
Resumé

Vi arbejder med Software Defined Networking, hvor vi kigger p̊a, hvordan man
kan opdatere et netværk uden at overbelaste det. Netværk kan modelleres som
grafer med knuder og kanter, hvor hver knude er en router og hver kant er
en forbindelse mellem to routere. En mængde data der bliver sendt igennem
netværket fra én router til en anden kalder vi en strøm, og hver strøm følger
nogle bestemte stier. Hvis man vil ændre de stier som strømmen følger, s̊a kan
man opdatere strømmen.

Problemerne opst̊ar n̊ar man vil opdatere flere strømme p̊a samme tid.
Netværk er decentraliserede, hvilket betyder, at tidssynkronisering mellem
routerere er praktisk set umuligt, s̊a hvis man prøver at opdate flere routers
p̊a samme tidspunkt, s̊a ved man ikke hvilke, der bliver opdateret først. Det kan
være et problem, for s̊a risikerer man, at data bliver tabt under opdateringen.

En m̊ade at h̊andtere dette problem p̊a er, at gennemtvinge en bestemt
rækkefølge som routerne skal opdateres i, hvor man da kan garantere at in-
gen data bliver tabt, og denne tilgang er velstuderet. Vi arbejder med en variant
af denne idé ved at tillade, at man kan opdatere strømme delvist, s̊a noget
af dataen følger den b̊ade den gamle og den nye sti, og ved at man kan dele
opdateringerne op i mindre dele p̊a denne m̊ade, s̊a kan man finde opdater-
ingssekvenser som undg̊ar overbelastning, som man ikke ville kunne finde, hvis
man opdaterede hele strømme p̊a én gang.

Vi beviser, at dette problem kan løses i polynomialtid sammen med en mono-
ton variant af problemet. Ydermere beviser vi, at en atomisk variant af prob-
lemet, hvor man kun kan opdaterere en strøm ad gangen, er NP-komplet, og
vi beviser ogs̊a, at en fastsat granularitets-variant, hvor man kun kan opdatere
strømme i inkrementer af en vis størrelse, er NP-svær.

Vi reducerer det generelle problem til en lineær programmeringsmodel. Det
der hovedsaligt adskiller vores arbejde fra andet literatur p̊a omr̊adet er, at vi
ikke bare finder bare en løsning som er ’god nok’, vi finder den optimale løsning,
der giver minimal belastning p̊a netværket. Vi implementerer vores lineære pro-
grammeringsmodel, og kører en række eksperimenter med denne. Vores eksper-
imenter viser, at den lineær programmeringsmodel i sig selv giver gode resul-
tater, men ved at bruge diverse teknikker til at løse problemet, s̊asom at fjerne
overflødige strømme og kanter, s̊a kan vi i mange tilfælde mindske køretiden til
en tiendedel.
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Abstract. We study consistent network updates with the focus on min-
imizing transient congestion. While we migrate the network from its ini-
tial configuration to its final configuration, we allow each flow to split its
data between the old and the new path. The goal is to find a sequence
of at most n split ratios for each flow that allows it to transition to the
final configuration while minimizing congestion. We study the computa-
tional complexity of different variants of this problem, and we find that
the most general variant of our problem can be solved in polynomial
time, and we show how to reduce it to a linear programming problem.
While most literature that studies congestion-free updates simply find a
solution that is good enough, our model is capable of finding an opti-
mal solution that minimizes the maximum link utilization. In order to
improve the scalability of our approach, we propose multiple techniques,
and we run experiments which show that these techniques can improve
computation time by an order of magnitude.

1 Introduction

Computer networks are everywhere. From the ubiquitous Internet to data cen-
ters and IoT, we interact with networks in every part of our lives. But as the
world has become more connected, the amount of data traffic has increased im-
mensely; from 2016 to 2021, the data generated globally increased from 218 ZB
to 847 ZB [5]. The enormous amount of data can be difficult for networks to
manage, because traditionally, each switch and router controls path selection
in a fully distributed manner, which scales poorly when networks are large and
complicated [6]. When traffic demands change often, distributed control makes
sense, because it has good fault tolerance, but when this is not the case, there is
a compelling argument for removing control from the switches in exchange for a
centralized controller [4].

Software Defined Networking (SDN) [6] [17] is a growing paradigm for con-
trolling network infrastructure, where the control plane and data plane are sep-
arated, so a centralized controller is responsible for path selection and update
scheduling, while the switches are only responsible for forwarding data. When
the controller has determined paths for each data flow, it sends the new rules to
each switch and router, which then update their tables.



However, it is difficult to synchronize clocks in a distributed system, so what
happens if one switch updates its tables before the other switches are ready? In
the worst case, this can lead to packets looping, packet drops, and link conges-
tion. Even if this loss is temporary, it might be undesirable, which has brought
about the field of consistent migration [11], which is about constructing up-
date schedules such that switches are updated with an ordering that guarantees
certain properties for networks during migration.

There are multiple avenues to explore in this field. Foerster et al. [11] have
made what is, at the time of writing, the most comprehensive survey in the
field of consistent updates for SDN, and they define three categories of transient
consistency properties: connectivity consistency, policy consistency, and capacity
consistency.

Connectivity consistency is about ensuring that packets have a path to their
destination. There are two major topics in this category, the first of which is loop-
freedom [8][10], which is about guaranteeing that, during the update process,
switches do not send packets in back and forth between each other, and this
is the oldest area of study in the field of consistent updates. The other topic
is blackhole freedom [10], which is about avoiding packets ending up in a dead
end before arriving at their destination. In general, these problems are NP-hard,
though there exist special cases where the problems can be solved in polynomial
time [2].

Policy consistency is about ensuring that packets fulfill some policy require-
ments, for example that all packets should go through a certain switch before
reaching their destination, called a waypoint policy [18], which can be important
in the context of firewalls and network security. The oldest policy consistency
property is called per-packet consistency, which is introduced by Reitblatt et al.
[23]. When flows are updated from using some initial paths to some different
paths, per-packet consistency is the guarantee that each packet can only follow
the initial or the final paths, but never an intermediary path. This simplifies
an update process, because each packet only ever follows one set of forwarding
rules. Our network model is based on the assumption that we can guarantee
per-packet consistency with a process called two-phase commit [23], where we
stamp each packet with information that determines whether it follow the old
or the updated path. The primary downside to this method is that it can intro-
duce unnecessary memory overhead on the switches because they need to know
both the initial and final configuration, the memory requirements are effectively
doubled.

The final property is capacity consistency, where the goal is to update
switches in a sequence that avoids sending more data through links than they
have capacity for, to avoid congestion. There are two main areas of study here,
where the newest is about link latency, as it has been found that link latency
can have an effect on congestion. For example, when a flow that initially uses
high-latency links is updated to use low-latency links, this can cause the flow to
congest itself [9]. Recent work [25] [26] [7] has found techniques to avoid conges-
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tion from link latency, e.g. by using timed SDN. This paper does not consider
the impact of link latency on link utilization during updates.

Instead, we study the other area of capacity consistency, which is about
directly avoiding congestion by updating switches in the right ordering. There is
already much literature on the subject [11][23][14][12][4][3], but there is still room
for more research in this area, both in the theoretical formulation of the problems
and the design of efficient algorithms to solve the problems. Typically, studies on
capacity consistency use two-phase commits as the lowest-level operation, where
whole data flows are updated as an atomic operation, thereby avoiding dealing
with singular switch updates, and we also follow this paradigm.

Our main contribution is that we find a linear programming solution that
can determine an optimal update sequence to minimize the maximum utilization,
given a length bound for the update sequence. Second, we adapt and improve
the simplification techniques from [19], which we later show has a significant
effect on the computation time of finding a solution. We also come up with
our own technique, where we remove some of the smallest flows, and instead
directly calculate the worst-case utilization they could provide, giving us an
overapproximation of the optimal maximum utilization. Thirdly, we find the
complexity of our problem, and multiple variants of the problem. Finally, we
implement a solver for our linear programming reduction of our problem, and
show that by applying multiple techniques, we can efficiently find solutions for
topologies with sizes ranging from 5 nodes to 197 nodes.

2 Network Model

We use a directed and capacitated graph as a representation of a network where
the nodes represent switches, the edges represent connections between switches,
and a capacity function on the edges represents bandwidth.

Definition 1 (Capacitated network). A capacitated network is a directed
graph G = (V,E, capacity) where V is a set of nodes, E ⊆ V × V is a set of
edges, and capacity : E → N≥1 is an assignment of each edge to its capacity.

We use paths to model how data travels through a capacitated network.
Intuitively, a path is a connected sequence of edges.

Definition 2 (Path). A path is a finite or infinite ordered sequence of edges
(v0, v1), (v1, v2), (v2, v3), . . . where (vi, vi+1) ∈ E for all i ≥ 0. The empty path
is denoted ϵ, and the set of all paths is denoted P. We write the number of times
a link e is present in a path p as #e⟨p⟩.

A flow is a representation of a certain amount of data being sent from one
specific switch to another. Since we are interested in network updates, we assign
two paths to each flow, one, initial, path representing the edges the data travels
through before the update, and the other, final, path representing the edges the
data travels through after the update. The amount of data that is sent in a flow
is called the traffic demand of the flow.
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Fig. 1: A small traffic system. The circles v1, v2, and v3 are nodes and the solid,
black line between each node is an edge in both directions with a capacity of 1.
There are two flows, so F = {f1, f2}, and f1 is the red, solid arrows, while f2 is
the blue, dashed arrows. The initial path of each flow is the single-lined arrows,
while the final paths are the double-lined arrows. Each flow has a traffic demand
of 1.

Definition 3 (Traffic system). A traffic system is a 5-tuple (G =
(V,E, capacity), F, initial ,final , demand) where G is a capacitated network, F
is a set of flows, the function initial : F → P is an assignment of each flow to
its initial path, the function final : F → P is an assignment of each flow to its
final path, and the function demand : F → N≥1 is a mapping of each flow to its
traffic demand.

For the rest of the paper, we fix a generic traffic system T = (G =
(V,E, capacity), F, initial ,final , demand).

One example of a traffic system is Figure 1. The capacitated network is a
fully connected graph with three nodes, where each edge has a capacity of 1.
There are two flows, f1 and f2 that each have a traffic demand of 1, where the
initial path of f1 is (v1, v2) and the final path of f1 is (v1, v3), (v3, v2), while the
initial path of f2 is (v1, v3), (v3, v2) and the final path of f2 is (v1, v2). The idea
is that both flows initially send data through their respective initial paths, and
we wish to update the flows such that the data is sent through their final paths.

The key concept we use for modelling updates is a split ratio. A split ratio
determines how much of the data traffic of a flow is sent through the initial path
and final path. If a split ratio of a flow is 0, then all the data travels through
the initial path, and if it is 1, then all the data travels through the final path.

Definition 4 (Split ratio). A split ratio split : F → {x ∈ Q | 0 ≤ x ≤ 1} over
F maps each flow f ∈ F to the fraction of the traffic demand that is carried
through final(f).

With a split ratio, we can determine the load on each edge, which is how
much data is sent through that edge.
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Definition 5 (Load). Let split be a split ratio over F . The load on a edge
e ∈ E is given by load(split , e) =

∑
f∈F

(
(1− split(f)) ·#e⟨initial(f)⟩+ split(f) ·

#e⟨final(f)⟩
)
· demand(f) .

Note that a path can contain the same edge multiple times, which this notion
of load takes into account.

If we divide the load on an edge with the capacity of that edge, we get the
utilization of the edge. If the utilization is greater than 1, it means that more
data is sent through the edge than it can process, and packets then risk being
dropped.

Definition 6 (Utilization). Let split be a split ratio over F . We denote the

utilization of a edge e ∈ E by utilization(split , e) = load(split,e)
capacity(e) .

As an example, consider Figure 1. If the split ratio of f1 is 0.5 and the split
ratio of f2 is 0, then only half of the traffic demand of f1 and none of the traffic
demand of f2 is sent through (v1, v2), which means that the load on (v1, v2) is
0.5. Since (v1, v2) has a capacity of 1, the utilization of (v1, v2) is 0.5. Likewise,
we find that the utilization of both (v1, v3) and (v3, v2) is 1.5. In this example, the
greatest utilization of any edge is 1.5, and we call this the maximum utilization
of this split ratio.

Definition 7 (Maximum utilization of a split ratio). Let split be
a split ratio over F . The maximum utilization of split is given by
maximum utilization(split) = max

e∈E
utilization(split , e).

We use split ratios to model updates. Specifically, we model an update as a
transition from one split ratio to another. As a split ratio is a function on all
flows, an update can change the split ratio for multiple flows at once. However,
real networks cannot reliably change routing protocols for multiple routers at
the exact same time due to the difficulty of time synchronization on distributed
systems. There is a risk that, at some moments during the update, some flows are
updated, and other flows are not updated, so when we update the split ratio for
multiple flows, we have to assume that the flows can be updated in any ordering.
We accomplish this by finding the combination of updated- and unupdated flows
that give the worst possible maximum utilization.

Definition 8 (Update utilization). Let split and split′ be two split ra-
tios over F . The update utilization when moving from split to split ′ is given
by update utilization(split , split ′) = max

s∈S
maximum utilization(s) where S =

{split ′′ | ∀f ∈ F. (split ′′(f) = split(f) ∨ split ′′(f) = split ′(f))}.

We assume that we initially send all the data through the initial paths, and
we want to perform updates so that all the data is sent through the final paths.
An update sequence is a sequence of split ratios that does exactly this.
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Definition 9 (Update sequence). An update sequence π = split0, . . . , splitm
over F is an ordered finite sequence of split-functions over F such that for all
f ∈ F we have that split0(f) = 0 and splitm(f) = 1.

The key measure that we use is the maximum utilization of an update se-
quence. We calculate it by finding the greatest update utilization for any update
in the update sequence.

Definition 10 (Maximum utilization of an update sequence). Let π =
split0, . . . , splitm be an update sequence over F . The maximum utilization of an
update sequence is given by

maximum utilization(π) = max
0≤i<m

update utilization(split i, split i+1) .

Some update sequences are special cases. An update sequence is atomic if it
only changes the split ratio for one flow in each iteration, is monotonic if the
split ratio only increases over iterations, and has a fixed granularity if the split
ratio only changes in increments of a specific fraction.

Definition 11 (Update sequence variants). Let π = split0, . . . , splitm be
an update sequence over F . The update sequence π

– is monotonic if split i(f) ≤ splitj(f) for all f ∈ F and all i, j s.t. 0 ≤ i ≤ j ≤
m,

– has a fixed granularity of g ∈ Q if for all f ∈ F there exists an h ∈ N≥0 such
that split i(f) = h · g for all i where 0 ≤ i ≤ m, and

– is atomic if for all i where 0 ≤ i < m there exists an f ∈ F such that
split i(f) ̸= split i+1(f) and split i(f

′) = split i+1(f
′) for all f ′ ∈ F \ {f}.

The update sequence decision problem is central problem for this paper. The
problem is to determine whether there exists an update sequence such that it is
at most length n and has a maximum utilization of at most u.

Definition 12 (Update sequence decision problem). Let n ∈ N≥0 and
u ∈ Q≥0. The update sequence decision problem is the question of whether there
exists an update sequence π = split0, . . . , splitm over F such that m ≤ n and
maximum utilization(π) ≤ u.

If we constrict π to be monotonic, we call it the monotonic update sequence
decision problem, and if we constrict π to have a granularity of g for some g ∈ Q,
we call it the fixed granularity update sequence decision problem. If instead we
constrict π to be atomic, we call it the atomic update sequence decision problem.

To distinguish the update sequence decision problem with no constrictions
from the other problems, we call it the general update sequence decision problem
when it would otherwise be unclear.

In Definition 12, we have an n that can bound the length of the update
sequence, because not all networks have an optimal update sequence in terms of
minimizing the maximum utilization, as we can see in Lemma 1.
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Lemma 1. There exists a traffic system such that for any update sequence π,
there exists another update sequence π′ such that maximum utilization(π′) <
maximum utilization(π).

Proof. Let the traffic system T = (G = (V,E, capacity), F, initial ,final , demand)
be as defined by Figure 1. Assume by contradiction that there exists an up-
date sequence π = split0, . . . , splitm over F such that there is no update se-
quence π′ where maximum utilization(π′) < maximum utilization(π). We know
that maximum utilization(split0) = 1 and maximum utilization(splitm) = 1,
and we know that there has to be some n such that 0 ≤ n < m where
update utilization(splitn, splitn+1) > 1, because increasing the split ratio for
either flow by any fraction increases utilization above 1, which in turn means
that maximum utilization(π) > 1. This means that we can define an ϵ ∈ Q>0

such that maximum utilization(π) = 1 + ϵ.
We can construct an update sequence with a maximum utilization of 1+ ϵ

2 . Let
π′ = split ′0, . . . , split

′
l be an update sequence where l = 2

ϵ such that split ′i(f) =
ϵ
2 · i for all f ∈ F and for all i such that 0 ≤ i ≤ l. We know this is an
update sequence because it is finite in length, split ′0(f) = 0, and split ′l(f) = 1
for all f ∈ F . The maximum utilization of all split ratios in π′ is 1, because
all split ratios in π′ split the demand equally. When the load on each link is
1, updating in increments of ϵ

2 can only increase the load with at most ϵ
2 , so

update utilization(split ′i, split
′
i+1) = 1+ ϵ

2 for all i such that 0 ≤ i < l. This means
that maximum utilization(π′) = ϵ

2 which contradicts our assumption.

3 Flow Pruning

We can simplify a traffic system by removing certain flows, while guaranteeing
no change in maximum utilization. The general idea is that we can statically
detect that some flows cannot change the maximum utilization, and can thus
be updated at any time with no impact. We provide an algorithm for pruning
flows, and we argue why we can safely do so.

3.1 Threshold

The central concept for pruning flows is the threshold, which is the utilization
of the edge with the greatest utilization where either (i) the split ratio for each
flow is 0 or (ii) the split ratio for each flow is 1. We can find it using Algorithm 1.

We use this threshold as a lower bound for the maximum utilization, since
any update sequence assigns 0 to every flow and 1 to every flow at some point,
so we know that the maximum utilization of any update sequence will have at
least the same value as the threshold.
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Algorithm 1 Find Threshold

Input: A traffic system T = (G = (V,E, capacity), F, initial ,final , demand)
Output: A threshold t
1: t← 0
2: for e ∈ E do
3: a← 0
4: b← 0
5: for f ∈ F do

6: a← a+ #e⟨initial(f)⟩·demand(f)
capacity(e)

7: b← b+ #e⟨final(f)⟩·demand(f)
capacity(e)

8: end for
9: if a > t then

10: t← a
11: end if
12: if b > t then
13: t← b
14: end if
15: end for
16: return t

Lemma 2. The threshold t found by Algorithm 1 is equal to
max(maximum utilization(split),maximum utilization(split ′)) where
split(f) = 0 and split ′(f) = 1 for all f ∈ F .

Proof. Obvious by analysis of Algorithm 1.

If we only care about deciding whether there exists a solution under a certain
level of maximum utilization u, then we can change line 1 in Algorithm 1 to
t ← u. Then, the threshold is at least u, even if there is no edge that has a
utilization of u in initial or final.

3.2 Flow Pruning Algorithm

When we have found a threshold for a traffic system, we can now safely remove
flows where no edge from either their initial paths or their final paths can in any
way achieve a utilization that is at least as the same value as the threshold. We
present the algorithm for flow pruning in Algorithm 2.

At line 6, the fraction max(#e⟨initial(f)⟩,#e⟨final(f)⟩)·demand(f)
capacity(f) gives the worst-

case utilization that f can contribute to e, and since we do that for all flows,
a finds the worst-case utilization of e. At line 9, we add a flow f to F ′, which
means that we keep the flow, if either the initial or the final path of f contains
e and if a ≥ t, meaning that the worst-case utilization of e is greater than the
threshold. What we end up with is an F ′ which only has the flows that can affect
the maximum utilization of an update sequence.

An example of the flow pruning process can be found in Figure 2.
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Algorithm 2 Flow Pruning

Input: A traffic system T = (G = (V,E, capacity), F, initial ,final , demand)
Output: A reduced traffic system T ′ = (G,F ′, initial ,final , demand)
1: t← the threshold from Algorithm 1 applied to T
2: F ′ ← ∅
3: for e ∈ E do
4: a← 0
5: for f ∈ F do

6: a← a+ max(#e⟨initial(f)⟩,#e⟨final(f)⟩)·demand(f)
capacity(e)

7: end for
8: if a ≥ t then
9: for f ∈ F do

10: if #e⟨initial(f)⟩ ≥ 1 or #e⟨final(f)⟩) ≥ 1 then
11: F ′ ← F ′ ∪ {f}
12: end if
13: end for
14: end if
15: end for
16: T ′ = (G,F ′, initial ,final , demand)
17: return T ′

Theorem 1. Let T and T ′ be traffic systems where T ′ is the output of Algo-
rithm 2 with T as input. There exists an update sequence of length n with a
maximum utilization of u for T if and only if there exists an update sequence of
length n with a maximum utilization of u for T ′.

Proof. Let T = (G = (V,E, capacity), F, initial ,final , demand) and T ′ = (G =
(V,E, capacity), F ′, initial ,final , demand) be two traffic systems such that T ′ is
the output of Algorithm 2 applied to T , and let u ∈ Q≥0 and n ∈ N≥2. We
first prove that if there exists an update sequence of length n with a maximum
utilization of u for T , then there exists an update sequence of length n with a
maximum utilization of u for T ′.

Assume that there exists an update sequence π = split0, . . . , splitn−1 for
T with a maximum utilization of u. On line 1 in Algorithm 2, we assign
the threshold from Algorithm 1 to t, which we know from Lemma 2 is given
by max(maximum utilization(split0),maximum utilization(splitn−1)). By defi-
nition of maximum utilization of an update sequence, we know that t ≤ u.

As it iterates through the edges, the for-loop from line 3 to line 15 in Al-
gorithm 2 adds a flow f ∈ F to F ′ if there is an edge in initial(f) or final(f)
such that the edge has a worst-case utilization of at least the threshold. The
worst-case utilization is represented by the variable a, which we see in lines 4 to
7.

After iterating through all the edges, we have that F ′ ⊆ F , and for every
f ∈ F ∩ F ′, we know that every edge in initial(f) or final(f) has a worst-case
utilization wf such that wf < t, which means that wf < u. The maximum
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utilization of an update sequence is, by definition, based solely on the edge e⊤
with the greatest update utilization for any pair of split ratios, and we know
that the worst-case utilization of e⊤ is at least u, so every flow that contains e⊤
must be in F ′.

We construct an update sequence π′ = split ′0, . . . , split
′
n−1 such that

split ′i(f) = split i(f) for all f ∈ F ′ and for all i such that 0 ≤ i < n. Since
all flows that use e⊤ are in F ′, and since we know that it is exactly these flows
that give e⊤ an update utilization of u in π, then, since π′ assigns the same split
ratios to the those flows, e⊤ also has a utilization of u in π′. And because of how
we construct π′, and because F ′ ⊆ F , we know that the maximum utilization
of π′ cannot be greater than the maximum utilization of π. Thus, the maximum
utilization of π′ must be equal to the maximum utilization of π.

Now we prove that if there exists an update sequence of length n with a
maximum utilization of u for T ′, then there exists an update sequence of length
n with a maximum utilization of u for T . Assume that there exists an update
sequence π′ = split ′0, . . . , split

′
n−1 for T ′ with a maximum utilization of u. We

construct an update sequence π = split0, . . . , splitn−1 such that split i(f) =
split ′i(f) for all f ∈ F ′ and for all i such that 0 ≤ i < n, and split0(f) = 0 and
split i(f) = 1 for all f ∈ F ∩ F ′ and for all i such that 0 < i < n.

By the same logic as before, we know that every flow in F ∩ F ′ only uses
edges where the worst-case utilization is less than t, which is in turn at most u.
Therefore, we know that the edge e⊤ that gives the greatest maximum utilization
u in F ′ is not affected by flows in F ∩ F ′ in F either, so since we construct π
with the same split ratios as in π′ for the flows in F ′, and only the flows in F ′

affect the utilization in e⊤, we know that, if e⊤ is still the edge that gives the
greatest maximum utilization in π, then the maximum utilization of π is at least
u. Since none of the flows in F ∩F ′ can affect an edge with a greater worst-case
utilization than e⊤, e⊤ must be the edge in F that gives the greatest maximum
utilization. Thus, the maximum utilization of π must be equal to the maximum
utilization of π′.
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(a) Here, we have a similar setup to Fig-
ure 1, but with an extra node v4 and an
extra, green, flow. Note that the edges be-
tween v4 and its neighbors have a capac-
ity of 2.
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(b) The first step of pruning flows is find-
ing the threshold. The greatest utilization
of any edge when all flows follow their ini-
tial or final paths is 1, which can be found
in (v1, v2), so the threshold is 1.
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2 2

(c) Now we find all flows where all edges
in its paths have a worst-case utilization
of less than 1, here f3.

v1 v2
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1 1

2 2

(d) Finally, we remove the flows that we
found in the last step, and this is the traf-
fic system that we get.

Fig. 2: Example of flow pruning. There are three flows, so F = {f1, f2, f3}, which
are solid red, dashed blue, and dotted green arrows, respectively. The initial paths
of the flows are single-lined, while the final paths are double-lined.
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4 Problem Complexity

Now that we have defined the different variants of the update sequence decision
problem, we look at their respective complexity classes. We find an overview of
the complexity results in Table 1.

4.1 Complexity of the atomic and fixed granularity variants

First, we look at the complexity of the atomic and fixed granularity problems.

Theorem 2. The fixed granularity update sequence decision problem and the
atomic update sequence decision problem are NP-hard.

Proof. We prove this by polynomial-time reduction from the NP-complete par-
tition problem [1]. Let S = {s1, . . . , sn} be a set of positive integers with at least
2 elements and S∑ be the sum of all numbers in S. The partition problem is to
determine whether there exists two disjoint sets S1 ⊆ S and S2 ⊆ S such that

S1

⋃
S2 = S and

∑
s1∈S1

s1 =
∑

s2∈S2

s2 =
S∑
2 .

We use the network described in Figure 3 where the capacity of each link is
S∑. We construct a set of flows F = {fi | si ∈ S}

⋃
{b}. The function initial

assigns path (v1, v2) to all fi and the path (v1, v3), (v3, v2) to b, while final assigns
the path (v1, v3), (v3, v2) to fi and the path (v1, v2) to b. Finally, demand(fi) = si
for all fi, and demand(b) =

S∑
2 . From this, we make a fixed granularity update

sequence decision problem where u = 1, n = 4, and the update sequence has
a granularity g = 1, and we make an atomic update sequence decision problem
where u = 1 and n = |F |+ 1.

We shall now see that the partition problem has a solution if and only if the
corresponding fixed granularity update sequence decision problem has a solution.
First, assume that the partition problem has a solution. From this assumption,

there exists a subset S1 of S such that
∑

s1∈S1

s1 =
S∑
2 and another subset S2 =

{s ∈ S | s /∈ S1}. Because of how we defined the network, we can make a
corresponding partition of F into F1 = {fi | si ∈ S1} and F2 = {fi | si ∈ S2}.
As demand(b) =

S∑
2 and every edge has a capacity of S∑, we know we can

immediately update every flow in F1 since the sum of demands for the flows in

F1 is equal to
S∑
2 . With this knowledge, we can construct an update sequence

split0, split1, split2, split3 where split1 updates all the flows in F1 which gives
sufficient room that we can update b in split2 and then the rest of the flows
in split3. As this update sequence is a solution to the fixed granularity update
sequence decision problem, we see that if we assume that the partition problem
has a solution, then the fixed granularity update sequence decision problem also
has a solution.

To show that it also holds in the other direction, assume that the fixed
granularity update sequence decision problem has a solution. This assumption
means that there exists an update sequence π of at most length 4 that solves the

12



Problem variant Complexity class Proven in
General in P Theorem 5

Monotonic in P Theorem 5
Atomic NP-complete Theorem 2 and 3

Fixed granularity NP-hard and in PSPACE Theorem 2 and 4
Table 1: Overview of the complexity results of the variations of the update
sequence decision problem.

v1 v2

v3

π

π π

Fig. 3: The traffic system we construct a partition problem. The circles v1, v2, and
v3 are nodes and the black line between each node is an edge in both directions
with a capacity of S∑. There is a flow for each s ∈ S and an additional flow b,
so F = {f1, f2, . . . , f|S|, b}. The path for each flow except b follows the red, solid
arrows, and b follows the dashed, blue arrows. The initial paths are single-lined,
while the final paths are double-lined. The traffic demand for fi = si for all i

where 1 ≤ i ≤ |S|, and the traffic demand for b is
S∑
2

problem. As the first split ratio is 0 for every flow and since the flows in F initially
use the whole capacity of the edge (v1, v2), b cannot be updated in the second
split ratio unless S∑ = 0 which would trivially contradict our assumption. As
b can at the earliest be updated in the third split ratio, not all flows in F can
be updated before fourth split ratio, as there is insufficient capacity before b is
updated. Therefore, π must have a length of exactly 4.

Since b is updated in the third split ratio, we know that there must exist
an F ′ ⊂ F that is updated in the second split ratio such that the sum of all

demands for the flows in F ′ is
S∑
2 , and because of how we define the network,

there must exist a set S′ = {si ∈ S | fi ∈ F ′} such that
∑

s′∈S′
s′ =

S∑
2 . We can

then define a set S1 = S′ and another set S2 = {s ∈ S | s /∈ S1} which solve the
partition problem, so if the fixed granularity update sequence decision problem
has a solution, then the partition problem also has a solution.

We use the same techniques for the atomic update sequence decision problem.
Because n = |F |+ 1, there is exactly enough room for each flow to be updated

13



once, and since every flow needs to be updated, we effectively get a granularity
of 1.

We can also find the upper bound of the atomic problem by reduction to
integer programming.

Theorem 3. The atomic update sequence decision problem is in NP.

Proof. By polynomial-time reduction to integer programming [15]. Assume an
update sequence decision problem where the solution can at most be of length
n ∈ N≥0 and where the maximum utilization of the solution can be at most
u ∈ Q≥0. We define |F | · n variables, each of the form xi

f ∈ R.

x0
f1

x1
f1

. . . xn−1
f1

x0
f2

x1
f2

. . . xn−1
f2

. . . . . . . . . . . .

x0
f|F |

x1
f|F |

. . . xn−1
f|F |

This set of variables is equivalent to an update sequence. A split ratio split i
assigns a value to each flow, which corresponds to an array xi

f1
, xi

f2
, . . . , xi

f|F |
of

which we have n.
Furthermore, we define another set of variables, each of the form yif ∈ {0, 1}

y0f1 y1f1 . . . yn−1
f1

y0f2 y1f2 . . . yn−1
f2

. . . . . . . . . . . .

y0f|F |
y1f|F |

. . . yn−1
f|F |

We use yif to encode atomicity, so if yif = 1, then that means that xi+1
f can be

different from xi
f , and if yif = 0, then xi+1

f = xi
f .

Finally, we also define the variable α which we use to represent the overall
maximum utilization, and this is the value that we optimise for. We reduce the
atomic update sequence decision problem to:

14



Minimize

α (1)

such that

for all f ∈ F

x0
f = 0, xn−1

f = 1 (2)

for all f ∈ F and i such that 0 ≤ i ≤ n− 1

0 ≤ xi
f ≤ 1, yif ∈ {0, 1} (3)

for all i such that 0 ≤ i ≤ n− 1∑
f∈F

yif = 1 (4)

for all f ∈ F and i such that 0 ≤ i ≤ n− 2

−yif ≤ xi
f − xi+1

f ≤ yif (5)

for all e ∈ E and i such that 0 ≤ i ≤ n

α ≥
∑
f∈F

((1− xi
f ) ·#e⟨initial(f)⟩+ xi

f ·#e⟨final(f)⟩) · demand(f)

capacity(e)
(6)

The atomic update sequence decision problem has a solution if and only
if α ≤ u. To prove this, we first assume that the atomic update sequence
decision problem has a solution. From this assumption, there must be an
atomic update sequence π = split0, . . . , splitm of at most length n such that
maximum utilization(π) ≤ u. We assign the value split i(f) to xi

f for all f ∈ F

where 0 ≤ i ≤ m and we assign the value 1 to xi
f for all f ∈ F where

m < i ≤ n− 1. Additionally, when split i(f) ̸= split i+1(f), we assign the value 1
to yif , and otherwise we assign the value 0 to yif .

Since π is atomic, (4) and (5) are clearly upheld by the yif we just defined. By
definition of a split ratio, (3) is also upheld, while (2) is upheld by definition of
an update sequence. The inequality (6) corresponds to the load on each edge, so
this inequality says that α should be greater than or equal to the greatest load on
any edge for any split ratio in π. Since the set S in Definition 8 is a singleton for
any pair of split ratios in an atomic update sequence, the maximum utilization
of π is also the greatest load on any edge for any split ratio in π, so (6) is also
upheld. Because the integer programming problem minimizes α, we know that
α = maximum utilization(π), so if the atomic update sequence decision problem
has a solution, then the integer programming problem also has a solution such
that α ≤ u.

In the other direction, assume that the integer programming problem has a
solution such that α ≤ u. Let π = split0, . . . , splitn−1 be an update sequence
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such that spliti(f) = xi
f for all f ∈ F where 0 ≤ i ≤ n − 1. Because of (4)

and (5), π must be atomic, because only xi
f can be different from xi+1

f for one
f ∈ F , which corresponds to our notion of atomicity. The inequality (3) enforces
the domain of a split ratio, and (2) ensures that the first and last split ratio
assigns 0 and 1 to all flows. As previously mentioned, the maximum utilization
of π is the greatest load on any edge for any split ratio, but since (6) ensures
that α is greater than the greatest load on any edge for any split ratio, we know
that maximum utilization(π) ≤ α, so if the integer programming problem has a
solution such that α ≤ u, then there exists an update sequence that solves the
atomic update sequence decision problem.

Since the atomic problem is NP-hard and in NP, the problem is NP-complete.

Corollary 1. The atomic update sequence decision problem is NP-complete.

Proof. Follows from Theorem 2 and Theorem 3.

Now that we found the upper bound for the complexity of the atomic prob-
lem, we only need the upper bound for the fixed granularity problem.

Theorem 4. The fixed granularity update sequence decision problem is in
PSPACE.

Proof. Assume a fixed granularity update sequence decision problem with a fixed
granularity of g where the solution can at most be of length n ∈ N≥0 and where
the maximum utilization of the solution can be at most u ∈ Q≥0. To see that
this problem is in PSPACE, we write a nondeterministic algorithm that can
solve the problem while using polynomial space, which we find in Algorithm 3. In
Algorithm 3, we can nondeterministically guess split ratios, because by definition
of fixed granularity, a split ratio can only assign a finite set of values to each
flow. For the algorithm to accept, there needs to exist a sequence of split ratios
such that

– The first split ratio for each flow is 0,

– The last split ratio for each flow is 1,

– The sequence has a fixed granularity of g,

– The sequence contains at most n split ratios, and

– Each pair of split ratios split i, split i+1 has an update utilization below u.

This corresponds exactly to our notion of a solution for the fixed granularity
update sequence decision problem, so this algorithm can clearly decide whether
a solution exists. We note that the algorithm only uses polynomial space, since
it only needs to remember at most 2 split ratios at once, and can forget the old
ones as it iterates through them. Hence, we see that the fixed granularity update
sequence decision problem is in PSPACE.
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Algorithm 3 Nondeterministic Solver for the Fixed Granularity Problem

Input: A traffic system T = (G = (V,E, capacity), F, initial ,final , demand), a
fixed granularity g, a bound on the length n, and a utilization limit u

Output: accept if a solution exists, otherwise reject
1: x← split0 ▷ split0 assigns 0 to all flows
2: i← 1
3: while i < n do
4: nondeterministically guess a split ratio y with a fixed granularity of g
5: if update utilization(x, y) ≥ u then
6: reject
7: end if
8: if y(f) = 1 for all f ∈ F then
9: accept

10: end if
11: x← y
12: i← i+ 1
13: end while
14: reject

4.2 Complexity of monotonic and general variants

Finally, we look at which complexity class the monotonic and general problems
belong to.

Theorem 5. The update sequence decision problem and the monotonic update
sequence decision problem are in P.

Proof. By polynomial-time reduction to P-complete linear programming [21].
First, we look at the (non-monotonic) update sequence decision problem. Like
in the proof for Theorem 3, we use xi

f to represent split ratios.

x0
f1

x1
f1

. . . xn−1
f1

x0
f2

x1
f2

. . . xn−1
f2

. . . . . . . . . . . .

x0
f|F |

x1
f|F |

. . . xn−1
f|F |

We have another set of variables yif,e, which we use to find the update uti-
lization from Definition 8. For each edge, we have |F | ·n−1 variables, which can
be visualized as

y0f1,e1 y1f1,e1 . . . yn−2
f1,e1

y0f2,e1 y1f2,e1 . . . yn−2
f2,e1

. . . . . . . . . . . .

y0f|F |,e1
y1f|F |,e1

. . . yn−2
f|F |,e1

. . .

y0f1,e|E|
y1f1,e|E|

. . . yn−2
f1,e|E|

y0f2,e|E|
y1f2,e|E|

. . . yn−2
f2,e|E|

. . . . . . . . . . . .

y0f|F |,e|E|
y1f|F |,e|E|

. . . yn−2
f|F |,e|E|
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The key principle is to use each yif,e to find the utilization of edge e given

either xi
f or xi+1

f , whichever gives the greater utilization. By summation of

yif,e over f , we get a value that is the combination of updated- and unupdated
flows that gives the greatest utilization in the edge e and the transition from
i to i + 1, which corresponds to update utilization if we maximize across all
edges. We minimize our last variable, α, which is equivalent to the maximum
utilization of π.

Minimize

α (7)

such that

for all f ∈ F

x0
f = 0, xn−1

f = 1 (8)

for all i where 0 ≤ i ≤ n− 1

0 ≤ xi
f ≤ 1 (9)

for all e ∈ E and i where 0 ≤ i ≤ n− 2

α ≥
∑
f∈F

yif,e (10)

for all f ∈ F and e ∈ E and for all i where 0 ≤ i ≤ n− 2

yif,e ≥
(
(1− xi

f ) ·#e⟨initial(f)⟩+ xi
f ·#e⟨final(f)⟩

)
· demand(f)

capacity(e)
(11)

for all f ∈ F and e ∈ E and for all i where 0 ≤ i ≤ n− 2

yif,e ≥
(
(1− xi+1

f ) ·#e⟨initial(f)⟩+ xi+1
f ·#e⟨final(f)⟩

)
· demand(f)

capacity(e)
(12)

To prove that the reduction holds, we prove that the update sequence decision
problem has a solution if and only if this linear programming problem has a solu-
tion such that α ≤ u. We first assume that the update sequence decision problem
has a solution π = split0, . . . , splitn−1 such that maximum utilization(π) ≤ u.
Let each xi

f correspond to split i(f). Then, (8) and (9) hold by definition of

an update sequence. In conjunction, (11) and (12) constrain each yif,e to be at
least the load of split i(f) and split i+1(f) on edge e. If we assume that each
yif,e is minimized, then max

e∈E

∑
f∈F

yif,e for some iteration i gives exactly the up-

date utilization of split i and split i+1. Since the objective function minimizes α,
inequality (10) means that α = max

0≤i≤n−2
max
e∈E

∑
f∈F

yif,e, which then corresponds
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exactly to the maximum utilization of π. However, we cannot assume that each
yif is minimized, but we can assume that the greatest yif1 , y

i
f2
, . . . , yif|F |

when

summed over f is minimized, because that minimizes our objective function α,
so we still get that α = max

0≤i≤n−2
max
e∈E

∑
f∈F

yif,e. Therefore, if the update sequence

decision problem has a solution, then the linear programming problem has a
solution such that α ≤ u.

To prove it in the other direction, assume that the linear programming prob-
lem has a solution such that α ≤ u. Let π = split0, . . . , splitn−1 be an update
sequence such that split i(f) = xi

f . We know that π follows the definition of an
update sequence because (9) corresponds to the co-domain of the split func-
tions and (8) means that x0

f = 0 and xn−1
f = 1 for each f ∈ F . The update

utilization of any pair of split ratios split i and split i+1 is at most α because
of (10), (11), and (12), since (11) and (12) constrain any yif to be at least the

utilization of edge e given xi
f and xi+1

f , and (10) constrains α to be at least∑
f∈F

yif,e for all edges and iterations except n− 1, which means that the minimal

α is exactly the greatest update utilization of any split i and split i+1. As this
is also the definition of maximum utilization for an update sequence, we know
that α = maximum utilization(π), so if there exists a solution for the linear
programming problem such that α < u, then there also exists a solution for the
update sequence decision problem.

For the monotonic update sequence decision problem, we use the same tech-
nique, but we add the inequality

for all f ∈ F and for all i where 0 ≤ i ≤ n− 2

xi
f ≤ xi+1

f (13)

This corresponds exactly to our notion of monotonicity, since it means that the
xi
f -variables can only increase over iterations.

5 Towards a Practical Linear Programming Solution

In Theorem 5, we defined a linear programming reduction from the general up-
date sequence decision problem. By applying an LP-solver to the model, we can
find a solution to the update sequence decision problem. However, the number of
variables in the linear programming model increases with the number of flows,
the number of edges, and the length bound for the solution, so especially for
larger networks, we need to reduce the number of variables to make the linear
programming solution practical.

To this end, we have multiple techniques that we can use. The flow pruning
from Section 3.2 is one such technique, but specifically for the linear program-
ming model, we can also safely prune some of the edge constraints, and we can
also remove some of the smallest flows by trading precision for computation time.

19



Algorithm 4 Edge Pruning

Input: A traffic system T = (G = (V,E, capacity), F, initial ,final , demand)
Output: A pruned set of edges E′

1: t← the threshold from Algorithm 1 applied to T
2: E′ ← ∅
3: for e ∈ E do
4: a← 0
5: for f ∈ F do

6: a← a+ max(#e⟨initial(f)⟩,#e⟨final(f)⟩)·demand(f)
capacity(f)

7: end for
8: if max(#e⟨initial(f)⟩,#e⟨final(f)⟩) ≥ 1 and a ≥ t then
9: E′ ← E′ ∪ {e}

10: end if
11: end for
12: return E′

5.1 Edge Pruning

Some edges cannot affect the maximum utilization, and we can find those edges
by applying the same technique we use for flow pruning in Section 3.2. If an edge
cannot, under any circumstances, achieve a utilization of at least the value of the
threshold, then we can remove the constraints on that edge without affecting the
maximum utilization. We present the algorithm for edge pruning in Algorithm 4.

When we have applied Algorithm 4 to a traffic system T , we then use the new
set of edges E′ for the constraints in the linear programming model, because the
edges that are not in E′ do not matter when looking for the maximum utilization.

An example of the edge pruning process can be found in Figure 4.

Theorem 6. Let T = (G = (V,E, capacity), F, initial ,final , demand) be a traf-
fic system and E′ be the output of Algorithm 4 with T as input. The linear
programming model from Theorem 5 gives the same optimal solution α whether
E or E′ is used for the constraints (10), (11), and (12).

Proof. Using the same logic as the proof for Theorem 1, we see from analysis
of Algorithm 4 that the pruned edges always have a utilization that is less that
α. Since the value of α is found from the edge that gives the greatest maximum
utilization, removing the constraints that use the pruned edges can never change
α.
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v1 v2

v3

v4

1

1 1

2 2

(a) Here, we have a similar setup to Fig-
ure 1, but with an extra node v4 and an
extra, green, flow. Note that the edges be-
tween v4 and its neighbors have a capac-
ity of 2.

v1 v2

v3

v4

1

1 1

2 2

(b) The first step of pruning edges is find-
ing the threshold. The greatest utilization
of any edge when all flows follow their ini-
tial or final paths is 1, which can be found
in (v1, v2), so the threshold is 1.

v1 v2

v3

v4

1

1 1

2 2

(c) Now we find all edges where the worst-
case utilization is less than 1, here (v1, v4)
and (v4, v2). These edges are then re-
moved from the constraints of the LP
model.

Fig. 4: Example of edge pruning. There are three flows, so F = {f1, f2, f3},
which are solid red, dashed blue, and dotted green arrows, respectively. The
initial paths of the flows are single-lined, while the final paths are double-lined.

21



Algorithm 5 Removing Smallest Flows Overapproximation

Input: A traffic system T = (G = (V,E, capacity), F, initial ,final , demand)
and a fraction q ∈ Q≥0,≤1

Output: A smaller set of flows F and a function a that assigns demand to edges
1: F ′ ← F
2: r ← q · total demand of all flows in F
3: f ← flow with the smallest traffic demand in F ′

4: a(e)← 0 for all e ∈ E
5: while r − demand(f) ≥ 0 do
6: f ← flow with the smallest traffic demand in F ′

7: r ← r − demand(f)

8: for e ∈ initial(f) and e ∈ final(f) do a(e)← a(e) + demand(f)
capacity(e)

9: end for
10: F ′ ← F ′ \ {f}
11: end while
12: return F ′ and a

5.2 Overapproximation by Removing the Smallest Flows

When we solve our linear and integer programming models, each flow adds about
an equal amount of computation time. However, not all flows are equally impor-
tant. In many real-life cases, traffic demands do not all share the same size. Some
flows are very large, for example if they connect two major cities, and other flows
are miniscule in comparison.

If we are willing to trade precision in exchange for reducing the number of
constraints in the linear programming model, we can make an overapproximation
by removing some of the smallest flows, and add the traffic demand of the flows
directly to the load on each edge in both their initial and final paths. This always
gives at least the same maximum utilization as not removing any flows, but it
can give give a greater maximum utilization.

If there is a significant difference in the size of flows, and if we only apply this
technique to some of the smallest flows, then, in theory, the precision should not
decrease much, as the loss in precision is proportional to the amount of traffic
demand that we remove, but the computation time could improve substantially,
as the gain is proportional to the number of flows removed. We show how to
remove the smallest flows in Algorithm 5
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By using Algorithm 5, we get a smaller set of flows F ′ and a function on
edges a. Now, instead of (10), we use (14) for the linear programming model.

for all e ∈ E and for all i where 0 ≤ i ≤ n− 2

α ≥
∑
f∈F

yif,e + a(e) (14)

We then use F ′ instead of F for all the constraints, including the new one.
If there exists a solution to T after applying Algorithm 5, then there also

exists a solution before applying it, though the opposite does not hold.

Theorem 7. Let T = (G = (V,E, capacity), F, initial ,final , demand) be a traf-
fic system, LP be the linear programming model from Theorem 5 reduced from
T , and F ′ and the function a be the output of Algorithm 5 with T as input. Let
LP ′ be the linear programming model reduced from T where we use (14) instead
of (10) and where we use F ′ instead of F for (8), (11), (12), and (14). Then,
LP has a solution α ≤ α′ if LP ′ has a solution α′.

Proof. By analysis of Algorithm 5, we see that for each flow f we remove, the
function a(e) assigns the utilization that the traffic demand of f would cause to
every edge in the initial and the final path of f . Since the removed flows can never
produce a greater utilization on the edges than the assignment of a on the edges
does, we can consider a to be the worst-case utilization that the removed flows
could have caused on each edge. In (14), we then add this worst-case utilization
to our constraints, so α′ must be greater than or equal to α.
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6 Experimental Results

We are interested in how our linear programming model performs in practice, so
in this section, we perform a series of experiments to evaluate its performance.

6.1 General Experimental Setup

We implement the linear programming model from Theorem 5 for the gen-
eral update sequence decision problem, to show that we can use it to solve
the problem, and see how it performs in terms of efficiency and scalability. We
make both a decision and an optimization variant for the linear programming
model, where the decision variant simply determines if a solution exists, while
the optimization variant determines the best possible maximum utilization. We
implement this using the Python library PuLP [20], and our implementation
can be found at ”https://github.com/mlundb18/Optimizing-Link-Utilization-
During-Network-Migration.git”.

We use the Internet Topology Zoo dataset [16] for networks, and generate
our own flows and edge capacities. For our experiments, we give each edge a
capacity of 100,000. For each flow, we generate the initial and final paths by

1. Randomly selecting a start node,
2. Randomly selecting a connected end node for the initial path,
3. Randomly generating the initial path from the start node to the end node,
4. Randomly selecting a connected end node for the final path, and
5. Randomly generating the final path from the start node to the end node.

We use a gravity model[24] to generate the traffic demands. To do this, we
randomly assign the square of a number between 1 and 10 to each node, which
is the gravity of the node, and the traffic demand is given by multiplying the
gravity of the start and end nodes of each flow’s initial path. In the generated
dataset, about half of the traffic systems have a maximum utilization of more
than 1, while the remaining have a maximum utilization of less than 1.

Of the topologies from the Internet Topology Zoo, the largest has 245 edges
and 197 nodes, while the smallest topology has 4 edges and 5 nodes. For each
topology, we generate an amount of flows equal to 10 times the nodes of the
respective topology.

The experiments are run on the DEIS-MCC Slurm cluster [13] at Aalborg
University, with a memory limit of 200 GB RAM.

6.2 Length bound experiment

Purpose of experiment For the experiments, we wish to know what an ap-
propriate length bound for the update sequences are, such that we have a good
balance between computation time and maximum utilization. We hypothesize
that, because of Lemma 1, the greater the length bound on the update sequences
are, the better the maximum utilization will generally be. However, we also be-
lieve that this leads to a slower computation time, as it increases the number of
constraints for the linear programming model.
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Fig. 5: Cactus plot that shows the comparison of the linear programming comple-
tion time for different length bounds. The completion time shows that the time
taken overall increases as the length bound of the update sequences increases.

Setup of experiment We setup the experiment by implementing and running
an unmodified version of the linear programming model from Theorem 5. We
solve the model for each network in the dataset, with length bounds for the
update sequence ranging from 2 to 7.
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Fig. 6: Graph where the amount of stabilized networks are shown for each length
bound. A stabilized network is when the maximum utilization does not change
as the length bound increases, i.e. we have found the optimal solution for any
length bound. The figure shows that with a length bound of 2, only 4 networks
have stabilized, with a length bound of 3 170 networks have stabilized, and at a
length bound of 4 and up, all networks have stabilized.

Discussion of Experiment In the results of the experiment, shown in Figure 5,
we observe that for every increase in the length bound, the computation time
increases. This confirms our hypothesis that a longer length bound will lead to
a slower computation time. We also observe in the results of Figure 6 that the
maximum utilization decreases when going from a length bound of 2 to a length
bound of 3, as well as from a length bound of 3 to a length bound of 4. However
the maximum utilization does not decrease after a length bound of 4, which is
contrary to our hypothesis that a greater length bound leads to less maximum
utilization. This could be because the dataset we generated does not have any
cases like what is described in Lemma 1. With these results in mind, we run the
remaining experiments with a length bound of 4.
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6.3 Decision LP Experiment

Purpose of experiment The linear programming model optimizes the solu-
tion, but we hypothesize that, in some cases, it is faster to not look for an optimal
solution, but just find a feasible solution where the maximum utilization is less
than 1. This could especially be the case for topologies where the demand is
much smaller or much larger than what there is capacity for, since an LP solver
might not have to explore many options before confirming or denying whether
a solution exists.

Setup of experiment We setup this experiment by implementing both and
unmodified version of the optimization linear programming model from Theo-
rem 5, as well as a modified linear programming model which only checks if there
is a feasible solution to the update sequence decision problem. We do this by
removing the optimization function (1) and instead using constraint (15).

α ≤ 1 (15)

To test the effect of demands of different sizes on the decision model, we hand
pick 4 topologies and choose a link capacity such that the maximum utilization
is 1. These topologies are Aarnet, Bellcanada, Darkstrand, and Zamren. We run
the experiment over 40 iterations for each test, where we set the demand of each
respective flow f to demand(f) · iteration · 0.05 for each topology. The results
thus cover different levels of maximum utilization, ranging from 0.05 to 2.00.

Discussion of experiment In the results of the experiments, shown in Fig-
ure 7, we observe that, though there are differences and fluctuations, the dif-
ference between the optimization and decision models is small. We do however
observe that there is a general tendency for the optimization model to have a
slightly faster computation time than the decision model.
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(a) Plot of the decision LP experiment for the
Aarnet topology.

(b) Plot of the decision LP experiment for the
Bellcanada topology.

(c) Plot of the decision LP experiment for the
Darkstrand topology.

(d) Plot of the decision LP experiment for the
Zamren topology.

Optimization LP Decision LP

Fig. 7: The traffic demand scaling is a multiplier on the traffic demand of each
flow. The x-axis consists of 40 demand scalings from 0.05 to 2. A solution exists
when the scaling is at most 1. This experiment is run on 4 different topologies,
and in each case, a solution exists if the traffic demand is at most 1.
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Fig. 8: Cactus plot that depicts the runtime of solving both the general problem
and the monotonic problem with linear programming. In every case, the maxi-
mum utilization was exactly the same for the general and monotonic models.

6.4 Monotonicity Experiment

Purpose of experiment In Theorem 5, we find that the complexity of both
the general and monotonic update sequence decision problems are the same.
Since we have a linear programming model for both, we can observe how they
perform against one another. The purpose of this experiment is twofold. First,
is there a difference in computation time? Second, does the monotonic variant
find the same solutions as the general one?

Setup of experiment We implement and test both an unmodified version of
the optimization linear programming model, which we call ’General’, as well
as the monotonic linear programming model from Theorem 5, which we call
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’Monotonic’, on the dataset we generated. The difference between the two models
is that the monotonic linear programming model has (13) in addition to the
constraints of the general model.

Discussion of experiment We observe in Figure 8 that ’General’ and ’Mono-
tonic’ both have almost the same computation time. Furthermore, the same
maximum utilization was found for the general and monotonic models for all of
the 260 topologies. For this reason, we propose Conjecture 1.

Conjecture 1. For a traffic system T , there exists an update sequence of length
n with a maximum utilization of u if and only if there exists a monotonic update
sequence of length n with a maximum utilization of u.

6.5 Pruning Experiment

Purpose of experiment In Section 3.2 and Section 5.1, we respectively present
techniques for pruning flows and edges, which can reduce the number of con-
straints in the linear programming model. We know that applying these tech-
niques will not change the maximum utilization, but we hypothesize that ap-
plying these techniques will speed up the computation time as a result of fewer
constraints.

Setup of experiment For comparison, we use the linear programming model
from Theorem 5, which we call the baseline. Then, we also implement and test
a modified version of the linear programming model, where the edge pruning
and flow pruning from Algorithm 4 and Algorithm 2 are applied. Because they
use the same logic, the techniques can be used in combination with almost no
additional cost compared to using one of them separately, so we also test using
both in combination.

Discussion of experiment In the results of the experiments, shown in Fig-
ure 9, we confirm our hypothesis that the computation time is reduced for both
techniques. We particularly note that the edge pruning technique produces a
more significant speed up over the flow pruning technique, and that the combi-
nation of both produce an even greater speed up.
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Fig. 9: Cactus plot that depicts the runtime in tests where we apply the flow
pruning from Section 3 and the edge pruning from Section 5. The Baseline
label indicates that no reductions have been applied. In all of the solutions, the
maximum utilization was the same for each test

6.6 Flow Removal Experiments

Purpose of experiment We apply the technique from Section 5.2 to speed up
computation time at the cost of precision, by removing some of the smallest flows
corresponding to a fraction of the total demand. We can remove any fraction of
the total demand, but our assumption is that removing more demand will lead
to less computation time at the cost of a greater maximum utilization.
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(a) Logarithmic cactus plot of completion
time for each topology

(b) Logarithmic cactus plot of the maximum
utilization for each topology

Baseline 10% removed 20% removed 30% removed 40% removed 50% removed

Fig. 10: Cactus plot of the technique from Section 5.2 applied with to the Internet
Topology Zoo. x% removed means that the smallest flows corresponding to x%
of the total demand are removed. ’Baseline’ means that no flows are removed.

Setup of experiment For comparison, we use the linear programming model
from Theorem 5, which we call the baseline. We then run a series of tests where
we respectively remove 10%, 20%, 30%, 40%, and 50% of the total demand by
using Algorithm 5.

Discussion of experiment We confirm our hypothesis by observing the results
from Figure 10, where we can see that the computation time decreases as flows
are removed. As expected, we observe that, in general, removing more demand
increases maximum utilization. Interestingly, in Figure 11, we see that even after
removing flows equal to 50% of the demand, there is some network where the
maximum utilization is the same as in the Baseline. This could be due to how
the dataset is generated on particularly small topologies. The average difference
shows that for each 10% demand removed, the maximum utilization increases by
about 5%. We also see that the maximum difference generally increases about
10% for each 10% demand removed.
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Fig. 11: Depiction of the difference in maximum utilization between the results
from the baseline LP model, and the models where we have removed some of
the smallest flows. For each element on the x-axis, we have three bars, respec-
tively showing the smallest, the average, and the greatest increase in maximum
utilization among all networks.
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6.7 Combination of Pruning and Flow Removal Experiment

Purpose of experiment Applying the pruning techniques in Section 6.5 and
the demand removal from Section 6.6 shows promising results. Our assumption
is that using both at the same time can lead to an even faster computation time,
while still only increasing the maximum utilization slightly.

Setup of experiment For comparison, we use the linear programming model
from Theorem 5, which we call the baseline. We also implemented and ran the
linear programming model where we removed flows equal to 10% of the demand,
from Section 6.6, the linear programming model where we pruned both the edges
and flows from Section 6.5 as well as a linear programming model that applies
both of these techniques. We applied these techniques sequentially, first using
the pruning techniques before removing the smallest flows corresponding to 10%
of the demand.

Discussion of experiment In the results of Figure 12, we confirm our hypoth-
esis that combining the techniques leads to an overall speedup in computation
time. We also observe among that of the two techniques, pruning and remov-
ing flows, the pruning techniques lead to an overall faster computation time,
though that could change if more than 10% of the demand is removed. When
all techniques are applied, we see that, for most topologies, computation time is
improved by about a factor of 10.
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Fig. 12: Cactus plot that depicts the runtime in tests where we apply the pruning
techniques from section 3.2 and section 5.1, as well as the flow removal technique
from section 5.2. The ’Baseline’ label indicates that no reductions have been
applied, and 10% removed means that the smallest flows corresponding to 10%
of the total demand has been removed
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7 Related work

The subject of avoiding congestion during network updates has already been
studied. Some notable work in this area is Dionysus [14], Atomip [19], SWAN
[12], Brandt et al. [4], and ez-Segway [22], that each have their own techniques
to solve the problem. The main difference that sets our work apart is that we
are capable of finding an optimal solution, while they look for any solution that
provides a maximum utilization of at most 1.

Dionysus [14] is a system for updating networks in a congestion-free manner.
In their model, flows are unsplittable, so each flow sends its data along either
its initial configuration or its final configuration, but not a mix of both. They
use dependency graphs that represent potential updates and available network
resources, which can then be used to determine the possible updates. They find
that using these graphs to find update schedules that do not create congestion is
NP-complete. One of the main advantages of Dionysus is that it is able to adapt
its scheduling at runtime depending on which switches have been updated, and
while our problem definition is more general than theirs, as we allow flows to be
split between their initial and final configurations, the update schedule that we
produce cannot adapt.

Atomip [19] uses mixed integer linear programming to provide a solution for
updating SDN networks with an ordering that minimizes transient congestion.
The solution uses a heuristic method to solve the integer programming problem,
and experimental results show that it is able to solve the problems in sub-seconds.
One of the techniques Atomip uses to quickly create update schedules is to
remove what it calls non-critical flows and edges, and this is the main inspiration
for the flow and edge pruning in Section 3.2 and Section 5.1. What they do is to
remove all flows and edges that they know definitely cannot cause congestion,
meaning a utilization of at least 1, and they can check this by determining if
a link has more capacity than what all flows can bring through it. The main
difference with our techniques is that we do not check if edges and flows can
cause congestion, but instead if they can affect the maximum utilization, which
means that our technique can be useful even if all edges and flows are critical by
their measure, and even if the goal is to find the optimal maximum utilization.

SWAN [12] is an influential system for providing a congestion-free update
schedule. When they update a flow, they find the measure of slack on each
affected link, which is how much capacity there is left for the flows, and they
use that to determine how many rounds of updates it takes to update the flows.
This can be powerful, because in many cases, it allows them to bound the length
of an update sequence to the necessary length to find a solution. After finding
the length, they use linear programming to determine if such a solution exists,
and if there is slack, a solution can always be found. If there is no slack, then
it may still be that a solution exists, but if it does, then this method cannot
be used to find out how many update rounds are needed. We do not use any
mechanism similar to slack, though it could easily be used in conjunction with
our linear programming model. However, in Section 6, we see that using more
than 4 update rounds does not affect the maximum utilization for any networks
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in our dataset, so using slack to determine the length of the update sequences
would not improve results for our dataset.

Brandt et al. [4] builds upon the work of SWAN and Dionysus introduce
the first polynomial-time algorithm that can decide whether there exists an
update sequence that updates one flow configuration to another while avoiding
congestion in the network. Their definition of flows allows for multiple paths for
both the initial and final configuration of each flow, while we only allow one
initial path and one final path, which means that they are more general than us
in this regard. They show a polynomial-time algorithm for their problem, but
they have not implemented it, so it is unknown how well it performs in practice.

ez-Segway [22] presents a decentralized mechanism for fast and consistent
network updates. The main idea is that when a centralized controller makes
changes to the network flows, each switch is given a set of conditions for when it
can update. The switches communicate their state to each other, so the switches
can update without additional input from the controller. This method can result
in deadlocks, where groups of routers wait for each other to update. Ez-Segway
aims to avoid these situations by using flow segmentation, where different seg-
ments of flows can be updated independently, and splitting volume, which means
that a flow can split the traffic between its initial and final paths. Our notion of
split ratios in Section 2 is inspired by splitting volume.

8 Conclusion

We studied how to update flows from their initial configuration to their final
configuration while avoiding link congestion. We showed that, by allowing flows
to be split between their configurations, and by bounding the length of the
update sequence, we could decide whether there exists a solution in polynomial
time by reduction to a linear programming model. We also found that, if we fixed
a granularity for the update sequence or update flows one at a time, i.e. atomic
updates, then the problem was NP-hard. To simplify the problem, we showed
how to prune flows and edges that would not affect the maximum utilization in
any way, and we found a technique to remove some of the smallest flows without
giving incorrect solutions, though those solutions could be suboptimal.

Where most tools in the domain of congestion-free network updates are lim-
ited to finding any update sequence that limits the maximum utilization of a net-
work’s links to less than 100%, our linear programming model found an optimal
update sequence with the least possible maximum utilization. We implemented
our model to conduct a series of experiments, where we found that an update
sequence with a length of 4 was sufficient to find the best possible maximum
utilization for our dataset, though we know that there are networks where more
update rounds always provide a better maximum utilization. We also saw that,
for our system, finding an optimal solution was generally slightly faster than
determining if a solution existed. Finally, we discovered that applying all of our
techniques to simplify the problem, in many cases, improved computation time
by more than a factor of 10.
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9 Future Work

There are multiple avenues of further study that could be followed based on our
findings. Here, we present some of the theoretical and experimental possibilities
for further research.

9.1 Multiple Paths for Initial and Final Flow Configurations

The flow model in [4] allows for both their initial and their final configuration to
have multiple paths. We only allow for one path in either configuration, but there
is little reason why our work could not be extended in this direction. This is an
interesting direction to explore, because it could make our model more general,
especially since many routing strategies, like ECMP, use multiple paths.

9.2 Techniques to Determine Update Sequence Length

The concept of slack from [12] could be adapted to our problem, which could,
in some cases, help us to determine a length for the update sequences. While
we found that a length of 4 was sufficient, we believe that this is dependent on
the dataset, so using this technique could help ensure that our solution is useful
in more situations. However, we note that the slack technique is only useful for
decision problems, so it is insufficient if the goal is to find an optimal solution.
We propose exploring other options for determining a length bound for update
sequences that could be used when optimizing.

9.3 Unsolved Computational Complexity Questions

In Table 1, we see that we have not found a lower bound for general and mono-
tonic update sequence problems. This is interesting, because if the problems
belong to a lower complexity class than P, then they may be possible to paral-
lelize. We believe the problem to be P-complete, but as we have not been able
to prove so.

In addition, the fixed granularity update sequence decision problem is NP-
hard and in PSPACE, but we have not discovered the exact complexity of the
problem.

9.4 Monotonic Conjecture Proof

In Section 6.4, we proposed Conjecture 1. We believe the conjecture to be true,
but we have yet to prove it, so we propose it as an obvious approach for future
work.
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9.5 Additional Experiments

Increased Amount of Flows In Section 6, we used a generated dataset for
flows and capacities, where the amount of flows per topology was scaled to 10
times the amount of nodes for each topology. However, our approach could be
improved to be more realistic, for example by using a number of flows corre-
sponding to the square of the number of nodes.

Real world dataset While generating a more realistic dataset would improve
the validity of our results, it would be even better if we could test our linear
programming model on a real-world dataset.

Measuring Computation Time for Pruning Flows and Edges and Re-
moving Flows In Section 6.5 and Section 6.6 we applied techniques to reduce
the size of the traffic systems. While they can drastically speed up the compu-
tation time for solving the linear programming model, we have not measured
the computation time of the techniques themselves, and without that, we do not
know for sure how much they improve the total computation time.

Measuring Computation Time for Linear Programming Constraint
Instantiation In Section 6, we tested the computation speed of solving the
linear programming model, but we did not measure the time it took to instantiate
all the constraints. This means that the total time of running our solution might
be longer than what is indicated by our experimental results.

Bibliography

[1] Partition problem (Nov 2022), URL https://en.wikipedia.org/wiki/
Partition problem

[2] Amiri, S.A., Ludwig, A., Marcinkowski, J., Schmid, S.: Transiently consis-
tent sdn updates: Being greedy is hard. In: Structural Information and Com-
munication Complexity: 23rd International Colloquium, SIROCCO 2016,
Helsinki, Finland, July 19-21, 2016, Revised Selected Papers 23. pp. 391–
406. Springer (2016)

[3] Brandt, S., Foerster, K.T., Wattenhofer, R.: Augmenting flows for the con-
sistent migration of multi-commodity single-destination flows in sdns. Per-
vasive and Mobile Computing 36, 134–150 (2017)

[4] Brandt, S., Förster, K.T., Wattenhofer, R.: On consistent migration of flows
in sdns. In: IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications. pp. 1–9. IEEE (2016)

[5] Cao, K., Liu, Y., Meng, G., Sun, Q.: An overview on edge computing re-
search. IEEE Access PP, 1–1 (01 2020)

39

https://en.wikipedia.org/wiki/Partition_problem
https://en.wikipedia.org/wiki/Partition_problem


[6] Feamster, N., Balakrishnan, H., Rexford, J., Shaikh, A., Van Der Merwe,
J.: The case for separating routing from routers. In: Proceedings of the
ACM SIGCOMM workshop on Future directions in network architecture.
pp. 5–12 (2004)

[7] Foerster, K.T.: On the consistent migration of splittable flows: Latency-
awareness and complexities. In: 2018 IEEE 17th International Symposium
on Network Computing and Applications (NCA). pp. 1–4. IEEE (2018)

[8] Foerster, K.T., Ludwig, A., Marcinkowski, J., Schmid, S.: Loop-free route
updates for software-defined networks. Ieee/acm Transactions on Network-
ing 26(1), 328–341 (2017)

[9] Förster, K.T.: Don’t disturb my flows: Algorithms for consistent network
updates in software defined networks. Ph.D. thesis, ETH Zurich (2016)

[10] Förster, K.T., Mahajan, R., Wattenhofer, R.: Consistent updates in soft-
ware defined networks: On dependencies, loop freedom, and blackholes. In:
2016 IFIP Networking Conference (IFIP Networking) and Workshops. pp.
1–9. IEEE (2016)

[11] Hong, C.Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M.,
Wattenhofer, R.: Achieving high utilization with software-driven wan. In:
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. pp.
15–26 (2013)

[12] Hong, C.Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M.,
Wattenhofer, R.: Achieving high utilization with software-driven wan. In:
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. pp.
15–26 (2013)

[13] Jensen, P.G.: Deis-mcc (2023), URL https://github.com/DEIS-Tools/
DEIS-MCC

[14] Jin, X., Liu, H.H., Gandhi, R., Kandula, S., Mahajan, R., Zhang, M., Rex-
ford, J., Wattenhofer, R.: Dynamic scheduling of network updates. SIG-
COMM Comput. Commun. Rev. 44(4), 539–550 (aug 2014), URL https:
//doi.org/10.1145/2740070.2626307

[15] Karp, R.M.: Reducibility among combinatorial problems. Springer (2010)
[16] Knight, S., Nguyen, H., Falkner, N., Bowden, R., Roughan, M.: The internet

topology zoo. Selected Areas in Communications, IEEE Journal on 29(9),
1765 –1775 (october 2011)

[17] Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky,
S., Uhlig, S.: Software-defined networking: A comprehensive survey. Pro-
ceedings of the IEEE 103(1), 14–76 (2014)

[18] Ludwig, A., Rost, M., Foucard, D., Schmid, S.: Good network updates for
bad packets: Waypoint enforcement beyond destination-based routing poli-
cies. In: Proceedings of the 13th ACMWorkshop on Hot Topics in Networks.
pp. 1–7 (2014)

[19] Luo, L., Yu, H., Luo, S., Zhang, M.: Fast lossless traffic migration for sdn up-
dates. In: 2015 IEEE International Conference on Communications (ICC).
pp. 5803–5808 (2015)

[20] Mitchell, S., Kean, A., Mason, A., O’Sullivan, M., Phillips, A., Peschiera,
F.: Pulp (2009), URL https://coin-or.github.io/pulp/

40

https://github.com/DEIS-Tools/DEIS-MCC
https://github.com/DEIS-Tools/DEIS-MCC
https://doi.org/10.1145/2740070.2626307
https://doi.org/10.1145/2740070.2626307
https://coin-or.github.io/pulp/


[21] Miyano, S., Shiraishi, S., Shoudai, T.: A list of p-complete problems (1989)
[22] Nguyen, T.D., Chiesa, M., Canini, M.: Decentralized consistent updates in

sdn. In: Proceedings of the Symposium on SDN Research. p. 21–33. SOSR
’17, Association for Computing Machinery, New York, NY, USA (2017),
URL https://doi.org/10.1145/3050220.3050224

[23] Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstrac-
tions for network update. ACM SIGCOMM Computer Communication
Review 42(4), 323–334 (2012)

[24] Roughan, M.: Simplifying the synthesis of internet traffic matrices. ACM
SIGCOMM Computer Communication Review 35(5), 93–96 (2005)

[25] Zheng, J., Chen, G., Schmid, S., Dai, H., Wu, J., Ni, Q.: Scheduling
congestion-and loop-free network update in timed sdns. IEEE Journal on
Selected Areas in Communications 35(11), 2542–2552 (2017)

[26] Zheng, J., Li, B., Tian, C., Foerster, K.T., Schmid, S., Chen, G., Wux,
J.: Scheduling congestion-free updates of multiple flows with chronicle in
timed sdns. In: 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). pp. 12–21. IEEE (2018)

41

https://doi.org/10.1145/3050220.3050224

	Optimizing Link Utilization During Network Migration
	1 Introduction
	2 Network Model
	3 Flow Pruning
	4 Problem Complexity
	5 Towards a Practical Linear Programming Solution
	6 Experimental Results
	7 Related work
	8 Conclusion
	9 Future Work


