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1 - Introduction
Mobile robots are capable of replacing people in many fields. Applications include
surveillance, planetary exploration, emergency rescue operations, reconnaissance,
intervention in extreme environments, medical care, as well as many other indus-
trial and nonindustrial applications [1].

Space exploration, here defined as the physical exploration of the outer space,
fully begun in 1957 with the successful launch of Sputnik 1, the first man-made
satellite launched into orbit. After that, both the United States of America (USA)
and the Soviet Union have used a combination of orbiters and impactors to study
the properties and composition of the Moon and various other celestial bodies.
However, both approaches had their limitations. The former could only offer low
resolution data over a large area, while the latter could offer high precision data
but, limited to the impacted site.

To explore a larger area on distant celestial bodies, the use of either a manned
or robotic mission was required. While a human can perform very complex tasks
and experiments, the resources and technological requirements needed for their
safety makes this approach challenging, both from an engineering and a financial
perspective. It is for this reason that robotic rovers are preferred.

The first rovers (starting with the Soviet Union’s Lunokhod 1), were teleoperated.
This is permitted for nearby celestial bodies as the latency is within acceptable
safety margins. A radio communication between Earth and the Moon is around
2.6 seconds. However, on Mars the latency is between 3 and 22 minutes [2]. This
lag would force operators on Earth to either issue only small movement com-
mands or risk the rover getting stuck in an unseen obstacle such as sand dunes.
Both option incur a time cost for the mission which may not be acceptable. This
issue raises the need for an autonomous, vision based system that can localise,
map and navigate in dangerous terrains.

The goal of this project is to create an autonomous rover for planetary space ex-
ploration based on the ExoMy Mars rover technology from the European Space
Agency. To complete the exploration stack, the rover must have a variety of actua-
tors, sensors, and software as Stachniss et al said : "Exploration is the task of guiding
a vehicle in such a way that it covers the environment with its sensor" [3]. The extraction
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2 Chapter 1. Introduction

of data of the explored area will provide more answers to the questions that the
humanity has.

Initial Problem Formulation

How can a mobile robot use its sensors to map and subsequently navigate its environment?



2 - Problem Analysis
There are currently only two celestial bodies onto which unmanned rovers have
been deployed: the Moon and Mars. The missions for these rovers have histori-
cally been a combination of surveying the surface in order to provide high quality
images of it and carrying out measurements using its probes to determine the
physical characteristics of its environment.

A shift from this paradigm occurred with NASA’s Mars 2020 mission, where the
Perseverance rover collected soil samples and left the sealed tubes in designated
caching areas for them to be collected and returned to Earth by a subsequent mis-
sion. The reason for this approach is that it is unfeasible to equip the rover with
the equipment necessary to perform a detailed biological analysis of the samples.
Such an attempt would incur adding extra weight and power requirements. More-
over, there is a high chance that the equipment itself could be damaged during the
transit between Earth and Mars.

NASA in collaboration with ESA have thus created the Mars Sample Return (MSR)
mission which aims to bring the samples back to Earth. This consists of a Mars
Fetch Rover (MFR) and a Mars Ascent Vehicle (MAV). The former has the task of
gathering all the samples from the caches left by Perseverance and load them onto
the MAV.

Apart from official missions announced by NASA and ESA, the Defense Advanced
Research Projects Agency (DARPA) has shown interest in developing robots capa-
ble of exploring underground lava tunnels on Earth and, potentially, with appli-
cations for Mars. In 2021 NASA participated in DARPA’s Subterranean Challenge
thus implying that research is being done for this use case [4].

Lastly, NASA’s Artemis mission has the final goal of sending humans to the Moon
again. To achieve this, In-Situ Resource Utilization (ISRU) will have to be used.
This lends itself perfectly to robotic automation where repetitive and potentially
dangerous tasks can be delegated to a robot such as regolith collection and trans-
port to a processing plant.

The main problems that were encountered with Mars rovers were: communication
with the base on Earth, landing of the robot, terrain navigation and the correct
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4 Chapter 2. Problem Analysis

Figure 2.1: Presentation of a Solar Conjunction between Mars and Earth [6]

localization of the robot. These problems will be discussed further in the following
chapters and given solutions on how to solve them. Once each problem gets a
solution the exploration of the extraterrestrial environment will encounter fewer
difficulties.

2.1 Communication with Earth

Over long distances, such as Mars - Earth, the teleoperations between a rover and
a human can have a delay between 6 and 20 minutes. Such delays have a signifi-
cant effect on real time operations. A way to counter this problem is to make the
vehicle autonomous. [2].

The radio link between the base on Earth and the rover on Mars can be impeded
by solar conjunction. Solar conjunction is the time where the Sun is between the
two planets and expels hot, ionized gas from its corona. This gas combined with
the Sun’s strong electromagnetic radiation jams the radio signal for two weeks.
This phenomena occurs once every two years. A representation of this can be seen
in Figure 2.1.

During that period of two weeks, the rover is not receiving any command from
the engineers and it stays on stand by. NASA engineers are preparing for the next
conjunction, 11 November - 25 November 2023, a method to make the rover still
collect data and continue its mission by by automating some of its tasks [5].
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Figure 2.2: Presentation of different stages which the rover has during the landing on Mars using
the TRN method [7]

2.2 Entry, Descent and Landing

According to the NASA’s data, only 40 percent of the missions from any space
agency are successful. A big problem being the landing phase, or how NASA
named it, entry-descent-landing (EDL) phase. This phase consists of making sure
the rover enters in Mars’ atmosphere and lands without any issues on its terrain.

To land on the Mars surface the rover would need to enter into the martian at-
mosphere, descent at a controlled speed to a chosen safe spot, and then land on
the chosen spot. This is done by an aeroshell which penetrates the upper atmo-
sphere. At 10km altitude, parachutes deploy denoting the descent stage, reducing
the velocity of the rover and prepare it for the landing phase. Twenty seconds af-
ter the parachutes are deployed, the detection hardware becomes operational and
analyzes the terrain . An illustration of the EDL phase can be observed in Figure
2.2 [7].

In 2020, the rover named Perseverance used a new method named Terrain-Relative-
Navigation (TRN). The Perseverance rover uses this method to gauge its location
as it descends into the Martian atmosphere with its parachute. As a result, the
rover can locate itself in relation to the ground with an accuracy of at least 40
meters. TRN works as follows: during the descent the rover takes pictures of the
terrain and compares it to the orbital map which is already stored in the mem-
ory. After some fast comparisons of different landmarks between pictures and the
orbital map the rover chooses the safest zone where it can reach [7].
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2.3 Martian Terrain and Climate

The Martian environment imposes geological challenges such as slopes, cliffs,
sand and rocks of different sizes. These environmental factors makes it difficult
to land and traverse the terrain. Also, since the surface of Mars is covered by
martian dust and the climate of this planet it is prone to sand storms, the work
environment for the rover will be challenging [8]. There are also wind gusts and
the dust, being very small and slightly electrostatic, can stick, corrode and even
damage the equipment of the robot. Hence the mission can be jeopardized [9].

Dust storms are not so frequent. The occurrence of a big sandstorm is approx-
imately once every three Mars years, equivalent of 5 and a half Earth years [9].
Hence, during that time the rover cannot do its tasks and the chances of losing
equipment, data or even the rover itself are high.

2.4 Correct Localization of the Robot

Quality of the localization knowledge has a direct impact on how rover activities
are planned and refined into commands for execution on the vehicle.

In order to preform task correctly, the rover’s control system needs know the lo-
cation and the orientation of the vehicle precisely. The rovers cannot use GPS so
they are equipped with IMU and encoders to estimate the location. For example,
Sojuren rover, during Mars Pathfinder mission used wheel and heading sensors
[10]. Since the terrain of Mars is mainly described by rocks, slopes, and canyons
full of dust, the encoders used by Sojuren were not sufficient for the mission. Due
to this type of environment, the rover’s wheels can get easily stuck in sand, dust
or any kind of obstacles and provide erroneous information of it’s position.

Usually mars rovers are also equipped with a panoramic camera which is con-
nected to the control system. This camera is used to find the location of the Sun
during the cycle of one martian day, named sol, leading to a much more refined
determination of the rover’s attitude. To further improve localisation, a stereo
camera was also added to create 3D XYZ maps of the readily discernible nearby
topography. In order to direct the scientific instruments to the points of interest
with a high precision, the 3D keypoints obtained from stereo vision were used.
Vision based navigation was proven to be reliable method of reducing the locali-
sation error which otherwise would increase over time. [10].

Two mitigating options are available in this situation: either the instrument can be
articulated in a restring manner to increase its effective field of view and correct for
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localization error, or a new stereo imagery can be acquired from the new position,
sent back to Earth, and wait until the next sol to estimate a new accurate location.
Both of this options require more usage of bandwidth and also it may be a problem
communication with Earth as stated in Chapter 2.4 [10].

Final Problem Formulation

Now, that it has been given a proper understanding of the major challenges that
can happen during an extraterrestrial mission, the scope of the project will be nar-
rowed to a final problem formulation.

How can a mobile robot’s navigation be used in spatial exploration to provide efficient data
of the explored area such that can be autonomous and provide a precise localisation?



3 - Technical analysis
This chapter will present different methods and techniques in order to answer the
question at the end of Chapter 2.4. The scope of the project has been narrowed
such that the rover can have a better understanding of its surroundings, for ex-
ample 3D mapping, be autonomous and provide an accurate localisation of it’s
position in real-time.

3.1 SLAM

The paper presented by Cesar Cadena et al., tilted Past, Present, and Future of Simul-
taneous Localization And Mapping: Towards the Robust-Perception Age [11], follows to
answer multiple questions regarding SLAM, but one of them is: Do robots need
SLAM?

To answer the question, a definition of SLAM is needed in order to understand its
use. SLAM represents the ability of a robot or an autonomous vehicle to localize
itself and create a map of its surroundings.

The map is essential in order to support other tasks, such as path planning or
provide the human operator a visualization of the robot. Also, the map provides
a better understanding of the state of the robot. Scenarios where the robot uses
GPS makes the utilization of SLAM redundant. Hence, the popularity of SLAM
algorithms came within the absence of GPS [11].

Without a map, dead-reckoning would invariably drift over time. However, with
a map containing a set of recognisable landmarks, the robot can "reset" its lo-
calization error by returning to previously visited locations (a process known as
loop-closure).

When performing odometry, a robot views the world as an "infinite corridor" while
ignoring loop closures. The robot is informed via a loop-closure event that this
"corridor" keeps crossing itself, see Figure 3.1. The benefit of loop-closure now
becomes apparent. By locating loop-closures, the robot is able to comprehend the
true topology of its environment and discover shortcuts between locations [11].

8
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Figure 3.1: Left: map built from odometry. The map is homotopic to a long corridor that goes from
the starting position A to the final position B. Points that are close in reality (e.g., B and C) may
be arbitrarily far in the odometric map.Right: map build from SLAM. By leveraging loop closures,
SLAM estimates the actual topology of the environment, and “discovers” shortcuts in the map. [11]

Hence, the author concluded that SLAM is indeed needed for autonomous robots
lacking external localization service, such as GPS. The versatility of SLAM with
different tasks, from cleaning robots to self-driving cars and even military explo-
ration robots make it a topic worthy of research.

3.2 Comparison Between Different SLAM Approaches

3.2.1 RTAB-Map vs ORB-SLAM3 vs OpenVSLAM

Merzlyakov et al [12] presented in their paper a comparison between several
SLAM algorithms on 3 datasets: KITTI, EuRoC MAV, TUM RGB-D. The differ-
ence between those 3 can be seen in Figure 3.3. The algorithms which are pro-
posed to analyze can be seen in Figure 3.2. In order to compare the algorithms,
a baseline requirement is needed for further selection. This baseline consists of:
loop-closures, re-localization, pure localization support, RGB-D and Stereo cam-
eras.

Those criteria are set in order to make sure that the compared solution can map
a space in a way that is globally consistent and can localise within this map over
the course of several days, weeks, or even years [12]. Based on these arguments,
the authors selected three algorithms for the comparison: ORB-SLAM3, OpenVS-
LAM, and RTAB-Map.

The setup used for their testing consists of a PC which uses an Ubuntu 18.04 OS
and an Intel Core i5-6600 4-core CPU operating at 3.30GHz with 8 GB of RAM
memory [12].
The algorithms are tested on the three datasets in the modes described below:
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Figure 3.2: Different SLAM Algorithms [12]

Figure 3.3: Different datasets used to compare SLAM Algorithms [12]

• EuRoC: ORB-SLAM3 w/monocular, stereo,monocular-inertial, and stereo-
inertial; OpenVSLAM w/ monocular, stereo; RTAB-Map w/ stereo.

• TUM RGB-D: All methods w/ RGB-D.

• KITTI: ORB-SLAM3 w/ monocular and stereo; Open-VSLAM w/ monocular
and stereo; RTAB-Map w/ stereo. [12]

It has been found out, after testing the SLAM algorithms on these 3 datasets that:

• Indoor environments with stereo cameras OpenVSLAM and ORB-SLAM3
with inertial fusion performed the best.

• Indoor environments with RGB-D cameras OpenVSLAM and RTAB-Map
performed well, even in low-feature conditions.

• Outdoors environment OpenVSLAM had the highest robustness and accu-
racy.

3.2.2 Kimera: Visual Inertial Odometry and Mesher

Kimera [13] is an open source library for real-time metric-semantic SLAM. Its in-
puts are a mono/stereo camera feed and the data stream of an IMU. The algorithm
is able to output a local 3D pose estimation and create a 3D mesh of its surround-
ing environment. The architecture comprises of 4 modules, each having their own
thread: Kimera-VIO, Kimera-Mesher, Kimera-Semantics and Kimera-PGMO (Pose
Graph and Mesh Optimisation) .
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Figure 3.4: Kimera architecture [13]

Kimera-VIO is used for accurate, IMU-rate pose (state) estimation. This module
is itself split into two threads. A front-end thread that integrates the IMU mea-
surements and performs the vision algorithm. This algorithm detects Shi-Tomasi
corners [14] and tracks them across the frames using a Lucas-Kanade tracker [15].
These corners are also matched in the stereo image pair using a 3-point RANSAC
[16]. From the corner pairs detected in the stereo pair, the relative position of the
camera can be inferred. From the movement of these corners between each frame
pair, the velocity in 3D of the camera can thus be calculated. The back-end thread
performs a fixed-lag smoother which combines the velocity from the IMU and the
velocity from the vision component to obtain a pose estimate. This step is based
on GTSAM (Georgia Tech Smoothing and Mapping) [17] and uses iSAM2 (Incre-
mental Smoothing and Mapping). This is a variation of landmark based SLAM in
which the Shi-Tomasi corners are used as the landmarks.

The Kimera-Mesher thread is tasked with creating 3D meshes of the environment
based on the data from the Kimera-VIO. It creates a local, per-frame 3D mesh
which is fast to compute and is used for obstacle avoidance, and a multi-frame 3D
mesh of the global environment (Figure 3.4.d). The local mesh is created from the
Shi-Tomasi corners detected by the VIO front-end (Figure 3.4.b).

Kimera-Semantics has two tasks. The first is to optimise the global 3D mesh using
RGB-D information from the stereo camera. This is done using the Voxblox library
developed by Oleynikova et. al. [18]. The second task is to semantically annotate
the global mesh based on the 2D semantic labels obtained from the images. The
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2D semantic labels can be obtained witch classic deep neural network algorithms.
The authors of Kimera have used Mask-RCNN [19].

Lastly, the Kimera-PGMO is tasked with detecting loop-closures and then updat-
ing its position and optimising the global mesh. A loop-closure occurs when the
robot sees previously detected landmarks or assesses that it is a location it has
been before. At this time, it is possible to reduce the accumulated error at this
location and reduce the error of each previous known location in the loop.

3.2.3 Elbrus Stereo Visual SLAM

Elbrus or Nvidia VSLAM [20] is a method created by Nvidia for estimating the
position of a robot, by two core technologies. The two technologies are: Visual
Odometry (VO) and Simultaneous Mapping and Localization (SLAM). This two
approaches are useful in environments where GPS can not be used or is noisy,
such as indoors or spatial surroundings.

Architecture of Elbrus

The architecture of Nvidia VSLAM [20] is operated by two modules, working as a
two-tiered system, VIO and SLAM. It’s architecture can be seen in Figure 3.5.

The VIO is a technique for determining a camera’s position in relation to its start-
ing position. This method is iterative in that it evaluates two sequential input
frames (stereo pairs) at each iteration. It identifies a group of keypoints on both
frames. The ability to predict the transition and relative rotation of the camera
between frames comes from matching the keypoints in these two sets.

The method of SLAM is based on the VIO predictions. By utilising the knowledge
of previously observed portions of a trajectory, it seeks to enhance the accuracy of
VIO estimations. When the current scene has been seen before, the camera moves
in a loop, which is detected, and an additional optimisation technique is done to
fine-tune previously obtained positions. Those actions resulting in improving the
accuracy uses up extra resources in the process. The results can be seen in Figure
3.6a. SLAM use is an option that can be turned off.

Elbrus [20] can use IMU measurements in addition to visual data. When the VO
is unable to estimate a position, for as when there is poor lighting or a long solid
surface in front of a camera, it immediately switches to IMU. In circumstances
of poor visual conditions, using an IMU usually results in a significant perfor-
mance improvement. In order for the IMU to work in concordance with the VO,
the robot’s sensor has to be calibrated first in a plane, horizontal surface. This
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Figure 3.5: Elbrus’ architecture. The process of communication between VIO thread and SLAM
thread. The data is gathered by cameras and IMU, corrected by the optimisation thread and en-
hanced by the SLAM thread. Bundle adjustment is part of the optimisation thread and is in charge
of refining a visual reconstruction to produce jointly optimal structure and viewing parameter esti-
mates. [20]

requirement can be a disadvantage for in an environment such as Mars or Moon,
since mainly the terrain there is composed by bumps, craters and steep plains.
With VGA resolution, Elbrus [20] offers real-time tracking performance of more
than 60 FPS. The algorithm achieves a localization drift of 1% and an orientation
inaccuracy of 0.003 degrees/meter of motion for the KITTI benchmark. This can
be seen in the Figure 3.6b .

3.2.4 RTAB_MAP

RTAB-Map is an open source SLAM library created by Mathieu Labbé et. al
[RTAB-Map] which is designed to be deployed in large environments over a long
period of time. Originally designed as a standalone C++ library, since 2013 it has
been made open-source and provides a ROS wrapper. It is designed to be highly
modular, allowing a large combination of sensors: RGB-D, stereo images, laser
scan, point cloud and IMU. Moreover, it provides a robust loop-closure algorithm
which, when combined with an efficient short-term long-term memory manage-
ment system, requires fewer hardware resources. This make it ideal for use on
limited resource hardware such as embedded platforms.

The main architecture of RTAB-Map is shown in figure 3.7. The required inputs are
video feed which can be either stereo or RGB-D, a transformation frame which cor-
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(a) The difference between the simple odometry of El-
brus and it’s SLAM. Showing that the SLAM enhances
the output of odometry, being closer to ground truth

(b) The test results of Elbrus’ approach on the KITTI
data. The final results being: localization drift of 1%
and an orientation inaccuracy of 0.003 degrees/meter of
motion

Figure 3.6: Results of the tests for Nvidia SLAM. Subfigure a, differences between odometry and
SLAM. Subfigure b, the test results on the KITTI data. Red path being the ground truth and the
blue path is the real-time trajectory reconstruction from the stereo camera. [20]

Figure 3.7: The RTAB-MAP main node architecture. The required inputs are a video feed (stereo or
RGB-D) and a transformation frame (TF) that describes the location of the sensors with respect to
the base of the robot. The standard output is Map Data which contains the built map [RTAB-Map].

relates the sensor’s position with respect to the robot’s base and lastly and odom-
etry source. Additional sensors can be incorporated such as laser scanners, point
clouds and IMU (not shown in Figure 3.7, but described in the ROS implementa-
tion launch files). The outputs are a corrected odometry topic, the generated Map
Data containing a Map Graph with a compressed subset of the sensor data and a
Map Graph that is devoid of sensor data. Optionally a 3D (OctoMap) occupancy
grid, a dense 3D Point Cloud and a 2D occupancy grid can also be generated.

Similar to Kimera (Chapter 3.2.2), the SLAM approach is that of creating a graph
representing the sequential robot poses and their related sensor information and
then optimise this chain if a loop-closure is detected (Mathieu Labbé et. al. [21]).
However, over a large environment such as outdoors, the graph would grow to
such an extent that it cannot be easily processed with limited hardware. To mit-
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igate this, RTAB-Map uses a memory management system that has a working
memory (WM) and a long-term memory (LTM). The WM holds all the nodes that
are most relevant to the robot’s current position. WM can also be interpreted as
a local "map". Once the robot has moved to a further position and certain nodes
are no longer relevant, they are stored in the LTM. This allows the localisation
and loop closure algorithm to only use the nodes that are strictly necessary, thus
improving efficiency.

The odometry provided by RTAB-Map can be as simple as using the wheel en-
coders and IMU or it can use more advanced methods such as Lidar or vision.
The visual odometry provided ([Scaramuzza et. al [22]) has two approaches:
Frame-To-Frame (F2F) and Frame-To-Map (F2M). The first compares consecutive
frames and builds a sequence of features from them. This is useful when a new
map is built or when a previously made map is expanded. The second approach
compares the the new visual frame with one from a database (map). This is use-
ful when solving the "kidnapped robot" problem where the robot is placed in a
known environment but unknown initial position.

Figure 3.8: RTAB-Map visual odometry diagram for stereo or RGB-D nodes. The F2F and F2M
odometry approaches are color-coded in green for the former and red for the latter. [RTAB-Map].
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The architecture of the visual odometry can be observed in Figure 3.8. The com-
ponents of the visual odometry are: feature detection and matching, motion pre-
diction and estimation, local bundle adjustment, pose update and lastly key frame
and feature map update. RTAB-Map can use any feature detectors available in
the OpenCV library however, the authors have chosen to use the GoodFeaturesTo-
Track (GFTT) by Shi et. al. [23] as it is more robust over different light intensities
and image sizes.

Feature matching differs between F2M and F2F. For the former a descriptor is re-
quired in order to match current frame features against those stored in a database.
The descriptor used is BRIEF [24] because its fast computation times. Using the
descriptors, the matching is then done using nearest neighbour search (Lowe et al.
[25]). For F2F, the features are tracked using optical flow.

The features matching across frames allows the algorithm to calculate the direc-
tion and velocity. From this, a prediction can be made on where the same feature
will be in the subsequent frame. This helps narrow down the feature tracking area
improving the efficiency.

The Local Bundle Adjustment and the Pose Update mechanisms in Figure 3.8 have
the purpose of refining the calculated motion and outputting the odometry of the
cameras. This odoemtry is then correlated with the transformation frames which,
in the end, will output the location of the base of the robot.

3.3 QR Landmark Recognition

In the paper presented by P. Kurnar et al [26] it is shown the use case of detecting
landmarks, such as QR codes, in the navigation of the mobile robots. The imple-
mented solution consisted in using the class provided by OpenCV for detecting
QR codes. The detected QR codes are further tracked by a Kalman Filter. The
results provided by them were encouraging but not sufficient.

A similar approach has be realised by H. Zhang et al [27] for indoor navigation.
The method used for detecting and tracking the QR codes was done by combining
two libraries, OpenCV for image processing and ZBar to decode and track the
bar codes. The setup for their experiment consisted on: a mobile robot equipped
with a laser and an industrial camera pointed to the ceiling to detect the QR codes.

The height of the ceiling in the experiment done by authors has a measurement
of 2.45m. The size of the QR codes also played an important role in detection.
QR codes smaller than 0.12x0.12m could not be detected. Results of the test are
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Figure 3.9: Differences between ROS 1 and ROS 2 features [ros2].

promising, resulting in a mean error of 6cm on X axis, a mean error of 6cm in Y
axis and a maximum error at X-Y of 13cm.

Implementing the QR codes in the navigation stack of the robot, made it to move
with a speed of 2.5m/s while preforming SLAM and not losing track of the detec-
tion [27].

3.4 Robot Operating System

Robot Operating System [28] (ROS) is an open source software platform intended
for the development and deployment of robotic solutions. This platform provides
the developer with a wide range of libraries and services that allows them to de-
velop, configure and maintain their application in a highly modular fashion. In
broad terms, ROS works as a publisher-subscriber system, with the underlying
communication protocols hidden from the user.

The project begun in 2007 with the introduction of what is now known as ROS 1.
The last version of ROS 1 is Noetic and its end-of-life (EOL) is scheduled for 2025.
ROS 1, while very capable, lacks features that are required for modern applica-
tions and industry in general, such as real-rime support and a more robust and
reliable network middleware. To address this, the developers decided that instead
of adding the necessary patches, it would be more suitable to re-deign the entire
system from the ground up. This new version is known as ROS 2 [28] and its main
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underlying differences are represented in Figure 3.9.

From a user’s perspective the following have to be taken into account when chang-
ing from ROS 1 to ROS 2. There is no longer a central node (roscore), making the
system fully distributed. The user has the ability to specify a domain number
isolating the topics, publishers and subscribers to only that domain. This could
be used for instance if there are several robots, each having the same control soft-
ware. In this case each robot will have its own domain id, thus preventing the
overwriting of topics with the same name. Moreover, launcher files are no longer
written as an XML file. They are now written as a Python script allowing far
greater flexibility and ease of configuration. Hence, this framework will provide a
better communication between the hardware of the robot and the code.

3.4.1 Action Client-Server

Actions are a new addition in ROS 2. This provides a new way of communicat-
ing between nodes via requests-responses by actions. Those actions are goal ori-
ented, asynchronous and the communications between services and clients can
be stopped anytime [28]. As previously stated, actions are divided in two types:
services and clients.

Services are represented as a request-response communication from clients and
providing back feedback to them. Throughout the process, it controls how the
action is carried out and handles state changes. The action server can handle nu-
merous objectives at once and prioritizes them according to their importance [28].

Clients represent the component that transits action goals and get results and feed-
back. By getting regular updates from the server, clients may ask for the execution
of an action and keep track of its progress and, if needed the respective action can
be revoked [28].

Hence, the action server and client in ROS 2 provide a standardized method to
manage time-consuming activities with goal-oriented communication and feed-
back mechanisms, which makes it possible to design robust and scalable systems.

3.5 NVIDIA Isaac Sim

NVIDIA Isaac Sim [29] is a robotics simulation environment created by the NVIDIA
Corporation. It provides a powerful physics engine, photo-realistic environment
and a source of high quality sensor data such as IMU and RGBD camera feeds. It
also supports a ROS 1 and ROS 2 interface which facilitates the development of a
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robotic control stack agnostic of the sensor’s data source. Regarding the control
of a virtual robot, Isaac Sim exposes to the user the concept of Articulation Con-
troller which can interfaced via a ROS 2 bridge. This controller can be applied to
any articulation (joint link) between two Prims and can be set to either a angular
velocity or an absolute position. A Prim (short for “primitive”) is any basic object
in Isaac Sim such as a wheel, an axle or the body frame.

The concept of Prims comes from the Universal Scene Description (USD) markup
language developed by Pixar Studios [30]. This is a standard that has been adopted
by most major 3D physics engines such as Unity or Unreal Engine. In fact, Isaac
Sim allows its users to import an environment created in Unreal Engine or Unity.
This may be useful as Isaac Sim does not have many tools for 3D modelling and
manipulation, instead focusing more on the creation of virtual robots.

The reason why Isaac Sim is preferable to other robotic simulation environments
such as Gazebo [31] is its highly realistic environment generation and quality of
sensor data. The real-time rendering of a realistic environment is useful for run-
ning computer vision algorithms such as visual odometry and human detection.

3.6 Navigation2

Navigation2 or the short form known in the ROS community, Nav2, is the navi-
gation for mobile robots. It is the successor of ROS Navigation Stack. Nav2 is the
professionally supported spiritual successor of the ROS Navigation Stack. This
project seeks to find a safe way to have a mobile robot to move to complete com-
plex tasks through many types of environments and classes of robot kinematics,
such as differential, omnidirectional, Ackermann, legged and custom. Not only
can it move from Point A to Point B, but it can have intermediary poses, and rep-
resent other types of tasks like object following and more [32].

In the paper presented by S. Manceski [33] et al it is shown, more in depth, the
upgrades that ROS Navigation received in order to become Navigation2. The new
addition to the Nav2 stack are the behaviour trees which are in charge of path
planning, control and recovery tasks. Another feature that makes Nav2 stand out
is the flexibility around different types of robots. This stack can be used for any
type of mobile robot for a large variety of environments and applications [33].

Navigation2 was built with the idea of being used in an industrial environment.
As seen in Figure 3.9, ROS 2 now uses DDS, an upgrade from TCP/UDP and Life
Cycle Nodes.
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Figure 3.10: The design system of the Navigation2 stack [32].

The design of the Nav2 system Figure 3.10, in order to work work requires Be-
haviour Trees. BT Navigator Server is the highest component and entry level of
the server which hosts the BT provided to implement navigation behaviours. BT
Navigator Server can communicate with other servers using Action-Client.
Planners and controllers are the core of a navigation problem. Recoveries are used
to get the robot out of a bad situation or attempt to deal with various forms of
issues to make the system fault-tolerant. Smoothers can be used for improving the
path planning of the robot [34].
The four action servers of the Nav2 stacks are: controller, planner, behavior and
smoother.

The main task of Nav2’s planner is to create the most optimal path from a current
position to a given goal. The path can also be known as a route, depending on
the nomenclature and algorithm selected. Two canonical examples are computing
a plan to a goal (e.g. from current position to a goal) or complete coverage (e.g.
plan to cover all free space) [34].

Planners can be written to:

• Compute shortest path
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• Compute complete coverage path

• Compute paths along sparse or predefined routes [34] [34]

The controller server. or by it’s former name in ROS1 the local planner, has the
task to identify the dynamic obstacles which cannot be see in the global map.

Controllers can be written to

• Follow a path

• Interact with an object

• Board in a ramp/elevator [34]

The behavior server contains a costmap subscriber to the local costmap, receiving
real-time updates from the controller server, to compute its tasks. This is done
to obtain information via sensors on how the robot can be reset to a controllable
state. In case of not-being controllable, the behavior server may communicate with
the operators via different: emails, SMS or messages [34].

Additional path refining is frequently advantageous since the requirements for
an ideal path are typically lowered in comparison to reality. In order to do this,
smoothers have been developed. These tools are normally in charge of minimiz-
ing path raggedness and smoothing abrupt rotations, but they may also be used to
increase distance from barriers and expensive locations because they have access
to a global environmental representation [34].

Receiving a path and sending back an enhanced version of it is the general duty of
a smoother in Nav2. However, there are several smoothers that may be registered
in this server due of the variety of input pathways, improvement criteria, and
methodologies available [34].



4 - Implementation
This chapter will present the solution to the question asked in Chapter 2.4 based
on the technical analysis preformed in Chapter 3. Hence, a navigation stack, a
detection stack and a SLAM stack will be developed such that the robot will
be autonomous, provide accurate localisation of itself and provide a better un-
derstanding of its surroundings. ROS 2 will be used to support the interaction
between the aforementioned stack and the simulated environment.

4.1 Rover Description

The rover used for this thesis is inherited from the ROB7 team project at AAU
comprised of A. Mortensen et. al. [35]. The model is represented in Figure 4.1a
and is based on the ExoMy Rover [36], developed by the European Space Agency
(ESA). It has a 6-wheel Ackerman drive however, only the front and rear wheel
pair can be steered. the Middle pair’s direction is fixed.

(a) Rover model with its main components.

(b) Motor boogie, with 3 drive motors and 2 steering
motors on the front and rear.

Figure 4.1: Rover model [35].

22
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Figure 4.2: Location of components inside the body of the rover [35].

4.1.1 Mechanical Design

The rover is comprised of 6 components: a body, a differential, two rockers and
two boogies (Figure 4.1a). The body houses the battery, on-board computer (OBC),
motor divers, as well as the charging and voltage conversion circuitry. The design-
ers wanted the center of mass to be as close to the geometrical center of the robot
as possible. To this end, they placed the heaviest component, the battery, as close
to the center of the body (Figure 4.2). The rockers are attached to the body by
an articulated joint. They each carry half of the body’s weight. Onto each rocker
there are further two components attached. The first are the two front drives and
the second are the rear boogies that support the middle and rear drives. Part of
the rocker-boogie suspension is the differential. This component keeps the body
pitched parallel to the ground and transfers most of its weight to the rocker-boogie
assembly.

4.1.2 Electrical Design

The power source is a 24 V battery, capable of sustaining approximately 5h of
continuous drive. There are 10 DB59 motors from Nanotec, each with a 1:62 high-
torque planetary gearbox attached. 6 of the motors are used for driving the rover
and have been equipped with a Hall-sensor to monitor their angular velocity. The
other 4 of the motors are used for steering and they have been equipped with
high-resolution encoders to measure their absolute position. The motors and their



24 Chapter 4. Implementation

sensors are interfaced with the OBC via CAN motor drivers.

The OBC is a 64GB NVIDIA Orin [37], a powerful embedded platform running
Ubuntu 20.04. Its Ampere GPU is capable of running computing heavy algorithms
usually used for computer vision such as CNNs. Furthermore, the Arm Cortex-
A78AE CPU has 12 cores which can be used for branching algorithms such as the
ROS 2 navigation and mapping stack.

The sensors propose to be used for this project are Intel RealSense D435i stereo
cameras. The technical details of the camera can be seen in the Table 4.1

Intel RealSense Depth Camera D435i Specifications

Baseline: 50mm
Depth Technology: Active IR Stereo
Field of View Diagonal: 95◦

Field of View Horizontal: 87◦

Field of View Vertical: 58◦

Horizontal Resolution: 1280 pixels
Vertical Resolution: 800 pixels
Max. Depth Frame Rate at full resolution: 30 fps
Max. Depth Resolution: 1280 x 720
Max. RGB Framerate at full resolution: 60 fps
Max. RGB Resolution: 1920 x 1080
Maximum Range: 0.4m to over 10m
Minimum Depth Distance: 200mm
IMU: Yes

Table 4.1: Hardware specifications of the Intel RealSense Depth Camera D435i [38]

4.1.3 Kinematic Model

The kinematic model of the rover is a variation of an Ackerman steering. The
variation lies in the fact that the steering is also done with the rear motor pair, not
just with the front (like a normal car) as seen in Figure 4.1.3.

To perform a turning maneuver, the rover driver has to control the steering angles
for W1, W2, W5, W6 (Figure 4.3a) and the angular velocities of all the wheels. The
constraint is that the turning point must be on the W3, W4 axis. The turning angles
of each of the wheels will thus be the tangent to the circle formed from the center
P to the wheel. As a consequence to the aforementioned, constraint the the angles
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(a) Rover dives along a circle whose center is next to it. (b) Rover turns around its center.

Figure 4.3: Rover turning model described in [35].

for W3 and W4 will always be 0°.

The command from ROS 2 will be a linear velocity in the x-axis, vx and a angular
velocity against the z-axis, θz. From this, the turning circle’s radius has to be
calculated. One approach is to calculate how long it takes to travel a quarter of a
circle given vx ( m

s ) and θz ( rad
s ) (Equations 4.1 and 4.2).

t ∗ θz =
π

2
(4.1)

t =
π

2 ∗ θz
(4.2)

Given that it takes t seconds to turn a quarter of a circle, how large is the distance
based on the vx velocity? From the resulting distance, the circle’s radius is thus
obtained (Equations 4.3 and 4.4).

d = vx ∗ t (4.3)

π

2
∗ r = vx ∗

π

θz ∗ 2
(4.4)

Finally, the turning radius r (m) is obtained (Equation 4.5).

r =
vx

θz
(4.5)

Once the radius is computed, the steering angles a have to be calculated. These
can be visualized with a simplified model of the robot: Figure 4.4. In it, the turn-
ing radius r calculated obtained in Equation 4.5 is the distance between the center
of the robot O and the turning point P. The following algorithm computes the
turning angle α (just above the front right FR wheel). The same can be applied for
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Figure 4.4: Simplified model of the rover’s kinematics, focusing only on the front right FR wheel’s
steering angle α.

the rest.

Observe that the steering angle α is equal to the
⌢

CRPFR angle. Thus the angle
alpha is calculated in Equations 4.6 and 4.7.

CRP = r − CRO (4.6)

α = atan2(
CRFR

CRP
) (4.7)

The turning radius is with respect to the center of the robot. However, each wheel
will have to drive over a smaller or larger circle depending on their offset form the
center O. The radius of the inner and outer circles are given by the distance from
the turning point P and the center of the wheels. In the case of the front right FR

wheel (Figure 4.4), the radius rwheel_turn if given by Equation 4.8.

rwheel_turn =

√
CRP2

+ CRFR
2

(4.8)

The last step is to calculate the angular velocity of the wheels. The turn radius
for each wheel is computed with Equation 4.8. A quarter of the circle with radius
rwheel_turn has to be travelled in t seconds (Equation 4.2). Thus the wheel angular
velocity θwheel is given by Equation 4.9.

θwheel =
π ∗ rwheel_turn

2 ∗ t ∗ wheel_diameter
(4.9)
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Figure 4.5: The simulated rover rendered in Isaac Sim.

Figure 4.6: Simplified Action Graph showing the conversion from /cmd_vel to steering angles and
wheel angular velocity.

4.1.4 Simulation Model

The initial prototyping and development for the navigation stack was facilitated
by the use of the Isaac Sim robotics simulation environment. In it, a URDF model
of the rover has been converted to a USD and then added to the environment
(Figure 4.5). To this model, two action graphs have subsequently been added. The
first is for subscribing to the linear and angular velocity topic in ROS 2 and then
converting it to steering angles and wheel velocities. The second is used to publish
the stereo cameras RGB and depth images as well as the IMU data, which are then
used by the navigation stack.

The Action Graph used for executing the movement commands (Figure 4.6) works
by creating a ROS2_Bridge graph node that subscribes to the /cmd_vel topic and
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Figure 4.7: Simplified Action Graph showing the path Isaac Sim takes to publishing the robot camera
feed.

Figure 4.8: The Isaac Sim Action Graph node chain required to publish the IMU data.

then feeds this information to a Rover Controller node. The controller is a custom
node that converts the linear and angular velocities to steering angles and wheel
velocities using the equations described in Section 4.1.3 and its code can be found
in [39]. Lastly the resulting angular commands are sent to two Articulation Con-
trollers, one for the 4 steering angles and 6 for the angular velocity of each wheel.
A detailed visualisation of this can be found in the Annex .1.1 Figure 5.

The camera and IMU feed is handled by the second Action Graph which sub-
scribes to the appropriate Viewport, encapsulate the images in a ROS 2 message
and publishes it (Figures 4.7 and 4.8). A screenshot of the action graph alongside
an explanation of its components can be found in Figures 1 and 2 in the Annex
.1.1.

4.2 Simulation Environment

The simulation environment used for this project is Isaac Sim [29]. The environ-
ment provides a realistic physics engine, a wide array of sensor data, a convenient
interface to modify and configure the physical properties of the robot and lastly, a
ROS2 interface. Combined with the fact that the simulated world surpasses classic
robotic simulation environments such as Gazebo makes this piece of software the



29 Chapter 4. Implementation

Figure 4.9: A map which has been created in UE5 order to resemble the terrain during ERC

ideal choice for deploying the navigation stack.

4.2.1 Maps

The maps proposed for the simulation represents the spatial environment of Mars.
Those were created in Unreal Engine 5 such to be as realistic as possible. As pre-
viously stated in Chapter 3.5 the format of the maps is an USD format, created
by Pixar in 2016, and now are used in different industries such as: visual ef-
fects, architecture, robotics, design and CAD. 16 maps have been provided by the
University of Luxembourg and an extra one has been created, inspired based on
the map shown on YouTube during ERC 2022. That map created can be seen in
Figure 4.9. Since all the maps were created in UE5, the format of the maps are
USD. Hence, those maps are compatible with Isaac Omniverse and can be applied
various physical properties such as gravity and friction.

4.3 Software and Hardware Setup

While versatile, Isaac Sim and the overarching Omniverse ecosystem requires pow-
erful hardware in order for it to run, making it less accessible. As per its require-
ments page [40] a Good hardware requirement is a CPU (minimum of Intel Core
i7 9th Generation or AMD Ryzen 7) with at least 8 cores, 64 GB of RAM, 500 GB
SSD and a Ray Tracing capable GPU such as GeForce RTX 3080 with at least 10GB
of VRAM. The machine used for this project has the specifications presented in
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Table 4.2 and meets the minimum requirements imposed.

Regarding the software infrastructure, Isaac Sim is running on Ubuntu 22.04 inside
a Docker container provided by NVIDIA itself. The reason for using the Docker
image is that NVIDIA ensures that all its dependencies installed automatically.
Moreover, used docker since our machine has Ubuntu 22.04 installed but Isaac
Omniverse requires Ubuntu 20.04 for the ROS 2 bridge.

Specs of the PC - RobotLab

RAM Memory: 128GB
Processor: AMD Ryzen threadripper 3970x 32-core processor x64
Disk Capacity: 1TB
Operating System Name: Ubuntu 20.04.6 LTS
Operating System Type: 64-bit
Attached GPUs: NVIDIA GeForce RTX 3090

Table 4.2: Hardware specifications of the RobotLab PC

4.3.1 Prim Setup and Robot Control

As mentioned in Section 3.5, the simulated robot is formed of Prims which are
connected via links and joints (articulations). The former are used for static con-
nections that do not deform over time, just like a welding. The latter are used to
connect two Prims and allow rotational movement akin to a hinge joint. To control
the rotation of an articulation joint, Isaac Sim uses the concept of Action Graph.
With this, the user can create an Articulation Controller node, target a joint, and
then set either an angular velocity or an absolute position.

To convert the linear and angular velocity to a wheel angular velocity the user can
either employ a Differential Controller node or make a custom node if the mobile
robot uses a different steering model such as Ackerman. If the rover would have
all its wheels fixed in a forward position, then a differential model could be used.
However, since the front and rear wheels can be individually steered, an Acker-
man model is better suited. More details of the model and its implementation ca
be found in Section 4.1.4.

4.3.2 ROS 2 Bridge

Omniverse Isaac Sim provides both a ROS 1 and ROS 2 bridge for ROS system
integration. For this project, the ROS2 Bridge: Humble is used. The motivation
is that the Humble distribution is the first long-term-distribution version of ROS
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Figure 4.10: A presentation of the setup used for the solution proposed

2, having an end-of-life (EOL) set for May 2027. At startup, Isaac Sim defaults
to enabling ROS 1 bridge which the user must first deactivate it and then enable
the ROS 2 Humble bridge. This must be done before any environment is loaded,
otherwise the system will crash when the simulation is started. As the name sug-
gests, the bridge allows a for ROS messages to be sent between Isaac Sim and a
ROS instance(s) running in a different terminal even different Docker instances.

The setup for this project consists of two Docker instances running on the same
machine, as can be seen in Figure 4.10. The first instance is used for running Isaac
Sim while the second is an instance containing the ROS 2 code, the NVIDIA Vi-
sual Odometry (Chapter 3.2.3) and RTAB (Chapter 3.2.4). The topics published
are the RGBD streams for the stereo camera, IMU data, odometry, simulation time
and transformation frames. The subscribed topic is the velocity command. The
publishing of Isaac Sim sensor data via the ROS 2 interface is not straightforward
and requires a few steps before a message is correctly published. Moreover, there
are pitfalls that, without due care, can cause the setup to stop working in an un-
predictable manner. The setup for these publishers and subscribers are detailed in
the following paragraphs.

To publish the RGB and depth images, a Viewport must be created and then set to
stream the appropriate feed. In Action Graph, the following node chain must be
created in order to publish a video feed: Isaac Create Viewport → Isaac Get Viewport
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Render Product → ROS2 Camera Helper. The Action Graph can be seen in Appendix
.1.1 in Figure 1 and Figure 2. The first two nodes create a Viewport, which usually
pops out and then encapsulates the video feed from it. The ROS2 Camera Helper
node uses this feed and converts it to a ROS Image type then publishes it. The
topic name is supplied by the user. The major issue observed during the project
was that sometimes, when streaming the video feed to Rviz, either the left or the
right camera feed would become black. We discovered that the issue was the fact
that in order for the Viewports to stream images, it requires for them to be active.
In Isaac Sim, in to keep the environment tidy, we decided to put the Viewports as
tabs and only highlight the ones we were interested in. Possibly to save comput-
ing power (we don’t know, we couldn’t find this information on any forum), if a
Viewport is not active, there will be no rendering and thus no image feed.

Publishing the IMU data is done in a facile manner. The user must first add an
IMU sensor to the robot and link it to its main body. Then, in action graph the
following two nodes are required: Isaac Read IMU Node → ROS2 Publish Imu (Fig-
ure 4.8). It is important to note that when Isaaac Sim is loaded, there are two IMU
drivers that are loaded by default. In order to the data to be correctly streamed,
the user must deactivate the DEPRECATED: ISAAC SIM ISAAC SENSOR (.1.1,
Figure 3) plugin before any environment is loaded.

ROS requires a timestamp in order to synchronise the sensor data with the trans-
formation frames and odometry. These two topic are published by Isaac Sim as
well. The Action Graph chains required are:...

There is one subscriber in Isaac Sim for the velocity command. This is used to
parse the /cmd_vel parameters and feed this information to the differential con-
troller. The action Graph used is the following: ROS 2 Subscribe Twist → Differen-
tial Controller → Articulation Controller (Appendix .1.1, Figure 4). The robot used
to test the navigation will be an NVIDIA Carter as the setup for the Mars Rover
described in Section 4.1.4 has issues with publishing the transformation frames.
However, the Action Graph used for driving M.R.F.A.M.E. is slightly different and
will be explained in detain in Section 4.1.4.

Regarding the environment, as stated in Chapter 4.2this project will use a 3D
Moon model obtained from the University of Luxembourg. An example of this
can be observed in Figure 4.11. It is in this environment that the navigation stack
will be mainly deployed. To test basic functionality the NVIDIA Warehouse is also
used. It is expected that a degradation in in Visual odometry accuracy on the
Moon environment due to significantly less distinct features in the environment.
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Figure 4.11: Rover deployed in a Moon environment.

4.4 Detection Stack

The detection stack is in charge of giving a better understanding of the rover’s
surroundings using cameras. In Isaac Sim a camera is simulated such to recreate
the properties of RealSense D435i camera, hence this being the camera used by
the physical robot. This stack is an important tool for providing a better locali-
sation and navigation with via detecting landmarks and and extracting 3D world
coordinates with depth.

4.4.1 QR Code Detection

As seen in the sub-chapter 3.3 QR codes can improve the navigation stack. Since
more information regarding the approach offered by [27] and also, using mainly
OpenCV for detecting QR codes has shown to be buggy in previous approaches,
it has been decided that a combination of OpenCV and ZBar would be use.

The method used in this project it will decode the information of the QR code,
create a bounding box of the detected QR code and extract the center of that
bounding box. This is going to be used for detecting the QR codes on the test
tubes on Mars and for the navigation challenge in the ERC, having a role of a
landmark.

The location of the corners which can be seen 4.4.1 were extracted via ZBar library.
Once the corners’ position was determined, a bounding box was created in order
to emphasis the detection of the QR code.

To find the middle of the ROI, the following formula was used:

Cx =
(P0x + P1x)

2
(4.10)
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(a) Output of the detector to a curved QR code. (b) Detecting multiple QR codes.

Figure 4.12: Output of the detected QR code. Provides the position of the four corners of the
bounding box (0-3), the center of the bounding box, and the decode message.

Cy =
(P1y + P2y)

2
(4.11)

where:

• Cx and Cy are the homogeneous coordinates of x, respectively y of the center
of the boundy box

• P0x and P1x are the homogeneous coordinates in the x axis of the corner 0
and 1 as shown in Fig 4.4.1

• P1y and P2y are the homogeneous coordinates in the y axis of the corner 1
and 2 as shown in Fig

4.4.2 Real-World Coordinate Transformation

The main scope of this project is to navigate, map and localize. This being an
extension of the ExoMyRover, which is going to be used for ERC navigation chal-
lenge and to detect the probes from Mars labeled with QR Codes. Hence, having
a better understanding of the real-world environment is necessary.

In order to extract the real world coordinates, a camera Prim has been created
in Isaac Sim and has been attached to the rover. This camera simulates a stereo
camera and provides via ROS 2 topics information about: depth, imaging and
camera matrices.
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The mapping of data appearing in the world-frame scene to homogeneous image
coordinates is described by Equation 4.12. The equation makes use of the extrinsic
camera matrix, which relates the frame of the coordinates to the camera frame,
and the intrinsic camera matrix projecting and applying an affine transformation
to produce the homogeneous coordinates. Standard right-hand rule axis are as-
sumed, with the Z axis being orthogonal to the image plane (i.e. being the depth).
From the information offered by the ROS 2 CameraInfo the values of the intrinsic
matrix are: FX = 1466, FY = 1467 which represents the focal length measured in
pixels, S = 0 being the skew parameter, PX = 640, PY = 320 representing the cen-
ter coordinates of the camera windows. The matrix in the middle represent the
extrinsic matrix, denoting the transformations suffered by the camera output. R
and T are a 3x3 and 3x1 matrices describing the rotation and translation of the
camera-frame relative to the real world. Since the frames of simulated camera
coincide in the same axis. the extrinsic matrix becomes an I4. [u, v, w are the
homogeneous image coordinate and in order to calculate the digital pixel coordi-
nates simply compute u′ = u/w and v′ = v/w rounded to integers. [Xs, Ys, Zs, 1]t
is the scene point world coordinates measured in mm. Finding 3D coordinates
it is possible only if ZS, the depth, is known. As mentioned above, the depth is
provided by the topic in ROS 2 /depth. Hence, the equations used to find the real
world coordinates for XS and YS can be seen in Equations 4.13 and 4.14.

Xs =
(u − PXZs)

F
=

(u′Zs − PXZs)

F
(4.13)

Ys =
(v − PYZs)

F
=

(v′Zs − PYZs)

F
(4.14)

4.4.3 AprilTags Detection

Due to lack of QR codes materials offered by Isaac Sim Omniverse, an alternative
for AprilTags has been used, Aruco ROS 2 package [41]. This package works as
following and can be seen in Figure 4.14:

• Subscribe to the camera’s output

• Segmentation of the image: grayscale the image to reduce noise and compu-
tation and using a Canny edge detector.

• Contour extraction and filtering by removing the irrelevant contours by set-
ting a threshold
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Figure 4.13: Extraction and analyzing of the message encrypted by bits [41]

• Analyze the marker code by computing the bit for each pixel cell of the
matrix. This process can be seen in Figure 4.13

4.5 SLAM Stack

The main idea of the SLAM Stack is to map undiscovered areas and to provide
a better understanding of the location of the rover. There are two SLAM algo-
rithms deployed for this project, RTAB-Map (section 3.2.4) and Elbrus (section
3.2.3). Kimera is another contender due to its powerful toolbox, but due to its
Docker Image not being updated since 2020 and having libraries out of date which
can not be synchronized between them, it has not been chosen.

The SLAM algorithms have been deployed separately but tested in the same sce-
narios. The main sensor which is used for this implementation is mainly the Re-
alSense D435i camera, which also has been simulated in Isaac Sim. The following
subsections describe their setup and observed issues.
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Figure 4.14: AprilTag detection done in Isaac Sim with ROS2 and Aruco package.

4.5.1 RTAB-Map Setup

RTAB-Map has been chosen for being part of the stated solution due to it’s easy
manageable memory and it’s 3D mapping. These are satisfactory requirements for
the scope proposed in Chapter 2.4 given that RTAB-Map provides visual odome-
try and IMU, plus a good understanding of the environment, even though the test
results shown in Chapter 3.2.1 shown that it’s not the best algorithm for outdoors
SLAM.

In order to connect the robot to the RTAB-Map a connection between those two it
is needed. This has be done via launching two Docker containers, one for Isaac
Sim and one for ROS 2 as can be seen in Figure 4.10. The connection is done by
enabling the ROS 2 Bridge Humble for Isaac Sim and setting for both containers the
ROS_DOMAIN_ID to 5. RTAB-Map can be seen working in Figure 4.15.

The parameters provided for the RTAB-Map to work are:

• visual_odometry:=True (enabling the VO node)

• frame_id:=base_link (the fundamental link of the rover and can be consid-
ered as its center)

• odom_topic:=/odom (provides information of rover’s position via VO in xyz
and orientation)

• use_sim_time:=true (simulation time is needed to synchronized the mes-
sages with the time inside Isaac Sim)

• rgb_topic:=/rgb_right (used to preform imaging)
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• depth_topic:=/depth_right (provides depth information, needed to preform
VO)

• camera_info_topic:=/camera_info_right (provides information based on the
camera matrix, needed for the cameras to preform action such as extracting
depth or to preform VO)

4.5.2 Elbrus Setup

Elbrus’ is another SLAM algorithm chosen for implementation due to being tai-
lored by NVIDIA and it’s being compatible with NVIDA’s software such as Isaac
Sim and hardware such as Orin. This comes as a package for ROS 2 made for
stereo cameras and IMU to estimate VIO. This VSLAM approach has the best re-
sults of the KITTI VO and SLAM dataset in translation (0.94%) and rotation (0.0019
deg/m).

To run it, the Docker Container must be launched. The connection is done by
enabling the ROS 2 Bridge Humble for Isaac Sim and setting for both containers
the ROS_DOMAIN_ID to 5. After, the package has to be launched and it is given
sparse point clouds and VO data (position xyz and orientation).

Figure 4.15: Implementing RTAB-Map in a warehouse environment for testing purposes. It can be
seen that a 3D map has been created with mashes and the blue lines represent the VO. In the right
panel it can be seen that a loop closure was found due to green color between the images that match



5 - Testing
In this section the different aspects of the SLAM and the navigation stack will
be individually tested in both virtual and real-life environment in order to asses
their suitability for a rover mission in uneven terrain. The requirements will first
be discussed alongside their respective acceptance tests, then the test setup and
results will be analysed.

5.1 Requirements

The scope of this project is to showcase how various technologies such as SLAM,
navigation and landmark detection can be deployed on a rover in order for it
to map and traverse an unknown and uneven terrain. An important aspect is to
highlight how these systems perform in low-feature environments (deserts) versus
indoor environments where there are far more visual features. The intent is for
this system to be deployed on a celestial body such as the Moon or Mars. How-
ever, due to cost, the system presented will be deployed in simulation and, in a
limited manner, in a laboratory environment.

There are two main components presented in this project. The first is the simu-
lation environment Isaac Sim. The second is the overall perception and control
system. As such, the requirements are divided into two sections to reflect the
aforementioned observation.

5.1.1 Simulation Environment Requirements

Isaac Sim must should a realistic environment, offer a ROS 2 plugin and provide
a controllable robot in order for it to suitable for testing. To this end it should:

• Allow the import of 3-rd party maps. It should allow the user to import any
map formed of meshes into its environment and use it as the terrain onto
which the assets such as robots can be deployed.

• Allow the use of a URDF defined robot into its environment. URDF is
a common standard in defining the build of a robot. The simulation envi-
ronment should be able to accept this format and either use it directly or
provide the tools necessary to convert it to its local format.
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• Provide a ROS 2 interface to access sensor data and control the robot.
ROS 2 is used to develop the perception and control stack and as such, the
simulation environment should be able to interface with it.

• Allow the deployment of the simulated rover. The software version of the
rover should be able to be deployed in the simulated environment and be
controlled via the ROS 2 interface.

5.1.2 Perception and Control Requirements

For the system to be a considered a suitable for the desired task, it should:

• Create a 3D map of it’s surroundings. A 3D map of its environment should
be created.

• Detect landmarks. Here, the landmarks are defined as either QR codes or
an AprilTag. The vision system should be able to identify them and provide
the information needed to calculate its location relative to the robot.

• Detect wheel slippage. The system should be detect when slippage occurs
during its navigation.

5.1.3 Acceptance Tests

Table 5.1: Table specifying the requirements for the solution and the acceptance test for said re-
quirements.

Requirement Acceptance Test
1.1 Allow the import of 3-rd

party maps.
Import a 3-rd party terrain mesh and de-
ploy an asset over it to test the collision.
Visually inspect that the asset does not
fall through the terrain.

1.2 Allow the use of a URDF de-
fined robot into its environ-
ment.

Import a URDF robot and deploy it in an
environment. Visually inspect that all its
components are available to be accessed
and modified in its native environment.

1.2 Allow the use of a URDF de-
fined robot into its environ-
ment.

Import a URDF robot and deploy it in an
environment. Visually inspect that all its
components are available to be accessed
and modified in its native environment.

Continued on next page
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Table 5.1– continued from previous page
Requirement Acceptance Test

1.3 Provide a ROS 2 interface to
access sensor data and con-
trol the robot.

Deploy a robot in simulation and list in a
separate terminal the ROS 2 topics gen-
erated by the simulation environment.

1.4 Allow the deployment of the
simulated rover.

Deploy the rover in simulation and is-
sue a velocity command. Visually inspect
that the rover executes the correct com-
mand. Display in Rviz the left and right
camera video feed to demonstrate simu-
lated camera functionality.

2.1 Detect landmarks. Run the landmark detection algorithm
and add a bounding box around it in the
video feed. Display the distance from the
camera to it.

2.2 Create a 3D map of it’s sur-
roundings.

Run the Elbrus and RTAB-Mapping and
show that a map can be generating with
either algorithms. Visually inspect the
map generation.

2.3 Detect wheel slippage. Show that the trajectory output of ei-
ther Elbrus or RTAB-Map reflects that
the rover is not moving even though the
command is to move forward. Visually
inspect this behaviour.

5.2 Delimitation

Due to issues with Isaac Sim and time constraints, requirements 2.2 and 2.3 can
only be tested in simulation. Furthermore, Isaac Sim does not provide a simple
method of extracting the exact position of the rover (ground truth) in order to
compare that with the visual odometry. As such, for this project, the accuracy of
the visual odometry is not quantified. Mitigating actions are discussed in Chapter
7.1.1.

There are two robots that have been used in simulation, one is the 6-wheel rover
discussed in Chapter 4.1 and the other is Carter, differential drive robot model
provided by NVIDIA. Since the navigation stack is agnostic of the robot type, it
can be deployed on either of them. Due to transformation frame issues with the 6-
wheeled rover, all the perception and control requirements have been tested with
Carter.



42 Chapter 5. Testing

Figure 5.1: The simulation is started and the topics are being listed.

Lastly, the real-world landmark detection test has been performed with the RGB-D
being handheld and not mounted to the robot. Requirement 2.1 does not neces-
sarily need for the camera to be attached to the robot.

5.3 Tests

5.3.1 Test 1

This test consists of deploying the simulated rover on the surface of the moon and
issue a move command using ROS 2 from an external terminal. The observed
behaviour is that the rover begins moving and correctly outputs the left and right
camera feeds in the Viewports in Isaac sim. Rviz is deployed and correctly streams
the left and right RGB and depth image feed.

Figure 5.1 shows that the rover was loaded, the simulation is running and that the
appropriate topics are listed. Figure 5.2 provides a closer view of the topics which
are depth, RGB and info for the left and right cameras, odometry and transforma-
tion frames.

In Figure 6 located in Appendix .2.1 the Mars Rover asset can be found in the
stage of the simulation. Note that it contains all the components such as Differen-
tial, FL_Driver, etc. which have been converted from URDF to USD format. This
satisfies Requirement 1.2.

In Figure 7 located in Appendix .2.1, proves that the custom made driver has been
used in this simulation.
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Figure 5.2: The ROS 2 topics listed once the simulation was started.

Figure 5.3: QR Code being detected using a RealSense Camera.

Lastly, the video [42] shows how the rover is controlled using a ROS 2 command
and the images being streamed in Rviz. The environment is a Moon scenario
using a map provided by University of Luxembourg. This video combined with
the observations previously made in this test satisfy topics 1.1 to 1.4.

5.3.2 Test 2

This test demonstrates the functionality of the landmark detection algorithm. This
projects uses two algorithms. A custom made one made for this project which
uses OpenCV and Pyzbar library. This is showcased in video [43] and Figure 5.3.
In it, the RGBD Realsense camera is used to obtain the video and depth feed. In
the left image the QR code is highlighted in a blue square which moves with its
position. On the left the depth image is displayed. The X,Y and Z coordinates of
the center of the QR Code are also displayed. With this information, the position
of the landmark with respect to the robot can be calculated.

Moreover, a second test was made using the Aruco [41] ROS module. This can be
seen in video [44]. This test was run using the NVIDIA Warehouse environment
which already has AprilTags setup in its environment. The tags are highlighted
with blue squares and, though difficult to observe, a XYZ axis is projected from the
center of the tag. Aruco library provided a transformation frame from the camera
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Figure 5.4: Carter deployed in the warehouse environment.

to the tag. The issue is that while it is displayed in the output image, the topic
which should contain this transformation is empty. Time constraints prevented
the debugging of this issue.

Currently there are two solutions that are able to detect and track both QR and
AprilTags and offer sufficient information to compute their location with respect
to the robot. This satisfies Requirement 2.1

5.3.3 Test 3

This test will evaluate the performance of RTAB-Map in both indoors and out-
doors. The robot used for this test is NVIDIA Carter due to its already made
sensor setup and functioning TF tree. In both environments, the robot is given a
constant liner and angular velocity, making it turn in a circle.

The outcome of the deployment in the warehouse (indoors) environment can be
seen in video [45]. The right-hand side of the video displays the Isaac Sim envi-
ronment Figure 5.4 with left and right camera feed on the top and a perspective
view of the robot on the bottom. The left-hand side displays the output of RTAB-
Map Figure 5.5.

From time 0:00 until 1:19 there is no loop closure. At 1:20, when the robot reaches
the starting point a loop-closure is detected, as seen by the green border of the
window on the far left. Note that the match ID is 1 meaning that it matched the
current frame with the first keyframe. This is to be expected based on the descrip-
tion provided in Chapter 3.2.4.
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Figure 5.5: The output of RTAB-Map. The 3 images on the left are the loop closure debug output.
The middle image is the 3D map containing the keypoints. The bottom right image is the resulting
3D map.

At 1:29 there is another match between the current frame and frame 93. This
time however, there are fewer matching keypoints indicated by the yellow border.
Around this time when the matching starts to fail, the estimated path in the bot-
tom right image shows that the robot’s odometry is corrected more aggressively.

At 1:39 the matching is rejected altogether, signalled by the red border.

Between 1:45 and 2:05, there are no loop-closure. This is caused by the fact that the
keypoints are far away on the walls. The walls are uniform thus providing little in
terms of variation. At 2:05 however a loop-closure is achieved and the path is re-
cursively updated. Notice how the blue circle is smoothed when the loop-closure
is detected.

At time 2:50 (Figure 5.6), looking at the 3D map (bottom right image), it can be
observed that the bottom part of the forklift is closer to the robot than the upper
half. This is because the voxels closer to the robot have been updated on the first
and second loop closer, while the rest were too far away to be considered for up-
date.

This behaviour proves that it can perform a 3D map generation and also perform
local updates whenever the same region is visited again.
RTAB-Map was also used in a Moon terrain as seen in video [46]. Here its per-
formance is significantly worse. Firstly, the similarity of the terrain leads to false
positives when it comes to loop closure detection. This is illustrated at time 0:39.
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Figure 5.6: The local 3D map updated. The bottom part of the forklift is is closer to the robot than
the upper part.

At 1:22 the robot is roughly in the same place as it started, yet the path resembles
a semi-circle. This further emphasises that the loop-closures were made in error.
Moreover, between 0:32 and 0:40 the robot encounters a rough path which results
in a very shaky and jerky video feed. At 0:40 when a loop-closure is made two
large spikes can be observed in the corrected path.

Nonetheless, between 0:43 and 0:50, slippage can be observed in Isaac Sim. Look-
ing at the 3D map output of RTAB-Map the position of the robot does not change
while the slippage occurs, demonstrating that it can be used to detect slippage. It
is to be noted that, while incorrect, a 3D map is still constructed.
The fact that a 3D map is constructed and slippage is detected, Requirements 2.2
and 2.3 respectively.

5.3.4 Test 4

This test assess the performance of Elbrus SLAM. It is done in the same manner
of Test 3 (Chapter 5.3.3), where the Carter robot is commanded to go in a circle
in both an indoor and outdoor environment. Both videos have the same format
where the left-hand side displays Rviz showcasing the trajectory and point cloud,
and the right-hand side displays the Isaac Sim environment.

The first test, shown in video [47], is made in the warehouse environment. Be-
tween time 0:00 and 1:12, there is no loop-closure and the trajectory is shown in
blue. It can also be observed that while the rover is turning a point cloud is gen-
erated. This consists only of keypoints. It may be difficult to observe on a small
screen, but they are in 3D.



47 Chapter 5. Testing

At 1:13, after completing the circle, the first loop-closure is detected. The path
from the first frame until the loop closure is marked in green and updated. The
difference can be seen between the previous, estimated path marked in blue and
the newly updated path.

While in theory capable of generating a 3D map, issues were encountered while
trying to deploy it. In the end, time constraints prevented the generation of a 3D
map.

The second test with Elbrus was made using the Moon terrain and can be seen
in video [48]. In here the initial position and orientation of the robot was up a
hill. Between 0:07 and 0:31, the robot is slipping and immediately the estimated
trajectory matches this behaviour. From 0:32 until 0:45 the rover is not slipping
and turning slightly to the left as expected.

At time 0:46 the angle of the 3D environment in Rvis is adjusted to showcase that
indeed the robot is going uphill and that the path matches (at least visually) with
the path observed in Isaac Sim. At around 1:01 the robot starts slipping and this
is accurately depicted in Rviz.

The lack of 3D map generation implies that Requirement 2.2 was not satisfied.
However, the wheel slippage was not only detected but done so in a accurate
manner, meaning that Elbrus meets Requirement 2.3.



6 - Results
6.1 Simulation Environment Results

Isaac Sim meets all the stated requirements. It generates accurate and reliable data
which is then wrapped in ROS 2 topics. Moreover, it also allows the user to in-
terface with the robots deployed in its environment in a robust manner via ROS 2
messages as well.

While it delivers a wide array of features, the overall system suffers from crashes
in the best cases and silent, unpredictable malfunctions in the worst. The latter are
particularly disruptive as it may lead the user to look in the wrong place while de-
bugging. And example would be the fact that if a simulation is stopped or paused,
and then started again, the TF frames are no longer valid and neither RTAB-Map
nor Elbrus will function. The solution is to exit Isaac Sim and restart the program.

Even with the aforementioned issues, the system is still suitable for deploying
complex, visual-based algorithms and use it to either test robots in complex sce-
narios or perform machine learning. The fact that provides a ground truth for
complex assets such as simulated humans offers it a significant advantage over
similar robotic simulation environments.

6.2 Perception and Control Results

6.2.1 Landmark Detection Results

The landmark detection algorithms used, both were able to detect and track the
QR and April Tags (landmarks). Moreover, both demonstrated the capability of
providing sufficient data to compute a transformation frame between the robot
and the landmarks.

Nonetheless, both approaches had issues. Aruco was not outputting the trans-
formation frames even though it showed in the result video that it was able to
generate them. This most likely stemmed from the fact that it was not given the
correct transformation frame and base link name. Various combinations that have
been demonstrated to work with Elbrus and RTAB-Map have been tried, but none
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were successful. Time constraints prevented further debugging.

The custom code suffered from sporadic errors in depth perception. This be-
haviour has been observed in other projects and is caused by the depth calculation
and RGB alignment not being run with with CUDA cores. Our tests was run on a
laptop which did not have CUDA capabilities. The symptom of this issue is that,
sporadically, there will be a zoom caused by the reduction in image resolution.

6.2.2 Visual SLAM Results

RTAB-Map performed well in the indoors environment. It was able to detect loop-
closures and smoothed the estimated path every time this occurred. It proved that
it can generate a 3D map and update the voxels whenever it passed through an
area previously visited.

Nonetheless, while it was facing a distant wall were few close features were de-
tected, its performance was impacted. This was even more apparent when it was
deployed in the Moon environment. In that scenario its odoemtry estimation was
unusable.

Yet, while the odometry was poor, it was still able to detect when the robot was
getting stuck or slipping. This is to be expected as in this scenario the odometry is
calculated from frame to frame (F2F) and the features are tracked with optical flow.

Elbrus SLAM was unfortunately unable to be set up in order to generate a 3D
map. However, observing its estimated paths and loop-closures, it appears that
its performance is superior to that of RTAB-Map. The estimated path it gener-
ated in the Moon environment appears to be accurate, yet without ground truth
it is very difficult to tell from the video alone. A explanation for its performance
lies in the fact that, it incorporates IMU data and fuses it with the visual odometry.

Based on the results, Elbrus SLAM would be a more suitable candidate for visual
odometry if the robot is to be deployed in a rugged, featureless terrain such as the
Moon or Mars.



7 - Discussion and Conclusion
7.1 Discussion

For a robot to navigate autonomously navigate an environment that is rugged
and has sparse visual keypoints, it requires a complex and modular system. This
system has to perform localisation, mapping and detect landmarks to which the
robot has to navigate.

This project discussed the state of the art of these technologies and provided a
simulation environment to test their performance. The chosen simulation envi-
ronment was Isaac Sim as it met the necessary requirements to provide reliable
and high quality sensor data and generate realistic environments.

Furthermore, two approaches for landmark detection have been assessed both in
simulation and in the real-world. These have proven to be highly reliable and
simple to deploy.

Lastly, two Visual SLAM algorithms have been tested: Elbrus and RTAB-Mapping.
From the results of these tests, Elbrus SLAM preformed better than RTAB-Map
achieving a far more accurate estimation of the robot’s trajectory in the Moon ter-
rain. This assessment is purely based on visual observations. The ground truth
from Isaac Sim was difficult to obtain. Attempts at it have yielded no results and
incurred a high time cost.

Some observations can be made regarding the performance of the two algorithms.
The first is that both are able to detect when the robot is stuck or experiences
slipping. Optical flow is a useful approach when there are no immediate distinct
features nearby. The drawback is that the the camera has to be pointing at the
ground and at the same time has to be very close to it. The further it is from the
tracked features, the less accurate the optical flow estimate.

The second observation is that combining IMU with visual odometry greatly im-
proves the reliability of the measurements. This is expected as the IMU can offer
more reliable information when the robot is traversing an area with sparse visual
features.
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A solution for the SLAM problem will most likely have to include optical flow and
IMU in its sensor fusion.

7.1.1 Future Work

Extracting Ground Truth Position of the Rover

Extracting the ground truth position from Isaac Sim, console has proven to be a
difficult task. Once the extraction of this ground truth will be developed, Test 3
and 4 will be redone and their odometry will be compared with the ground truth,
thus providing quantifiable assessment of their performance.

Isaac Sim provides Action Graphs to interrogate the attributes of a Prim such as
it X,Y,Z and orientation, however, it does not provide a method of exporting this
outside of Isaac Sim. The solution envisaged is the creation of a custom node that
intercepts this data and either streams it to a file or generates a custom ROS 2
node that publishes this information.

Navigation Stack

Inspired by Zhang et al. [27] an autonomous navigation helped by QR messages
will be implemented. This method implies detecting the landmarks, in this case
QR codes, navigate to them and, at certain distance, execute the commands en-
coded in the QR code. An example of this type of landmark was offered by ERC
and can be seen in Figure 8. The motivation behind this approach comes from the
good results presented in the aforementioned paper and due to the improvements
in speed and efficiency during autonomous navigation. This behaviour will be
integrated using the Nav2 ROS2 module.

Physical Rover Testing

As stated previously, Isaac Sim setup was a time consuming process which occu-
pied a significant portion of the time allotted for this project. Unfortunately, this
meant that the perception stack was only deployed in simulation and not on the
real rover. Since this rover will be used in future competitions, it is important that
a working solution be given to it.

On the one hand, the deployment should not incur many problems as the interface
between the hardware and the perception and navigation stack is done in ROS 2.
The topics, publishers and subscribers will be the same as those used with Isaac
Sim. Furthermore, the perception stack is run within a Docker container. This
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should further help with deployment.

It is expected that problems will occur when the sensors will be used. From
previous experience, RealSense cameras have had issues with Docker containers
whereby the USB was not detected or it was missing libraries that were incompat-
ible with the hardware.

Kidnapped Robot Problem

In order to solve the kidnapped robot problem, the generated 3D map has to be
saved along with 3D features needed for loop-closure detection. This feature is
required for the situation where the rover is moved by sandstorms on Mars or its
sensors malfunction, requiring a restart. This has not been a priority due to the
perception stack being deployed in controlled or simulated environments.

This feature will be needed if the rover is to be used in competitions such as the
ERC. The implementation will require that a OctoMap server is setup and then
connected to the SLAM stack.

Automatic Environment Generation

A challenge faced while setting up the environment is that manually importing
an asset such as the rover was a tedious and complicated task. The user had to
unsure that the paths to the assets and all of their sub-components were consistent
and not corrupted during a copy-paste operation. Isaac Sim provides a python
script interface that can be used to procedurally generate an environment in which
the adding of assets was an automated task. This will save time required for
deployment and reduce the errors incurred from copying assets between different
environments.

7.2 Conclusion

This project has presented the challenges of deploying a robot in extreme envi-
ronments such as the Moon or Mars. It then begun presenting solutions to those
challenges specifically, in the domain of localisation, mapping and navigation with
a exposition of the state of the art. An analysis then followed on the advantages
of using visual odometry to perform the localisation and mapping.

Two Visual SLAM approaches have been selected:Elbrus SLAM and RTAB-Map.
To test these, a simulation environment was used. The software used was Isaac
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Sim, chosen for its wide array of features, quality of sensor data and visually real-
istic environments.

Testing showed that by RTAB-Map was not a suitable candidate for the required
task, this being better suited for Elbrus. However, a proper solution would have
to use aspects form both algorithms that have proven to be very useful such as
optical flow or the use of IMU.

Future work is needed in order to obtain a solution that is reliable and robust.
This solution will also have to be deployed on a real rover, not just in a simulation.
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.1 Isaac Sim Setup

.1.1 Omnigraph Setup

Figure 1: The first part of the Action Graph chain required to publish an image topic. Here, the
Viewport is created, then the rendered image is obtained. The Isaac Set Camera is used to supply the
camera Prim path. The Branch node is the equivalent if an "if" statement that enables or disables this
Action Graph branch.

Figure 2: The second part of the Action Graph chain required to publish an image topic. Here the
rendered image mentioned in Figure 1 is sent to the ROS2 Camera Helper which publishes the topic.
There are 3 ROS2 Camera Helper nodes for the 3 topics: RGB, depth, and camera_info.
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Figure 3: The deprecated plugin that has to be disabled in order for the IMU sensor to work.

Figure 4: The node chain required to convert a /cmd_vel message into a angular velocity for the
wheels of a differential drive robot.
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Figure 5: The node chain required to convert a /cmd_vel message into a angular velocity and
steering angles for the wheels of the 6 wheeled rover.

.2 Testing

.2.1 Test 1
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Figure 6: The Mars Rover Asset is present in the Stage of the environment. Note that all its compo-
nents (Differential, FL_Boogie, etc.) are listed and can be modified.
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Figure 7: Proof that the custom made rover driver has been currectly imported as a plugin in Isaac
Sim.

Figure 8: A presentation of a landmark shown by ERC which it will be placed on a special Martian
track. This landmark comes to help rovers during the competition to traverse autonomous the trail
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