2 dense layers with dropout at each layer. The dropout rate for

each layer is 0.2. The step size for the LSTM was 10. The model used Adam

optimizer with learning rate on 0.001 and binary cross-entropy loss. This model
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trained for 350 epochs and batch size of 64. The Resulting accuracy was 0.97 for

training and 0.91 for validation. The model can be seen in Fig 3.4.

Figure 3.4: Model Architecture

This model had good accuracy and also predicted well with live camera feed.

Using MediaPipe Pose without the holistic landmarks significantly improved the

FPS on the pose tracking. Thus, this model was considered as the final tracking

part of the proposed WiP solution.
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3.2 Unity Mediapipe Connection

The MediaPipe pose estimation is performed by a python script that communi-

cates with a C# script over a socket connection. The C# script establishes a socket

connection as a server and looks for clients that send messages. The C# script also

controls the movement of a XR Rig in a Unity Scene that represents the user. Thus,

as the python scripts predicts walking, it will send a message to the C# script which

in turn moves the user in the simulation.

Initial solution involved translating the XR Rig as the C# receives a walking pre-

diction and stop when it receives a not walking prediction. This was done using

a simple transform.Translate() function. This method would move the user at un-

even intervals and felt out of sync. The transform.Translate() moved the XR Rig in

a linear way that didn’t feel natural. Thus, a rigid body approach to move the XR

Rig was explored.

A rigid body component is attached to the XR rig to give it physical properties.

The addForce() method is used to apply a force on this rigid body to make it

move. This force is calculated in the forward direction of the camera multiplied

with a step size. For each walking prediction by the python script, the user will

move one step discarding any predictions while the user is walking. This approach

made the walking even, smooth and close to natural movement.

3.3 Testing Scene

Two Unity scenes were created to demonstrate the WiP system. The scenes were

configured with XR Interaction toolkit to run the scene on a Meta Quest 2. The

scenes contain an alley with walls on both side to ensure walking in a straight line.

The walls are quad game objects with detailed textures on it. The path underneath
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has a cobble stone texture. Trees of varying heights are placed behind the walls to

exude a feeling of being in a different position when the user is actually moving.

The scenes use a spotlight to act as a light source placed at a narrow angle to allow

shadows to fall onto the path. Global illumination along with a skybox was used

to create baked lightmaps and baked shadows on the scene to reduce GPU load.

Each scene had two XR Rigs one for WiP and the other for controller based lo-

comotion. The XR Rig for WiP uses the socket connection in C# script to enable

locomotion. The other rig uses assets provided by the XR Interaction toolkit to en-

able controller based locomotion. It uses the Locomotion System script to allow the

rig to move and the Continuous Move Provider script that controls and configures

the actual motion. The Continuous Move Provider script configures the controllers

and read the joystick button on the left controller to move the XR rig. A Charac-

ter Controller component is also added to the XR rig that handles the physics of

motion based on controller input. The flat surface scene can be seen in figure 3.5.
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(a)

(b)

Figure 3.5: Flat surface alley scene used to test controller and WiP solutions

The same scene was used to also test locomotion on an inclined surface with the

floor being a downwards slope. The inclination of the floor was 20◦with the ground

and the user would stand at the higher point of this slope. The inclined alley scene

used for the test can be seen in figure 3.6. To ensure the force applied was with the

slope and not in a straight line, a raycaster was used. This raycaster is placed at

the base of the player and and checks for a hit with the ground collider. For every
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hit, the Y position of the hit location is used to move the player along the slope.

(a)

(b)

Figure 3.6: Inclined surface alley scene used to test controller and WiP solutions



Chapter 4

Testing

To test the usability and and accuracy of the proposed WiP solution, user tests were

conducted. The test involved 6 participants of ages ranging from 16 to 26 with me-

dian age of 24 years. Out of the six participants, 2 were female and rest were male.

The test involved 4 tasks of moving from one end of the test scene to the other.

Two scenes with a flat walking path and another with an inclined walking path

were used for the test. These scenes are described with details in section 3.3. The

participant would use the proposed WiP and a controller based locomotion system

to complete the tasks in both the scenes. To minimize potential bias, the order in

which the users performed the task was randomized. After completing the tasks,

the participants were requested to complete the CSQ-VR to evaluate and compare

the cybersickness scores associated with both locomotion methods. Furthermore,

a general questionnaire was administered to gather feedback on the participants’

experiences with the controller-based locomotion system and the proposed WiP

locomotion system. For reference, the questionnaire can be found in Appendix B.

4.1 Test Setup

The tests were conducted indoors in a controlled environment. The simulation

was running on Meta Quest 2 and developed in Unity Game Engine. A logitech

22
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C920 webcam was used for pose tracking coupled with a python program that

performed the prediction and communicated with the Unity scene. The webcam

was mounted on a tripod 3 meters away from the general position of the user

and 1.2 meters high from the ground. The Unity scene, python program and

Quest were all running on Asus TUF Dash 15 supported by an Nvidia RTX 3060.

The participants were asked to stand behind a taped line so that their body was

completely visible to the camera. A room scale guardian was set on the Quest 2

which was only large enough such that the participants would see the passthrough

if they stepped out of the view of the camera. Figure 4.1 shows the test setup and

the view on the screen with a participant during test.

Figure 4.1: Test setup
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4.2 Discussion

This section discusses the observations made during the tests in terms of usability

and adaptability. Further WiP and controller based solutions are compared based

on user’s cybersickness scores and overall experience. This section also addresses

the shortcomings and potential areas of improvements of the WiP solutions.

4.2.1 Cybersickness

After completing the four tasks, the participants were asked to fill out the CSQ-VR

one for each locomotion system. The total cybersickness scores were calculated

and compared for each method and for each user. Table 4.1 shows the participants

age, gender and respective cybersickness scores for both methods. The score for

each participant for each locomotion system can be minimum 6 and maximum 72.

Overwhelmingly the cybersickenss score for controller based locomotion system

was worse off for all the participants. Average score for controller system is almost

twice more than its counter part.

Participant Age Gender CSQ-VR Score(Controller) CSQ-VR Score(WiP)
1 23 M 22 9
2 16 M 11 7
3 18 F 6 6
4 25 M 11 7
5 26 F 19 10
6 26 M 12 8

Average - - 13.5 7.8

Table 4.1: User CSQ-VR scores

Participant 2 had previous experience of playing VR games with controller and

demonstrated tolerance to the cybersickness. Participants 1 and 5 had their first ex-

perience in VR simulations and suffered severe cybersickness however, their score
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for the WiP based system was comparable to others. For controller based locomo-

tion system, 5 out of 6 participants felt some sense of instability with 2 participants

reporting moderate feeling of postural instability. 4 participants also reported some

feeling of disorientation, 2 having very mild and other 2 having moderate effects.

5 participants also reported having visual discomfort ranging from very mild to

moderate feeling. Thus, postural instability, disorientation and visual discomfort

were the commonly experienced symptoms in controller based locomotion. These

symptoms can be very much attributed to the ’vection’ effect.

In terms of WiP method, 3 participants reported experiencing visual discomfort,

2 participants reported having very mild to mild feeling of postural instability.

These are common symptoms with respect to locomotion in VR and can be dealt

with visual and audio aids. However, 4 participants also experienced very mild

feeling of visually induced fatigue and 5 participants experienced some form of

oculomotor uneasiness. This could be a result of continuous physical motion caus-

ing lack of concentration and leading to visual strain. This maybe further worsen

by the amount of leg movement required to move in the simulation. This could

be mitigated with a smoother walking motion. On the contrary the cybersickness

score stays quite close to the minimum value throughout the column and thus can

be deemed to superior locomotion system for a more enjoyable simulation experi-

ence.

4.2.2 Simulation Experience

The express purpose of the WiP locomotion is to have the most immersive and real-

istic movement in the simulation. The test participant thus were asked to judge the

locomotion systems based on their usability and general viability. Figure 4.2 shows

how many participant preferred either of the locomotion systems based on certain

criteria. When asked which system they found better, 4 participants preferred WiP

over controlled based locomotion on account of a intuitive and immersive experi-
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ence. Similar consensus was found when asked about which felt better walking on

flat surface. However, the opposite was true in terms of walking on a downwards

slope as 5 participants preferred the controller based system. A reasonable point of

contention being the movement for WiP solution on flat surface was not similar to

going down a slope. This could also be another reason as to why participants felt

visual discomfort and postural instability. Stabilizing this slope movement along

with a minor vertical movement to account for the different between the flat sur-

face of the physical space and the slope in the simulation, could provide a better

experience.

Figure 4.2: Comparison of users preferrences for controller vs WiP based locomotion system

A major problem with development of the walking prediction system was the need

for larger knee movement due to lack of diversity in the dataset. This might tire

off users quickly and defeat the purpose of an longer enjoyable VR experience.

Thus when asked how long would users stay in each of the locomotion systems, 5

participants said for a moderate amount of time in WiP but 4 participants said the
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same for controller based locomotion. This doesn’t necessarily justify any method

over other as current WiP solution might incurs fatigue overtime. However, based

on amount of time people can use VR treadmills and how less people can stay in a

controller based locomotion, it is not implausible to say a WiP system that doesn’t

require users to raise their legs as high, would overall be better than a controller

based system.

The steps taken by the participants during the tests were recorded to measure the

false negative steps. It requires 15 steps to reach from one end of the path to the

other and no user could complete it within that. Table 4.2 shows the number of

steps taken by each participant to complete the task for both the scene. On average

the participants needed 20.8 steps on the flat surface and around 23 steps on the

slope. The average miss rate for flat surface was 0.28 and 0.35 on the slope. The

excess steps needed were generally at the start of each task when user would need

to find the threshold of how high they needed to lift their legs. The higher miss

rate on the slope was the result of participants often looking downwards and thus

not lifting their legs up higher for the system to work. However, within a few steps

the participant got used to the slope as well.

Participant Steps in Flat Scene Steps in Inclined Scene
1 19 20
2 18 24
3 25 27
4 21 20
5 22 26
6 20 22

Table 4.2: Participant Steps in Flat and Inclined Scenes

This was also evident as when the participants when asked which system provided

them with a more immersive experience, everyone had the same opinion in favour

of the proposed WiP locomotion system. Some reasoning for it being, that it felt

’natural’, more realistic than using a controller and was ’fun and amazing’ to use.
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Some noticeable drawbacks to having over the top realism in movement was the

complete removal from the physical world prompted participants to actually walk

instead of walk in place. This caused tracking errors as the legs wouldn’t be visible

in the camera frame but was handled as the locomotion system would just pause

if all the MediaPipe pose landmarks weren’t visible. This could also explain the

slight discomfort for the slope motion as this disassociation from physical world

also meant reduced awareness of the physical terrain.

Another drawback of the LSTM based system is that the motion can never be as

prompt as mirroring. This of course reduces the amount of control user can have

on the motion as it would take a certain amount of physical motion to be reflected

in the simulation especially something as natural and continuous as walking. To

find how far off the proposed system is to one based on button press in terms of

control, the users were asked to which system they found to provide better control

over their movement. All the participants agreed on the controller based system

being the better in terms of control. This being the most redeeming quality of

controller based system and makes it so much easier to use than other locomotion

systems. With more training data and a reliable omnidirectional locomotion, WiP

could achieve better control.



Chapter 5

Limitations and Future Work

This chapter discusses the limitations of the proposed solution and possibilities for

future improvements that could lead to a more robust and usable solution.

Numerous approaches were explored for every part of the proposed solution es-

pecially in motion tracking and prediction part. Sparse availability of training data

and time and resource extensive models held back the proposed solution to meet

some of its expectations.

The major of expectation that could have elevated the solution was omnidirection-

ality. Although snap turning in Unity could have aided the solution in terms of

maneuvering abilities, the perception of natural movement would have been lost.

As the training data used was mostly videos of people walking while facing the

camera, the model wasn’t accurate enough to handle omnidirectionality. The sys-

tem was thus constraint to not predict when the user’s shoulder and knees came

closer as they would when the user turns to their side. MediaPipe pose does hold

the capability to accurately detect pose landmarks omnidirectionally as discussed

in section 2.3 given it tracks and predicts human poses on every frame.

29
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Another commonly reported problem during the tests was the amount of leg move-

ment that was required to move the user’s VR avatar, didn’t feel as natural as walk-

ing and incurred fatigue. This could also be attributed to the movement that the

people in the training videos would do as the videos were physical exercise related.

The training data later recorded did to some effect reduce the amount of leg lifting

required but ideally the training data should only include natural walk in place

movement. Videos of people simply walking were also at some point considered

for training however, the MediaPipe pose landmarks couldn’t match that pattern

to walking in place. Although this didn’t deter test participants from moving in

the solution once they figured it out and overwhelmingly were in favour of using

WiP instead of controller based solution.

An odd problem in the system that further enhanced the impact of the previous

point was height variance of the test participants. Test participant shorter that

170 cms had a really hard time getting the pose estimation model to identify their

walking patters. However, adjustments to the test setup and camera placements

enabled them to get moving but with unnaturally high leg lifts. Further work in

this area to relatively have variety in the training data with respect to height of

people and in turn distances between their joints is a possible solution.

For an even better experience, test participant repeatedly mention lack of control

over the step size and speed which they found adequate in the controller based

locomotion. This certainly is a necessary feature to make the system actually ap-

plicable to VR simulation usecases.

The LSTM architecture used in the proposed solution could also amount to the

above mentioned drawbacks. Thus, other architectures could also be explored for

better accuracy and control over movement. The current model has excellent FPS

throughput ranging from 40 to 55 fps. However, anywhere around 25 to 30 FPS is
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sufficient for continuous motion. Therefore, a model that can trade off the accuracy

and FPS for smoother movement is still desirable.



Chapter 6

Conclusion

The objective of this thesis was to create a deep learning based WiP locomotion

system using MediaPipe that addresses cybersickness while also providing an in-

tuitive and immersive user experience. Existing software based walk in place so-

lution are very rigid in terms where and how the user stands and doesn’t provide

adequate omnidirectionality. The proposed solution certainly provides some free-

dom of movement as long as tracking is possible and has possibilities for omni-

directionality and speed control. It doesn’t require any specialised hardware and

only uses a common RGB camera thus being most cost effective compared to VR

treadmills, tracking sensors and even specialised camera based WiP solutions. This

solution was successful in identifying its cybersickness effects which are minor at

worst. Based on user tests, it can also be asserted that the proposed solution does

provide an intuitive locomotion technique and an immersive experience. The pro-

posed solution also promotes use of deep learning as an activity tracker instead of

basic keypoint analysis for a sophisticated and more robust solution.
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Appendix A

CSQ-VR Questionnaire
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Appendix B

User Experience Questionnaire

Which locomotion system would you prefer to use?

Which system was better for a flat surface?

Which system was better for the slope?

How long can you stay in

Controller based locomotion system:

Walk in Place based locomotion system:

Which locomotion system provided a greater sense of immersion in the virtual

environment?

Which locomotion system do you think gave you better control on the movement?
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