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A B S T R A C T   

Lithium-ion batteries (LiBs) with Lithium titanate oxide Li4Ti5O12(LTO) negative electrodes are an alternative to 
graphite-based LiBs for high power applications. These cells offer a long lifetime, a wide operating temperature, 
and improved safety. To ensure the longevity and reliability of the LTO cells in different applications, battery 
health diagnosis, and lifetime prediction are crucial. This paper examines the cycling ageing behaviour of LTO 
cells in two different cell temperatures under high-current cycling conditions and various cycle depth (CD) tests. 
The ageing behaviour is investigated via capacity degradation trend using data-driven technique based on feed- 
forward neural network (FFNN). The model is later validated with the experimental result collected in-house and 
the lifetime data provided by the manufacturer. The proposed method accurately determines the state of health 
(SOH) level and predicts the end of life (EOL) with an acceptable error of 5 %.   

1. Introduction 

Electrochemical energy storage devices are widely used for portable, 
transportation, and stationary applications. Among the different types of 
energy storage devices on the market, lithium-ion batteries (LiBs) attract 
more attention due to their superior properties, including high energy 
density, high power density, and long cycle life [1]. The majority of LiBs 
are based on graphite anode materials, which have a high voltage and a 
high energy density; however, solid electrolyte interface formation (SEI) 
[2,3], and lithium plating are some of the drawbacks [4], which limit the 
battery life and might result in failures. The SEI formation is accelerated 
when using the graphite-based LiB at high current applications and/or at 
low temperatures [5]. To overcome this limitation, lithium titanate 
oxide (LTO) material is used as an alternative to graphite [6]. LTO is a 
spinel oxide, with a crystal structure which participates in Li + inser-
tion–extraction processes [7]. This electrochemical process results in a 
structural change from spinel-LTO to rock-salt-LTO and corresponds to 
the voltage plateau at 1.55 V vs. Li+/Li. Moreover, this structure change 
tends to an almost negligible volume change of 0.2 % [8]. Therefore, 
LTO is known as a “zero-strain” material for Li + insertion [9]. In 
contrast, Li + insertion within graphite has a very low intercalation 
potential (~0.1 V vs. Li+/Li) [10] and causes a volume change of about 

~10–13 % [11]. 
LTO negative electrode has several advantages over graphite, 

including, high mechanical stability, high-rate performance, and long 
cycle life. Moreover, the higher potential of the LTO electrode against Li 
results in a low cell voltage which effectively reduces the SEI formation, 
dendrites growth, and lithium plating [12,13]. However, the lower 
specific capacity (i.e., 150 Ah/kg) of the LTO electrode tends to lower 
specific energy of LTO cells (i.e., 74 Wh/kg) when compared to the 
graphite-based negative electrode, which is a challenge for some 
applications. 

The positive electrode of a LTO cell are commonly made of lithium 
cobalt oxide (LCO), lithium–iron–phosphate (LFP), lith-
ium–nickel–manganese–cobalt (NMC) oxide, lithium–manganese-oxide 
(LMO), and lithium–nickel–cobalt–aluminium (NCA) materials [14]. 
These chemistries all have their strengths and weaknesses, varying in 
energy and power density, toxicity, safety, and cost. In terms of ageing, 
the cathode is generally regarded as less significant [15]. The main 
ageing mechanisms of cathode materials include surface film formation, 
mechanical stress, and transition metal dissolution. Surface film for-
mation (also known as cathode electrolyte interphase (CEI) layer) can 
form on the cathode, similar to the anode, but due to electrolyte 
oxidation and salt deposition [16]. In contrast to the SEI layer, the 
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cathode surface layer shows low lithium-ion conductivity, increasing the 
impedance. Like the anode, the cathode can also undergo phase transi-
tions during the intercalation and deintercalation of Li-ions, which can 
lead to a loss of active material and a loss of conductivity. Finally, 
structural degradation of cathode can happen due to the transition metal 
dissolution in the cathode. 

In this research, the target is to examine the degradation behaviour 
of LTO cells in a fast response grid-scale battery energy storage system 
(BESS) with 1.2 MW/0.3 MWh specification for frequency regulation 
application for the Danish grid. LTO cell has been selected for this 
application due to its long cycle life and high-power capability. The 
high-power capability enables LTO cells to react rapidly to high power 
demands without having a negative impact on their lifetime. Although 
the cost of LTO cells in comparison to the graphite-based cells is higher, 
the price difference is moderated by calculating the price/cycle over the 
lifetime. To take the most advantage of LTO cells (long lifetime, high- 
rate capability, etc.) and ensure low price/cycle, a reliable lifetime 
estimation is needed. 

Different perspectives for lifetime modelling have been presented in 
the literature [17]. For ageing analysis, some activities focus on an 
empirical approach and ageing test [18], while some others focus on 
post-mortem analysis [19]. Lifetime modelling based on an empirical 
approach is simple and accurate, including real-time and accelerated 
ageing tests. LTO batteries are known as a long-life energy storage sys-
tem; therefore, lifetime testing under real-time tests is impractical. A 
large variety of research focused on the cycling ageing behaviour of LTO 
cells considering different stress factors, including, cycle depth, tem-
perature, and current rates. Stroe et al. [20] compared two LTO cells at 
different degradation levels and different temperatures. The authors 
discussed the capacity evolution and internal resistance growth for two 
different test-cases. Liu et al. [21] analysed the cyclic ageing perfor-
mance of LTO batteries at room temperature (RT). Their focus is on the 
degradation mechanism of LTO cells using incremental capacity and 
differential voltage techniques. Hall et al. [22] investigated the cycling 

behaviour of LTO cells at one temperature and different current rates. 
Nemeth et al. [23] studied the electro thermal properties and ageing 
behaviour of LTO cells for automotive applications. They studied the 
degradation behaviour at different temperatures but only at very high 
currents. Low and medium currents are neglected in this research. Stroe 
et al. [24] also presented a lifetime model for LTO cells based on the 
collected data by the time of publication. Bank et al. [25] analysed the 
ageing performance of LTO cells at different temperatures and cycle 
depths. Chahbaz et al. [26] studied calendar ageing and cyclic ageing 
mechanism for LTO cells using incremental capacity and differential 
voltage techniques. The authors have shown that the ageing rates vary as 
a function of SOC, temperature, DOD, and C-rate. Moreover, a two-stage 
ageing mechanism was determined by their result. In the first ageing 
stage, the anode is limiting the amount of extractable capacity. After a 
certain level of degradation is reached, the cathode starts limiting the 
amount of extractable capacity, initiating the second ageing stage with a 
stronger occurring capacity fading gradient. For most of the case studies 
presented above, the end of life has not been reached by the time of 
publication therefore, the lifetime model could not be validated 
properly. 

In this research paper, different test-cases have been studied for 
ageing behaviour analysis considering the stress factors identified by 
Chahbaz et al. [26]. Tests have continued for four years to the end of life 
for most test-cases. Thanks to the long duration experimental data, an 
innovative state of health (SOH) estimation and end of life prediction 
model based on a feed-forward neural network (FFNN) modelling 
technique has been developed. The ageing analysis is based on an 
empirical approach which includes periodical capacity check-ups and 
accelerated ageing tests on LTO cells. 

The remainder of this paper is structured as follows: Section 2 pre-
sents the experimental set-up. In Section 3, the result is presented and 
discussed. Section 4 focuses on the cells’ lifetime modelling and vali-
dation. In Section 5, the conclusion and the key achievements are 
presented. 

2. Experimental setup 

2.1. Investigated cell 

In this research work, high-power LTO battery cells with a pouch 
format as shown in Fig. 1 have been tested and analysed for lifetime 
modelling studies. The used battery is composed of LTO and NMC 
electrode materials for the anode and cathode, respectively. The battery 
cell specification has been presented in Table 1. The manufacturer’s 
information and NMC materials composition have not been disclosed 
due to the non-disclosure agreement (NDA) with the manufacturer. 

Fig. 1. Experimental set-up: LTO cell with the fixture placed in the oven and connected to the test channel.  

Table 1 
Electrical characteristics of the LTO/NMC battery cell.  

Characteristics Value 

Nominal capacity 13 Ah 
Nominal voltage 2.26 V 
Maximum voltage 2.9 V 
Minimum Voltage 1.5 V 
Maximum charge/discharge 

current 
130 A 

Operating temperature − 40 ◦C to +50 ◦C 
End of life > 4000 FEC at 55 ◦C, 100 % cycle depth, 2C/ 

2C  
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2.2. Cycling ageing test 

As mentioned earlier, the objective of this research is to investigate 
the degradation behaviour of LTO cells in a fast response grid scale BESS 
for frequency regulation application. According to the frequency regu-
lation scheme of the target country, a closed loop control algorithm has 

been used to maximize the grid support and to extend the lifetime of 
BESS by reducing the number of cycles of the battery system. Based on 
the proposed algorithm, a maximum C-rate of 3C and an average current 
of C/2 were obtained for this application. The frequency distribution of 
the different C-rates of the real load profile is shown in Fig. 2. As can be 
seen in this figure, the current 3C is less frequent than the 2C and 1C. The 
temperature increase (ΔT) at 3C continuous cycling for a single cell is 13 
◦C and is less likely in real load profiles; however, in the interest of 
comprehensive modelling, high C-rates and high temperatures were 
considered in this study. 

Initially, three test temperatures (35, 42.5, and 50 ◦C) were selected 
for accelerated ageing tests; however, due to a very slow degradation 
behaviour at 35 ◦C, the test was continued at 42.5, and 50 ◦C and the 
degradation result provided by the manufacturer at 25 ◦C is used as third 
temperature for modelling and model validation. The designed test 
matrix in this research consists of 16 LTO battery cells in eight different 
test-cases. As shown in Table 2, due to the performance failure of one 

Fig. 2. Frequency distribution of different C-rates (charge/discharge) of the 
real-life load profile. 

Table 2 
Cycling ageing test matrix.  

Test-case 
(TC) 

Cell ID Operating conditions-Stress factors 

Current rate 
(ch/dch) 

Cycle depth 
(%) 

Cell temperature 
(◦C) 

Cycling 
TC1 

Cell 1& 
Cell 2 

2C/2C  10  50 

Cycling 
TC2 

Cell 3& 
Cell 4 

1C/1C  50  50 

Cycling 
TC3 

Cell 5& 
Cell 6 

2C/2C  50  50 

Cycling 
TC4 

Cell 7 2C/2C  10  42.5 

Cycling 
TC5 

Cell 10 2C/2C  30  42.5 

Cycling 
TC6 

Cell 12 1C/1C  50  42.5 

Cycling 
TC7 

Cell 13 2C/2C  50  42.5 

Cycling 
TC8 

Cell 16 3C/3C  50  42.5  

Fig. 3. Test methodology for cycle life test.  

Table 3 
Test set-up equipment specification.  

Digatron BTS 600 battery 
testers 

Memmert UNP 500 and Memmert UFP 600 

Current range: − 50 to +50 A 
Voltage range: 0 to 6 V 
Voltage accuracy 0.001 V 
Current accuracy: 0.01 A 
Temperature accuracy: 
0.1 
◦C 

Temperature range: 30 - 250 
Temperature accuracy: 0.5◦C below 99.9◦C and 1◦C 
above 100◦C  

Fig. 4. A capacity measurement test for characterisation of LTO cell.  
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Fig. 5. Normalised capacity deviation between two cells of each test-case at 
50 ◦C. 

Fig. 6. Capacity evolution at 50 % cycle depth and 42.5 ◦C as a function of time (left) and FEC (right) for different C-rates (TC6/TC7/TC8).  

Fig. 7. Capacity evolution at 50 % cycle depth and 50 ◦C as a function of time (left) and FEC (right) for different C-rates (TC2/TC3).  

Fig. 8. Capacity degradation of cells aged at 2C charge/discharge current and 
50 ◦C as a function of FEC for different cycle depths. (TC1/TC3). 
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cell in test-cases 4 to 8, only one cell per these conditions has been 
studied. The cells were tested inside fixtures in order to maintain the 
volume constant during cycling. The experimental set up presented in 
Fig. 1 shows a battery cell mounted in a fixture, which is placed in an 
oven, and connected to the battery tester. The cells have been con-
strained according to the manufacturer’s recommendation with two 
aluminium plates of 5 mm thickness under a total compression of 3.7 psi 
(22,258 Pa). 

Stress factors influencing the cycle lifetime of the cells include 
temperature, current rate, and cycle depth. For all test-cases, the SOC is 
50 % and the test temperature is the temperature measured on the 
surface of the cell. 

Fig. 3 shows the cycle life test sequence from the beginning of life 
(BOL) to the end of life (EOL). First, a preconditioning test is performed 
according to IEC 62660–1 [27] to ensure the stabilisation of the cell. The 
test continues for 5 cycles at the current specified by the manufacturer, 
followed by 30 min of rest. After the preconditioning test, a reference 
performance test (RPT) is performed at BOL. Subsequently, the cells of 
the individual test-cases (TCs) are cycled according to the test conditions 

explained in Table 2 before the periodic RPT is performed. 
In order to analyse the actual state of the cells, the full equivalent 

cycle (FEC) is used to describe the total charge throughput of a cell. One 
FEC corresponds to one complete charge and one complete discharge 
over the rated capacity of the cell multiplied by two, as given in (1) 

FEC =

∫ ⃒
⃒Icycle

⃒
⃒.dt

2Cnom
(1)  

where Icycle is the current during a complete charge and discharge cycle 
and Cnom is the nominal capacity [28]. After each 5200 Ah throughput at 

Fig. 9. Capacity degradation of cells aged at 2C charge/discharge current and 
42.5 ◦C as a function of FEC for different cycle depths. (TC4/TC5/TC7). 

Fig. 10. Capacity evolution for 2C charge/discharge current and 50 % cycle 
depth as a function of FEC for different temperatures (TC3/TC7). 

Fig. 11. Capacity evolution for 1C charge/discharge current and 50 % cycle 
depth as a function of FEC for different temperatures (TC2/TC6). 

Fig. 12. Capacity evolution for 2C charge/discharge current and 10 % cycle 
depth as a function of FEC for different temperatures. (TC1/TC4). 

Table 4 
Theoretical boundaries for cyclic ageing model.  

Parameter Value 

Cycle depth 
Mid SOC 
Temperature 
Current rate 

50 % > CD >10 % 
SOC = 50 % 
50 ◦C > T > 42.5 ◦C 
3C > C-rate > 1C  
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test temperature, which corresponds to 200 FECs, a periodic RPT is 
performed at 25 ◦C. The periodic RPT is used to analyse the health of the 
cells for all test-cases listed in Table 2 and is discussed in detail in the 
next section. If the EOL has not yet been reached, the procedure is 
repeated, and when the EOL is reached, an EOL RPT is performed and 
the cycle life test is completed. The cycle life tests were performed using 

a Digatron BTS 600 battery tester. Memmert UNP 500 and Memmert 
UFP 600 temperature chambers were used to maintain temperature 
during ageing and RPT tests. The equipment characteristics are listed in 
Table 3. 

2.3. Reference performance test 

RPT in this study is a capacity measurement test. Capacity mea-
surement is performed after every 200 FECs as explained in the previous 
section. Initially, the capacity measurement test was performed every 
100 FEC; however, due to a small variation in capacity, a periodic check 
was performed every 200 FECs. 

2.3.1. Capacity measurement 
Capacity measurement is performed on a fully charged cell in two 

steps: constant current at 1C and constant voltage at 2.8 V with 0.04 × In 
limiting current. After a 15 min rest period, the cell is discharged at 1C to 
the end-of-discharge voltage (1.5 V). For statistical analysis, two ca-
pacity measurements are performed, and the second discharging ca-
pacity measurement is used in the analysis. The current, voltage, and 
temperature signals during a RPT are shown in Fig. 4. 

3. Results and discussion 

3.1. Capacity fade 

To further investigate the capacity evolution over the lifetime, 
different stress factors were investigated, as explained in Table 2. For a 
better comparison, all values were normalised using (2) to a reference 
value measured at the beginning of life under the respective test 
conditions. 

Normalised capacity [%] =
Capacityactual

CapacityBOL
× 100% (2)  

where Capacityactual is the measured value at test condition, and 
CapacityBOL is the initial capacity at the beginning of life at test condi-
tion. As explained in Table 2, there are two battery cells per test-case. 
The average capacity of the two cells in each test-case is used for life-
time modelling unless there is only one cell for a test-case due to cell 
failure. The test result deviation between two cells of each test-case at 
50 ◦C is shown in Fig. 5. 

Fig. 13. The relative capacity fade as a function of FEC for different test-cases 
shown in Table 2. 

Fig. 14. General structure of a feed forward neural network.  

Fig. 15. General structure of a neuron in the FFNN.  

Fig. 16. Comparison between the experimental data and the predicted model 
for test- case 2 used for model training. 
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3.1.1. Influence of C-rate 
In Fig. 6, the influence of C-rate on the capacity degradation at 42.5 

◦C is presented as a function of FECs and time. As can be seen, the cells 
cycled with a higher C-rate show a longer cycle life; however, these cells 
degrade faster in a shorter time. This can be explained by the impact of 
calendar life on degradation. A cell cycled at a low C-rate will be 
imposed to the high temperature for a longer time; therefore, it is 
degraded faster in terms of the FEC number. The result presented in 
Fig. 6 reveals that the cells cycled with 1C/1C charge/discharge profile 
reached the end of life after 5000 FEC in 39.5 months. In this test con-
dition, the cells can withstand 1519 FECs/year before reaching the EOL 
criterion. The cells cycled at 2C/2C can withstand 7000 FECs, in 37 
months, before reaching the EOL criterion. This is equal to 2270 FECs/ 
year. The cells cycled at 3C/3C can perform 9400 cycles in about 30 
months before reaching the EOL which is equal to 3760 FEC/year. A 
higher number of cycles at higher C-rates is observed but at a shorter 
time. The battery can also perform 60, 400, and 400 FECs between 80 % 
and 70 % SOH for 1C/1C, 2C/2C, and 3C/3C test profiles, respectively. 

A similar result is seen when comparing the capacity fade result for 
the cells cycled at 50 ◦C. As shown in Fig. 7, cells cycled at 2C/2C have a 
33 % longer cycle life than 1C/1C test profile; however, in terms of the 
required time to reach the end of life, it is 23 % shorter. 

3.1.2. Influence of cycle depth 
Another influencing factor on the capacity degradation, as shown in 

Figs. 8 and 9, is the cycle depth. As can be seen from these figures, the 
cell cycled with a lower cycle depth for a similar temperature and 

current, has a longer cycle life; for example, after 16,000 FEC, <15 % 
capacity fade is observed. Independent of temperature and C-rate, for 
30 % and 50 % cycle depth cases, the capacity fade curves show three 
stages: capacity increase, very slow capacity decrease, and abrupt ca-
pacity fade. 

The capacity increase stage can be because of the increased electrode 
active surface area as a result of electrochemical milling [29]. Similar 
behaviour for LTO cells has been reported by Nemeth et al. [23], where 
LTO cells investigated at two different ambient temperatures have 
shown the three stages mentioned above at 45 ◦C and 100 % cycle depth. 
The abrupt capacity drop in the third ageing stage has been reported at 
high cell temperature (55 ◦C) corresponding to the high internal resis-
tance. It can be observed that the cells cycled at 10 % cycle depth only 
comprise a slow capacity fade stage. Therefore, at the beginning of the 
test, these cells degrade faster than those with high cycle depth; how-
ever, after the abrupt capacity fade stage for cells with high cycle depth, 
the trend is reversed. It can be concluded that the LTO cells show high 
cyclic stability, especially when cycled at low cycle depth. A similar 
result has been reported by Chahbaz et al. [26]. The authors have shown 
that cyclic ageing at high cycle depths is accelerated, and the fastest 
ageing happens at 100 % cycle depth. Bank et al. [25] reported a slow- 
rate capacity degradation for small cycle depth load profiles. The finding 
in this research paper agrees with the results of various studies per-
formed on other types of LIBs [30]. 

3.1.3. Influence of temperature 
The effect of temperature on LTO cell cycle life are shown in Figs. 10 

Fig. 17. The predicted capacity fade as a function of FEC, without having any experimental result for each test-case.  
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to 12. As can be seen, the lifetime decreases as the temperature in-
creases. As shown in Fig. 10, the cell has a 70 % longer cycle life at 42.5 
◦C than at 50 ◦C. In this test condition, the capacity increase phase 
explained in Section 3.1.2 is not observed. Fig. 11 shows that the cells 
cycled at 42.5 ◦C have a 65 % longer cycle life than the cells aged at 50 
◦C. The result for the low cycle depth test profile is shown in Fig. 12. 
From this figure, it can be seen that the cells cycled at 42.5 ◦C have a 2 % 
lower capacity compared to the 50 ◦C cells. 

4. Lifetime model 

The objective of lifetime model development is to estimate the ca-
pacity loss of a cell in different applications and predict the expected 
lifetime as a function of time, or FEC. The target application may have a 
different profile than the one used for modelling, so a comprehensive 
model is needed to cover a wide range of applications. In this research, a 
cyclic ageing model is developed that incorporates the theoretical 
boundaries summarised in Table 4. 

4.1. Capacity fade model 

The lifetime model in this research consists of a capacity fade model. 
The relative capacity fade as a function of FEC for different test-cases 
given in Table 2 is shown in Fig. 13. The capacity fade trend will be 
modelled using (3). 

Normalised capacity = α+ βexp
(
− γ|FEC − η|2

)
+ ε (3)  

where the parameters α, β, γ, and η, are all dependent on the stress- 
factors (i.e. cycle depth, temperature, and current rate), and ε is noise 
component with mean zero and constant variance. Due to the complex 
dependence between the stress factors and the parameters, an FFNN is 
used to account for this dependence. The FFNN structure was chosen 
because it offers a good trade-off between generalisation and a relatively 
fast learning rate compared to more complex neural network structures 
[31]. 

The general structure of an FFNN can be seen in the dependent di-
agram shown in Fig. 14. It relates the input, i.e., cycle depth, C-rate, 
temperature, and FEC, to the fade in capacity. The input is passed 
through a series of hidden layers, each consisting of a number of neu-
rons. The information passed to each neuron, indicated by the arrows in 
the graph, acts as a type of automatic non-linear feature extraction. The 
general structure of a neuron is shown in Fig. 15, and the neuron of the 
ith neuron of the jth hidden layer is governed by the Eq. (4). 

hij = a

(
∑Nj− 1

k=1
wik⋅hk(j− 1)

)

(4)  

where hk(j− 1) is kth neuron of the (j − 1)th hidden layer, wik is the weight 
associated with this dependence (indicated by the arrow between the 
hk(j− 1) and hij), Nj− 1 is the number of neurons in the (j − 1)th layer, and a 
is an activation function (Note: by the necessity of the notation the 
zero’th hidden layer is the input layer). 

Two FFNNs were used in this paper, the first accounts for the rela-
tionship between the parameters and the stress factors seen in (3), while 

Fig. 18. The predicted capacity fade as a function of FEC, with the existence of 50 % experimental results used for each test-case.  
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the second FFNN is used to model the residual between the predicted 
normalised capacity found using the first FFNN and the measured ca-
pacity. That is, the second FFNN takes the stress-factors and FEC as an 
input and aims to model the error between the first FFNN and the 
measured capacity. The first FFNN uses a single hidden layer with 12 
neurons while the second consists of three hidden layers with 36, 24, 
and 12 neurons, respectively. The activation function used between the 
hidden layers is an exponential linear unit (ELU). The activation func-
tion between the last hidden layer and the output layer is the identity 
function (also referred to as a linear activation). Using these structures, 
the weights of the FFNN’s were trained using stochastic gradient descent 
with a Nesterov momentum of 0.9 for 2000 epochs. 

The result of training for test-case number 2 can be seen in Fig. 16, 
which shows the measured and predicted behaviour of this test-case 
sample used for training. 

4.2. Model validation 

For validation purposes, each test-case is excluded in turn and the 
training is performed on the remaining seven test-cases. Furthermore, to 
assess the sensitivity of the predicted capacity fade on the test-case used 
for validation, four scenarios are investigated: (1) using no data from the 
validation test-case during training, (2) using the first 50 % of the data 
from the validation test-case, (3) using the first 80 % of the data from 
validation test-case, and (4) using the first 95 % of the data from vali-
dation test-case. In order to ascertain the uncertainty in the predicted 
capacity fade, the FFNN is bootstrapped. That is, 100 bootstrap samples 
are created (samples of the same size as the original training data 

created by sampling observations from the original data with replace-
ment) and an FFNN is trained for each of these samples. Using these 100 
bootstrapped models, a 95 % confidence envelope is calculated, indi-
cating 95 % of the models yield predictions within these bounds. 

The first scenario, assuming that there is no test data for the vali-
dation test-case, implies the model must predict the capacity fade for the 
entire lifetime of the cell. The results using each cell as validation in turn 
are shown in Fig. 17. The figure shows that in the absence of any data for 
a given set of stress factors, the predicted capacity fade is very far away 
from the measured capacity fade. The second scenario uses 50 % of the 
available validation data for each of the eight test-cases during model 
training, and the model intends to predict the remaining capacity fade 
trend, the results of which can be found in Fig. 18. In this figure, the left 
side of the vertical dotted line is the prediction result using experimental 
data for training and the right side is the prediction result without using 
experimental data for training. The figures show that the model is 
starting to identify the general trend of each test-case, but that the 
predicted capacity fade is still not entirely in line with the measured 
capacity fade. The further away from the first 50 % of the test-case data, 
the better the predictions, except test-case 2. The poor performance is to 
be expected because few shared stress factors implies that little infor-
mation is shared in the model. The results of the model predictions for 
the capacity fade, assuming 80 % existence of the validation data, are 
shown in Fig. 19. This figure shows that the accuracy of the predicted 
capacity fade trend increases as more test-case data is added, with test- 
case 5 being the only test-case where the capacity drop trend was not 
appropriately captured. This clearly shows that a machine learning 
based SOH estimation technique is dependent on the existence of data 

Fig. 19. The predicted capacity fade as a function of FEC, with the existence of 80 % experimental results used for each test-case.  
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that is very close to the factor of interest. Finally, Fig. 20 shows the 
results of the model using 95 % of the validation data during training. As 
can be seen from the figure, using this much of the available data from 
the test-case of interest leads to very good results for the vast majority of 
test-cases. The EOL can also be found in all test-cases except for 1 and 4; 
the error results are summarised in Table 5 calculated as in (5). 

Percentage error [%] =

⃒
⃒
⃒
⃒
predicted EOL–measured EOL

measured EOL

⃒
⃒
⃒
⃒× 100% (5) 

Like the figures, the table shows that as the amount of information 
from the test-case included during the process increases, the difference 
between the measured and predicted EOL decreases. Furthermore, it 
shows that test-case 2 (due to its sharing stress factors with other test- 

cases), has a percentage error of <5 % using just 50 % of the available 
information from the test-case. While test-case 6 does not even reach a 5 
% error using almost all the information. 

The accuracy of the proposed model is further validated using the 
data-sheet information provided by the manufacturer. As shown in 
Table 1, the expected lifetime at 55 ◦C is >4000 FEC. The results of using 
the developed model trained using all test-cases to predict the EOL under 
this condition are seen in Fig. 21 and summarised in Table 6. While the 
result shows that the model can predict EOL with acceptable accuracy 
(205 FEC on average), it should be noted that the cycles reported in the 
datasheet are generally a conservative estimate, and this result should 
therefore be viewed with some reservation. However, in the absence of 
any information it is deemed a worthwhile exercise. 

Fig. 20. The predicted capacity fade as a function of FEC, with the existence of 95 % experimental results used for each test-case.  

Table 5 
Model prediction error at 20 % EOL criterion for test cases in each of the different training scenarios.  

Test-case Measured EOL [FEC] Predicted EOL [FEC] for each training proportion Percentage error [%] for each training proportion 

0 % 50 % 80 % 95 % 0 % 50 % 80 % 95 %  

2  3100 – 3243 3127  3099 – 4.61 0.87  0.03  
3  4300 – – 4416  4335 – – 2.70  0.81  
5  13,700 – – –  13,500 – – –  1.46  
6  5000 – 6500 5362  5295 – 30.00 7.24  5.90  
7  7300 – – 7600  7224 – – 4.11  1.04  
8  9500 – – 10,100  9612 – – 6.32  1.18  
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5. Conclusion 

This paper presents the experimental results obtained from the 
accelerated ageing test for high power lithium titanate oxide LiBs. The 
degradation trends as a function of FEC and time in different operating 
conditions have been presented. The result proves the dependency of the 
capacity fade on C-rate, temperature, and cycle depth. It was also seen 
that the longer being imposed to the high temperature in similar test 
conditions, the shorter cycle life is expected. This paper also presents an 
accurate SOH estimation and EOL prediction model for LTO cells using a 
non-linear FFNN. The model has been developed based on a compre-
hensive experimental result collected in different test conditions 
covering a variety of stress factors on 16 LTO cells for more than four 
years. The proposed model was validated using experimental results 
with a distinct pattern from those used for model training and using the 
manufacturer’s result presented in the datasheet. It proves the ability of 
the proposed model to predict the EOL and estimate the SOH of the LTO 
battery in different applications with 5 % accuracy or <250 FEC pre-
diction error. 
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