
Embedded physical modelling modular synthesizer based on FDTD methods

Benjamin Fullerton Støier
Aalborg University, Copenhagen
bstoie21@student.aau.dk

ABSTRACT

This paper describes the implementation and features of
a modular synth that utilises physical modelling synthesis.
The physical models are based on finite-difference time do-
main (FDTD) methods and consist of a damped stiff string
and an acoustic tube. Several exciters including a bow,
strike, pluck and lip reed have also been implemented. Fur-
thermore, a dynamic grid has been utilised, which allows
for smooth variations of the defining physical properties of
the models.

1. INTRODUCTION

In recent decades, significant progress has been made in
emulating real-world musical instruments with various phys-
ical modeling techniques. As a result, many physical mod-
eling techniques exist today, such as modal synthesis, dig-
ital wave guides and mass-spring systems. This project
utilises the finite-difference time domain (FDTD) methods
technique first used in a musical context by Ruiz in [1].
FDTD methods are numerical techniques used to solve par-
tial differential equations (PDEs). They involve approxi-
mating the PDEs with difference equations and discretising
the continuous system into a grid points in space and time.
FDTD methods are by no means the most efficient form of
physical modelling. The methods are however extremely
general and flexible in modeling various systems. The
methods allow for direct numerical simulation of any set
of PDE’s without making assumptions of modes or trav-
eling wave solutions [2]. Another benefit of FDTD meth-
ods is that you gain direct access to the physical properties
of the model. In recent years real-time applications utilis-
ing FDTD methods have gained prominence due to higher
computational power being available to the general pub-
lic [2]. However, still to this day the vast majority of the
real-time applications utilising FDTD are limited to plug-
ins running in a DAW, and all commercially available em-
bedded physical modelling based synthesizers still utilise
less demanding methods such as modal synthesis and dig-
ital wave guides. As far as the author is concerned, this
is the first (including state of the art) embedded modular
synthesizer utilising FDTD methods.

One of the issues with the FDTD methods is that the
method lacks the capability of handling smooth parame-
ter changes while retaining stability and optimal simula-
tion quality. Recently, a method known as ”the dynamic
grid” has been introduced in order to mitigate this prob-
lem. The dynamic grid was first introduced by Willemsen
et al. in [3] where it was applied to the 1D wave equation.

Later, the method has been utilised to model a trombone
in [4] and for more complex higher-order systems in [5,6].

One of the interesting aspects of physical modelling syn-
thesis is that you can exploit the virtual aspect of the sim-
ulation and create sounds that would not be physical pos-
sible in the real word. With the dynamic grid it is possible
to change material properties and the geometry of a phys-
ical resonator in real time, thus allowing the user to create
sounds that would otherwise be impossible. As the phys-
ical models are embedded in the form factor of a modu-
lar synth, it takes this aspect of experimenting with non-
realistic sounds even further, since it makes it easy to mod-
ulate multiple physical properties. The modular aspect of
the synthesizer allows it to be patched together with other
modular gear that the user might posses, thereby making it
possible to be integrated into a larger system.

This paper will start out with presenting the necessary
theory for implementing the psychical models. Section
2 introduces the FDTD methods. Section 3 presents the
damped stiff string model. Section 4 presents the acoustic
tube model. Section 5 presents models related to the ex-
citers. Section 6 presents the dynamic grid method. Sec-
tion 7 presents how the models have been implemented
in real-time, as well as the design considerations and the
additional features of the final synth. Section 8 discusses
the outcome of this project and potential improvements.
Lastly, Section 9 gives concluding remarks on the project.

2. FDTD METHODS

FDTD methods was utilised for this project in order to
approximate continuous physical systems by subdividing
them in to discrete points in time and space. The theory in
this section is based on [7, Ch. 2] unless otherwise noted.

Consider a PDE that describes a continuous 1D system
with state variable, u(x, t). The system has a static length
L (in m), a spacial domain is defined for x ∈ [0, L], and a
temporal range defined for t ≥ 0. To discretise the system,
we can represent u(x, t) as a grid function un

l with spacial
index l ∈ {0, ..., N} and temporal index n ∈ N0. When
performing the discretisation, the spacial part of the con-
tinuous system is divided into N = floor(L/h) grid points
with grid spacing h (in meters). Similarly, discretisation
of the temporal part of the system is achieved by setting
t = nk, where k = 1/fs is the time step (in seconds) and
fs is the sampling frequency (in Hz). Shift operators, de-
noted by es of type s, can be used to shift the temporal or
spatial index of a grid function. The forward and backward
temporal shift operators are defined as

mailto:author1@smcnetwork.org

et+u
n
l = un+1

l , and et−u
n
l = un−1

l (1)

and the spacial shift operators are

ex+u
n
l = un

l+1, and ex−u
n
l = un

l−1 (2)

The shift operators are instrumental in defining the finite
difference (FD) operators, which can be used for discretis-
ing first order derivatives in time and space. The FD oper-
ators can be used in three different ways, either as forward,
backwards or centered operators. The FD operators used
for discretising first order derivatives in time are defined as
follows

∂t ≊


δt+ ≜ 1

k (et+ − 1)

δt− ≜ 1
k (1− et−)

δt· ≜ 1
2k (et+ − et−)

(3)

and the FD operators used for discretising first order deriva-
tives in space are

∂x ≊


δx+ ≜ 1

h (ex+ − 1)

δx− ≜ 1
h (1− ex−)

δx· ≜ 1
2h (ex+ − ex−)

(4)

Multiplying first order FD operators can yield approxi-
mations for higher order differences. Second order deriva-
tives in time can be approximated as

∂2
t ≊ δt+δt− = δtt ≜

1

k2
(et+ − 2 + et−) (5)

and similarly second-order derivatives in space are ap-
proximated using the following operator

∂2
x ≊ δx+δx− = δxx ≜

1

h2
(ex+ − 2 + ex−) (6)

3. DAMPED STIFF STRING

This section describes how a damped stiff string can be
modelled using FDTD methods. The theory in section is
based on [7] unless otherwise noted.

A PDE governing the motion of a damped stiff string can
be expressed as follows

∂2
t u = c2∂2

xu− κ∂4
xu− 2σ0∂t·u+ 2σ1∂t−∂

2
xu (7)

with wave speed c =
√

T/ρA (in m/s), tension T (in N),
material density ρ (in kg/m3), cross-sectional area A =
πr2 (in m2), radius r (in m), stiffness coefficient κ =√

EI/ρA (in m2/s), Young’s modulus E (in Pa), area mo-
ment of inertia I = πr4/4 (in m4), frequency-independent
damping σ0 (in s−1) and frequency-dependent damping σ1

(in m2/s).
Discretisng the PDE in equation (7) yields

δttu
n
l = c2δxxu

n
l −κ2δxxxxu

n
l −2σ0δt·u

n
l +2σ1δt−δxxu

n
l

(8)
and by expanding the FD operators one can derive at the

following update equation

(1 + σ0k)u
n+1
l =

(
2− 2λ2 − 6µ2 − 4σ1k

h2

)
un
l

+

(
λ2 + 4µ2 +

2σ1k

h2

)
(un

l+1 + un
l−1)

− µ2(un
l+2 + un

l−2)

+

(
−1 + σ0k +

4σ1k

h2

)
un−1
l

− 2σ1k

h2
(un−1

l+1 + un−1
l−1)

(9)
where

λ =
ck

h
(10)

and

µ =
κk

h2
(11)

The stability condition for the scheme can be derived through
von Neumann stability analysis as done in [2, Ch. 4] result-
ing in

h ≥ hmin =

√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2

2
(12)

´ A simply supported boundary condition was used for the
stiff string in this project. This boundary condition is de-
fined as

u = ∂2
xu = 0, at x = 0, L (13)

and can be discretised to

un
l = δxxu

n
l = 0, at l = 0, N (14)

which is implemented by reducing the range of operation
to l ∈ {1, ..., N − 1} and by applying the following virtual
grid points

un
−1 = −un

−1, and un
N+1 = −un

N−1 (15)

which are needed for calculating Equation (9) at l = 1
and l = N − 1, respectively

4. ACOUSTIC TUBE

This section describes how an acoustic tube can be imple-
mented using FDTD methods. The theory in this section is
based on [8] unless otherwise noted. Webster’s horn equa-
tion [9] is a model that can be used to describe the lossless,
small-amplitude propagation of air in a tube as

S∂2
tΨ = c2∂x(S∂xΨ) (16)

with the cross sectional area along the tube S (in m2),
acoustic potential Ψ (in m2/s) and the speed of sound c
(in m/s). In order to mitigate rounding errors, Webster’s

equation is reformulated as a system of two coupled first-
order instead of the original second-order form

S

ρ0c2
∂tp = −∂x(Sv) (17)

and

ρ0∂tv = −∂xp (18)

with particle velocity v(x, t) (in m/s) and air pressure
p(x, t) (in Pa). Both of these parameters are related to the
acoustic potential in the following manner

p = ρ0∂tΨ, and v = −∂xΨ (19)

with air density ρ0 (in kg/m3).
It can be useful to introduce an interleaved grid when per-

forming the discretisation as done in [2] in order to ensure
second-order accuracy for the forward and backward FD
operators. Accordingly, the cross section is placed on the
interleaved grid in space, while the velocity is placed on
the interleaved grid in both space and time Therefore, the
cross section S(x) at location x = lh can be approximated
in the following manner

Sl−1/2 = µx−S(x = lh), and Sl+1/2 = µx+S(x = lh)
(20)

S̄l is another valuable proberty that can be defined as the
average of Sl−1/2 and Sl+1/2

S̄l = µx+Sl−1/2 = µx−Sl+1/2

= µxxS(x = lh) =
1

2
(Sl+1/2 + Sl−1/2)

(21)

With the interleaved grid in mind, equations 17 and 18
are discretised as

S̄l

ρ0c2
δt+p

n
l = −δx−(Sl+1/2v

n+1/2
l+1/2) (22)

ρ0δt−v
n+1/2
l+1/2 = −δx+p

n
l (23)

By expanding the the FD operators, we can obtain the
update equation for pressure and velocity as

pn+1
l = pnl −

ρ0cλ

S̄l
(Sl+1/2v

n+1/2
l+1/2 −Sl−1/2v

n+1/2
l−1/2) (24)

v
n+1/2
l+1/2 = v

n−1/2
l+1/2 − λ

ρ0c
(pnl+1 − pnl) (25)

with Courant number λ = ck/h [10].
The Levine and Schwinger radiation model [11] is em-

ployed to simulate energy loss caused by radiation. This
model characterizes the radiation of plane waves in an un-
flanged circular pipe and leads to the following update equa-
tion for the right boundary

pn+1
N =

1− ρ0cλζ3
1 + ρ0cλζ3

pnN

− 2ρ0cλ

1 + ρ0cλζ3

vn(1) + ζ4p
n
(1) −

SN−1/2v
n+1/2
N−1/2

S̄N


(26)

with

ζ1 =
2R2k

2R1R2Cr + k(R1 +R2)

ζ2 =
2R1R2Cr − k(R1 +R2)

2R1R2Cr + k(R1 +R2)

ζ3 =
k

2Lr
+

ζ1
2R2

+
Crζ1
k

ζ4 =
ζ2 + 1

2R2
+

Crζ2 − Cr

k

(27)

The various parameters are R1 = ρ0c, R2 = 0.505ρ0c,

Lr = 0.613ρ0
√
S̄N/π, and Cr = 1.111

√
S̄N

ρ0c2
√
π

. Once

pn+1
N is determined, we can compute the internal states p(1)

and v(1) in the following manner

vn+1
(1) = vn(1) +

k

Lr
µt+p

n
N (28)

and

pn+1
(1) = ζ1µt+p

n
N + ζ2p

n
(1) (29)

5. EXCITATION

Different types of exciters are available dependent on which
resonator is in use. Bowing, strike and pluck excitation is
available when user choose the damped stiff string as a res-
onator. Lip reed excitation is used when the user select the
acoustic tube as a resonator. This section describes how
these excitation types where implemented.

5.1 Bow

The following subsection is based on [2, Ch. 8], and de-
scribes how a the bowing excitation can be implemented
using a static friction model. In order to simulate bow-
ing excitation a nonlinear friction model dependent on the
relative velocity vRel between the bow and the string is re-
quired. This project utilises the following static friction
model

Φ(vrel) =
√
2avrele

−av2
rel+1/2 (30)

with friction characteristic Φ and friction parameter a.
Bowing force can be added to the discretised PDE of the

stiff string from Equation (8) according to

δttu
n
l = c2δxxu

n
l − κ2δxxxxu

n
l − 2σ0δt·u

n
l

+ 2σ1δt−δxxu
n
l − Jl,p(x

n
B)F

n
BΦ(v

n
rel)

(31)

with FB being the bowing force divided by the total plate
mass, xB the bowing location and spreading operator Jl,p(xn

B)
or order p. In this project the 0th-order spreading function
was utilised, which is defined as

Jl,0 =
1

h

{
1, if l = li

0, otherwise,
(32)

with discrete excitation position li. The relative velocity
in the discrete domain is given as

vrel = Il,p(x
n
B)∂t·u

n
l − vnB (33)

with interpolation operator Il,p(xn
B) of order p. The 0th-

order interpolation operator, which has been used in this
project is defined as

Il,0 =

{
1, if l = li

0, otherwise,
(34)

In order to obtain a solution for un+1
l at the bowing lo-

cation, an inner product of the scheme in Equation (31) is
calculated as

Il,p(x
n
B)δttu

n
l = c2Il,p(x

n
B)δxxu

n
l − κ2Il,p(x

n
B)δxxxxu

n
l

− 2σ0Il,p(x
n
B)δt·u

n
l + 2σ1Il,p(x

n
B)δt−δxxu

n
l

− ||Jl,p(xn
B)||ndFn

BΦ(v
n
rel)

(35)
By utilising the following identity

∂tt =
2

k
(∂t · −∂t−), (36)

Equation (35) can be assigned to a function g(vnrel) in the
following manner

g(vnrel) =

(
2

k
+ 2σ0

)
vnrel

+ ||Jl,p(xn
B)||ndFn

BΦ(v
n
rel) + bn = 0

(37)

where

bn = −2

k
δt−ul + κ2δ∆δ∆u

n
l

+

(
2

k
+ 2σ0

)
vnB − 2σ1δt−δ∆u

n
l .

(38)

The Newton-Raphson method is then used to iteratively
solve for vrel

(vnrel)i+1 = (vnrel)i −
g((vnrel)i
g′((vnrel)i

(39)

where

g′((vnrel) =
2

k
+ 2σ0 + ||Jl,p(xn

B)||ndFn
BΦ

′(vnrel) (40)

and

Φ′(vnrel) =
√
2a(1− 2a(vrel)

2)e−a(vn
rel)

2+1/2 (41)

5.2 Strike and pluck

In order to simulate strike and pluck excitation a raised
cosine was utilised, which is defined as

F = Fexc(t) =

{
Fmax

2

(
1 − cos

(
qπ(t−t0)

Texc

))
, t0 ≤ t ≤ t0 + Texc

0, otherwise

(42)

with maximum force Fmax , the duration of the excitation
Texc and the point in time in which the excitation occurs
t0. Parameter q is altering the exitation type to be a pluck
when q = 1 and a strike when q = 2 [7]. The force from
the raise cosine can be applied to the discretised PDE of
the stiff string from Equation (8) as follows

δttu
n
l = c2δxxu

n
l − κ2δxxxxu

n
l − 2σ0δt·u

n
l

+ 2σ1δt−δxxu
n
l − Jl(xi)F

(43)

5.3 Lip reed

The lip reed, which is an exciter used in brass instruments,
is used as the excitation method when the tube resonator
is selected. The theory in this subsection is based on [8,
Ch. 5] unless otherwise noted. A single one-DoF-mass-
spring-damper system can be employed to model the lip
reed excitation. In this project, the outward sticking door
model described in [12] has been utilized, excluding the
collision component.

Mrÿ = −Mrω
2
ry −Mrσrẏ + Sr∆p (44)

with the displacement of the lip reed from the equilibrium
position y = y(t) (in m), mass of the reed Mr (in kg),
angular frequency of the reed ωr (in rad/s), loss parameter
σr (in s−1) and surface area of the lip Sr (in m2). ∆p is the
difference between the externally supplied mouth pressure
Pm and the pressure at the mouth piece (in Pa), thus

∆p = Pm − p(0, t) (45)

According to the Bernoulli equation, the pressure dif-
ference can be related to the volume flow velocity in the
mouthpiece, denoted as UB (in m3/s), as follows

UB = w[y +H0]+sgn(∆p)

√
2|∆p|
ρ0

(46)

with width of the reed w (in m) and static equilibrium
separation H0 (in m). The notation [·]+ represents the pos-
itive part of a quantity and is defined as

[·]+ =
·+ | · |

2
(47)

Therefore, when the lips are closed, the flow velocity be-
comes zero. The motion of the reed leads to a secondary
volume flow velocity, denoted as Ur (in m3/s), which can
be expressed as follows

Ur = Srẏ (48)

Assuming conservation of volume velocity, the total vol-
ume of air injected at the left boundaries can be expressed
as

S(0)v(0, t) = UB(t) + Ur(t) (49)

Parameters, Ub, Ur, y and ∆p are all discretised to the
interleaved temporal grid time as follows

δtty
n+1/2 = −ω2

0µt·y
n+1/2 +

Sr

M
∆pn+1/2 (50)

∆pn+1/2 = Pm − µt+p
n
0 (51)

U
n+1/2
B = w[yn+1/2 +H0]+sgn(∆pn+1/2)

√
2|∆pn+1/2|

ρ0
(52)

Un+1/2
r = Sr∂t·y

n+1/2 (53)

µx−(S1/2v
n+1/2
1/2) = U

n+1/2
B + Un+1/2

r (54)

Expanding the FD operators and solving for yn+3/2 in
Equation (50) leads to the following update equation

yn+3/2 =
4yn+1/2 + βry

n−1/2 + ξr∆pn+1/2

αr
(55)

where

αr = 2 + ω2
0k

2 + σrk, βr = σrk − 2− ω2
0k

2,

and ξr =
2Srk

2

M
(56)

The pressure difference across the reed can be determined
by combining Equations (50) - (54) and manipulating the
discrete leading to

∆pn+1/2 = sgn(cn3)

(
−cn1 +

√
(cn1)

2 + 4c2|cn3 |
2c2

)2

(57)
with

cn1 = w[yn+1/2 +H0]+

√
2

ρ0
≥ 0,

c2 = b2 +
a2SR

a1
≥ 0,

and cn3 = bn1 −
√
an3Sr

a1

(58)

where

a1 =
2

k
+ ωn

0 k + σr ≥ 0,

a2 =
Sr

M
≥ 0,

an3 =

(
2

k
δt− − ω2

0et−

)
yn+1/2,

bn1 = S1/2v
n+1/2
1/2 +

S̄0h

ρ0c2k
(Pm − pn0),

and b2 =
S̄0h

ρ0c2k
≥ 0

(59)

The lip reed is coupled to the tube by rearranging the
equation at the left boundary l = 0 in the following manner

pn+1
0 = pn0 −

ρ0cλ

S̄0
(−2µx−(S1/2v

n+1/2
1/2)+2S1/2v

n+1/2
1/2)

(60)
By substituting Equation (49) into Equation (60) it is pos-

sible to derive the following update equation for the left
boundary

pn+1
0 = pn0 −

ρ0cλ

S̄0
(−2(UB+Ur)v

n+1/2
1/2)+2S1/2v

n+1/2
1/2)

(61)

6. DYNAMIC GRID

For both models simulation quality and bandwidth increase
as the grid spacing h approaches the minimum stable grid
spacing hmin, which for the damped stiff string is given by
Equation (12) and for the tube is given by Courant–Friedrichs–Lewy
condition stating that λ ≤ 1 [10]. This is commonly im-
plemented by the following operations in order [7]

N = floor(L/h); h = L/N ; (62)

Sudden changes in parameters can lead to variations in
the number of intervals N according to Equation (62). Be-
cause of the flooring operation, these changes can result
in sudden variations in the number of grid points defining
the system. These changes can introduce audible artifacts
and, in the worst case, lead to an unstable simulation. in
order to mitigate these issues a dynamic grid is introduced,
which allows for smooth changes to a non-integer number
of intervals between grid configurations. In order to utilise
the dynamic grid it is necessary to introduce the fractional
number of intervals N , where |N | = N . Substituting N
for |N | = N in Equation (62) allows for smooth transi-
tions between grid configurations and removes the need
for the flooring operation. As a result, the stability con-
dition is always satisfied with equality leading to optimal
simulation quality [3].

In order to implement the fractional number of intervals
for the original system un of the damped stiff string it is
necessary to split it into two subsystems as done in [6] and
[5]. Now the left part of the system is un

lu
defined over

lu ∈ {0, ...,Mn
u } and the right system onlo defined over

lo ∈ {0, ...,Mn
o }. Where,

Mu = Nn −Mn
o and 0 < Mn

o < Nn (63)

are the numbers of intervals for the left and right system,
respectively. The resulting FD schemes are

δttu
n
lu = (cn)2δxxu

n
lu − (κn)2δxxxxu

n
lu

− 2σn
0 δt·u

n
lu + 2σn

1 δt−δxxu
n
lu

(64a)

δtto
n
lo = (cn)2δxxo

n
lo − (κn)2δxxxxw

n
lw

− 2σn
0 δt·o

n
lo + 2σn

1 δt−δxxo
n
lo

(64b)

Notice that parameters cn, κn, σn
0 and σn

1 have all been
made time-varying. The subsystems in Equation (64) are

positioned adjacent to each other on the same domain x,
where the locations of the grid points are defined as follows

xn
ulu

= luh
n and xn

olo
= Ln − (Mn

o − lo)h
n (65)

for subsystems un
lu

and onlo respectively [5, 6]. A similar
process can be done for the tube splitting the scheme of pn

and vn into two-sets of first order as shown in [4]. In this
case the pressure and velocity of the left system pnlp and

v
n+1/2
lp+1/2 are both defined over lp ∈ {0, ...,Mn

p } and the

right qnlq and w
n+1/2
lq−1/2 system are lq ∈ {0, ...,Mn

q }, with

Mp = Nn −Mn
q and 0 < Mn

q < Nn. (66)

Now the FD schemes becomes

S̄l

ρ0c2
δt+p

n
lp = −δx−(Sl+1/2v

n+1/2
lp+1/2) (67a)

ρ0δt−v
n+1/2
lp+1/2 = −δx+p

n
lp (67b)

S̄l

ρ0c2
δt+q

n
lq = −δx+(Sl+1/2w

n+1/2
lq+1/2) (67c)

ρ0δt−w
n+1/2
lq+1/2 = −δx−q

n
lq (67d)

The two pairs of first order systems are placed on the
same domain adjacent to each other in a similar fashion
to the stiff string case, such that

xn
plp

= lph and xn
qlq

= Ln − (Mn
q − lq)h (68)

describes the locations of the left and right system, re-
spectively [4].

In both the damped stiff string and tube case, the total
number of grid points are one more than their original sys-
tems. Furthermore, the outer boundaries of both original
systems will be the same for the outer boundaries of the
modified systems.

6.1 Connection of inner boundaries

If Nn = Nn, the inner boundaries will perfectly overlap,
and thus impose a rigid connection on the inner boundaries
resulting in

un
Mn

u+1 = on0 , if xn
uMn

u
= xn

o0 (69)

for the damped stiff string [6] and

pnMn
p
= qn0 , if xn

pMn
p
= xn

q0 (70)

for the tube [4]. In the tube case, the domains of v and
w are extended at the inner boundaries to include vn+1/2

Mn
p +1/2

and w
n+1/2
−1/2 in order to calculate pn+1

Mp
and qn+1

0 . However,
this requires two virtual grid points pnMn

p +1 and qn−1. When
the inner boundaries are perfectly overlapping these virtual
grid points can be calculated as

pnMp+1 = qn1 , and qn−1 = pnMp−1 (71)

When a physical parameter is changed, the location of the
grid points will change in accordance with Equations (65)
and (68). As a result the inner boundaries will no longer
overlap and new definitions are required for the virtual grid
points. Utilising quadratic Lagrangian interpolation these
new definitions are found as

pnMn
p +1 = InpnMn

p
+ qn0 − Inqn1 (72a)

qn−1 = −InpnMn
p −1 + pnMn

p
− Inqn0 (72b)

where

In =
αn − 1

αn + 1
(73)

and
αn = Nn −Nn (74)

is the fractional part of Nn [4].
The case of the damped stiff string is more complex be-

cause the expansion of the δxxxx operator in Equation (64)
at uMn

u
and on0 requires the definition of two virtual grid

points for each inner boundary. Additionally, expansion of
the operator at uMn

u−1 and on1 requires the definition of a
single virtual grid point. In order to find these definitions it
is necessary to introduce a matrix form of the system from
Equation (64) as shown in [6] and [5]. The state vectors
placed in the following Nn × 1 column vector

Un =

[
un

on

]
(75)

where un = [un
1 , ..., u

n
Mu

]T and on = [on0 , ..., o
n
Mo

− 1]T .
The outer boundaries are excluded due to their states being
0 at all times. The system from Equation (64) can then be
rewritten as

AnUn+1 = BnUn + CnUn−1 (76)

with An = 1 + σn
0 k and

Bn = 2INn + (λn)2Dn
xx − (µn)2Dn

xxxx + SnDn
xx,

Cn = −(1− σn
0 k)INn − SnDn

xx,

(77)

where λn = cnk/hn, µn = κnk/(hn)2 and Sn = 2σn
1 k/(h

n)2.
The Nn ×Nn matrix

Dn
xx =



. 0

. . . −2 1
1 In − 2 1 −In

−In 1 In − 2 1

1 −2
. . .

0
.


(78)

is the matrix form of the δxx operator including the quadratic
interpolation at the inner boundaries and INn is the identity
matrix. Furthermore,

Dn
xxxx = Dn

xxDn
xx (79)

is the matrix form of the δxxxx operator [5, 6].

6.2 Adding and removing grid points

If the case of parameter change resulting in Nn ̸= Nn−1,
grid points has to be added to or removed from the system.
Similar to [5] and [6], this work only considers changes in
grid points to affect the left side of each system.

In the damped stiff string case, if Nn > Nn−1 grid points
are added to u and un−1 as follows

un :=
[
(un)T In3 z

n
u

]T
,

un−1 :=
[
(un−1)T In3 z

n−1
u

]T
,

if Nn > Nn−1 (80)

with

zu =
[
un
Mn−1

u −1
un
Mn−1

u
on0 on1

]T
,

zn−1
u =

[
un−1

Mn−1
u −1

un−1

Mn−1
u

on−1
0 on−1

1

]T
,

(81)

and cubic interpolator

In3 =
[
− αn(αn+1)

(αn+2)(αn+3)
2αn

αn+2
2

αn+2 − 2αn

(αn+3)(αn+2)

]
(82)

If Nn < Nn−1 grid points are simply removed at the left
inner boundary in the following manner [6]

un :=
[
un
1 ... un

Mn−1
u −1

]T
,

un−1 :=
[
un−1
1 ... un−1

Mn−1
u −1

]T
,

if Nn < Nn−1

(83)

In the tube case grid points are added to p and vn−1/2

according to

pn :=
[
(pn)T In3 r

n
]T

,

vn−1/2 :=
[
(vn−1/2)T In3 z

n−1/2
v

]T
,

if Nn > Nn−1

(84)

where

pn =
[
pn0 ... pnMn

p

]T
,

vn−1/2 =
[
v
n−1/2
1/2 ... v

n−1/2
Mn

p +1/2

]T
,

rn =
[
pMn

p −1 pMn
p

qn0 qn1
]T

and

zn−1/2
v =

[
v
n−1/2
Mn

p −1/2 v
n−1/2
Mn

p +1/2 w
n−1/2
1/2 w

n−1/2
3/2

]T
− η

(85)

with

η = ηn−1/2 =
(
w

n−1/2
−1/2 − v

n−1/2
Mn

p +1/2

)
·
[
0 0 1 1

]T
.

(86)
Grid points can be removed from the system according

to [4]

pn :=
[
pn0 ... pnMn

p −1

]T
,

vn−1/2 =
[
v
n−1/2
1/2 ... v

n−1/2
Mn

p −1/2

]T
.

if Nn < Nn−1

(87)

7. IMPLEMENTATION

A real time implementation of the physical models was im-
plemented on the Bela platform. Bela is an open-source
embedded computing platform designed for developing re-
sponsive, real-time interactive systems with audio and sen-
sors. The Bela system is based on the BeagleBone Black
single-board computer, which uses 1GHz ARM Cortex-A8
processors, has 512MB of DDR RAM and features a pro-
grammable real-time unit consisting of a 200MHz, 32-bit
processor that enables ultra-low latency processing. Bela
operates on a custom audio processing environment that
utilizes the real-time Linux extensions of Xenomai [13].
This section will go through how the theory from the pre-
vious sections have been implemented in real time as well
as the design considerations and the additional features that
have been implemented.

Figure 1. The implemented modular synth

7.1 Real time implementation of the damped stiff
string and acoustic tube

Bela provides a browser-based IDE and supports both low-
level languages such as C/C++ as well as computer mu-
sic programming languages like Pure Data, SuperCollider,
and Csound [13]. This project was implemented using
C++. The physical models were implemented with the dy-
namic grid, utilising the theory provided in the previous
sections. An important consideration when implementing
FD schemes in real time is how to minimise the required
computational power. In order to update the states sys-
tems in an efficient manner a pointer switch is employed,
which reduces the number of copy operations significantly.
The pointer switch is performed by assigning a temporary
pointer to the memory location of time step to un−1 and
on−1 for the damped string and to pn, vn−1/2, qn and
wn−1/2 for the acoustic tube. The temporary pointer is
later overwritten when calculating the scheme. The pointer
switch method reduces the number of operations from 2(N+

1) down to 8 in the damped string case and down to 10 op-
erations in the tube case. To prevent extra computations in
the FD scheme, it was decided to calculate as many of the
non time varying coefficients as possible. The implemen-
tation of the dynamic grid has utilised the same method
as [6], where Mn

o = 1∀n and Mn
q = 1∀n, such that Mn

u

and Mn
p are dynamically changed according to Equations

(63) and (66). As a result the right system of both the
damped stiff string and the tube only has a single mov-
ing grid point. The implemented code can be found as an
attachment on digital exam.

7.2 Audio I/O

The Bela features two audio inputs and two audio outputs
running at 44.1 kHz, and they are all utilised in this project.
The two audio inputs are able to act as an alternative to the
exciters described in Section 5. Both audio inputs have
a level control, and the first audio input also features a
dry/wet control allowing some of the original input to pass
through unaffected to the output. The output from the se-
lected resonator goes to both audio outputs. The first audio
output features a volume control and the second audio out-
put features a delay control. The delay control allows the
user to delay the second output up to a total of 2 seconds
using a potentiometer. The delay control allows the user to
create an echo effect by patching the second output to an
input and the level control of that input will as a result act
as feedback control. It also gives the user a lot of flexibil-
ity, since the user e.g. can patch different types of external
effect processors into the feedback loop.

7.3 Controls

The Bela features 8 16-bit 22.05khz ADC’s (excluding the
two separate audio outputs) that can be used by e.g. poten-
tiometers and CV inputs for controlling parameters. This
project did however require a total of 26 analog inputs. In
order to satisfy this need a 16 channel multiplexer and a
4 channel multiplexer were utilised. As a result 20 chan-
nels can be read using only two of the ADC’s. However,
this process does sacrifice 6 digital pins (out of 16 avail-
able) and reduces the sampling speed for the multiplexer
channels.

7.3.1 CV inputs

Control Voltage (CV) is a standardized method used by
synthesizers to exchange control signals and functions among
different modules. It serves as a common language for
communication between various components within a mod-
ular synthesizer system. CV signals are typically transmit-
ted between modules in a modular synthesizer system us-
ing patch cables. In the case of the Eurorack format, these
patch cables are commonly 3.5 mm mono jack plugs. The
same 3.5 mm mono jack connections have been used for
this project. There is no standard for the voltage ranges
of the CV that eurorack and other modular gear outputs.
The most commonly used ranges are bipolar −5V− 5V or
unipolar 0− 10V. However, the analog inputs on the Bela
only have an usable input range of 0 − 4.049V. Further-
more, negative signals and signal above 5V can damage

the board. In order to mitigate these issues it has been de-
cided to scale a bipolar −5V − 5V signal down to a range
of 0 − 3.3V using differential amplifiers. Each CV input,
that is going to the Bela, is going through differential am-
plifier. The differential amplifiers are build using MCP602
rail-to-rail op-amps in a configuration such that a 5V signal
becomes a 0V signal, and a −5V signal becomes a 3.3V
signal. The outputs from the differential amplifiers goes
to the ADC’s of the Bela and are inverted and mapped in
code as required by the respective parameters that the CV
inputs represents.

7.3.2 Potentiometers

The signals from all the potentiometers have been filtered
using 1592 Hz passive RC low-pass filters in order to avoid
high frequency jitter and noise. It was decided that all of
the potentiometers should be connected to the 16 channel
multiplexer because the reduction in sampling speed would
be practically unnoticeable for these, since it is not possible
to turn the potentiometers at such high speeds.

7.3.3 Controllable parameters

The user has control whether a damped stiff string model
or a acoustic tube model is in use via a switch, since the
synth can only run one model at a time. The controls re-
lated to the physical parameters and excitation types will
affect different parameters dependent on, which mode is
selected. If the damped stiff string is selected, the user can
control the stiffness coefficient, the length of the string,
the frequency dependent and independent damping and the
excitation position. Furthermore, the user can change the
excitation type of the string from either a bow, strike or a
pluck using a 3-way switch. When bowing excitation is se-
lected the user can control the bowing force/velocity (bow-
ing force and velocity are linked together) and the friction
of the string. When pluck or strike excitation is selected the
user have control of excitation force and excitation time.

If the acoustic tube is selected the user has control over
the length of the tube and several parameters related to the
shape of the tube. The tube consists of two parts: a cylin-
drical section followed by a bell-shaped section. The user
can control the radius of the cylindrical part and the radius
of the bell boundary. Furthermore, the user can determine
whether the bell grows linearly, exponentially or logarith-
mic using the 3-way switch used for selecting excitation
type in the stiff string mode. If the bell growth curve is set
to linear, the growth rate is calculated as follows

rgrowth =
Br − Cr

NB
(88)

with growth rate of the radius rgrowth, the radius of bell
end point Br , the cylinder radius Cr and the number of
grid points for the bell part NB . Afterwards, the radius
of each grid point in the bell section is calculated in a for
loop iterating over the number of grid points for the bell
part using r = r + rgrowth. For exponential growth, a
similar process is used, but the growth rate is calculated as

rgrowth = elog(Br/Cr)/NB (89)

In this case the radius of each grid point is calculated as
r = Crr

i
growth, where i is an index representing the cur-

rent grid point of the bell. If the bell is logarithmic, the
growth rate is calculated using

rgrowth =
Br − Cr

log(NB)
(90)

and the the radius of each grid point is calculated as r =
Cr + rgrowthlog(i). The growth rates from Equation (88),
(89) and (90) were derived using the definitions for lin-
ear, exponential and logarithmic growth, respectively. The
cross section is the calculated from the radius using S =
πr2. The user can also specify the length of the cylin-
der compared to the total length using a ”cylinder/bell ra-
tio” parameter. The cylinder length is calculated as cL =
L · CBratio, and the bell length is calculated as bL =
L · (1 − CBratio), where CBratio represents the selected
”cylinder/bell ratio”. Besides the length and shape of the
tube, the user can also change the mouth pressure as well
as the width and mass of the reed used to excite the tube.

Of course the user also has control over the fundamen-
tal frequency of each resonator type. The method used for
controlling the fundamental frequency is however differ-
ent for each resonator. For the stiff string, the fundamental
frequency can be controlled by changing wave speed, ac-
cording to [7]

f0 =
c

2L
(91)

The length of the string is set to a constant value, thus
the desired fundamental frequency can be applied by set-
ting cn = 2L · fn

0 . For the acoustic tube, the fundamental
frequency is determined by the frequency of the lip reed.
The acoustic tube acts as an amplifier for certain resonant
frequencies. Therefore it has been decided to match the
lip frequency with a resonating mode determined by the
length of the tube according to [2]

ωn+1/2
r = Bs

2πc

ρ0Ln
(92)

Here Bs is a scalar multiplier, which scales the length of
the tube. Bs is what is controlled by the length parameter.
This ensures matching of the same resonating modes when
playing different frequencies and allows the user to alter
the length parameter to match different resonating modes.

A common standard for modular synths is 1V/octave, which
means that every additional 1V of CV produces a doubling
of the frequency. This standard has also been utilised in
this project using the following equation

f0 = fref2
V (93)

with reference frequency fref , which the user can select
using a potentiometer.

The chosen upper limits and lower limits for the accessi-
ble physical parameters can be seen in Table (1) for the
damped stiff string mode and Table (2) for the acoustic
tube mode.

CV inputs have been added to most of the available pa-
rameters, with the exception of frequency independent damp-
ing and friction for the string, and length scaling and reed

mass for the tube. The CV inputs are added to or subtracted
from the values selected by the potentiometers.

Table 1. Upper and lower parameter limits when in
damped stiff string mode

Parameter name Symbol Lower limit Upper limit
String length L 0.1 m 4 m
Stiffness coefficient κ 0.01m2/s 0.2m2/s
Freq-indep. damping σ0 0.1s−1 10s−1

Freq-dep. damping σ1 0.0002m2/s 0.05m2/s
Excitation force Fb 0 4 N
Excitation velocity vb 0 0.4 m/s
Excitation position li floor(0.1N) floor(0.9N)
Friction a 5 · 10−11 5 · 10−7

Table 2. Upper and lower parameter limits when in acous-
tic tube mode

Parameter name Symbol Lower limit Upper limit
Length scaling Bs 0.1 0.8
Cylinder radius Cr 1 cm 10 cm
Bell radius Br Cr + 0cm Cr + 50cm
Cylinder bell ratio CBratio 0 0.9
Mouth pressure PM 0 20 Pa
Reed width wr 0.1 cm 2 cm
Reed mass wm 0.01 g 50 g

Beside the parameters mentioned here, additional param-
eters related to the modulation sources and CV utilities
are also controllable with CV inputs and/or potentiome-
ters. These will be discussed in the upcoming subsection.

7.4 Modulation sources and CV utilities

Most users that would be interested in a semi-modular phys-
ical modelled synth most likely already have access to mod-
ules that can provide various CV modulation signals and
CV utilities. However, it still seems reasonable to provide
a variety modulation sources and CV utilities to the synth,
such that the synth also is usable on its own without exter-
nal modules. This subsection present the various modula-
tion sources and CV utilities implemented for the synth.

7.4.1 Loopable ADSR and One–shot event generator

Two modulation sources are provided in form of a loopable
ADSR and a one-shot event generator. Both of these are
based on programmable PIC microcontrollers developed
by the Electric Druid company. These chips have been
used in order to free up processing power, ADC’s and DAC’s
on the Bela board. The loopable ADSR can work a regu-
lar ADSR envelopes, but it also provides a lot of features
not available in most ADSR envelopes. These include the
ability to change between linear and exponential curves, a
time control that can modulate the length of the entire en-
velope, and an optional punch control adding an additional
”punch” stage between the attack and decay. Furthermore,
the chip allows for three different envelope modes - a nor-
mal ADSR envelope, a gated looping mode and a LFO

looping mode [14]. The ADSR chip also features a level
control, that modulates the output level of the envelope.
This level control has been wired to the gate input of the
chip, resulting in a dynamic gate input. The one-shot event
generator is designed to create unique unipolar modulation
waveforms when activated by a trigger signal. The user is
able to alter the shape and speed of the modulation wave-
form, and also add decaying echos to it, with separate de-
lay and repeat controls [15]. Both chips output a modula-
tion signal from 0 − 5V. The signal from loopable ADSR
is ready as is, but the output from the one-shot-envelope
generator is 2MHz pulse-density modulation (PDM) out-
put signal, which has to be filtered first. The PDM signal
has been filtered using a passive 340Hz 12dB/Oct RC fil-
ter. All controllable parameters of these chips are accessi-
ble via switches and potentiometers. Patchable CV inputs
have also been added to some controls, including the at-
tack, decay and time control of the loopeable ADSR, and
the speed, repeats, and delay control of the one-shot gen-
erator. The CV inputs as well as the trigger/gate inputs are
protected from negative voltage and over-voltage using a
circuit consisting of a diode, transistor and two resistors.

7.4.2 Envelope follower

An envelope follower has been implemented using two dig-
ital one-pole low-pass filters, one for the attack stage and
one for the release stage. The reasoning for having two
filters is that you often want a different behavior for the
attack and release stages (e.g. a quick attack and slow re-
lease). Thus, the two filters will have different time con-
stants, τa for the attack stage and τb for the release stage,
that can be selected by the user using two potentiometers.
The filter coefficients are calculated as

ba =
fs
√

e−1/τa and br =
fs
√

e−1/τr (94)

We can calculate the filters and also choose which filter
is active dependent on the level of input, x[n], compared to
the level of the output, y[n], as shown in [16, Ch. 4] in the
following manner

y[n] =

{
bay[n− 1] + (1− ba)x[n] x[n] ≥ y[n− 1]

bry[n− 1] + (1− br)x[n] x[n] < y[n− 1]
.

(95)
The user can choose to let the envelope follower react to

either the first or the second audio input using a switch.

7.4.3 Slew rate limiter

A slew rate limiter has also been implemented. The slew
rate limiter works by limiting the rate of change of a signal
in a linear manner, thus allowing for a smooth transition
from one voltage level to another, ensuring that the rate of
change does not exceed a specified maximum rate. One
common use case for a slew rate limiter is to introduce
glides between notes. The implementation of the slew rate
limiter involves tracking the previous input value and cal-
culating the difference between the current input value and
the previous input value. If that difference is larger than the
allowed difference, the signal should be limited [17]. The

user can change the maximum rate of change pr second
using a potentiometer.

7.4.4 FSR’s and modulation looper

Three force-sensing resistors (FSR’s) have been added such
that the user can modulate parameters by pressing the FSR’s.
Each FSR has an assigned potentiometer that can attenuate
its output signal and there is also a switch that allows the
user to invert the signal of the FSR. The signals from each
FSR are read using the ADC’s of the Bela, allowing the
modulation signals to be recorded.

The user can record the signals from the FSR’s into a
buffer with three rows (one for each FSR) and a length of
10fs. The recording starts when the button is held and
continues until the button is either released or the maxi-
mum recording length of 10 seconds have been reached.
The recording will then loop until it is either cleared or
overwritten. A recording can be cleared by double press-
ing the button. The rec/clear button features an LED that
blinks while the modulations are being recorded, and is ac-
tive while the loop is playing. If a loop is not playing, the
direct signals from the FSR’s are used as the output.

The outputs from the envelope follower, slew rate limiter
and FSR’s (or the looped buffer) are send to the DAC chan-
nels of the Bela. The output of each DAC is visualised by
an LED and fed to a jack socket, which the user can patch
to modulate any parameter with a CV input. The synth
also contains two passive attenuators, that can reduce the
amplitude of CV signals. These passive attenuators only
consist of an input and output jack socket connected to a
potentiometer.

7.5 Enclosure

The case and the front panel were designed using Inkscape
[18], and build using 4mm HDF panels that were cut and
engraved by a laser cutter.

8. DISCUSSION

The implementation is limited by the CPU performance of
the Bela. Especially at low frequencies (since these re-
quires more grid points) there are a risk of CPU overload
and dropouts. Several initial ideas that the author had for
the synth, such as polyphony and couplings between res-
onators, had to be scrapped, due to these CPU limitations.
The models will still continue to run and be stable when
experiencing CPU overload and dropouts, but it does re-
sult in a distorted sound output. It could be argued that
the additional features like the envelope follower, slew rate
limiter and modulation looper could be sacrificed for im-
proved performance. However, the toll on the CPU per-
formance from these features are negligible compared to
how much processing power it requires to update the FD
schemes.

There is a possibility that the grid points at the inner
boundaries will have different values just before removing
a grid point, thus violating the rigid condition from Equa-
tion (69) and (70). One might apply a displacement correc-
tion as suggested in [3, 4] by applying an artificial spring

connection between the grid points at the inner boundary.
However, as discussed in [5] this procedure of adding a
localised damping might actually be more unnatural than
not including this correction. As mentioned in [3, 5], the
method of the dynamic grid only assumes sub-audio rate
modulations of the physical properties. This is because
the conventional stability and energy analyses performed
on FDTD schemes are no longer applicable in the time
varying case [3]. However, with modular synthesis there
is nothing hindering the user to patch an audio rate sig-
nal to a CV input controlling one of the physical proper-
ties. While the author has successfully applied audio rate
modulations to some of these properties, it has also lead
to instability in some cases, especially when the amplitude
of the audio rate modulation is large. So even though the
author finds the sounds created by these audio rate mod-
ulations interesting and unique, there should be placed a
limit on how fast grid points can be added to or removed
from the system. More experimentation is however still re-
quired in order to find the right balance for this limit, such
that stability is always ensured while still retaining the pos-
sibility to achieve some of the unique sounds that can re-
sult from fast modulation of physical properties. Currently,
the damped stiff string model runs perfectly and the only
situations where the author has experienced instability has
been with the previously mentioned audio rate modulation
of physical properties. However, while the acoustic tube
does run well for the most part, the author has experienced
some stability issues at certain settings. The author has yet
to pinpoint what causes this instability.

9. CONCLUSION

This paper presented the implementation of a physically
modelling based embedded modular synth utilising FDTD
methods. Two types of resonators have been implemented,
a damped stiff string and an acoustic tube. Furthermore
various exciters in form of a bow, strike, pluck and lip reed
have also been implemented. In order to allow for smooth
parameter changes of physical properties a dynamic grid
was applied to the physical models. The main obstacle
with the implementation is currently CPU limitations, since
dropouts and CPU overload will occur when the number
of grid points becomes too large. Thus, as of today it is
still best to limit these complex and CPU intensive physi-
cal models for use in plug-ins, since the average personal
computer is much faster than the available embedded plat-
forms. However, as embedded platforms inevitably will
become faster in the future, it will open the possibility for
embedding CPU intensive physical models. Future work
will include finding an appropriate limit for how fast grid
points can be added to or removed from the system, as well
as solving the stability issues with the current implementa-
tion of the acoustic tube model.

10. REFERENCES

[1] P. Ruiz, “A technique for simulating the vibrations of
strings with a digital computer,” Master’s thesis, Uni-
versity of Illinois, 1969.

[2] S. Willemsen, “The emulated ensemble: Real-
time simulation of musical instruments using finite-
difference time-domain methods,” Ph.D. dissertation,
2021, phD supervisor: Prof. Stefania Serafin, Aalborg
University Co-Supervisor (external): Prof. Stefan Bil-
bao, University of Edinburgh.

[3] S. Willemsen, S. Bilbao, M. Ducceschi, and S. Serafin,
“Dynamic grids for finite-difference schemes in musi-
cal instrument simulations,” in 2021 24th International
Conference on Digital Audio Effects (DAFx), 2021, pp.
144–151.

[4] ——, “A physical model of the trombone using dy-
namic grids for finite-difference schemes,” in 2021
24th International Conference on Digital Audio Effects
(DAFx), 2021, pp. 152–159.

[5] “The dynamic grid: Time-varying parameters for mu-
sical instrument simulations based on finite-difference
time-domain schemes,” Journal of the Audio Engineer-
ing Society, Sep. 2022.

[6] S. Willemsen and S. Serafin, “Real-time implementa-
tion of the dynamic stiff string using finite-difference
time-domain methods and the dynamic grid,” in Pro-
ceedings of the 25th International Conference on Dig-
ital Audio Effects (DAFx20in22),, G. Evangelista and
N. Holighaus, Eds., Sep. 2022, pp. 130–137.

[7] S. Bilbao, Numerical Sound Synthesis: Finite Differ-
ence Schemes and Simulation in Musical Acoustics, 09
2009.

[8] R. L. Harrison-Harsley, “Physical modelling of brass
instruments using finite-difference time-domain meth-
ods,” 2018.

[9] A. G. Webster, “Acoustical impedance and the theory
of horns and of the phonograph,” Proceedings of the
National Academy of Sciences, vol. 5, no. 7, pp. 275–
282, 1919.

[10] R. Courant, K. Friedrichs, and H. Lewy, “Über die
partiellen differenzengleichungen der mathematischen
physik,” Mathematische Annalen, vol. 100, pp. 32–74.

[11] H. D. Levine and J. S. Schwinger, “On the radiation of
sound from an unflanged circular pipe,” Physical Re-
view, vol. 73, pp. 383–406, 1948.

[12] S. Bilbao, “Direct simulation of reed wind instru-
ments,” Computer Music Journal, vol. 33, pp. 43–55,
12 2009.

[13] Bela. (Year unknown) Bela. [Online]. Available:
https://bela.io

[14] E. Druid. (Year unknown) Envgen 8c. [Online].
Available: https://electricdruid.net/product/envgen8/

[15] ——. (Year unknown) Oneshot event generator.
[Online]. Available: https://electricdruid.net/product/
oneshot-event-generator/

https://bela.io
https://electricdruid.net/product/envgen8/
https://electricdruid.net/product/oneshot-event-generator/
https://electricdruid.net/product/oneshot-event-generator/

[16] J. D. Reiss and A. P. McPherson, “Audio effects: The-
ory, implementation and application,” 2014.

[17] Weimich. (2021) Digital slew rate limiter filter
and c implementation. [Online]. Available: https:
//www.dsp-weimich.com/digital-signal-processing/
digital-slew-rate-limiter-filter-and-c-realization/

[18] (Year unknown) Inkscape. [Online]. Available: https:
//inkscape.org

https://www.dsp-weimich.com/digital-signal-processing/digital-slew-rate-limiter-filter-and-c-realization/
https://www.dsp-weimich.com/digital-signal-processing/digital-slew-rate-limiter-filter-and-c-realization/
https://www.dsp-weimich.com/digital-signal-processing/digital-slew-rate-limiter-filter-and-c-realization/
https://inkscape.org
https://inkscape.org

	 1. Introduction
	 2. FDTD methods
	 3. Damped stiff string
	 4. Acoustic tube
	 5. Excitation
	5.1 Bow
	5.2 Strike and pluck
	5.3 Lip reed

	 6. Dynamic grid
	6.1 Connection of inner boundaries
	6.2 Adding and removing grid points

	 7. Implementation
	7.1 Real time implementation of the damped stiff string and acoustic tube
	7.2 Audio I/O
	7.3 Controls
	7.3.1 CV inputs
	7.3.2 Potentiometers
	7.3.3 Controllable parameters

	7.4 Modulation sources and CV utilities
	7.4.1 Loopable ADSR and One–shot event generator
	7.4.2 Envelope follower
	7.4.3 Slew rate limiter
	7.4.4 FSR's and modulation looper

	7.5 Enclosure

	 8. Discussion
	 9. Conclusion
	 10. References

