
Generalization and Expressivity of Graph Neural

Networks in Practice

Sebastian Lund

June 9, 2023

Summary

Graph neural networks (GNNs) have been widely used for various tasks
on graph-structured data, such as node classification, link prediction, and
graph classification. Graphs are very different from structured data such
as images, as there is not consistent structure to rely on. Every node can
have an arbitrary number of neighbors and it must somehow aggregate in-
formation from them. GNNs are very general in that you can convert any
structured data such as images into graphs by throwing away the struc-
tural information. Noone would seriously consider this as most methods
on structured data heavily rely on the structure for invariance and equiv-
ariance in the architecfture. The fact that GNNs are so general also means
that they are hard to develop. The arguable most popular type of GNN are
message-passing neural networks (MPNNs). MPNN only interact through
local interactions, which gives them a low computational blueprint. They
unfortunately also come with the downside that they are limited in ex-
pressivity. Much work has gone into studying and improving the theoreti-
cal expressivity of these models in an effort to design more general GNNs.
These results often come in the form of aligning the expressive power with
the Weisfeiler-Lehman (WL) test (Weisfeiler and Leman, 1968), which is
a graph isomorphism test. It is very useful to consider expressivity with
respect to isomorphism. If two (sub-)graphs are isomorphic to a GNN, it
cannot assign them different labels. This fact has brought the design of
so-called universal MPNNs. These are MPNNs that, theoretically, are as
strong as the WL-test itself. Unfortunately these theoretical results have
strong practical limitations. Throughout this paper we evaluate a set of
theoretical results. We show that universal MPNNs cannot learn injective
functions, by showing that they cannot emulate steps of the WL-test. We
go on to show that universal MPNNs can in fact learn to emulate less
powerful MPNNs on bounded size graphs, confirming a theoretical claim.
To evaluate whether MPNNs generalize beyond the bounded size graphs,
we construct 3 simple logical node classifiers and show that MPNNs gener-
ally do not learn to generalize far outside of the training distribution even
for simple problems with exact solutions. The experiment also shows that
less powerful MPNNs perform and generalize much better than universal
MPNNs on some tasks. This motivates us to test whether less powerful
MPNNs can gain expressive power by being graph encoders in GNNs that

1

add additional structural information. We use a framework called ESAN
(Bevilacqua et al., 2022) that adds structural information by splitting a
graph into a bag of subgraphs to where the MPNN is applied. We find
that ESAN versions with weaker MPNNs perform on par with universal
MPNNs for two real world datasets of molecules. In this process we even
find that an MPNN with mean aggregation (not universal) outperforms
universal MPNNs as encoders. Based on this result we go on recommend
that new structural information frameworks should consider evaluating
on an additional set of weaker MPNNs in their experiments.

Contents

1 Introduction 3

2 Related Work 4

3 Graph Neural Networks 4
3.1 Notation . 4
3.2 Message-Passing Neural Networks 5
3.3 Subgraph Graph Neural Networks 7

4 Expressive Power of GNNs 8
4.1 Graph Isomorphism . 8
4.2 First Order Logic . 11
4.3 Graph Biconnectivity . 12
4.4 Known Expressivity Results . 12

5 Expressive Power in Practice 14
5.1 Emulating The WL Test . 15
5.2 Emulating ”Weaker” GNNs . 17

6 Logical Expressiveness in Practice 19
6.1 Discussion . 20

7 Higher Order GNNs With Weaker Encoders 21
7.1 Discussion . 24

8 Conclusion 24

A Experimental Setup: Emulating The WL Test 28

B Experimental Setup: Emulating ”Weaker” GNNs 28

C Experimental Setup: Logical Node Classifiers 29

D Experimental Setup: Higher Order GNNs With Weaker En-
coders 29

2

1 Introduction

Graph Neural Networks have in recent years become a dominant tool for learning
on unstructured data in the form of graphs. They are used for both node classi-
fication, graph classification, link prediction and graph representation learning.
The most common class of GNN are Message-passing neural networks (MPNNs),
GNNs that only have local interactions in a graph. This is mainly because lo-
cal interactions have a low computational burden. Unfortunately, theoretical
results put hard limits on the power of MPNNs. Much work has gone into
aligning the power of GNNs with the Weisfehler-Lehman (WL) test (Weisfeiler
and Leman, 1968). This has resulted in the advent of so-called maximally ex-
pressive MPNNs like GIN (Xu et al., 2019), that supposedly are as expressive
as an MPNN can be due to their aggregation function. The interplay between
the WL test and GNNs has also lead to the development of GNNs based on
the test such as Higher Order GNNs(Morris et al., 2019). While higher order
GNNs are indeed expressive they are much more computationally expensive
than MPNNs, which has lead to a lack of adoption on real world problems. To
bridge the computational gap, many recent GNNs augment MPNNs in ways
that makes them more expressive. Such as adding random node features (Sato
et al., 2021) or substructure information (Bouritsas et al., 2022). While these
works could employ any MPNN, they often opt for universal MPNN as their
graph encoders. While this may seem like a good idea based on the theoretical
results, we will show in this paper that it is sometimes worth considering less
powerful MPNNs.

The main contributions on this paper are as follows:

• We show that universal MPNNs cannot learn injective functions in prac-
tice. They cannot emulate the first few steps of the WL test. (Section
5.1)

• We show that universal MPNNs can learn to emulate less powerful ag-
gregation functions in practice. We find evidence for the hypothesis that
GIN has trouble learning to disentangle its own representation from that
of its neighborhood. (Section 5.2)

• We show that MPNNs do not generalize to graph size in practice on 3
distinct logical node classifiers. Results show that less powerful MPNNs
are more suited for generalization in specific tasks. (Section 6)

• We empirically validate that all MPNNs are able to leverage structural
information to increase their expressivity in real world problems. (Section
7)

• We empirically validate that non-universal MPNNs with structural infor-
mation can outperform universal MPNNs with structural information in
real world problems. (Section 7)

3

2 Related Work

This section is mainly our previous work in Lund (2023). We cover relevant
related work throughout the paper.

GNN Expressivity Expressivity of GNNs has been studied theoretically,
drawing equivalences to methods such as the Weisfeiler-Lehman (WL) test from
Weisfeiler and Leman (1968). It has been shown that message passing GNNs are
at most as powerful as the WL test (Morris et al., 2019; Xu et al., 2019). Xu et al.
(2019) highlight that the aggregation scheme used must be injective and shows a
way to construct arbitrary aggregators from a sum as an extension of the result
from sets in Zaheer et al. (2017) to multisets. Wagstaff et al. (2019) show that
the construction requires highly discontinuous mappings which are impractical
to learn by neural networks. Various other works describe alternative ways to
learn aggregation functions (Corso et al., 2020; Pellegrini et al., 2021). The
study of the relation between WL and GNNs has lead to designs of higher order
GNNs (Morris et al., 2019; Maron et al., 2019). The limitations of the WL test
have lead to designs using higher-order graph structures from topology (Bodnar
et al., 2021b,a). And exploit the ability to break large graphs into substructures
(Bevilacqua et al., 2022). In this work we consider the proposition of using less
powerful message passing GNNs along with substructure information. Barceló
et al. (2020) draw an equivalence between the expressivity of logic classifiers
in graded modal logic and that of message passing GNNs. They further show
sufficient conditions to express FOLC2 classifiers, while in practice the learned
GNNs generalize poorly to even slightly larger graphs. In this work we design
even simpler logic classifiers and show that they do not generalize in a more
thorough experiment for a much larger set of GNN architectures.

3 Graph Neural Networks

In this section we will define the Graph Neural Networks (GNNs) that we will
consider throughout the paper. We mainly focus on the widely used Message-
Passing Neural Networks (MPNNs) and describe the architectures used in Sec-
tion 3.2. In Section 3.3 we describe a recent method for improving the expressiv-
ity of MPNNs by applying simple GNNs to a set of subgraphs and aggregating.

3.1 Notation

In this section we define the notation that we will use throughout the paper
for graphs and related concepts. We use {} to denote sets and {||} to denote
multisets. In this paper we only work with undirected graphs G = (V, E) with
no self-loops, where V is the set of nodes and E is the set of edges. Because edges
are undirected we can represent them with sets {u, v} ∈ E . For each node v ∈ V
have xv ∈ X be the initial attributes/features of the node. We will in general
only use categorical node features throughout the paper. We denote the multiset

4

of neighbors of a node v ∈ V, the neighborhood, by Nv = {| u ∈ V : {v, u} ∈ E |}
and its degree as D(v) = |Nv|. We will use the term configuration for a pair
consisting of the features of a node, and its neighborhood

〈
xv, {| xu : u ∈ Nv |}

〉
.

3.2 Message-Passing Neural Networks

The introduction to this section is based on our previous work in Lund (2023).
Message-passing neural networks (MPNNs) (Gilmer et al., 2017) are a class
of graph neural networks based on the idea that nodes communicate with their
immediate neighbors through messages to update their representations. This
can be seen as a propagation or diffusion of node representations.

More formally, the representation of a node u (hu) is a function of its features
(xu) and the features of its multiset of neighbors {| xv ∈ X : v ∈ Nn |}. GNNs
usually consist of multiple consecutive layers to propagate information from

further away. We denote the representation of node u at layer i by h
(i)
u and set

h
(0)
u = xu.
One of the first and simplest MPNNs are the Graph Convolutional Network

(GCN) (Welling and Kipf, 2016; Defferrard et al., 2016). In GCNs edges are
weighed nonparametrically with a single scalar weight cuv ∈ [0, 1] for an edge
between nodes u and v. This weight is usually based on the structure of the
graph e.g. the degree of the nodes or, in directed graphs, the in-/out-degree.
The representation of a node u in a GCN is then given by:

GCNh(i+1)
u = ϕ

(∑
v∈Nu∪{u}

cuvh
(i)
v

)
(1)

Where ϕ(x) = σ(Wϕx), σ is a non-linearity and Wϕ is a weight matrix. cuv are
usually restricted such that they sum to 1, making the new node representation
a weighted average of the (transformed) neighborhood and itself. Notice how a
GCN in some cases cannot distinguish its own previous features from that of
its neighbor, see Example 3.1 below.

Example 3.1. Consider the assignment of cuv = (D(u)+1)−1 in a GCN, such
that the aggregation becomes an unweighted mean. Now the following config-
uration of a node with one Blue neighbor (Red, {| Blue |}) is indistinguishable
from a configuration with one Red neighbor, namely (Blue, {| Red |}). Both
means are equal to 1/2 Blue+ 1/2 Red.

While invariance as to whether a node is a neighbor or not may be a useful
inductive bias in some problems, it is not useful for all problems.

GraphSAGE (Hamilton et al., 2017) alleviates this problem by having
ϕ operate on a concatenation of the node’s previous layer representation and
the aggregation. While Hamilton et al. (2017) proposes multiple aggregation
functions (mean, lstm, max), we will only consider the commonly used max
aggregation in this paper. The representation for SAGE is then given by:

SAGEh
(i+1)
u = ϕ

(
h(i)
u ∥ max

v∈Nu

ψ(h(i)
v)

)
(2)

5

Where ∥ is concatenation and ϕ and ψ are linear transformations followed by a
non-linearity.

GCNs have also moved development in another direction. With the moti-
vation of being able to assign different importance to nodes of the same neigh-
borhood, Graph Attention Networks (GAT) (Veličković et al., 2018) were pro-
posed. It can be thought of as making the cuv weights from GCNs parametric
and dependent on node features instead of degree. The neighborhood weights

are now decided by a function a(h
(i)
u ,h

(i)
v). It learns to compare the node fea-

tures to weigh how important h
(i)
v is for the representation of node u (h(i+1)

u).

a(h
(i)
u ,h

(i)
v) is often softmax-normalized, such that the weights for the neighbor-

hood sum to 1. The representation of a node u in a GAT is given by:

GATh
(i+1)
u = ϕ

(∑
v∈Nu

a(h(i)
u ,h(i)

v)ψ
(
h(i)
v

))
(3)

Typically, ϕ, ψ and a are linear transformations followed by non-linearities or
multi-layer perceptrons (MLPs).

The previous three GNNs all have normalizations ensuring that the aggre-
gation is the same magnitude as the node representations. It has been shown
empirically that this is not always desirable. One such GNN with empirical
success are Graph Isomorphism Network (GIN) (Xu et al., 2019). GIN use
sum-decomposition (Wagstaff et al., 2019) e.g. transformations before and after
aggregation by sum. The representation of a node in GIN are given by:

GINh(i+1)
u = MLP

(
(1 + ϵ(i)) · h(i)

u +
∑
v∈Nu

h(i)
v

)
(4)

Where epsilon is a learned parameter for the weight of the nodes own previous
representation.

Finally we consider the class of GNNs termed Aggregate Combine GNNs in
Barceló et al. (2020). We consider two variants, one with mean aggregation
(AC-µ) and one with sum aggregation (AC-Σ). The representation of a node
in an AC-Σ and AC-µ are given by:

AC-Σh
(i+1)
u = MLP

(
h(i)
u ∥

∑
v∈Nu

h(i)
v

)
(5)

AC-µh
(i+1)
u = MLP

(
h(i)
u ∥ 1

D(u)

∑
v∈Nu

h(i)
v

)
(6)

We have now described a set of distinct GNN architectures in the message
passing regime. These GNNs all aggregate messages differently, and unexpect-
edly they have different expressivities. In Section 4.4 we cover known theoretical
results for how expressive these GNNs are in comparison to one another.

In the upcoming section we give an overview of a conceptually simple GNN
technique for improving the expressive power of MPNNs by applying them to
multiple subgraphs individually.

6

3.3 Subgraph Graph Neural Networks

In the previous section we gave an overview of message-passing neural net-
works, describing how they communicate solely through local interactions along
the edges in a graph. In many real world problems, especially molecular tasks,
it can be necessary to consider higher-order graph structures such as triangles
and rings. Unfortunately, MPNNs cannot count substructures consisting of 3
or more nodes (Chen et al., 2020), some intuition as to why is given in Section
4.1. Higher-order Graph Neural Networks (Morris et al., 2019) which are able
to count substructure of size 3, are prohibitively computationally expensive.
To combat this some works try to encode the appearance of certain substruc-
tures (Bouritsas et al., 2022), but deciding on the substructures requires domain
knowledge. We use a more conceptually simple method of improving the expres-
sivity of GNNs that does not rely on domain knowledge, Equivariant Subgraph
Aggregation Networks (ESAN) (Bevilacqua et al., 2022). ESAN break up
higher-order graph structures and symmetries by breaking graphs down into
subgraphs. The idea is simple: Break a graph up into a bag of subgraphs and
apply GNNs to each subgraph individually, aggregating at the end.

In ESAN the bag of subgraphs SG = {| G1, . . . , Gm |} is generated from the
orginal graph G by a subgraph selection policy π. Bevilacqua et al. (2022) only
consider selection policies that select spanning subgraphs, that is subgraphs
where only edges are removed, because it is computationally beneficial that
all adjacency matrices are the same size. They describe 4 subgraph selection
policies; node-deleted subgraphs (ND), edge-deleted subgraphs (ED), and ego-
networks (EGO, EGO+). The node-deleted policy generatesm = |V| subgraphs;
for every node it generates a subgraph where that node has its edges removed.
The edge-deleted policy generatesm = |E| subgraphs; for every edge it generates
a subgraph where that edge is removed. Figure 1 shows examples of the edge-
deleted and node-deleted policies. The ego-networks policy generates m = |V|
subgraphs; for every node it generates the subgraph induced by the nodes that
are reachable in k hops. The EGO+ policy generates the same ego-networks,
but marks the central node with a special feature. Recently it has been shown
that aggregating over graphs with marked nodes implicitly encodes distance and
biconnectivity information (Zhang et al., 2023).

ESAN define two different architectures depending on whether the sub-
graphs should share information among themselves or act independently until
the final readout. We will use the independent version in this paper, refer to
Bevilacqua et al. (2022) for a detailed description of the information sharing
process. When a subgraph selection policy is chosen, the function that acts on
bags of subgraphs is comprised of three components:

FDSGNN = Esets ◦Rsubgraphs ◦ Esubgraphs (7)

The subgraph encoder Esubgraphs; applying a GNN to each subgraph. The
subgraph readout Rsubgraphs a graph level readout applied to each subgraph,
e.g. a mean, max or sum. The set encoder Esets to pool the set of subgraph
readouts and classify the graph. We use DeepSets Zaheer et al. (2017) as the

7

a

b

c

G

a

b

c

G1 a

b

c

G2 a

b

c

G3

(a) A traingle graph G and its
edge-deleted subgraphs (ED)

a

b

c

G

a

b

c

G1 a

b

c

G2 a

b

c

G3

(b) A traingle graph G and its
edge-deleted subgraphs (ED)

Figure 1: Subgraph selection policies in the ESAN framework

set encoder Esets and will vary Esubgraphs by using the GNNs described in the
previous section on real world datasets in Section 7.

To understand why we would want to improve the expressive power of
MPNNs, we need to understand what they can and cannot represent. In the fol-
lowing section we will cover relevant theoretical results on the expressive power
of GNNs.

4 Expressive Power of GNNs

Theoretical results are particularly useful for understanding the upper bounds
of what GNNs are capable of. Much work has gone into bounding the expres-
sive power of GNNs by a graph isomorphism test called the Weisfeiler-Lehman
test. In this section we will describe why it can be useful to think in terms of
graph isomorphisms. We will go on to describe useful theoretical results and
throughout the paper test how well they hold up in practice.

4.1 Graph Isomorphism

This section is based on our previous work in Lund (2023). If two graphs with
different labels are indistinguishable from each other it is impossible to classify
them both correctly. It is therefore useful to understand which graphs can
be distinguished by a specific GNN when studying its expressivity. In graph-
theoretic terms, two graphs are isomorphic when they are indistinguishable. An
isomorphism of graphs G andH is a bijective map f from the vertices ofG to the
vertices of H that preserves the edge relation. f : V(G) → V(H) where u and v
are adjacent in G if and only if f(u) and f(v) are adjacent in H. Figure 2 shows
an isomorphism between two graphs preserving the edge relation. Specifically,
the green node in both graphs has a single blue and yellow neighbor, and this
pattern holds true for all other nodes.

8

a

b
c

d
e

G 1

2
3

4
5

H

f(a) = 1
f(b) = 3
f(c) = 5
f(d) = 2
f(e) = 4

Figure 2: Two graphs G and H with their isomorphism f . Nodes are colored
based on the bijection.

In the GNN setting we usually operate on graphs with node features xu ∈
X assigned to every node u. We also include this in the isomorphism, such
that ∀u ∈ V(G),X(u) = X

(
f(u)

)
. Figure 3 shows two graphs that have no

isomorphism now that features are involved: In graph G every Hot node has
a Hot neighbor, while in graph H all Hot nodes only have Cold neighbors,
hence the edge relation and features cannot both be preserved by a bijective
map.

a

b
c

d
e

G 1

2
3

4
5

H

Figure 3: Two graphs G and H with binary node features {Hot,Cold} shown
with red and blue outlines, respectively. No feature preserving isomorphism
exists.

There are currently no known polynomial time algorithms for determin-
ing whether two graphs are isomorphic in general (Schöning, 1988). However,
there are efficient algorithms that don’t fully characterize graphs up to isomor-
phism, but still distinguishing a significant number of nonisomorphic graphs.
The Weisfeiler-Leman test is one such algorithm.

Weisfeiler-Leman Test The Weisfeiler-Leman algorithm is an isomorphism
test based on color refinement (Weisfeiler and Leman, 1968). Inspired by Cai
et al. (1992) we define the 1 dim WL (vertex refinement): For a graph G,
given node features xu ∈ X for u ∈ V(G), let W 0 : V(G) → C be given by
W 0(v) = hash(xv) ∀v ∈ V(G) where C is a set of colors and hash is injective.
We then define W r+1 from W r by assigning a new color to each node based on
their neighborhoods:

W r+1(v) = hash(W r(v), {|W r(u)|u ∈ Nv |}) ∀v ∈ V(G) (8)

We keep refining the coloring until at some level the refinement stabilizes such
that W r+1 = W r, as in Cai et al. (1992) we will use W to denote the stable

9

refinement of W 0 and denote the multiset of colors in the stable refinement for
graph G by WL(G) = {| WG(v)|v ∈ V(G) |}. Two graphs G and H are not
isomorphic if WL(G) ̸= WL(H). If WL(G) = WL(H) the graphs may or may
not be isomorphic.

The 1-dimensional WL test fails to distinguish all regular graphs with n
nodes and degree d when all node features are the same. It does however cor-
rectly identify that G and H in Figure 3 are not isomorphic, a Hot node with
a Hot neighbor (c or d in G) is assigned a unique hash (color) which cannot
occur in H. This highlights an important point, if WL on two graphs disagree at
any step, they cannot be isomorphic because the coloring is injective so the test
can stop early. Figure 4 shows a failure of the WL test on two non-isomorphic
graphs with different substructures.

1

2

3

4

5

6

1

2

3 4

5

6

1

2

3

4

5

6

1

2

3 4

5

6

Figure 4: 1-WL converges after one step and fails to distinguish the two graphs.
It cannot count substructures: The right graph contains two triangles but the
left does not so the two are not isomorphic.

As briefly mentioned earlier, the WL test can be extended to higher dimen-
sions to be more powerful. This is described in detail in Weisfeiler and Leman
(1968) and an altered version in Cai et al. (1992).1 We will keep it brief as we
only consider MPNNs which are at most as expressive as vertex refinement.
The main result of Cai et al. (1992) is to show that k dimensional WL (k-WL)
has the same stable refinement for two graphs if and only if the two graphs sat-
isfy the exact same formulae in k variable first order logic with counting (FOCk).
The proof relies on mapping both k-WL and FOCk to a combinatorial game of
placing k pebbles and showing a winning strategy exists for the defending player.
The vertex refinement WL described above happens to be equal to 2-WL, so
it cannot distinguish graphs which satisfy the same FOC2 formulae. Knowing

1The discriminating power of k-WL from Weisfeiler and Leman (1968) is equivalent to
(k − 1)-WL from Cai et al. (1992) for k ≥ 3 (Grohe and Otto, 2015).

10

that, Figure 4 makes total sense: We cannot count the number of triangles with
less than 3 variables! Running 3-WL would show that the two graphs are in
fact not isomorphic. This connection to logic formula and the versatility of first
order logical grammar is a strong basis for evaluating GNNs on logic formula.

4.2 First Order Logic

The equivalence between the WL test distinguishing graphs and first order logic
with counting gives us a new perspective on the failure modes of the WL test,
which in turn are the failure modes of MPNNs. In this section we describe first
order logic, and how it related to FOCk. We consider First order predicate logic
(FO) where each vertex has a unique color, such that we can distinguish them.
Below is an example of a node classifier ϕ1:

ϕ1(x) := Blue(x) ∧ ∃y(E(x, y) ∧Green(y)) (9)

It states that ϕ(x) is true if x is Blue and there exists another node y, which is
a neighbor to x and is Green. To motivate the need for counting, lets say we
want to ask if x has two green neighbors. The logical node classifier would be
defined by:

ϕ2(x) := Blue(x) ∧ ∃y∃z(E(x, y) ∧Green(y) ∧ E(x, z) ∧Green ∧ x ̸= y) (10)

What first order logic with counting allows us to do is write the following instead

ϕ3(x) := Blue(x) ∧ ∃=2y(E(x, y) ∧Green(y)) (11)

Now the uniqueness of each y is implicit instead of explicitly stating that y1 ̸= y2
etc. and it becomes much less verbose. ϕ3 above is an FOC2 formula because
we use counting quantifiers and there are two free variables x and y. But, just
because we have k counting quantifiers in our node classifier does not mean that
we are necessarily FOCk+1. If we can write a formula and reuse variables that
is allowed:

ϕ4(x) := Blue(x) ∧ ∃=2y(E(x, y) ∧Green(y)) ∧ ∃=2y(E(x, y) ∧ Blue(y)) (12)

ϕ4 is still in FOC2. An example of an FOC2 formula is counting the number
of triangles in the graph. An FOC3 counting the number of triangles touching
x looks like

ϕ5(x) := ∃=2y∃z(E(x, y) ∧ E(y, z) ∧ E(z, x)) (13)

The formula reads that x touches exactly one triangle and it is FOC3, notice
how it can distinguish the graphs in Figure 4, you can find a node that satisfies
it in the right graph but not in the left. We will return to first order logic
with counting in Section 6 as a useful tool for testing the ability of GNNs to
generalize.

In the following section we describe a completely different way of looking at
the expressivity that is related to the ESAN architecture.

11

4.3 Graph Biconnectivity

In a recent paper Zhang et al. (2023) describe a different approach to evaluating
the expressivity of GNNs. They look at expressivity through the lens of graph
biconnectivity. We briefly cover these results because they allude to the kinds
of expressivity that are gained by using the ESAN framework. To understand
biconnectivity we must first understand connectivity. A graph is connected if
there is a path from each node to every other node. For example; considering
the entirety of Figure 4 as one graph, it is unconnected. But the graph does
have 4 connected components.

A cut vertex or an articulation point is a vertex, that if removed from the
graph, increases the number of connected components. So node 3 and 4 in both
right-side graphs of Figure 4 are cut vertices. Similarly cut edges increase
the number of connected components, so the edges between 3 and 4 are cut
vertices on the right graphs.

The idea of expressivity through the lens of biconnectivity, is whether the
GNN can identify cut vertices and edges. ESAN was, prior to Zhang et al.
(2023), the only non-WL-3 GNN able to detect cut vertices and edges. The
reason that ESAN can detect these structures is because node markings (such
as those in EGO+) implicitly encode distance information as per (Zhang et al.,
2023, Lemma C.19).

Now that we have some understanding as to why ESAN could provide useful
information for MPNNs. We will cover the main limitations and expressivity
results of them in the next section.

4.4 Known Expressivity Results

The theoretical expressive power of some neural network architectures for graphs
have been proven formally in terms of the WL-test. In this section we summarize
the main results and their implications. We will start with the results for local
interactions on graphs: Message-passing neural networks.

Xu et al. (2019) show that message-passing neural networks are at most as
expressive as the WL-1 test in the following lemma:

Lemma 1. (Xu et al., 2019, Lemma 2) Let G1 and G2 be any two non-
isomorphic graphs. If a message-passing neural network A : G → Rd maps
G1 and G2 to different embeddings, the Weisfeiler-Lehman graph isomorphism
test also decides G1 and G2 are not isomorphic

Recall how each step of the WL test (W i(v)) injectively maps the features
of a node (v) and its multiset of neighbors (Nv) to a hash. To intuit Lemma 1,
consider that each layer (ϕi(v)) of message-passing neural network are functions
with the exact same domain. At most the message-passing layer ϕi(v) can be
injective, such that it maps G1 and G2 to different embeddings if and only if
the WL test also does, as W i(v) is injective. If ϕi(v) is not injective it is strictly
less powerful than the WL test as there are now more graphs G1 and G2 who
must share embeddings.

12

The search for a maximally powerful message-passing neural network is
therefore mainly the search for an injective function on multisets. Unfortu-
nately, most common set aggregators are not injective on multisets. Example
4.1 below shows non-injective cases for mean, max and attentional aggregation.

Example 4.1. Consider the following multisets:

a : {| Blue, Red |} b : {| 2 ◦ Blue, 2 ◦ Red |} c : {| Blue, 2 ◦ Red |}

We treat the attributes as one-hot vectors. E.g. Blue =

[
1
0

]
and Red =

[
0
1

]
.

Only sum aggregation is injective on distributions:

sum(a) =

[
1
1

]
̸= sum(b) =

[
2
2

]
2att(a) = mean(a) = max(a) = att(b) = mean(b) = max(b) =

[
1
1

]
Element wise max aggregation is only injective on sets:

max(a) = max(b) = max(c) =

[
1
1

]

While the example shows that distributional aggregation cannot count in
general, they can use heuristics to approximate counting, this is one of the
motivations for ideas such as random node features (Sato et al., 2021). Inter-
estingly, when distributional aggregation are applied in the ESAN framework
(Section 3.3) with node labelling on the central node of ego nets (EGO+) they
can count when they neighbor the central node. The fact that only one node
per graph can have the feature allows the aggregation to consistently get the
reciprocal of the degree. We show in Section 7 that this leads to good results on
real world datasets. To our knowledge it is currently an open question what the
expressive power of distributional aggregation in ESAN is in relation to other
GNNs.

In the quest for a universal aggregation function on multisets Xu et al.
(2019) and Wagstaff et al. (2019) concurrently extend the work of Zaheer et al.
(2017) on set aggregation to show that any multiset aggregation function can be
constructed with a sum-decomposition, a sum aggregation and two combination
functions ρ and ϕ, in the following lemma.

Lemma 2. (Xu et al., 2019, Lemma 5) Assume X is countable. There exists a
function ρ : X → Rn so that h(X) =

∑
x∈X ρ(x) is unique for each multiset X ⊂

X of bounded size. Moreover, any multiset function f can be sum-decomposed
as f(X) = ϕ

(∑
x∈X ρ(x)

)
for some function ϕ

2For this equality to hold we assume the attention to every element is a constant e.g.
a(·, ·) = 0. But att(a)=att(b) still holds in general for any a(·, ·).

13

Note that Lemma 2 does not tell us about the existence of a continuous
sum-decomposition. Wagstaff et al. (2019) argue for the importance of this dis-
tinction, as the universal approximation theorem of neural network only applies
to continuous functions (Cybenko, 1989). The fact that the function has to be
continuous puts it under serious constraints for sum-decomposition, first the
size of the multiset must be bounded, and secondly the dimension in which the
sum is performed, has to be at least as high as the maximal number of elements.
This is formalized in Theorem 1 from Wagstaff et al. (2019) below.

Theorem 1. (Wagstaff et al., 2019, Theorem 4.4) Let f : R≤M → R be con-
tinuous. Then f is permutation-invariant if and only if it is continuously sum-
decomposable via RM

Under these constraints, given that 2 states X ⊂ X of bounded size, it is
possible to construct continuous injective functions with sum-decomposition.
Unfortunately, the functions are just entirely unmanageable in practice. It is
an open question as to whether a practical solution exists, but we can provide
impractical ones: One way is to map each unique x ∈ X to a one-hot vector
which can be done with a (very wide) MLP, doing the sum in the dimension
of the one-hot vector and repeating at every layer, this quickly leads to an
explosion in the size of the hidden dimension. Another way is to try to pack
the unique x into single numbers with products of primes, but these numbers
will be unfeasibly huge, and packing/unpacking them will again require huge
dimensions.

This leaves us with a few questions for GNNs with sum-decomposition.
Firstly, we would like to know how well they can learn injective functions in
practice in settings with bounded graph sizes. We show in Section 5.1 that they
do in fact struggle with learning injective functions. Secondly, the results for
sum-decomposition apply to representing any aggregation function, not just in-
jective ones. It is useful to know whether the limitations also impact the ability
to learn simple aggregation functions like mean and max. We show in Section
5.2 that this mainly impacts GIN which heavily relies on sum-decomposition
to disentangle its internal representation. Thirdly, the sum-decomposition is
intrinsically tied to the maximal degree due to Theorem 1. It is important to
know when, if ever, these GNNs can generalize beyond the training distribution.
We show in Section 6 that they should not be expected to generalize even on
simple logical classifiers.

5 Expressive Power in Practice

In this section we will try to systematically evaluate whether the theoretical
expressivity results hold in practice when GNNs are learned with gradient de-
scent. We test two claims in decreasing order of difficulty. In Subsection 5.1
we evaluate whether GNNs with sum-decomposition can emulate the WL Test,
as described in the above section, this is theoretically possible as the maximal
degree is bounded in the experiments. In Subsection 5.2 we evaluate whether

14

the theoretical expressivity ordering of GNNs holds in practice, by testing if
GNNs can emulate random instantiations of ”less powerful” GNNs.

5.1 Emulating The WL Test

In this section we will test how well, if at all, GNNs with sum-decomposition
can learn injective functions in practice. Theoretically, if we have graphs with
bounded degrees, there exists impractical instantiations of both GIN and AC-
Σ that are injective for all node and neighborhood pairs, but can they be learnt?

In an attempt to evaluate this we will consider the task of emulating the
WL-test. While the overall goal is to test whether GNNs can emulate the
full WL-test, we would gain useful information from evaluating on gradually
harder tasks. Fortunately, we can transform the test into gradually harder node
classification tasks by using the node hashes at different steps of the WL-test as
node labels. Recall how the first step of the WL-test just injectively maps each
node and and their neighborhoods features to a hash e.g. W 1(v) = hash(xv, {|
xu|u ∈ Nv |}). We could then do multiclass classification with a class for each
unique hash. In practice there are way too many unique hashes at the later WL
steps to feasibly do multiclass classification, so we will instead transform the
problem into binary node classification.

To generate binary labels from hashes we can define a set of relabelling
functions ρi : C → {0, 1} and assign the label of each node v to ρi(W

k(v)). To
ensure that the labelling function is not biased we randomly fix 5 different re-
labelling functions ρ1, . . . , ρ5 such that we can average the experimental results
over them. In practice ρi(hash) is simply the i’th bit of the node hash.

An astute reader may be worried that the node classifiers, with the rela-
belling above, are no longer injective, which is true. But no real world clas-
sification task is injective either, what we are actually looking for is the abil-
ity to learn injective representations. The idea is that we are testing for any
two nodes v, u along with their respective k-hop neighborhoods with different
hashes (W k(v) ̸=W k(u)), whether the GNN is able to map any such u and v to
different representations before the classification head. This is tested because
there is a non-zero probability that the labels do not match after the relabelling
(P (Yv ̸= Yu) > 0), resulting in an irreducible error if they are assigned to the
same label.

As mentioned earlier, there are exceedingly many unique hashes at the later
steps of the WL-test, which is further exacerbated by having many distinct
node features. To first test in a simple setting with less unique hashes we
generate random Erdős–Rényi (Erdős et al., 1960) graphs where all nodes have
the same initial features. We refer to this setting as 1 Color . To test in a more
challenging setting we also generate random graphs with 2 distinct uniformly
distributed initial node features. We refer to this setting as 2 Colors. We
then train k-layer GNNs with a fixed hidden dimension on the k-th WL step.

15

WL Step 1 WL Step 2 WL Step 3
#Colors 1Col 2Col 1Col 2Col 1Col 2Col
#Unique 14 116 4k 9k 80k 350k

AC-Σ 100% 100% 98.7% 84.0% 77.7% 60.6%
GIN 100% 100% 98.6% 83.0% 75.7% 60.0%

GCN 58.6% 61.3% 59.6% 56.4% 56.3% 55.2%

Table 1: Number of node colors, number of unique hashes and mean binary
prediction accuracy over 5 different binary relabelings at various steps of the
WL-1 test for each GNN type (row). For brevity we use k for thousands e.g.
80k = 80.000

(a) Prediction accuracy by hidden dimen-
sion size for 2nd and 3rd step of the WL
test on 1 Color . The x-axis is log scale.

(b) Prediction accuracy by hidden dimen-
sion size for 2nd and 3rd step of the WL
test on 2 Colors. The x-axis is log scale.

Figure 5

The mean accuracy over all relabelings for the first three steps of the WL-test
on 1 Color and 2 Colors are reported in Table 1. The second row in the
table shows the number of unique hashes in the training set, growing rapidly
with both number of WL steps and the number of distinct features. Refer to
Appendix A for the full experimental setup. Experiments in Table 1 are with a
fixed hidden dimension size. To test whether the size of the hidden dimension
matters we plot the accuracy for increasing the hidden dimension size from 23

to 210 for 1 Color and 2 Colors in Figures 5a and 5b. Accuracy for 1st Step
of WL is not shown in the figures as all dimensions achieve 100% accuracy in
both tasks.

5.1.1 Discussion

As can be seen in Table 1, GNNs with sum-decomposition are able to perfectly
emulate the first step of the WL-test in these simple settings. This is somewhat
unsurprising, especially in the 1 Color case, as it is essentially just counting

16

the number of neighbors. It is worth noting that GNNs with a hidden dimension
as low as 8 achieve 100% accuracy at the first step, showing that a very low di-
mensional MLP can partition 116 distinct configurations into two uncorrelated
classes. But, already at the second step, when the number of unique configura-
tions are in the thousands, the accuracy drops. Figure 5 shows that this error
is not due to lack of hidden dimension size, hinting at the idea that GNNs are
incapable of fully learning injective functions. This is further highlighted by the
accuracy at the third step, which is barely above random for 2 Colors.

In this section we have attempted to empirically validate the position of
GNNs with sum-decomposition in the expressivity hierarchy, and we have found
major limitations to how well they can learn injective functions. Theoretical
results putting sum-decomposition above other aggregations in expressivity rely
on assumptions of universality, which no longer hold without injectivity. We are
now left with the question as to whether these GNNs are in fact universal. In the
following section we will attempt to test whether GNNs with sum-decomposition
can emulate less powerful GNNs in practice in a similar setting to this section.

5.2 Emulating ”Weaker” GNNs

In this section we will continue the investigation of GNN expressivity in the
bounded degree domain. Instead of looking at injective functions we will eval-
uate the supposed universality of sum-decomposition by testing if they can
emulate weaker aggregation functions such as attention, mean, and max. The-
oretically, in the bounded degree domain, sum-decomposition should be able to
emulate all these aggregation functions, but can they be learned in practice?

To evaluate this we consider a similar setting as in Section 5.1. The main
difference is that we will use randomly initialized GNNs for node label generation
instead of relabellings of the WL-test node hashes. A key difference from this
experiment and that of the WL-test hashes, is that labels are now correlated,
making the problem slightly easier overall. Note that, as in the previous section,
this experiment is not intended for testing generalization, we test the ability for
the GNNs to generalize in Section 6. In fact Yehudai et al. (2021) show that,
under self-distillation alone, GNNs do not generalize to graph size changes, so
we should not expect distillations to generalize across architectures.

To gain intuition as to why this is still a useful experiment, assume that we
are unaware of the limitations of aggregation functions, e.g. we are unaware that
mean-aggregation cannot count, or that max/min-aggregation treats multisets
as sets. Under that assumption, Example 5.1 shows that we will find irreducible
error training an AC-µ on labels generated by a randomly initialized AC-Σ (in
expectation).

Example 5.1. Consider the following three configurations:

a :
〈
Red, {| Red, Blue |}

〉
b :

〈
Red, {| 2·Red, 2·Blue |}

〉
c :

〈
Red, {| 2·Red, Blue |}

〉
Convince yourself that a and b and c theoretically are distinguishable by a AC-
Σ layer (sum aggregation). {a, b} and c are distinguishable by AC-µ (mean
aggregation). None are distinguishable by SAGE (max aggregation).

17

AC-Σ GIN GAT AC-µ GCN SAGE
AC-Σ 85.4±0.9 80.5±1.5 99.4±0.2 92.5±0.7 97.1±0.2 99.7±0.0
GIN 76.2±3.2 82.3±1.4 97.5±3.3 86.3±6.8 96.2±0.6 89.8±7.2
GAT 65.5±2.9 63.1±3.2 94.4±2.6 71.3±3.9 94.0±0.5 92.5±2.5
AC-µ 78.3±1.1 72.7±1.7 98.0±0.7 92.7±0.6 94.8±0.3 99.7±0.1
GCN 64.4±3.4 64.5±3.3 92.3±4.4 63.7±2.4 95.9±0.8 72.9±5.3
SAGE 68.0±2.2 64.9±3.2 95.6±0.6 83.1±1.4 92.7±0.9 98.2±0.4

Table 2: Mean and standard deviation for accuracy when distilling a randomly
initialized GNN of the column GNN type into the row GNN type over 5 instan-
tiations. The diagonals are self-distilation. Grayed out cells are impossible to
learn in the general case. For improved readability; accuracies from 90-100 are
colored green, 80-90 yellow, otherwise red.

Because AC-Σ can distinguish a and b, there is a non-zero probability that
a randomly initialized AC-Σ assigns a and b different labels. But with those
labels AC-µ must assign the same label to both, leading to irreducible error in
expectation. Similarly, AC-µ has a non-zero probability of assigning {a, b} and
c different labels, leading to similar error for SAGE.

Since we already have theoretical results for the direction described in the
example we are interested in the opposite direction: Are there configurations
that GAT / AC-µ / GCN / SAGE can assign different labels that AC-Σ (or
GIN) cannot learn to distinguish in practice.

To test for such configurations (or k-hop neighborhoods) we generate large
random graphs with 5 distinct uniformly distributed initial node features, to
have a variety of degrees and features. We randomly initialize 5 of each GNN
for binary classification and assign their, essentially random, prediction on the
random graphs as the node labels. Refer to Appendix B for the full experimental
setup. We train on all combinations of GNNs reporting the mean and standard
deviation over the 5 initializations in Table 2. Gray cells are not possible in
general due to theoretical limitations with counting and multisets.

5.2.1 Discussion

From Table 2 we see that AC-Σ generally is able to emulate less powerful GNNs
on the training set, showing that there are probably few if any configurations
(or 2-hop neighborhoods) that are indistinguishable to it in this setting. GIN
on the other hand do not perfectly emulate AC-µ and SAGE, this is interest-
ing because the common factor between AC-µ and SAGE is that they apply
their MLP (resp. weight matrix) to the the previous representation concate-
nated with the neighborhood aggregation, which is exactly what GIN lacks in
comparison to AC-Σ. This suggests that GIN lacks expressivity in practice
when node labels rely on a more complex interaction between the previous rep-
resentation and the neighborhood aggregation. We provide further evidence of

18

this phenomenon in the experiments on generalization in Section 6. We will also
show that, even though AC-Σ is able emulate other GNNs, it does not always
generalize as well.

6 Logical Expressiveness in Practice

In this section we will attempt to evaluate how well our set of GNNs generalize
in practice. In that effort we design three simple logical node classifiers with
exact solutions in GNNs. The three classifiers are designed to test different
capabilities of GNNs.

We base our initial classifier off of the FOC2 classifier in Barceló et al. (2020).
They show that their node classifier, αi(x), is not expressible by MPNN, and
classify the expressible fragment of FOC2 as graded modal logic (De Rijke, 2000).
In graded modal logic all subformulas must be guarded by the edge relation. A
formula ϕ can either be a color e.g. Blue(x), Red(x), etc. or one of the following:

¬φ(x), φ(x) ∧ ψ(x), ∃≥Ny(E(x, y) ∧ φ(y)) (14)

In an effort to test how well GNNs can learn general solutions to counting we
define the first logical node classifier β to simply count the number of neighbors
with a property:

β0(x) := Blue(x), βi+1(x) := ∃[N,M]y(βi(y) ∧ E(x, y)) (15)

Where we define ∃[N,M]y(ψ) = ∃≥Ny(ψ)∧¬∃≥M+1y(ψ). Notice how the formula
β is recursively defined such that we can make it arbitrarily hard. β1(v) is true if
v has between N andM blue neighbors. β2(v) is true if v has between N andM
neighbors who have between N and M blue neighbors and so on. As mentioned
in Section 4.4, we only expect GNNs with sum aggregations to perform well.
We show in Lund (2023) that low-dimensional exact solutions exist for GIN
and AC-Σ of all βi.

We design the next logical classifier in an effort to test other GNNs along
with the ability for sum-decomposition to learn general solutions for distribu-
tional aggregations. To describe distributional aggregation we must modify the
grammar to have ratio of degree existential counting qualifiers. We now only
allow counting qualifiers of the form ∃≥⌈N/MD(x)⌉y(ψ) where D(x) is the degree
of the node. This lets us define a distributional node classifier γ:

γ0(x) := Blue(x), γi+1(x) := ∃≥⌈N/MD(x)⌉y(γi(y) ∧ E(x, y)) (16)

If we temporarily fix N/M = 1/2 we have that γ1(v) is true if half or more of v’s
neighbors are blue. γ2(v) is true if half or more of v’s neighbors have half or
more blue neighbors, etc. While we break the syntax of graded modal logic, we
show in Lund (2023) that exact solutions still exist for GIN and AC-Σ, and
the same method can be used for exact solutions for AC-µ.

19

Finally we design a classifier that can be solved with max aggregation too.
The classifier is very simple as we cannot use counting qualifiers. We define δ
as seen below:

δ0(x) := Blue(x), δi+1(x) := ¬δi(x) ∧ ∃y(δi(y) ∧ E(x, y)) (17)

We have that δ1(v) is true if v is not blue and has a blue neighbor. δ2(v) is true
if v has a non-blue neighbor with a blue neighbor and is blue or does not have
a blue neighbor. Again exact solutions exist3.

With these simple formulas defined we can finally evaluate how well GNNs
generalize on them. We generate a training set of random graphs from size 50
to 100 nodes with 5 distinct uniformly distributed initial node features (One
being Blue). Node labels are assigned by running implementations of the node
classifiers on the random graphs. Because the graphs are Erdős–Rényi graphs
(Erdős et al., 1960) with a fixed edge probability, the edge distribution changes
as the graph size increases. We test the classifiers on test sets consisting of
graphs up to 300 nodes in size and plot the mean accuracy over 5 runs. Results
for counting (β) can be seen in Figure 6. Distributions (γ) in Figure 7. Non-
counting (δ) in Figure 8. The training graph size is shown as a grey band on all
plots. Refer to Appendix C for the full experimental setup.

6.1 Discussion

For the counting classifier β in Figure 6 we see that both GIN and AC-Σ are
able to learn the counting classifiers to a perfect accuracy within the training
set. Unfortunately, the performance does not generalize to large graph sizes for
either of them, even though the problem is pretty simple. Both even regress
below the line for predicting a constant value.

For the distributional node classifier γ in Figure 7, both sum-decomposition
GNNs perform surprisingly well, even outperforming AC-µ with mean aggre-
gation most of the time. On the harder problem γ5 they do both eventually
degrade in performance, whereas simple methods like GCN and SAGE, with-
out exact solutions, maintain their, albeit lower, performance.

Finally for the non-counting node classifier δ in Figure 8, we see that most
GNNs achieve near-perfect accuracy in the training distribution. Of those GNNs
only GIN and AC-Σ drop in performance as the graph size changes suggesting
that SAGE and AC-µ learn more general solutions in this setting. GIN drops
off much more rapidly, giving for credence to the hypothesis that it has trouble
disentangling its own representation from that of its neighbors when there are
complex interactions between them.

Generally, GAT performs poorly in these experiments. It may be the case
that logical classifiers do not lend themselves to an attentional aggregation
scheme.

3For βi+1 one can simply normalize the βi contribution from the aggregation and negate
the βi contribution from the previous representation and do a logical and between the two
bits which is the truth value of βi+1

20

(a) Graph size generalization results
for the counting node classifier β3 from
Equation 15

(b) Graph size generalization results
for the counting node classifier β5 from
Equation 15

Figure 6: Mean test set accuracy over 5 runs. In both plots the grey band
indicates the graph sizes during training. The dotted line (”CONST”) shows
the accuracy of predicting a constant value.

Overall, none of the GNNs tested consistently generalize well, this suggests
that the choice of GNN should be problem specific, as the most expressive GNNs
are not always the best choice.

In the following section we investigate this further by evaluating all GNNs
on real world datasets with improved expressivity from the ESAN framework.

7 Higher Order GNNs With Weaker Encoders

Based on the results in the previous section we find that the selection of GNN
is problem specific. To evaluate this outside of a synthetic setting, we will in
this section consider two real world datasets: MUTAG and PTC. We aim to see
whether the choice of GNN effects the performance of the ESAN framework on
real datasets. The usage of ESAN is mainly motivated by the observation that
subgraph selection policies with node marking allow distributional aggregators
to count, showing that it can improve the expressivity of GNNs without sum-
decomposition. This can be seen as an effort to motivate future work using
GNN encoders to consider non sum-decomposition GNNs when evaluating their
methods.

MUTAG Debnath et al. (1991) is a dataset of molecyles. Nodes are atoms
and edges are chemical bonds. Graph are labelled by their mutagenic effect on
a bacterium. The dataset consists of 188 graphs with 7 discrete node labels.
There are 27163 nodes and 148100 edges in total in the dataset.

PTC (Helma et al., 2001) is a dataset of chemical compounds. The com-
pounds are labelled with the carcinogenicity for rats. The dataset consists of

21

(a) Graph size generalization results
for the distributional node classifier γ3
from Equation 16

(b) Graph size generalization results
for the distributional node classifier γ5
from Equation 16

Figure 7: Mean test set accuracy over 5 runs. In both plots the grey band
indicates the graph sizes during training. The dotted line (”CONST”) shows
the accuracy of predicting a constant value.

(a) Graph size generalization results
for the non-counting node classifier δ3
from Equation 17

(b) Graph size generalization results
for the non-counting node classifier δ4
from Equation 17

Figure 8: Mean test set accuracy over 5 runs. In both plots the grey band
indicates the graph sizes during training. The dotted line (”CONST”) shows
the accuracy of predicting a constant value.

22

344 graphs with 19 discrete node labels. There are 8792 nodes and 17862 edges
in total in the dataset.

We evaluate all GNNs from Section 3.2: GIN, AC-Σ, AC-µ, GAT, GCN,
GraphSAGE. Along with three subgraph selection policies from Section 3.3:
Edge-deleted (ED), Node-deleted (ND), Ego-networks (EGO+).

We did not have enough VRAM to run GAT with the ED policy, so we
cannot report results for that configuration.

We use the same training procedure as in Bevilacqua et al. (2022) and Xu
et al. (2019), reporting results for 10-fold cross validation in Table 3. Due to
compute limitations we train for less epochs than Bevilacqua et al. (2022) and
do less hyperparameter search. Refer to Appendix D for the full experimental
setup.

Method ↓ / Dataset → MUTAG PTC
SoTA 92.7±6.1 68.2±7.2
GIN (Xu et al., 2019) 89.4±5.6 64.6±7.0
DS-GNN (GIN) (Bevilacqua et al., 2022) 91.0±4.8 68.7±7.0

GIN 89.4±5.3 64.9±4.9
DS-GNN (GIN) (ED) 89.9±7.4 66.2±7.8
DS-GNN (GIN) (ND) 89.8±6.2 65.6±6.8
DS-GNN (GIN) (EGO+) 89.9±5.1 64.2±3.2
AC-Σ 88.9±5.0 62.8±9.6
DS-GNN (AC-Σ) (ED) 87.8±3.3 63.9±5.6
DS-GNN (AC-Σ) (ND) 88.8±4.5 64.8±7.6
DS-GNN (AC-Σ) (EGO+) 89.9±5.0 66.5±8.4
AC-µ 84.1±3.9 64.5±4.3
DS-GNN (AC-µ) (ED) 86.7±7.1 66.2±4.7
DS-GNN (AC-µ) (ND) 85.6±4.9 65.4±6.0
DS-GNN (AC-µ) (EGO+) 91.5±4.9 64.2±5.8
GAT 83.1±8.7 65.4±4.0
DS-GNN (GAT) (ED) - -
DS-GNN (GAT) (ND) 84.6±6.8 65.4±6.4
DS-GNN (GAT) (EGO+) 89.4±4.8 66.0±9.1
GCN 90.4±3.1 63.9±7.0
DS-GNN (GCN) (ED) 90.9±5.4 64.6±6.5
DS-GNN (GCN) (ND) 88.3±3.1 62.2±7.0
DS-GNN (GCN) (EGO+) 90.5±4.6 66.5±6.4
GraphSAGE 86.7±8.2 65.7±5.2
DS-GNN (GraphSAGE) (ED) 85.6±5.9 65.7±5.7
DS-GNN (GraphSAGE) (ND) 85.1±5.8 63.7±6.0
DS-GNN (GraphSAGE) (EGO+) 90.0±6.4 65.7±8.1

Table 3: Results on MUTAG and PTC datasets for ESAN with different graph
encoders. Mean and standard deviation are computed from a 10-fold validation

23

7.1 Discussion

Looking at Table 3 all GNNs are able to perform better than the base GIN from
Xu et al. (2019) in both datasets with some subgraph selection policy, but most
are unable to do so without it. This suggests that ESAN is able to boost the
expressivity of all used MPNNs. Furthermore we find that, even with limited
finetuning compared to Bevilacqua et al. (2022), DS-GNN (AC-µ) (EGO+)
is able to outperform the best result from Bevilacqua et al. (2022) on MUTAG.
This is further evidence that one should not always select the most expressive
GNN for all problems. The fact that many GNNs are applicable also highlight
that the hunt for good MPNNs is not necessarily over, as there is still room for
less expressive, better generalizing models. Our results here go to show that it
will be beneficial for future subgraph or graph structure frameworks to evaluate
on weaker GNNs such as AC-µ as well.

8 Conclusion

Throughout our experiments we have shown that the theoretical results on sum-
decomposition put hard limits on the practicality of using universal MPNNs. We
have shown that universal MPNNs cannot learn injective functions such as the
WL-test in practice. We find that universal MPNNs are able to emulate most
less expressive MPNNs, but also some evidence that GIN struggles to disentan-
gle its own representation from that of its neighborhood when there are complex
interactions between them. On synthetic experiments on logic node classifiers
we find that all MPNNs are unable to generalize to larger graphs in all settings.
We find that some MPNNs are better suited for different tasks, emphasising the
need to explore different MPNNs. Finally, we show that MPNNs also benefit
from structural information in GNNs such as ESAN. We find that all MPNNs
improve in performance on real world datasets when applied to the ESAN
framework. We even find that an MPNN with mean aggregation can outcom-
pete universal MPNNs on real world datasets given the structural information.
Overall we propose that the current practice of only evaluating methods that
improve MPNNs on universal MPNNs should be modified to consider a small
set of less powerful MPNNs as well.

Future Work We only test the least expressive version of ESAN in our
experiments. Applying the more expressive DSS-GNN could lead to more in-
sights into how less powerful MPNNs can be used. We know that the theoretical
expressivity of ESAN with a WL-1 encoder is strictly greater than WL-1, but
we have no theoretical results for encoders that are less powerful, such as mean
aggregating MPNNs. We highlight situations where they can count, but we
need a theoretical analysis to determine where they lie in the WL-hierarchy.

24

References

Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P.
(2020). The logical expressiveness of graph neural networks. In International
Conference on Learning Representations.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai, C., Balamurugan, G.,
Bronstein, M. M., and Maron, H. (2022). Equivariant subgraph aggregation
networks. In International Conference on Learning Representations.

Biewald, L. (2020). Experiment tracking with weights and biases. Software
available from wandb.com.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montufar, G. F., and
Bronstein, M. (2021a). Weisfeiler and lehman go cellular: Cw networks.
Advances in Neural Information Processing Systems, 34:2625–2640.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F., Lio, P., and
Bronstein, M. (2021b). Weisfeiler and lehman go topological: Message passing
simplicial networks. In International Conference on Machine Learning, pages
1026–1037. PMLR.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M. (2022). Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(1):657–668.

Cai, J.-Y., Fürer, M., and Immerman, N. (1992). An optimal lower bound on the
number of variables for graph identification. Combinatorica, 12(4):389–410.

Chen, Z., Chen, L., Villar, S., and Bruna, J. (2020). Can graph neural networks
count substructures? Advances in neural information processing systems,
33:10383–10395.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković, P. (2020). Principal
neighbourhood aggregation for graph nets. Advances in Neural Information
Processing Systems, 33:13260–13271.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314.

De Rijke, M. (2000). A note on graded modal logic. Studia Logica, 64(2):271–
283.

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J.,
and Hansch, C. (1991). Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. correlation with molecular orbital en-
ergies and hydrophobicity. Journal of medicinal chemistry, 34(2):786–797.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering. Advances in neural
information processing systems, 29.

25

Erdős, P., Rényi, A., et al. (1960). On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci, 5(1):17–60.

Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with Py-
Torch Geometric. In ICLR Workshop on Representation Learning on Graphs
and Manifolds.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
Neural message passing for quantum chemistry. In International conference
on machine learning, pages 1263–1272. PMLR.

Grohe, M. and Otto, M. (2015). Pebble games and linear equations. The Journal
of Symbolic Logic, 80(3):797–844.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network struc-
ture, dynamics, and function using networkx. In Varoquaux, G., Vaught, T.,
and Millman, J., editors, Proceedings of the 7th Python in Science Conference,
pages 11 – 15, Pasadena, CA USA.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learn-
ing on large graphs. Advances in neural information processing systems, 30.

Helma, C., King, R. D., Kramer, S., and Srinivasan, A. (2001). The Predictive
Toxicology Challenge 2000–2001 . Bioinformatics, 17(1):107–108.

Lund, S. (2023). Pre-specialization: Evaluating graph neural networks under
edge distribution shifts.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y. (2019). Provably
powerful graph networks. Advances in neural information processing systems,
32.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan,
G., and Grohe, M. (2019). Weisfeiler and leman go neural: Higher-order
graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 4602–4609.

Pellegrini, G., Tibo, A., Frasconi, P., Passerini, A., and Jaeger, M. (2021).
Learning aggregation functions. In Zhou, Z.-H., editor, Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
pages 2892–2898. International Joint Conferences on Artificial Intelligence
Organization. Main Track.

Sato, R., Yamada, M., and Kashima, H. (2021). Random features strengthen
graph neural networks. In Proceedings of the 2021 SIAM International Con-
ference on Data Mining (SDM), pages 333–341. SIAM.

Schöning, U. (1988). Graph isomorphism is in the low hierarchy. Journal of
Computer and System Sciences, 37(3):312–323.

26

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio,
Y. (2018). Graph Attention Networks. International Conference on Learning
Representations. accepted as poster.

Wagstaff, E., Fuchs, F., Engelcke, M., Posner, I., and Osborne, M. A. (2019). On
the limitations of representing functions on sets. In International Conference
on Machine Learning, pages 6487–6494. PMLR.

Weisfeiler, B. and Leman, A. (1968). The reduction of a graph to canonical
form and the algebra which appears therein. NTI, Series, 2(9):12–16.

Welling, M. and Kipf, T. N. (2016). Semi-supervised classification with graph
convolutional networks. In J. International Conference on Learning Repre-
sentations (ICLR 2017).

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph
neural networks? In International Conference on Learning Representations.

Yehudai, G., Fetaya, E., Meirom, E., Chechik, G., and Maron, H. (2021). From
local structures to size generalization in graph neural networks. In Interna-
tional Conference on Machine Learning, pages 11975–11986. PMLR.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and
Smola, A. J. (2017). Deep sets. Advances in neural information processing
systems, 30.

Zhang, B., Luo, S., Wang, L., and He, D. (2023). Rethinking the expressive
power of GNNs via graph biconnectivity. In International Conference on
Learning Representations.

27

WL Step 1 WL Step 2 WL Step 3
1 Color 14 4.000 80.000
2 Colors 116 90.000 350.000

Table 4: Unique hashes per WL step in the training sets.

A Experimental Setup: Emulating TheWL Test

We generate 5000 random undirected Erdős–Rényi Erdős et al. (1960) graphs
of size 20-30 nodes (uniform) as the training set. Every edge (undirected) is
included in the graph with a probability of p = 0.1. Table 4 shows the number
of unique hashes in the training set (before any relabeling). For 1 Color all
nodes are initialized with a feature vector of x = [1]. For 2 Colors one of two
colors is chosen uniformly for each node and is one-hot encoded as the feature
vector of the node.

For each step of the WL test the 5 relabelling functions for node labels are
generated from taking the ith bit of the WL steps hash. We use NetworkX
(Hagberg et al., 2008) to generate the subgraph hashes for each node.

We train all GNNs with layers equal to the WL step. E.g. WL step 2
uses a 2 layer GIN and AC − Σ. In all GNNs we have 4-layer MLPs. We
train with a batch size of 256 for up to 500 epochs with early stopping in
case of no improvement for 10 epochs. Learning rate is initially 0.01 but we
halve it every 10th epoch (Step Decay). In Table 1 we train with a hidden
dimension of h = 64. For results in Figure 5 we train with hidden dimension
h ∈ [8, 16, 32, 64, 128, 256, 512, 1024].

B Experimental Setup: Emulating ”Weaker” GNNs

We generate 5000 random undirected Erdős–Rényi Erdős et al. (1960) graphs
of size 50-100 nodes (uniform) as the training set. Every edge (undirected) is
included in the graph with a probability of p = 0.1. All nodes are initialized
with one of 5 colors, chosen uniformly for each node and is one-hot encoded as
the feature vector of the node.

To generate labels we randomly initialize GNNs with l = 2 GNN layers,
4-layer MLPs (if they have MLPs), and a hidden dimension of h = 64. We
randomly initialize 5 of each GNN with those hyperparameters and evaluate
them on the test set. We prune degenerate GNNs (ones predicting the same
value always, or almost always) by checking if the label frequency is below 20%
or above 80%, if so we reinitialize and retry. We always pick the label with the
highest logits instead of randomly sampling.

For training all GNNs with MLPs have 4-layer MLPs. We train with a batch
size of 256 for up to 500 epochs with early stopping in case of no improvement
for 10 epochs. Learning rate is initially 0.01 but we halve it every 10th epoch
(Step Decay). We hyperparameter search for hidden dimension h ∈ [64, 128]

28

i = 1 i ∈ [2, . . . 5]
β [1, 3] [2, 3]
γ 1/5 1/2

Table 5: Constants used in counting quantifiers for βi and γi

and number of GNN layers l ∈ [2, 3], picking the best performing to aggregate
over for Table 2.

We use Weights & Biases (Biewald, 2020) to track experiments and perform
parameter sweeps.

C Experimental Setup: Logical Node Classifiers

We generate 5000 random undirected Erdős–Rényi Erdős et al. (1960) graphs
of size 50-100 nodes (uniform) as the training set. Every edge (undirected) is
included in the graph with a probability of p = 0.1. All nodes are initialized
with one of 5 colors, chosen uniformly for each node and is one-hot encoded as
the feature vector of the node. The first color is considered Blue. The constants
used for βi and γi are shown in Table 5

For test sets we generate 1000 random graphs for every size from 10-300 in
10 step intervals ([10, 20, 30, . . .]). We label the training and tests sets with
the node classifiers. For all ϕi experiments we use i-layer GNNs with a hidden
dimension of h = 64. We train with a batch size of 256 for up to 500 epochs
with early stopping in case of no improvement for 10 epochs. Learning rate is
initially 0.01 but we halve it every 10th epoch (Step Decay). We average the
test set accuracy over 5 runs for each GNN.

We use Weights & Biases (Biewald, 2020) to track experiments and perform
parameter sweeps.

Figure 9 shows the cumulative probability for each degree for a node based
as the size of graphs increases. The gray band is the training graph size distri-
bution.

D Experimental Setup: Higher Order GNNsWith
Weaker Encoders

We use the publicly available Bevilacqua et al. (2022) codebase for running
the experiments. We implement AC-Σ, AC-µ and use the PyTorch Geometric
(Fey and Lenssen, 2019) implementation of GAT and GraphSAGE in the
experiments. We use Weights & Biases (Biewald, 2020) to track experiments
and perform parameter sweeps.

Due to compute limitations we train for 200 epochs where ESAN (Bevilac-
qua et al., 2022) train for 350 epochs. We use a fixed embedding dimension of 32
whereas ESAN sweep over h ∈ [16, 32]. We use a fixed batch size of 64 whereas

29

Figure 9: Distribution of node degrees as the graph size increases. As the graph
size increases, it is less likely for a node to have few neighbors.

ESAN sweep over b ∈ [32, 128]. We sweep over learning rates lr ∈ [0.01, 0.001],
as does ESAN. We use a fixed DeepSets embeddings size of 64 whereas ESAN
sweep over hD ∈ [32, 64]

30

	Introduction
	Related Work
	Graph Neural Networks
	Notation
	Message-Passing Neural Networks
	Subgraph Graph Neural Networks

	Expressive Power of GNNs
	Graph Isomorphism
	First Order Logic
	Graph Biconnectivity
	Known Expressivity Results

	Expressive Power in Practice
	Emulating The WL Test
	Emulating "Weaker" GNNs

	Logical Expressiveness in Practice
	Discussion

	Higher Order GNNs With Weaker Encoders
	Discussion

	Conclusion
	Experimental Setup: Emulating The WL Test
	Experimental Setup: Emulating "Weaker" GNNs
	Experimental Setup: Logical Node Classifiers
	Experimental Setup: Higher Order GNNs With Weaker Encoders

