
Summary

This thesis presents, to our knowledge, the first attempt at utilizing Pointer
Assertion Logic and monadic second-order logic in the context of pointer ma-
nipulation in Rust, as well as the application of Graph types for specifying
Data Structure Invariants (DI) and demonstrating preservation of Rust data
structures.

We formulated a transformation from MIR to PALE and demonstrated its
application on a concrete example of a data structure manipulation program
in Rust. We then attempted to prove the memory safety of this example and
showed that the program does not violate the DI.

We have identified that PALE and monadic second-order logic present
interesting avenues for further research in formal verification. We believe
that these approaches have the potential to advance the field of formal
verification in the context of Rust.
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1I N T R O D U C T I O N

Rust, with its emphasis on memory safety and low-level system program-
ming, has been gaining popularity as a safer alternative to languages like
C and C++. Its strong type system and ownership based memmory model,
adids in the privation of common programming errors such as null pointer
dereferences, and data races. However, the complexity of the language and
its novel features, including the separation of safe and unsafe Rust code,
present new challenges for ensuring the correctness of Rust programs [1].

With the acceptance of Rust into the Linux kernel, there is a growing need
for formal verification techniques specifically for Rust. The Linux kernel,
being a critical piece of software, demands a high level of assurance in terms
of correctness, security, and reliability. Formal verification can provides sys-
tematic approach to analyze Rust code and prove its correctness properties,
ultimately enhancing the trustworthiness of the Rust, and in turn also its
adoption in the Linux kernel [1].

The master thesis is structured as follows: Chapter 1: examines the ar-
gument for using PALE as the underlying logic for our verification efforts.
It also explores the use of MIR as the underlying language for verification.
Additionally, it presents a running example in Rust of a pointer manipulat-
ing program over a data structure, namely unsafe_list. We conclude the
chapter by highlighting the contribution that we believe this thesis presents
to the field of formal verification methods. Chapter 2: Covers the background
theories related to graph types, PALE, and MIR to provide a foundation for
the subsequent chapters. Chapter 3: Presents our verification efforts on a
specific example, which involves a function that manipulates pointers in a
data structure within the Linux kernel. The example specifically focuses on
the remove operation in the unsafe_list data structure. Chapter 4 discusses
the results of our verification efforts and presents the conclusions drawn
from our thesis. It provides an analysis and discussion of the verification
outcomes and their implications. Finally, it concludes the thesis by summa-
rizing the key findings, contributions, and potential future directions for
further research.

1 .1 pointer assertion logic

This section discusses the selection of PALE as the underlying logic, and
explains why Separation Logic was not chosen.

Pointer Assertion Logic Engine (PALE) was introduced in [13] as a frame-
work for verifying the partial correctness of programs that manipulate data
structures. PALE specializes in verifying a wide range of data structures,
that are expressible as Graph Types (see Section 2.2 for details). A more
comprehensive explanation of PALE can be found in Section 2.4.

The following listing presents several key points supporting (+) and
opposing (-) the choice of PALE as the underlying logic in this thesis:
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(+) Graph types simplify the specification of data structures involving
pointers, such as doubly linked lists and trees.

(+) We focus primarily on pointer manipulation occurring within data
structures, making the benefits of Graph Types relevant.

(+) PALE automatically generates numerous checks of interest, includ-
ing null pointer dereference and pointer separation in the heap (see
Section 2.4 for more information).

(+) Not utilizing separation logic as the underlying logic may yield inter-
esting observations.

(+) PALE leverages a weak monodic second-order logic in MONA, eliminating
the need to calculate weakest preconditions [13].

(+) Has not been used to verify Rust programs before.

(-) PALE lacks a formal specification for its semantics.

(-) PALE can only describe data structures expressible as Graph Types.

(-) The tooling around PALE and MONA is outdated.

Alternatively, Separation Logic (SL) [14] was considered as another ap-
proach. SL is a formal logical framework that extends traditional Hoare logic
[5] to reason about programs store. SL was initially proposed by Reynolds
in Reynolds as a means of reasoning about pointer-based programs, in a
more intuitive manner then Hoare logic.

Here are several points supporting (+) and opposing (-) for chose of
Separation Logic:

(+) SL offers greater expressiveness compared to PALE, due to PALEs
dependes on Graph Types.

(+) Supported by Automated Theorem Provers, such as Coq-Iris [3].

(-) Lack of automaton compared to PALE.

(-) The complexity of SL, and the time limitation of the thesis.

(-) Dependency on weakest precondition.

An interesting observation is that PALE and SL were developed around
the same time in history, but SL has received significantly more development
in recent years. As a result, we believe it would be interesting to explore any
apparent benefits of choosing PALE over SL, in regards to the verfication of
Rust progrmas.

By selecting PALE, we can leverage its specialized focus on verifying
data structures expressible as Graph Types. Additionally, PALE’s automatic
generation of relevant checks, such as null pointer dereference and pointer
separation in the heap, is a valuable feature.

Although there are arguments against PALE, such as the lack of a for-
mal specification for its semantics and the limitations of Graph Type see
Section 2.2, we believe that exploring PALE in the context of this thesis can
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1 .2 mid-level intermediate representation and formal

verification

yield valuable insights and potentially uncover unique observations. The
historical parallel between PALE and SL, coupled with the potential benefits
of PALEs specialized focus, make it a compelling choice to investigate in
comparison to the more extensively developed SL.

1 .2 mid-level intermediate representation and formal ver-
ification

This section discusses the selection of Rusts mid-level intermediate representa-
tion (MIR) as the underlying language used for our verification.

The following list covers some points supporting (+) and opposing (-)
the choice of MIR as the underlying language for our verification:

(+) MIR provides a simplified representation of high-level Rust programs.
It abstracts away some of the complexity of Rust, making it easier to
reason about and analyze.

(+) Most of the language constructs in MIR are some what similar in PALE,
the underlying logic used in our verification.

(+) Is was also an argument for the adoption of MIR into the Rust compiler
[11], that MIR, should eventually be suitable for safety proofs.

(-) Given that MIR represents high level Rust as a (CFG) may complicate
the modeling of loop constructs and other intricate language features,
this was also identified as a limitations of MIR in [11].

(-) As MIR is integrated as part of the Rust compiler, there may be in-
formation that is not available at the MIR level but is needed for our
verification. This limitation requires careful handling and potential
workarounds.

While there may be challenges in handling specific language features or
limitations due to the simplified nature of MIR, we believe that the benefits of
using MIR as the underlying language for verification outweigh the potential
drawbacks. With careful consideration and appropriate techniques, we see
MIR as a provides a suitable basis for modeling and reasoning about Rust
programs.

1 .3 related works

In recent years, there have been several notable attempts at formal verifica-
tion of Rust programs. This section provides an overview of some of the
prominent projects and approaches in this domain.

RustBelt The RustBelt project focuses on developing formal verification
techniques for Rust’s ownership and borrowing system. By combining sep-
aration logic, type systems, RustBelt aims to provide rigorous guarantees
about memory safety and data race freedom of the Rust standard library [1].
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Creusot Creusot translates MIR functions into WhyML. They also intro-
duced PAREALITE, a specification language used for annotations of Rust
programs, which is later translated into annotations in WhyML. The main
idea behind Creusot is the introduction of prophecies, which are able to
speculate about the result of a mutable borrow [2].

RustHorn & RustHornBelt RustHorn translates Rust programs into con-
strained Horn clauses (CHCs). By utilizing the Rust borrow system, it can
overcome the scalability problems of CHC [10]. In RustHornBelt, RustBelt
and RustHorn are combined to enable support for first-order logic (FOL)
specifications for safe APIs that are implemented in unsafe Rust code [9].

1 .4 contribution

This master’s thesis aims to bridge the gap between MIR and PALE by
developing a transformation process that enables the formal verification
of MIR programs. The following is a list of the contribution of this master
thesis to the filed of formal methods:

• To our knowledge this thesis presents the first attempt at translating
Rust to PALE.

• We present the first attempt at formalizing, and proving data structure
invariant in Rust.

1 .5 unsafe_list data structure example

We have chosen an example from the Rust for Linux [16] project, which is a
collective effort to bring Rust into the Linux kernel. The specific example we
have selected is the unsafe_list, an implementation of an intrusive circular
doubly-linked list (ICDLL) data structure. This data structure is commonly
used, for example, as the underlying data structure of work queues1.

We have chosen ICDLL as our focus because it aligns well with PALE’s
utilization of Graph types and the prevalence of pointer manipulations
involved in the operations performed on this data structure.

We will begin by providing a brief informal definition of ICDLL, out-
lining its general structure and providing an informal description of its
soundness. We will then proceed to explain the concrete implementation of
the unsafe_list, where we will present the relevant operations that will be
verified later in this thesis.

We will use ICDLL and its implementation in Rust as the basis for our
verification efforts.

1 Rust work queues implementation in the linux kernel https://github.com/Rust-for-Linux/
linux/blob/3dfc5ebff103ac99dca27644c09edbcc6dd8e9d1/rust/kernel/workqueue.rs
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1 .5 unsafe_list data structure example

Intrusive circular doubly-linked list An ICDLL is a data structure that
organizes elements in a circular manner using doubly-linked pointers. Unlike
traditional linked lists where the list nodes hold the data and pointers, in an
ICDLL, the elements themselves contain the necessary pointers for linking
them together.

A graphical representation of an example ICDLL is shown in Figure 1.1.

E1

next
prev

∗E2
∗E3

E2

next
prev

∗E3
∗E1

E3

next
prev

∗E1
∗E2

Figure 1.1: Example of ICDLL,

In terms of the safety of the Intrusive Circular Doubly-Linked List
(ICDLL) data structure, we propose the following informal specifications:

As to the safety of the ICDLL data suture we pose the following informal
specification:

• Pointers within the List: Every next, and prev pointer within the
ICDLL must point to an element that exists within the list. This ensures
that the links between elements are valid and do not reference elements
outside the list.

• List structure: Every next, and prev pointer can only point to a neigh-
boring elements with in the list.

• Reachability: The property of reachability states that given an element
E that is present in the list, it should be possible to reach E from any
other element E′ in the list by following the next and prev pointers
repeatedly.

• Non-Null Pointers: No pointer within the list can be null. This guar-
antees that all pointers are properly initialized and do not lead to
undefined behavior.

• Preservation of Properties: Every operation performed on the ICDLL,
including insertions, deletions, and modifications, must uphold the
properties mentioned above. This ensures that the list’s integrity and
safety are maintained throughout all operations.

By specifying these properties informally, we establish a set of requirements
that a given implementation must satisfy. Verifying that the implementation
adheres to these specifications helps ensure the safety and correctness, pre-
venting potential issues such as dangling pointers, null pointer dereferences,
or invalid pointers within the list.

We will returnee to this specification later and give a more concrete
specification using Graph Types in Section 3.2.
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Rust Linux unsafe_list data Structure

In this section, we will present the general structure of the unsafe_list
implementation [17], focusing on the remove operation. The main objec-
tive is to identify program points where unsafe operations (unsafe {...}
blocks) occur and identify where any potential violations of the informal
specifications for the (ICDLL).

We start by explain the structure of the unsafe_list data type, consider
the code shown in Code listing 1.5.1.

1 pub struct List<A: Adapter + ?Sized> {

2 first: Option<NonNull<A::EntryType>>,

3 }

4

5 pub unsafe trait Adapter {

6 type EntryType: ?Sized;

7 fn to_links(obj: &Self::EntryType) -> &Links<Self::EntryType>;

8 }

9

10 pub struct Links<T: ?Sized>(UnsafeCell<MaybeUninit<LinksInner<T>>>);

11

12 struct LinksInner<T: ?Sized> {

13 next: NonNull<T>,

14 prev: NonNull<T>,

15 _pin: PhantomPinned,

16 }

Code listing 1.5.1: The overall structure of unsafe_list type [17].

List<A: Adapter + ?Sized> This constitutes the entry point of the afore-
mentioned type. Within this context, there exists only one field, namely:
first: Option<NonNull<A::EntryType>. This field represents a NonNull pointer
pointing to the first element of the list. It is important to note that first is
wrapped in an Option type, as the underlying EntryType may not necessarily
contain any data, upon initialization of the List. The ?Sized trait specifies
that a given type has a constant size that is at compile time.

LinksInner<T: ?Sized This is the internal structure list, where next: NonNull<T>
points to the next element of the list, and prev: NonNull<T> points to the
previous element of the list. The type _pin: PhantomPinned ensures that
these types cannot be moved in memory.

Links<T: ?Sized> The Links is a wrapper around the internal type LinksInner<T>,
which itself is composed of two other types: UnsafeCell and MaybeUninit.
The purpose of using UnsafeCell is to opt-out of the immutability guarantee

6



1 .5 unsafe_list data structure example

for &T in case a shared reference to &T might point to data that is being
mutated. MaybeUninit is used to represent values of type T that may not be
fully initialized yet.

Trait / Type Adapter This defines an unsafe trait called Adapter. It serves
as an abstraction for adapting user-defined types to be compatible with the
intrusive list. It has an associated type EntryType that represents the type
of the elements in the list. The trait also includes a method to_links that
returns a reference to the Links struct associated with the given EntryType
of the List. A small example of how one might use the train on a user-defined
type is shown in Code listing 1.5.2

1 struct Example {

2 v: usize,

3 links: Links<Example>,

4 }

5

6 unsafe impl Adapter for Example {

7 type EntryType = Self;

8 fn to_links(obj: &Self) -> &Links<Self> {

9 &obj.links

10 }

11 }

Code listing 1.5.2: Example of Adapter trait implantation on a user-defined
type [17].

We now turn our attentions to the implantation of the remove operation
on a List consider the code shown in Code listing 1.5.3.

7
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1 pub unsafe fn remove(&mut self, entry: &A::EntryType) {

2 let inner = unsafe { self.inner_ref(NonNull::from(entry)) };

3 let next = inner.next;

4 let prev = inner.prev;

5

6 let inner = unsafe { &mut *A::to_links(entry).0.get() };

7

8 unsafe { inner.assume_init_drop() };

9

10 if core::ptr::eq(next.as_ptr(), entry) {

11 self.first = None;

12 } else {

13 unsafe { self.inner(prev).next = next };

14 unsafe { self.inner(next).prev = prev };

15

16 if core::ptr::eq(self.first.unwrap().as_ptr(), entry) {

17 self.first = Some(next);

18 }

19 }

20 }

Code listing 1.5.3: remove Removal of an element in the list. All code in this
listing is wrapped in impl<A: Adapter +?Sized> List<A> [17].

In this implementation, the remove function takes a mutable reference
&mut to an entry of type A::EntryType. The function starts by obtaining a
mutable reference to the internal Links structure associated with the entry.
This is done using the inner_ref (see Appendix B Code listing B.0.1 for
more details), function and converting the entry to a non-null pointer with
NonNull::from. Next, the next and prev pointers are extracted from the
obtained inner reference. These pointers represent the neighboring elements
of the entry in the List that we are about to remove.

The inner reference is reinterpreted as a mutable reference to the LinksInner
using raw pointer dereferencing. This operation allows direct access to
the underlying memory of inner, this is also the reason that the function
call is surround by unsafe {} block. Subsequently, the unsafe function
assume_init_drop() is called, which deallocates the value of inner in the
Links of the entry being removed.

The call to assume_init_drop() is the first place that we are violation the
properties of ICDLL we specified early namely [List structure], by deallocat-
ing the internal links of inner, the list is no longer valid.

We the check if the element removed form the list was the only element
in this case we assing it to None, if this was not the case we restore the
structure of the list by the following two assignments
unsafe { self.inner(prev).next = next };

8



1 .5 unsafe_list data structure example

unsafe { self.inner(next).prev = prev };.
The function ends by checking if the element we removed was the first

element of the list if this was the case we set list.first = Some(next).

9





2B A C K G R O U N D

2 .1 rust mid-level intermediate representation

As discussed in Section 1.2, we have chosen to use MIR as the underlying
language for our verification efforts. This section will provide a brief intro-
duction to the structure and syntax of MIR, and an informal explanation of
the semantics of key operations in MIR.

For a formal explanation of the syntax and semantics of MIR we refer
the reader to [4].

The structure of a MIR represent the control flow graph (CFG) of a given
high-level Rust program [11].

MIR control-flow graph A control-flow graph, represent a model of the
flow of control between the basic blocks in a MIR function. We define a CFG
as a (directed cyclic labeled graph) G = (V, E), where v ∈ V corresponds to a
basic block in MIR, and e = (ni, nj) ∈ E corresponds to a transfer of control
from ni to nj, this is represented in MIR as Terminators.

Places Memory locations allocated on the stack, encompass function ar-
guments, local variables. These specific locations are denoted by an index
preceded by a leading underscore, such as _1. Moreover, a designated local
(_0) is allocated specifically for storing the return value of a function.

MIR functions & Variable declarations A program consists of one or more
function declarations. Each function is defined the following syntax:

fn id({Place : Types}*) -> Types {Decl}{Block}

Here, fn denotes the function keyword, id represents the name of the func-
tion, and {Place : Types}* indicates a collection of input parameters to
the function. -> Types specifies the return type of the function. In MIR
representation, each function corresponds to a function in Rust. The set
{Decl} consists of variable declarations in the form let [mut] P: τ, where
mut is optional. It specifies whether the location referred to by P is mutable
or immutable.

Basic Blocks The MIR basic blocks (Block) represent the vertices in the CFG
. All changes in control flow of a MIR program occur between basic blocks.
Each Basic Block has a unique ID with in a function, where ID ∈ N+:

BB_ID: { {Statements} Terminator}

and consists of a sequence of Statements followed by a single Terminator.
Every basic block is terminated by a Terminator. [11].
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Rvalues & Operands An Rvalue are expression that creates a value. Rvalues,
and Operands (Opr) take the form shown in Table 2.1

Rvalue & Operands Syntactic Reps. Semantic meaning

Refrence & Place Represents a shared reference to a
Place

dereferencing *Place Represents a dereferencing of a
Place

Mutable Refrence &mut Place Represents a mutable reference to
a Place

Addition Opr + Opr Evaluates the result of Opr, and
adds the resulting values together

Operands
Constant const τ Denotes a constant value of Type τ
move move Place Borrows the value stored at place
copy copy Place Copies the value stored at place

Table 2.1: Syntactic Reps., and semantic meaning of Rvalues, and Operands.
For a more detailed description see [4]

Assignment & Terminators Assignment is of the syntactic form Place =
Rvalue. Terminators is the only construct in MIR that can describe edges
between the vertices in the CFG. Table 2.2 shows the Terminators, and gives
and informal explanation of their semantic meaning.

Terminator Syntactic Reps. Semantic meaning

goto goto -> Bid Represents a direct trans-
fer of execution to the spec-
ified target Bid basic block.

switchInt switchInt(Opr) ->
[Target* otherwise:
Bid]

A conditional transfer of
execution represents a con-
trol flow transfer that de-
pends on a certain con-
dition. It can be directed
either to a set of Target*
or to a specific bid basic
block.

function call Place = i(Opr*) -> Bid; A function call stores the
result of the call in Place,
and after termination of
i() transfers control to
Bid.

return return; Returns the value stored at
_0, to the caller of the func-
tion

Table 2.2: Syntactic Reps., and semantic meaning of Terminalss, where
Target* ::= z : BB is a set of destinations, where z is a value over a
enum, and BB is a given basic block. For a more detailed description see [4]
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2 .2 graph types

2 .2 graph types

Graph types where introduced in [7], as means to expresses the structure of
recursive data types in a more simple manner. This section will cover some
of the theory behind Graph types, and also present the limitations that exists.

2 .2 .1 Data Types

Data types are represented as a specialized form of tree grammar, where the
non-terminals are referred to as types. Within this framework, a main type
is distinguished for a given recursive data type D we denote this as Main D.
To specify the production of a given data type, we use the following notation,
as illustrated in this example for the data type D [7]:

T → v(a1 : T1, . . . , an : Tn)

In the given context, we have a type T and the types Tn that define the
variant v of T. Additionally, a1, . . . , an define the type-variant (T : v). Let us
denote the set of types as TD. The notation TD(T : v)a = Ti indicates that
Ti represents the type of a data field a belonging to the variant v of type T.
Moreover, VD represents the set of all variants in D, and VDT denote the set
of variants of type T. FD(T : v) denotes the set of data field of type T and a
given variant v, as in the example above a is an element of the set F∗

D [7].
The formal definition a production of a data type can now be define as

the function

x : F∗
D → TD × VD such that

dom x is finite and prefix closed
x(ϵ) = (Main D : v), for some v
∀a ∈ dom x, if x(a) = (T : v)
− v ∈ VDT, and
− αa ∈ dom x ⇔

a ∈ FD(T : v) ∧ TD(T : v)a = T′

where x(αa) = (T′ : v′)
for some v′

(2.1)

dom x are used as pointer values.

Data Type example As a simple example of a data type consider the simple
integer list where the production can be define as follows [7]:

L → nonempty(head : Int, tail: L)

→ ()

We can think of the type Int as a data type by representing with the produc-
tion Int → 0() | 1() | 2() | . . ..

13
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11 12 13 ()

Figure 2.1: The tree structure of a simple Integer List Data type. Where ()
denotes an empty recorded

Data Types Expressibility The main problem with Data Types is that
they can only represent trees structures consider the example of an Integer
list containing 11, 12, 13 it can be depicted as the tree structure shown in
Figure 2.1:

Usually when working with list we want constant time access toe the last
element in the list, this can be accomplished by adding a new record to the
tree structure this result in the the shape shown in Figure 2.2 The addition

h

l
11 12 13 ()

Figure 2.2: The “tree”structure of a simple Integer List Data type. Where ()
denotes an empty recorded, and h, and l denote the head and last element
of the list

of the pointer to the last element of the list, creates a problem because it
prevents the representation of the list as a tree structure. Since data types are
specified using a tree grammar, this particular data type cannot be expressed
due to the conflict introduced by the addition.

In a tree structure, nodes are connected in a hierarchical manner, where
each node can have multiple child nodes. This allows for the representation
of complex hierarchical relationships between data elements. However, the
addition mentioned disrupts the hierarchical nature of the tree structure, the
current definition of Data Types is not expressive enough to represent this
structure.

To this extent, Graph Types are introduced as a simple extension of Data
Types that enable us to express Data Types that exhibit graph-like structures
[7].

2 .2 .2 Graph type

Graph types are simply put an extension of Data Types with what we call
routing expressions, which are a superset of regular expressions, over what
we refer to as the "backbone" of a graph type. The backbone is simply the
values in the underlying Data type, which is are represented as canonical
spanning tree. All edges that cannot be represented by the backbone, as
seen in the limitation on Integer lists mentioned earlier, are functionally
determined by the backbone (i.e., routing expression) [7].

We define the production of a Graph type as follows [7]:

T → v(ai : Ti, . . . , aj : Tj[R], . . .) (2.2)
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2 .2 graph types

Here ai is a simple data field as in a normal Data type, and aj is a routing
field. Routing fields has an associated routing expression R.

The more formal definition of Graph types and Routing Expressions is
as follows:

Definition 1. Graph Type [7] We continue to use the notation FG to denote the set
of all fields, as defined in the Data Types (ref). Let Fd

G represent the set of data fields,
and Fr

G represent the set of routing fields within FG . We introduce the function
RG(T : v)a, which associates a given routing field a with a routing expression for
the variant v of type T. Furthermore, let Data G denote the underlying data type of
the graph type G. It is obtained by removing all routing fields from FG , represented
as Data G = FG \ Fr

G . Routing fields are all defined on Data G.
Given a data Type D, we define an alphabet ∆ that comprises of the following

directives also called letters, ∧, $, ↑, ↑ a, and ↓ a, where a ∈ FD; T, and (T :
v), where T ∈ TD , and v ∈ VT

D . Let ;x define the step relation (dom x ×
∆ × dom x), where x ∈ Val D. The transition of ;x are defined as follows:

ϵ
∧
;x ϵ

α · a
↑
;x α

α
$
;x α if α is a leaf in x

α · a
↑a
;x α

α · a
↓a
;x α

α · a T
;x α if x(a) = (T : v) for some v

α · a
(T:v)
; x α

We use the notion α
d
;x β which means the β is reached from α by

directive d. One thing to note is that we α
d
;x β is uniquely defined if it

exists.

Definition 2. Route and walk [7] We define a route as p = d1 . . . dn is a word over
the alphabet ∆ We define a walk in x from α ∈ dom x to β ∈ dom x along a route

p is a unique sequence, α0, . . . , αn = β, such that αi−1
di
;x ai, ∀i, 1 ≤ i ≤ n. We

denote such a walk as α
p
;x β.

Definition 3. Routing expression [7] Let R denote a routing expression on Data
Type D, R is a regular expression over the ∆. Expression are constructed using
the usual operators +(union), ·(concatenation), and ⋆(iteration). The language
recognized by R is denoted as L(R). We define the set of all destinations Destx(R, α).

To revisit the concept of pointers in programming languages, we can view
routing fields as analogous to pointers. In this context, routing expressions
serve as specifications that determine the target or destination to which the
pointer is pointing [7].

Examples of Graph Types Firs we return to the example show that Data
types are not sufficient to expres a list of integer’s with a pointer to the last
element of the list. First we can define the production for this List of integers
as follows [7]:

H → ( f irst : L, last : L[↓ f rist ↓ tail⋆$ ↑])
L → (head : Ltail : L)
→ (head : Ltail : L)
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Using this production from the example list from earlier we can construct
the graph Figure 2.3:

h

l
11 12 13 ()

first

last

tail tail tail

Figure 2.3: Representing a list of integers as a graph type with a first and last
pointer [7].

The routing expression ↓ f rist ↓ tail⋆$ ↑, should be read as: “ move
down the f irst pointer (↓ f irst) follow the tail until encountering a leaf
(↓ tail ⋆ $) and the move up once (↑)”.

2 .2 .3 Graph type limitations

Graph types a limited in that they can only represent structures that are
deterministic, which in the context of recursive data type, states that all point-
ers must be a functions of the underlying spanning tree. For example, we
can not represent a pointer from the root to an arbitrary point in the tree
structure [7].

Another limitation arises from the property of context-free grammar. It
restricts our ability to represent pointers that are context-sensitive, meaning
we cannot accurately represent structures where in a pointer is dependent
on the structure of the underlying tree [7].

2 .3 monodic second order logic over graph types (m2lgt)

We use a monodic second-order logic over graph types also denoted (M2LGT)
to express properties over graph types. We first introduce the notion of
monodic second-order logic over Data types (M2LDT);

Definition 4. M2LDT [7] We define the M2LDT on a Data type D as follows: Let
x be a value variable of the Data type D, and let M be the set of addresses of D. The
value variables and address set variables can be combined using the set operations
∪, ∩, and ∅ to form set expressions. The set dom(x) represents the set of addresses,
which can also be viewed as a set expression. Let α be a first-order variable in our
logic, which we refer to as an address variable. We state that α represents an address
of data type D. Value variables x of type D can be introduced using existential
quantification (∃Dx) or universal quantification (∀Dx).

We now define the basic formulas and connectives of the logic:

Definition 5. M2LDT connectives and basic formulas Formulas of the logic define
in Definition 4 are formed by the usual logic terms ∃, ∀,∧,∨,¬. We introduce the
following basic formulas in the logic:
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2 .4 pointer assertion logic

is∧(α) α = ϵ
isx$(α) x(α) is a leaf variant
isx(T : v)(α) x(α) = (T : v)
isxT(α) x(α) = (T : v) for some v
isxwalk(α, β, R) ∃p ∈ L(R) : α

p
;x β

α = beta
E = E2
E ⊆ E2
α ∈ E
α ∈ β ⋆ a
α ∈ β

⋆
x a α ∈ FDx(β) ∧ α = β ⋆ a

Where Ei be address set expressions. Formulas of the form is...
x (. . .)

should be interpreted as follows: for example, isxwalk(α, β, R) is true if there
exists a route p ∈ L(R) recognized by the language L(R), and in such case,
there must exist a walk from α to β denoted by α

p
; oxβ [7].

Well-formedness Graph Types [7] To show how one might use this logic
to prove properties of a given type lets consider the case of a simple graph
type, where the notion of will-formedness is expressed in M2LDT.

Definition 6. Well-formedness over Graph types: A graph type Data G, given
data Fields α ∈ FD, where FD is the backbone of Data G, and for a every transition

α
d
;x β, where x ∈ Val; G, there exits a unique β where the destination leads to a

subtree of the specified type.

The property shown in Definition 6 can be expressed in M2LGT as
follows:

∀Dx :
ANDT∈TD ,v∈VDT

ANDa∈FR(T:v)

∀α ∈ dom x : ∃!β : isx(T : v)(α)
⇒ isxwalk(α, RDx(α)a)a

where D = Data x, where ∃! is the abbreviations of “ there exist a unique”,
and AND is the expansion over the corresponding indices.

2 .4 pointer assertion logic

This section presents Pointer Assertion Logic (PAL) [13], which uses a monadic
second-order logic on graph types (see Section 2.2), to express pointer direc-
tives. The explanation of PAL in this section will provide an understanding
of its workings, which will be utilized later to formulate a transformation of
MIR to PALE.

PAL enables quantification over heap records, supporting both set-based
and individual element-based quantification due to its second-order nature.
For convenient navigation within the heap, PAL employs routing expressions
as described in Section 2.2.

We first define what a data structure invariant is see Definition 7

Definition 7. Data structure invariant Let D be a data structure, and let ϕ denote
a logical predicate that describes a property on D. We denote the evaluation of a
data structure invariant as IVϕ(D). Let Q denote a program that performs some
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operation on the data structure D. For IV(D) to hold, the following properties must
hold at every program point:

• Preservation: IVϕ(D) holds true before and after the execution of Q. In other
words, if IVϕ(D) is true before Q is executed, it must also be true after Q has
completed.

• Initialization: IV(D) must hold upon initialization of D.

PAL Store Model The memory model of PAL, consists of two main compo-
nents: the heap and a set of program variables.

The heap is a data structure that stores records, where each record consists
of multiple fields. Each field within a record can either hold a pointer or a
boolean value. Pointers in PAL can either point to another record within the
heap or have the special value null, indicating that they do not point to any
valid record.

Program variables in PAL can be categorized into two types: data variables,
and pointer variables. A data variable serves as the root of a data structure.
pointer variable can hold a pointer value that can point to any record within
the heap.

A PAL program is composed of a set of type, variables, and procedures
declarations see Grammar 2.4.1.

pale ::= (declarations)∗

declaration ::= typedecl | progvar
| procedure

typedecl ::= type T = { (filed ;)∗ }
field ::= data p⊕ : T

| pointer p⊕ : T[form]
| bool p⊕

progvar ::= data p⊕ : T
| pointer p⊕ : T
| bool p⊕

procedure ::= proc n(progvar⊗) : (T | void)
(logicvar ;)∗

property
({( progvar )∗stm})?

property

Grammar 2.4.1: PAL grammar, [13], [12]

The symbols ⊕ and ⊗ denote comma-separated lists that consist of one
or more elements and zero or more elements, respectively. The variables T,
p, b, and n are taken from the domains of type names, pointer variables or
fields, boolean variables or fields, and procedures, respectively.

A typedecl is used to define a type where a number of fields can be
defined. Fields can be either data, which corresponds to data fields in the
backbone as defined in Section Section 2.2, pointer, which defines pointers
in the underlying backbone where the destination is defined by a formula
form, or bool, which can be used to model finite values.
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2 .4 pointer assertion logic

A procedure consists of a name n, the formal parameters to the procedure
progvar, the return type of the procedure (which can either be T or void), and
lastly, the body of the procedure which consists of local variable declarations
progvar and stm [13]. A statement is define as follows:

stm ::= stm stm
| asn⊕;
| procall;

| if (condexp) {stm} (else {stm})?

| while property (condexp) {stm}
| return progexp
| assert property
| split property (property)?

asn ::= lbexp = (condxp | procall)
| lptrexp = (ptrexp | procall)

Grammar 2.4.2: Statements and assignment [13]

The language allows for multiple assignment where the wright-hand
side is evaluated first. Expressions are defined as follows:

condexp ::= bexp | ? | [form]
bexp ::= (bexp) | ! bexp

| bexp & bexp | bexp | bexp
| bexp => bexp | bexp <=> bexp
| bexp = bexp | ptrexp = ptrexp
| bexp != bexp | ptrexp != ptrexp
| true | false | lbexp

lbexp ::= b | ptrexp . b
ptrexp ::= null | lptrexp
lptrexp ::= p | ptrexp . p
procall ::= n ( (condexp | ptrexp)⊗ ) [formula]

Grammar 2.4.3: Expressions [13]

The operator . is of notable significance as it serves the purpose of
dereferencing a pointer. It allows access to the data pointed to by a given
pointer.

The logic allows for the definition of formulas with the following syntax:
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form ::= ( existpos | allpos ) p⊕ of T : form
| ( existset | allset ) p⊕ of T : form
| ( existptr | allptr ) p⊕ of T : form
| ( existbool | allbool ) s⊕ : form
| (form) | ! form
| form & form | form | form
| form => form | form <=> form
| ptrexp in setexp | setexp / setexp
| setexp = setexp | setexp != setexp
| empty (setexp) | bexp
| return | n . b
| m ((form | ptrexp | setexp)⊗)
| ptrxep < routingexp> ptrexp

predicate ::= pred m(logicvar⊗) = form

Grammar 2.4.4: The syntax for PAL as presented in [13]

We use the identifiers m and s to denoted predicates and set variables.
The pos and ptr are quantifiers over heap records, where s also includes the
null value. Routing expression formulas of the form p1<r>p2 constitutes a
walk as defined in Definition 2, which states that the formula is satisfied if
there exist a walk from p1 to p2 that satisfy r.

Returning to the definition of procedures as seen in Grammar 2.4.1,
where the logicvar is used to defining logic variables that can only be
referenced in formulas form, and not a procedure body. We define logicvar
as Grammar 2.4.5:

logicvar ::= Pointer p⊕ : T
| bool b⊕

| set s⊕ : T

Grammar 2.4.5: Grammar of logicvar as presented in [13]

We can utilize logicvar to establish a relationship between the pre- and
post-conditions of procedures. Logicvar serves as universally quantified
variables in this context, enabling the specification of logical properties that
hold universally.

Additionally, we extend ptrexp in formals to include the construct return
| n . p. This extension allows for accessing the returned value in the post-
condition of a procedure. Furthermore, this capability is also applicable
within procedure call formulas, enabling the inclusion of the returned value
in their formulas.

Set expressions contain the usual set operations, with the addition of an
up operation x ∧ T.p which denotes a set of records of a given type T that
have a p successor to x. The grammar of setexp is defined in Grammar 2.4.6
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2 .4 pointer assertion logic

setexp ::= s
| ptrexp ∧ T . p
| { ptrexp⊕}
| setexp∪ setexp
| setexp∩ setexp
| setexp \ setexp

Grammar 2.4.6: Grammar of setexp as presented in [13]

The notion of routing expressions found in Section 2.2 is slightly more
generalized in PALE, the grammar of routing expressions routingexp is
defined in Grammar 2.4.7.

routingexp ::= p | ∧T . p | [form]
| routingexp.routingexp
| routingexp+ routingexp
| (routingexp) | routingexp ⋆

Grammar 2.4.7: Grammar of routingexp as presented in [13]

We can use routingexp to move up of down, pointer, data fields or
formula, where the latter is a formula with extra free variable pos that filters
away records that course the formula to evaluate to false when pos denotes
on of them.

As a general rule, pointer fields are expected to adhere to the formula
specified in their type declaration. However, in imperative languages, it is
common to encounter situations where data structure invariants need to be
violated. To accommodate such scenarios, we introduce pointer directives
to override the specified formula. The pointer directives are denoted as
ptrdirs ::= (T . p [form])⊕. These directives provide a means to deviate
from the expected formula and allow for the necessary modifications in the
behavior of the pointer fields.

Both the pointer directives defined in the type declaration and the ones
overwritten need to be well-formed. This implies that at any given point in
the program and its store, each pointer directive must uniquely identify one
record. In other words, the directives should accurately specify the target
location for each pointer field, ensuring consistency and coherence in the
programs store.

Wrapping up this section, we now present the definition of property.
A property is represented by the following structure: property ::= [form
ptrdirs]. It denotes a set of stores where the following conditions must
hold:

• The formula form is satisfied.

• A data variable must represent a disjoint acyclic backbone spanning
the heap.

• Each pointer field must adhere to its respective pointer directive. If it
fails to do so, it violates the property.

Properties are used in procedure as pre- and post-conditions and while
loops as loop invariants, split statements which contain two properties,
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assumptions and assert. By satisfying these conditions, a property ensures
the integrity and correctness of the program’s state and memory.

single linked list example PALE

We now present an example of a PALE program and explain the differ-
ent formulas and there meaning. The PALE program is shown in Code
listing 2.4.1.

1 type List = {data next:List;}

2

3 pred reachable(pointer x:List, set R:List) = x<next*>R;

4

5 proc reverse(data x:List):List

6 pointer P,Q:List;

7 set R:List;

8 [reachable(x,R) & P=x & (x!=null => Q=x.next)]

9 {

10 pointer t:List;

11 if (x!=null) {

12 if (x.next!=null) {

13 t = reverse(x.next) [P=x & x!=null & x.next!=null & Q=x.next

& !empty(reverse.R) & R=reverse.R union {x} & !(x in reverse.R)

& reverse.P=Q];

↪→

↪→

14 x.next.next = x;

15 x.next = null;

16 x = t;

17 }

18 }

19 split [reachable(x,R) & (P=null | P.next=null) & (x!=null =>

x<next*>P)]↪→

20 return x;

21 }

22 [reachable(return,R) & (P=null | P.next=null) & (return!=null =>

return<next*>P)]↪→

23

Code listing 2.4.1: Simple Linked list Implementation in PALE with program
annotations 1

1 Link to the sourer of the code shown in Code listing 2.4.1, https://www.brics.dk/pale/
Examples/recreverse.pale
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2 .4 pointer assertion logic

The code shown in Code listing 2.4.1, implements the simple data struc-
ture of a single linked list List in PALE, and the function reverse that
transposes the order of the list. We only focus on the logic of the implemen-
tation, and not the implementation of the reverse procedure.

We first define the data type List, which contains a data filed next; We
then define the predicate reachable,

pred reachable(pointer x:List, set R:List) = x<next*>R;

which states that given a pointer to x of type List, and set R:List, the
routing expression x<next*>R which states that from the pointer x we can
take any number of next pointer * and reached every element in R form x.

We then define the precondtion for the procedure reverse:

5 proc reverse(data x:List):List

6 pointer P,Q:List;

7 set R:List;

8 [reachable(x,R) & P=x & (x!=null => Q=x.next)]}

9 {...}

We first define three logicvars pointer P,Q:List;, and set R:List. Next we
define the precondition of the procedure which states that reachable(x,R),
P=x, and (x!=null => Q=x.next). We use the logicvars to relate variables
in the procedure to correlating ones in the logic.

The next operation of interset is the recursive call to reverse, where we
define a call invartion of the procedure:

13 t = reverse(x.next) [P=x & x!=null & x.next!=null & Q=x.next &

!empty(reverse.R) & R=reverse.R union {x} & !(x in reverse.R) &

reverse.P=Q];

↪→

↪→

A call invariant states what holds before the call to a given procedure.
Taking the example shown above, starting from the first form P=x & x!=null
& x.next!=null & Q=x.next, here we state the following:

• In the recursive call to reverse, the logivar P is equal to the current
list x, and reverse.P=Q

• We also state that x and x.next are not equal to null.

• The remaining part of the formula states the following: in the recursive
call to reverse, the set R connotations the current elements in R and
the element x. We also state that x is not currently in the list R, and
that !empty(reverse.R) states that R is not empty.

The last formula in the procedure is the postcondition, where we state
that reachable(return,R) is satisfied, and (p = null | p.next=null) which
means that we have reached the end of the list structure.
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(return!=null => return<next*>P)

states that we can reach the list element P form the returned list structure.

2 .4 .1 PALE guaranties

PALE is translated into MONA, where the following properties of a given
program is validated:

• Pointer directives of the form pointer p : T [form] are well-formed.

• No null pointer dereference can occur.

• At each cut-point of a given data variable, the following is satisfied:

– data variables contain disjoint acyclic backbones spanning the
heap.

– All assertions and pointer directives are satisfied.

• All assert statements are valid.

• All cut-point properties are satisfiable.

We will not present the inner workings of MONA, we refer the reader to the
manual [6]. Returning to the example shown in Code listing 2.4.1, we can
verify that all the properties stated above are valid.
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3M I R T O PA L E T R A N S F O R M AT I O N

The main idea of this thesis is to model the behavior of MIR programs
within the PALE while preserving their essential characteristics. This involves
transforming MIR programs into an equivalent representation in PALE,
ensuring that the resulting PALE programs capture the same underlying
behavior as the original MIR programs.

By transforming MIR programs into the PALE, we gain the ability to
provide annotations and demonstrate that a given MIR program does not
exhibit certain program behaviors which are described in Section 2.4, and
that data structure invariants are not violated as defined in Definition 7.

It should be noted that the proof idea provided for each semantic con-
structed of MIR, in the transformation serves as an informal argument for
the correctness of the transformation, rather than a formal proof.

We hope to show that this transformation is simple and proves beneficial
in proving the correctness of Rust programs.

3 .1 mir to pale transformation

This section focuses on the transformation of the MIR program into its equiv-
alent PALE representations. In this transformation, we have the following
simplifications:

• We have chosen to model only the primary types of the given MIR
program. Consequently, types defined in the standard library of the
Rust language are not considered in our transformation process.

• Our transformation specifically targets control-flow altering operations
within the MIR program.

Additionally, we provide a series of Proof Ideas accompanying the trans-
formation of control-flow altering operations in PALE. It is important to
note that these proof ideas serve as informal arguments supporting the
correctness of the transformation, without constituting formal proofs of
equivalence.

MIR (memory locations) Places in PALE

To represent MIR Places in PAL, we can utilize global declarations for Places
that live the intire duration of a function. Let’s consider the MIR program
depicted in Listing 3.1.1.
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fn test(_1: i32) -> () {
debug x => _1;
let mut _0: ();
let _2: *const i32;
let _3: &i32;
let _5: &i32;
....

}

Code listing 3.1.1: MIR example for memory location declarations

The function declaration will be discussed later. The code shown in Code
listing 3.1.2 is the corresponding PALE program the models the MIR code
shown in Code listing 3.1.2.

pointer 2_test : T
pointer 3_test : T
pointer 5_test : T
...

Code listing 3.1.2: PALE example for memory location declarations

The general idea of how we model Places in PALE is the following
Place_fun : T where Place is a location in a MIR function we add the fun
identifier if there are multiple functions in the same MIR program.

In the MIR example, both *const and &i32 are pointers. They represent
a pointer to a value of type i32 this corresponds to pointer p : T in PALE.

Regarding the return location _0 of functions, is not explicitly modeled in
this context. The handling of return locations is managed by the procedure
definition (proc) in PALE, as explained in Section 2.4.

Unsafe Rust in PALE In MIR, the notion of Unsafe is removed. We treat
every Place as a memory location in PALE. This removal is not problematic,
and we argue that we can capture this language construct in PALE, by
overaproximation. By considering every Place as a memory location in
PALE, we can effectively model and reason about the behavior of memory
operations. Although the Unsafe keyword in Rust allows bypassing certain
language restrictions and accessing low-level operations, we can handle
these operations safely within PALE with annotations.

MIR Functions fun and basic block Block in PALE

To model function funs, and Blocks in PALE we simple transforms them
into procedures in PALE, a simple example is the function shown in Code
listing 3.1.1, specifically the function fn test(_1 : i32) -> () this is simply
translated into the equivalent PALE procedure shown in Code listing 3.1.3.
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--- PALE ---
proc test(progvar 1_test : T) : void
property {...} property

Code listing 3.1.3: PALE procedure for the MIR function fn test(_1 : i32).

We can transform basic blocks in the same manner, although basic blocks
always have a return value of type void. Consider the shown basic blocs in
Code listing 3.1.4,

--- MIR ---
bb0: {

_10 = ...
}
--- PALE ---
proc bb0_test() : void {
progvar 10_test_bb0 : T;

}

Code listing 3.1.4: Small example of basic blocks i MIR.

transforming this into PALE, constitutes a procedure proc bb0_test()
: void, procedures that originates from a basic block do not contain any
input parameters as our memory locations are stored globally, except for
temporary Places within a given basic block. We model temporary Places in
side a basic block, we use the following naming convention for progvars
that live inside a basic block progvar place_fun_bbi where i ∈ N, see Code
listing 3.1.4.

Modeling MIR values in PALE Modeling MIR values in PALE poses some
limitations. PALE does not support arithmetic values, meaning that the
only values we can represent in a PALE program are boolean values. These
boolean values can be either true or false.

While this might initially appear limiting, it is important to note that
PALE is still capable of expressing the control flow operators of MIR,
that are dependent on values. As an example consider the MIR Func-
tion GT(move _4, const 0_i32), the function GT that test if _4 is grater than
const 0_i32 which represent a 0 value of type i32.

We can model the behavior of GT as a PALE procedure proc GT(bool
vale1, bool value2) see PALE code in Code listing 3.1.5.
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--- PALE ---
proc gt(bool value1, bool value2) : bool
[true]
{
bool res;
if (value1 & !value2){ /* value1 > value2 */
res = true;

} else {
res = false;

}
return res;

}
[true]

Code listing 3.1.5: MIR GT function modeled in PALE

For more detailed about the modeling of conditionals over arithmetic
values in the PAL see [13].

MIR control-flow in PALE

In order to accurately model the program flow of a MIR program in PALE,
it is necessary to define how each operation in MIR, which has the ability to
split the program flow, is translated. These operations, known as terminators,
include goto, function calls, switchInt, asserts, panics, and return.
For more detailed information on these terminators, see Section 2.1.

By establishing the translation of each of these terminators, we can
effectively capture the branching and control flow behavior of the MIR
program within PALE.

Goto terminals goto → Bid To represent MIRs goto terminal in PALE,
we can simply model them as procedure calls proccall see Grammar 2.4.1
for more detail. An example of this transformation can be seen in Code
listing 3.1.6 for representing goto statement in PALE.

--- MIR --- | ---- PALE ----
goto -> bb1; | bb1() [form];

Code listing 3.1.6: MIR goto statements model in PALE

Proof Idea of goto Terminals : Let GMIR denote the (CFG) of a given MIR
program PMIR, and let GPALE denote the CFG of the transformation PMIR ;

PPALE. Consider two nodes BB1MIR and BB2MIR in GMIR, and let BB1PALE and
BB2PALE denote the corresponding nodes in GPALE. Assume that there exists an
edge BB1MIR

goto -> bb2
; MIR BB2MIR in GMIR.

We need to show that there exists an equivalent edge BB1PALE
BB2() [form]

; PALE
BB2PALE in GPALE.
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3 .1 mir to pale transformation

By applying the transformation, the edge BB1MIR
goto -> bb2

; MIR BB2MIR is

transformed to BB1PALE
BB2() [form]

; PALE BB2PALE in GPALE. Thus, we have can

argue that if there exists an edge BB1MIR
goto -> bb2

; MIR BB2MIR, there must exist

an equivalent edge BB1PALE
BB2() [form]

; PALE BB2PALE in GPALE.
Since the transformation from PMIR to PPALE aims to preserve the control flow

structure, we can argue that the transformed program PPALE preserves the control-
flow as the original program PMIR, and thereby modeling the same behavior of goto
statements in MIR.

Function calls place = i (. . .) -> Bid We can model function calls from
MIR in PALE as an assignment followed by a procedure calls.

--- MIR ---
bb0: {

_1 = process(true) -> bb1;
}

bb1: {
_0 = _1;
return;

}
fn process(_1: i32) -> i32 {

bb0: {
_2 = false;
return;

}
}
--- PALE ---
proc bb0() : void {

1_bb0 = process(true) [ form ];
}

proc process(pointer 1_process : bool ) : bool
property
{
2_process = false;
return 2_process;

}
property

Code listing 3.1.7: MIR function, and panic terminals model in PALE, place
declarations have be removed for simplicity in the MIR and PALE code

Proof Idea of fucntion calls : We argue that the same reasoning applied to the
transformation of goto terminals can be used for function calls and panics as well,
to give an informal argument for the validtity of the transformation.
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Conditional terminals switchInt We can model MIRs conditional terminal
switchInt as if (condexp) stm (else stm)? in PALE.

Consider the example MIR code shown in Code listing 3.1.8.

--- MIR ---
bb0: {

_2 = Not(_1);
switchInt(move _2) -> [0: bb2, otherwise: bb1];

}
bb1: {

_0 = const false;
goto -> bb3;

}
bb2: {

_0 = const true;
goto -> bb3;

}
bb3: {

return;
}

Code listing 3.1.8: MIR swtichInt terminal MIR code based on Rust code
in Appendix C Code listing C.0.1, function and place declarations have be
removed for simplicity.
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proc test(pointer 1_test bool ) : bool
property
{
if 1_test == false {
bb2_test() [ form ];

} else {
bb1_test() [ form ];

}
}
property

proc bb1_test : void
property
{
0_test = false;
bb5_test() [ form ];

}
property

proc bb2_test : void
property
{
0_test = ture;
bb5_test() [ form ];

}
property

proc bb3_test : void
property
{
return 0_test;

}
property

Code listing 3.1.9: PALE program that models the MIR program shown in
Code listing 3.1.8

Proof Idea of swtichInt Terminals : Let GMIR = (VMIR, EMIR) denote the
CFG of a given MIR program PMIR, and let GPALE = (VPALE, EPALE) denote the
CFG of the transformation PMIR ; PPALE, into and equivalent PALE program.

We aim to demonstrate that the transformation f : PMIR ; PPALE, along with
the graphs GMIR and GPALE, are isomorphic.

Assuming the existence of an edge vi ; vj ∈ EMIR, we argue that there
exists an equivalent edge in f (vi) ; f (vj) ∈ EPALE. This argument is based on
the observation that the behavior of the switchInt construct can be equivalently
modeled by the PALE construct if (condexp) stm (else stm)?.

Thus, for every edge vi ; vj ∈ E(GMIR), the transformation f preserves the
edge and maps it to an equivalent edge f (vi) ; f (vj) ∈ E(GPALE).
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MIR loop constructs model in PALE To model MIR loop constructs in
in PALE, we need to analyses a given MIR program for cycles, this can be
done either by hand or with the aid of algorithmic methods that can find
dominators [8]. Let consider a simple example of a MIR program that contains
a cycle see Code listing 3.1.10.

bb0: {
goto -> bb1;

}

bb1: {
_2 = const true;
switchInt(move _2) -> [0: bb3, otherwise: bb2];

}

bb2: {
_1 = const false;
goto -> bb1;

}

bb3: {
_0 = _1;
return;

}

Code listing 3.1.10: MIR program that contains a while loop construct.

We can model the same program behavior in PALE, by the used of if
statements, consider the code shown in Code listing 3.1.11
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proc bb0() : void
property
{
bb1() [form];

}
property

proc bb1() : void
property
{
2_bb0 = true;
if (2_bb0 == true) { bb2() [form]; }
else {bb3() [form];}

}
property

proc bb2() : void
property
{
1_bb2 = const false;
bb1() [ form ];

}
property

proc bb3() : void
property
{
0_bb0 = 1_bb2;
return 0_bb0;

}
property

Code listing 3.1.11: PALE model for the MIR program shown in Code list-
ing 3.1.10.

The code shown in Code listing 3.1.11, is the direct transformation of
the MIR code shown in Code listing 3.1.10, by the use of PALE if {}
else {} construct. Notice that in its current form, we can observe a cycle
between the procedures bb1 and bb2. This cycle constitutes the original while
loop in the high-level Rust program. To simplify the program and capture
the behavior of the while loop, we can utilize the PALE while statement.
The modified program, depicted in Code listing 3.1.12, incorporates the
PALE while statement to represent this looping behavior. We also move the
statements inside every basic block procedure into the while loop and proc
bb1().

33



mir to pale transformation

proc bb1() : void
property
{
2_bb0 = true;
while (2_bb0 == true) {
1_bb2 = false;

}
0_bb0 = 1_bb2;
return 0_bb0;

}
property

Code listing 3.1.12: Improved PALE model of the PALE program shown in
Code listing 3.1.11.

Proof Idea of Loop construct : Let GMIR denote the (CFG) of a given MIR
program PMIR that contains a cycle, and let GPALE denote the CFG of the trans-
formation where f , is a bijective f : PMIR ; PPALE. Let ϕMIR denote a circuit
in GMIR, where {bb11, bb22, . . . bb3n} ∈ VMIR, where n ∈ N is the length of the
circuit ϕMIR. For the transformation f to preserve the behavior of the PMIR, the
CFG GMIR and GPALE must be isomorphic. We argue that the transformation f
preserves the same circuit in GPALE, and therefor is f is isomorphic, under the
assumption that while PALE exhibits the same behavior.

Given the behavior of each MIR terminal, we believe that we have suc-
cessfully captured the general control flow and the concept of memory in
MIR using PALE.

Through the transformation process from MIR to PALE, we have pre-
served the essential control flow constructs and memory operations present
in MIR. We argue that PALE provides suitable constructs and mechanisms
to represent and simulate the behavior of MIR programs accurately.

3 .2 rust data types in pale

This section will cover how we model Rust data types in PALE, we will only
be explaining the different data types that we actually need. To model Rust
user defined types in PALE we can use the typedecl language construct
in PALE see Section 2.4; As an example consider the type List defined in
Section 1.5 see code in Code listing 3.2.1.
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1 pub struct List<A: Adapter + ?Sized> {

2 first Option<NonNull<A:EntryType>>,

3 }

4

5 pub unsafe trait Adapter {

6 type EntryType: ?Sized;

7 fn to_links(obj: &Self::EntryType) -> &Links<Self::EntryType>;

8 }

9

10 pub struct Links<T: ?Sized>(UnsafeCell<MaybeUninit<LinksInner<T>>>);

11

12 struct LinksInner<T: ?Sized> {

13 next: NonNull<T>,

14 prev: NonNull<T>,

15 _pin: PhantomPinned,

16 }

Code listing 3.2.1: Rust type List presented in Section 1.5

The code shown in Code listing 3.2.2, models the data structure of List
in unsafe_list shown in Code listing 3.2.1.

1 type List = {

2 data first: EntryType,

3 }

4 type EntryType = {

5 bool value;

6 data links : LinksInner;

7 }

8

9 type LinksInner = {

10 pointer next : EntryType [form],

11 pointer prev : EntryType [form],

12 }

Code listing 3.2.2: PALE type List

As noted early we do not model lower-level types in Rust, such as Option
and NonNull. Similarly, we can abstract away the notion of traits, as they serve
as a programming convenience. To represent the same structure, we can add
a links data field to the EntryType. This links field would encapsulate the
relevant functionality and relationships previously expressed through traits.
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3 .2 .1 Rust Kernel List Datastructure invariant

We now present the datastructure invariant for the Rust Kernel List. We use
the definition of data structure invariant found in Section 2.4 Definition 7.

We first define a graph type over the List as described in Section 2.2.

List → (first : EntryType)
EntryType → (data : bool, links : LinksInner)
LinksInner → (next : EntryType, prev : EntryType[ϕprev1 ])

→ (next : EntryType[ϕnext], prev : EntryType[ϕprev2 ])

where
ϕnext =↑⋆ ∧

ϕprev1 =↑ + ∧ ↓ links.next⋆$
ϕprev2 =↑ +∧

The first routing expression ϕnext states that we follow the next pointer
until we reach the root of EntryType. ϕprev1 uses a the nondeterministic
union operator (+), this is because the routing expression has to be context
dependent, if we are a the root we must move down (↓) the next pointer
until (⋆) a leaf ($) is reached, if we are not in a root we move up ↑ the prev
pointer.

We can express the same invariant on the data structure in PALE see
Code listing 3.2.3.

1 type List = {

2 data first: EntryType,

3 }

4 type EntryType = {

5 bool value;

6 data links : LinksInner;

7 }

8

9 type LinksInner = {

10 data next : EntryType;

11 pointer prev : EntryType [this.next^EntryType.links={prev}];

12 }

Code listing 3.2.3: PALE type List, with data structure invariant

In annotated version of the List type, shown in Code listing 3.2.3,
we have added the routing expression this.next^EntryType.links={prev}
which states the set of EntryTypes that can be reach this leaf, though a next
pointer must only contain the prev leaf.
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3 .3 validation results

This section will present the transformation of the unsafe_list data struc-
ture described in Section 1.5. We will focus on modeling the following
functions: remove, inner_ref. We use the PALE types define in Section 3.2,
namely List, EntryType, and LinksInner.

Due to memory limitations in MONA, we encountered difficulties in
directly modeling the unsafe_list in our translation process. A complete
example of the transformation can be found in Appendix D using our
transformation method described in Section 3.1.

Given these limitations, this section aims to demonstrate how one might
annotate a program in PALE. We will now attempt to prove a simplified
example of unsafe_list in PALE, the PALE program that models the remove
function is shown in Code listing 3.3.1.

1 proc remove(data list : List, pointer entry : EntryType) : void

2 set S:EntryType;

3 pointer E:EntryType;

4 pointer L:List;

5 [

6 list.first<(links.next)*>entry

7 &entry<(links.next)*>list.first

8 &entry<(links.prev)*>list.first

9 &list.first<(links.prev)*>entry

10 &entry!=null

11 & E=entry & L=list

12 ]

13 {

14 pointer inner_links : LinksInner;

15 pointer next : EntryType;

16 pointer prev : EntryType;

17

18 inner_links = inner_ref(entry) [true];

19 next = inner_links.next;

20 prev = inner_links.prev;

21

22 assumed_droped(inner_links) [true];

23

24 if (entry = list.first){

25 list.first = null;

26 } else {

27 next.links.prev = prev;

28 prev.links.next = next;

29 if (entry = list.first ){

30 list.first = next;

31 }

32 }

33

34 }

35 [!(L.first<(links.next)*>E & L.first<(links.prev)>E )]

Code listing 3.3.1: Simplified transformation of the remove code shown in
Appendix D
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We will now explain the annotations and their significance in the context
of the function remove.

(List) structure annotations pre-condition remove The precondition to the
remove function includes several clauses that describe the relationships and
properties of the elements involved:

• list.first<(links.next)>entry, and & entry<(links.next)>list.first:

– The first clause states that we can reach the element entry by
following the links.next pointers until we reach the node entry.

– The second clause states that we can reach the element list.first
by following the links.next pointers until we reach the node
list.first.

– These annotations are necessary to indicate that the element we
are about to remove is currently present in the list.

– Additionally, these annotations capture the fact that the list is
circular, meaning that we can traverse the list from list.first
and eventually reach any element using the links.next pointers.

• & entry<(links.prev)>list.first, and & list.first<(links.prev)>entry:

– The first clause states that we can reach the element entry by
following the links.prev pointers until we reach the node entry.

– The second clause states that we can reach the element list.first
from entry by following the links.prev pointers until we reach
the node list.first.

– These annotations are necessary to establish that the list is doubly
linked and circular. They ensure that we can traverse the list
in both forward and backward directions using the links.prev
pointers.

By including these annotations in the precondition, we capture the nec-
essary relationships and properties of the elements involved in the remove
function. These annotations allow us to reason about the behavior of the
function and ensure that the list is structured correctly before performing
the removal operation. The additional annotations in the precondition of the
remove function are as follows:

• entry!=null: This annotation states that the element entry is not null.
It ensures that we are operating on a valid element that can not be
null.

• & E=entry: This annotation states that the memory address of variable
E is equal to the memory address of entry. It provides a reference to
the element entry in the post-condition of the fucntion.

• & L=list: This annotation states that the memory address of variable
L is equal to the memory address of list. It provides a reference to the
list itself in the post-condition of the fucntion.
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We also include the post-condition !(L.first<(links.next)*>E & L.first<(links.prev)>E),
which states the following:

This clause ensures that it is no longer possible to reach the element
E from L.first by traversing the links.next pointers ((links.next)*) or the
links.prev pointers ((links.prev)*).

By including this formal post-condition, we establish a clear verification
criterion for the remove function, ensuring that it correctly maintains the
integrity of the list structure after the removal operation We argue that this
annotations should be enough to validate that correctness of the List is
preserved by the remove operations.

inner_ref correctness We also state the correctness of Code listing 3.3.2.

1 proc inner_ref(data entry : EntryType) : LinksInner

2 pointer E: EntryType;

3 [entry!=null & E=entry]

4 {

5 return entry.links;

6 }

7 [return!=null & return=E.links]

Code listing 3.3.2: Simplified transformation of the inner_ref code shown in
Appendix D

The pre-condition ensures that the function is executed in a memory
state where the entry variable is not pointing to a null. The use of the
logical variable E allows us to access the input variable entry which in
the post-condition of the procedure. By executing inner_ref in a memory
state that satisfies its pre-condition, we end up in a memory state where the
post-condition is satified,which means that the return value is guaranteed
to be not null, and is equal to the entry.links variable.

assumed_droped correctness We also have to show that the function assumed_droped
is correct, the annotations are shown in Code listing 3.3.3.
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1

2 data garbage:EntryType;

3

4 proc assumed_droped(pointer links: LinksInner) : void

5 pointer Links :LinksInner;

6 [links!=null & Links=links & garbage!=null]

7 {

8 links.next = garbage;

9 links.prev = null;

10 garbage = links.next;

11 }

12 [Links.next=garbage ]

Code listing 3.3.3: Simplified transformation of the inner_ref code shown in
Appendix D, also based on code shown in Appendix B.

We first define the global variable garbage, which is used as the deallo-
cated value.

Next, we define the pre-condition of the function, which states that
links is not null (links != null), that logivar Links is equal to links
(Links = links), and garbage is not null (garbage != null). We believe that
this annotations are sufficient to validate the correctness of Code listing 3.3.3.

3 .3 .1 PALE to MONA results

We convert the PALE program shown in Code listings 3.3.1 to 3.3.3 to MONA.
PALE generates the following set formulas shown in Table 3.2.

Sets of Formula Program point

0-Formula stmt following call assumed_droped line 29
1-Formula stmt following procedure inner_ref line 25
2-Formula remove
3-Formula assumed_droped
4-Formula inner_ref

Table 3.1: MONA Formuals genreated from PALE program Code listings 3.3.1
and 3.3.2

For every n-Formula the properties shown in Table 3.1, are verified by
MONA.
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Formula Property

n-PRECONDSAT That the Preconditon holds.
n-NOTMEMFAILED Pointer field formulas are valid, and that null

pointer dereferences can not occur
n-NOCYCLES Backbone does not contain cycles.
n-DATADISJOINT Data variables are disjoint, and span the same

cells as before execution.
n-DATACOMPLETE Cells reachable from data variables are the same

as before execution.
n-NOTASSERTFAILED All assertions are valid.

Table 3.2: Formulas check by MONA see Section 2.4 for more detail, and [12]

In table Table 3.3, we show the result of our verification effort,

Annotated

n-Formula 0 1 2 3 4

PRECONDSAT + + + + +
NOTMEMFAILD - - + + +
NOCYCLES - + + + +
DATADISJOINT + + + + +
DATACOMPLETE - + + - +
NOTASSERTFAILED - - + + +

Unannotated

0 1 2 3 4

* * - * *
- - + - -
+ + + - +
+ + + - +
- + + - +
- * * * *

Table 3.3: Result of MONA verification, with annotations shown in Code
listings 3.3.1 to 3.3.3, where (+) denotes valid , (-) denotes counter-example,
and (*) denotes assertions where true. We highlight difference in gray.

Analysis of result shown in Table 3.3 The Table 3.3 indicates that some of
the formulas have been satisfied, particularly the 2-Formula and 4-Formula,
demonstrating that none of the listed formulas in Table 3.2 are voilated.

Regarding the 3-Formula, we have successfully shown the validity of
NOTMEMFAILD, NOCYCLES, and DATADISJOINT, which represents an
improvement compared to the unannotated version.

However, we encountered violations in the 0-Formula, specifically with
the NOCYCLES and DATACOMPLETE conditions. The reasons behind these
violations remain unknown, requiring further investigation to determine
their underlying causes. The formula 0-NOTASSERTFAILED was also vio-
lated,which indicates that after the call to assumed_droped, the post-condition
of remove is no longer valid,

In regards to formulas 0- 1-, and 2-Formula, which are mentioned in Ta-
ble 3.1, these are the main formulas that needed to be proven to demonstrate
the validity of the remove function and its compliance with the data structure
invariant. However, we were unable to successfully validate these formulas,
indicating that our verification efforts in this regard have been unsuccessful.
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4 .1 discussion

MIR to PALE transformation We still believe that exploring the logic of
PALE further is valuable, although we have not been able to provide concrete
proofs using our current approach. While we have presented arguments and
informal reasoning for the correctness of the transformations, a rigorous
formal proof is still pending.

Despite the absence of a concrete proof at this stage, the exploration of
PALE in the context of MIR program verification of data structure invariants
remains an interesting avenue for future research and development.

The approach we have taken to model unsafe Rust in PALE is an over-
approximation, given that we do not utilize the guarantees imposed by the
borrow checker. In our PALE model, we consider all Places as mutable. This
overapproximation was necessary because PALE does not have the capability
to express the fine-grained distinctions of memory locations as is possible in
MIR.

Is PALE a good alternative to SL We believe that the utilization of graph
types in the PALE language to express pointers inside data structures is
a convenient and expressive way to handle pointer aliasing. Graph types
provide a powerful abstraction that allows us to model and reason about
complex relationships between objects in a more intuitive and structured
manner.

MIR for deductive verification We believe that further development of
formal methods for Rust should focus their efforts on the MIR level. This is
primarily due to the fact that many high-level constructs are represented in
a simpler and more uniform manner in MIR.

Limitations of MONA As mentioned in the section on Section 3.3, we
encountered difficulties in providing a proof in the direct transformation of
the MIR program remvoe. These challenges stemmed from the significant
number of global variables required for the transformation, and the need to
validate all formulas in Table 3.1 all global variables for every procedure call
within the PALE program. Consequently, constructing a concrete proof for
the correctness of the function remove became impractical.

We where also limited in our utilization MONA, as a consequence of
lacking understanding of the translation process from PALE to the under-
lying logic of MONA. However, due to time limitations, we were unable to
acquire this understanding.

As indicated by the results shown in Table 3.3, we were unable to demon-
strate the correctness of the remove function, as we faced challenges in
interpreting the counter-examples produced by the MONA tool.
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4 .2 conclusion

In conclusion, we have demonstrated a potential transformation from MIR
to PALE. However, it is important to note that this transformation lacks
a comprehensive proof. Nevertheless, we believe that this methodology
presents an interesting avenue for further research.

While we encountered challenges in demonstrating proving properties
using MONA, we believe that further development of formal methods for
Rust should focus on leveraging the advantages of MIR. The simplicity of
its representations, make it a promising platform for the development of
formal methods.

PALE and, in turn, MONA possess an interesting method for program
verification. The simplified nature of graph types allows for intuitive defini-
tion of data structures. We have demonstrated that it is possible to formally
verify some program properties of concrete yet simplified examples using
this approach.

We believe that monadic second order logic, deserves more attention in
the filed of formal program verification, it posses an interesting benefits for
automation of program proofs.

44



AL I N U X K E R N E L R U S T U N S A F E _ L I S T M I R C O D E

The MIR code shown in Code listings A.0.1 to A.0.3, was generated from [17]
using the command rustc –crate-type=lib -Zunpretty=mir unsafe_list.rs,
using version rustc 1.66.0-nightly (c97d02cdb 2022-10-05) of the rustc
compiler. The code shown in Code listings A.0.1 to A.0.3, only show the
function remove.

1 fn remove(_1: &mut List<A>, _2: &<A as Adapter>::EntryType) -> () {

2 debug self => _1;

3 debug entry => _2;

4 let mut _0: ();

5 let _3: &LinksInner<<A as Adapter>::EntryType>;

6 let mut _4: &List<A>;

7 let mut _5: NonNull<<A as Adapter>::EntryType>;

8 let mut _6: &<A as Adapter>::EntryType;

9 let mut _10: &mut MaybeUninit<LinksInner<<A as Adapter>::EntryType>>;

10 let mut _11: *mut MaybeUninit<LinksInner<<A as Adapter>::EntryType>>;

11 let mut _12: &UnsafeCell<MaybeUninit<LinksInner<<A as Adapter>::EntryType>>>;

12 let _13: &Links<<A as Adapter>::EntryType>;

13 let mut _14: &<A as Adapter>::EntryType;

14 let _15: ();

15 let mut _16: &mut MaybeUninit<LinksInner<<A as Adapter>::EntryType>>;

16 let mut _17: bool;

17 let mut _18: *const <A as Adapter>::EntryType;

18 let mut _19: *mut <A as Adapter>::EntryType;

19 let mut _20: NonNull<<A as Adapter>::EntryType>;

20 let mut _21: *const <A as Adapter>::EntryType;

21 let mut _22: Option<NonNull<<A as Adapter>::EntryType>>;

22 let mut _23: NonNull<<A as Adapter>::EntryType>;

23 let mut _24: &mut LinksInner<<A as Adapter>::EntryType>;

24 let mut _25: &mut List<A>;

25 let mut _26: NonNull<<A as Adapter>::EntryType>;

26 let mut _27: NonNull<<A as Adapter>::EntryType>;

27 let mut _28: &mut LinksInner<<A as Adapter>::EntryType>;

28 let mut _29: &mut List<A>;

29 let mut _30: NonNull<<A as Adapter>::EntryType>;

30 let mut _31: bool;

31 let mut _32: *const <A as Adapter>::EntryType;

32 let mut _33: *mut <A as Adapter>::EntryType;

33 let mut _34: NonNull<<A as Adapter>::EntryType>;

34 let mut _35: Option<NonNull<<A as Adapter>::EntryType>>;

35 let mut _36: *const <A as Adapter>::EntryType;

36 let mut _37: Option<NonNull<<A as Adapter>::EntryType>>;

37 let mut _38: NonNull<<A as Adapter>::EntryType>;

Code listing A.0.1: MIR code for unsafe_list part 1
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38 bb0: {

39 _4 = &(*_1);

40 _6 = _2;

41 _5 = <NonNull<<A as Adapter>::EntryType> as From<&<A as

Adapter>::EntryType>>::from(move _6) -> bb1;↪→
42 }

43

44 bb1: {

45 _3 = List::<A>::inner_ref(move _4, move _5) -> bb2;

46 }

47

48 bb2: {

49 _7 = ((*_3).0: NonNull<<A as Adapter>::EntryType>);

50 _8 = ((*_3).1: NonNull<<A as Adapter>::EntryType>);

51 _14 = _2;

52 _13 = <A as Adapter>::to_links(move _14) -> bb3;

53 }

54 bb3: {

55 _12 = &((*_13).0: UnsafeCell<MaybeUninit<LinksInner<<A as Adapter>::EntryType>>>);

56 _11 = UnsafeCell::<MaybeUninit<LinksInner<<A as Adapter>::EntryType>>>::get(move

_12) -> bb4;↪→
57 }

58

59 bb4: {

60 _10 = &mut (*_11);

61 _9 = &mut (*_10);

62 _16 = &mut (*_9);

63 _15 = MaybeUninit::<LinksInner<<A as Adapter>::EntryType>>::assume_init_drop(move

_16) -> bb5;↪→
64 }

65

66 bb5: {

67 _20 = _7;

68 _19 = NonNull::<<A as Adapter>::EntryType>::as_ptr(move _20) -> bb6;

69 }

70

71 bb6: {

72 _18 = move _19 as *const <A as Adapter>::EntryType (Pointer(MutToConstPointer));

73 _21 = &raw const (*_2);

74 _17 = eq::<<A as Adapter>::EntryType>(move _18, move _21) -> bb7;

75 }

76

77 bb7: {

78 switchInt(move _17) -> [false: bb9, otherwise: bb8];

79 }

80

81 bb8: {

82 Deinit(_22);

83 discriminant(_22) = 0;

84 ((*_1).0: Option<NonNull<<A as Adapter>::EntryType>>) = move _22;

85 goto -> bb16;

86 }

Code listing A.0.2: MIR code for unsafe_list part 2
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87

88 bb9: {

89 _23 = _7;

90 _25 = &mut (*_1);

91 _26 = _8;

92 _24 = List::<A>::inner(move _25, move _26) -> bb10;

93 }

94

95 bb10: {

96 ((*_24).0: NonNull<<A as Adapter>::EntryType>) = move _23;

97 _27 = _8;

98 _29 = &mut (*_1);

99 _30 = _7;

100 _28 = List::<A>::inner(move _29, move _30) -> bb11;

101 }

102

103 bb11: {

104 ((*_28).1: NonNull<<A as Adapter>::EntryType>) = move _27;

105 _35 = ((*_1).0: Option<NonNull<<A as Adapter>::EntryType>>);

106 _34 = Option::<NonNull<<A as Adapter>::EntryType>>::unwrap(move _35) -> bb12;

107 }

108

109 bb12: {

110 _33 = NonNull::<<A as Adapter>::EntryType>::as_ptr(move _34) -> bb13;

111 }

112

113 bb13: {

114 _32 = move _33 as *const <A as Adapter>::EntryType (Pointer(MutToConstPointer));

115 _36 = &raw const (*_2);

116 _31 = eq::<<A as Adapter>::EntryType>(move _32, move _36) -> bb14;

117 }

118

119 bb14: {

120 switchInt(move _31) -> [false: bb16, otherwise: bb15];

121 }

122

123 bb15: {

124 _38 = _7;

125 Deinit(_37);

126 ((_37 as Some).0: NonNull<<A as Adapter>::EntryType>) = move _38;

127 discriminant(_37) = 1;

128 ((*_1).0: Option<NonNull<<A as Adapter>::EntryType>>) = move _37;

129 goto -> bb16;

130 }

131

132 bb16: {

133 return;

134 }

135 }

Code listing A.0.3: MIR code for unsafe_list part 3
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BL I N U X K E R N E L R U S T U N S A F E _ L I S T

1 unsafe fn inner(&mut self, ptr: NonNull<A::EntryType>)

2 -> &mut LinksInner<A::EntryType> {

3 unsafe { (*A::to_links(ptr.as_ref()).0.get()).assume_init_mut() }

4 }

5 unsafe fn inner_ref(&self, ptr: NonNull<A::EntryType>)

6 -> &LinksInner<A::EntryType> {

7 unsafe { (*A::to_links(ptr.as_ref()).0.get()).assume_init_ref() }

8 }

Code listing B.0.1: inner, returns a mutable reference to the LinksInner of a
given list self, and inner_ref returns a reference. All code in this listing is
wrapped in impl<A: Adapter +?Sized> List<A>.
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CR U S T C O D E U S E D A S E X A M P L E S I N ? ?

1 fn test(x : bool) -> bool {

2 if x == false {

3 return false

4 } else

5 {

6 return true

7 }

8

9 }

Code listing C.0.1: Rust code used in the example shown in Section 3.1 for
swtichInt.

1 fn test(mut x : bool) -> bool {

2

3 while true {

4 x = false;

5 }

6 return x;

7 }

Code listing C.0.2: Rust code used in the example shown in Section 3.1 loop
constructs.
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D
U N S A F E _ L I S T PA L E M O D E L U N S I M P L I F I E D

1 type List = {

2 data first: EntryType;

3 }

4 type EntryType = {

5 bool value;

6 data links : LinksInner;

7 }

8

9 type LinksInner = {

10 data next : EntryType ;

11 pointer prev : EntryType [];

12 }

13

14 data none : EntryType;

15 data dropped_Links : LinksInner; /*Droped value */

16 data dropped_EntryType : EntryType; /*Droped value */

17

18 data 4_test : List;

19 data 2_test : EntryType;

20 data 3_test : LinksInner;

21 data 6_test : EntryType;

22 data 5_test : EntryType;

23

24 pointer 1_self : List;

25 pointer 2_entry: EntryType;

26

27 pointer 7_test : EntryType;

28 pointer 8_test_bb2 : EntryType;

29

30 pointer 10_test : LinksInner;

31 pointer 11_test : LinksInner;

32 pointer 12_test : LinksInner;

33 pointer 13_test : LinksInner;

34

35 pointer 16_test : LinksInner;

36
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37 bool 17_test;

38

39 pointer 18_test : EntryType;

40 pointer 19_test : EntryType;

41 pointer 20_test : EntryType;

42 pointer 21_test : EntryType;

43

44 pointer 22_test : EntryType;

45 pointer 23_test : EntryType;

46 pointer 24_test : LinksInner;

47 pointer 25_test : List;

48 pointer 26_test : EntryType;

49 pointer 27_test : EntryType;

50 pointer 28_test : LinksInner;

51 pointer 29_test : List;

52 pointer 30_test : EntryType;

53 bool 31_test;

54 pointer 32_test : EntryType;

55 pointer 33_test : EntryType;

56 pointer 34_test : EntryType;

57 pointer 35_test : EntryType;

58 pointer 36_test : EntryType;

59 pointer 38_test : EntryType;

60 pointer 37_test : EntryType;

61

62 proc remove(pointer 1_self : List, pointer 2_entry : EntryType

) : void↪→

63 [1_self !=null & 2_entry !=null]

64 {

65 4_test = 1_self;

66 6_test = 2_entry;

67 5_test = 6_test;

68 bb1() [true];

69 }

70 [true]

71

72

73

74 proc bb1() : void

75 [true]
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76 {

77 3_test = inner_ref(4_test , 5_test) [true]; /* inner */

78 bb2() [true];

79 }

80 [true]

81

82 proc bb2() : void

83 [true]

84 {

85 pointer 14_test_bb2 : EntryType;

86

87 7_test = 3_test.next; /* next */

88 8_test_bb2 = 3_test.next; /* prev*/

89 14_test_bb2 = 2_test;

90 13_test = to_links(14_test_bb2) [true]; /* inner */

91 bb4() [true]; /*bb3 abstacted away*/

92 }

93 [true]

94

95 proc bb4() : void

96 [true]

97 {

98 pointer 9_test_bb4 : LinksInner;

99 10_test = 11_test;

100 9_test_bb4 = 10_test;

101 16_test = 9_test_bb4;

102 16_test = dropped_Links;

103 bb5() [true];

104 }

105 [true]

106

107 proc bb5() : void

108 [true]

109 {

110 20_test = 7_test;

111 19_test = 20_test;

112 bb6() [true];

113 }

114 [true]

115
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116 proc bb6() : void

117 [true]

118 {

119 18_test = 19_test;

120 21_test = 2_test;

121 17_test = 18_test = 21_test;

122 bb7() [true];

123 }

124 [true]

125

126 proc bb7() : void

127 [true]

128 {

129 if (17_test) {

130 bb9() [true];

131 } else {

132 bb8() [true];

133 }

134 }

135 [true]

136

137 proc bb8() : void

138 [true]

139 {

140 22_test = dropped_EntryType;

141 22_test = none;

142 1_self.first = 22_test;

143 bb16() [true];

144 }

145 [true]

146

147 proc bb9() : void

148 [true]

149 {

150 23_test = 7_test;

151 25_test = 1_self;

152 26_test = 8_test_bb2;

153 24_test = inner(25_test, 26_test) [true];

154 bb10() [true];

155 }
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156 [true]

157

158

159 proc bb10() : void

160 [true]

161 {

162 24_test.next = 23_test;

163 27_test = 8_test_bb2;

164 29_test = 1_self;

165 30_test = 7_test;

166 28_test = inner(29_test, 30_test) [true];

167 bb11() [true];

168 }

169 [true]

170

171 proc bb11() : void

172 [true]

173 {

174 28_test.prev = 27_test;

175 35_test = 1_self.first;

176 34_test = 35_test;

177 bb12() [true];

178 }

179 [true]

180

181

182 proc bb12() : void

183 [true]

184 {

185 33_test = 35_test;

186 bb13() [true];

187 }

188 [true]

189

190

191 proc bb13() : void

192 [true]

193 {

194 32_test = 33_test;

195 36_test = 2_entry;

57



unsafe_list pale model unsimplified

196 31_test = 32_test = 36_test;

197 bb14() [true];

198 }

199 [true]

200

201 proc bb14() : void

202 [true]

203 {

204 if (31_test) {

205 bb15() [true];

206 } else {

207 bb16() [true];

208 }

209 }

210 [true]

211

212

213

214 proc bb15() : void

215 [true]

216 {

217 38_test = 7_test;

218 37_test = dropped_EntryType;

219 37_test = 38_test;

220 1_self.first = 37_test;

221

222 }

223 [true]

224

225

226

227 proc bb16() : void

228 [true]

229 {

230 }

231 [true]

232

233 proc to_links(pointer entry : EntryType) : LinksInner

234 [true]

235 {
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236 return entry.links;

237 }

238 [true]

239

240

241 proc inner_ref(pointer 1_self : List, pointer 2_entry :

EntryType) : LinksInner↪→

242 [true]

243 {

244 pointer entry_links : LinksInner;

245 entry_links = 2_entry.links;

246

247 return entry_links;

248 }

249 [true]

250

251

252 proc inner(pointer 1_self : List, pointer 2_entry : EntryType)

: LinksInner↪→

253 [true]

254 {

255 pointer entry_links : LinksInner;

256 entry_links = 2_entry.links;

257

258 return entry_links;

259 }

260 [true]
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