
Resumé
Denne artikel omhandler embedding metoder for temporal

knowledge grafer og undersøger hvorvidt forskellige karak-
teristika af et query har en påvirkning på præcisionen af link
prediction. De undersøgte grafer er ICEWS, WikiData og YAGO3
og de undersøgte metoder er DE-TransE, DE-SimplE, DE-Dismult,
ATiSE, TeRo og TimePlex. Dette bliver gjordt ved først at opstille tre
overordnede hypoteser som omhandler udvalgte karakterstika. Hy-
poteserne bliver herefter enten be- eller afkræftet baseret på vores
resultater. Disse resultater bliver derefter brugt til at lave en en-
semble voting model der favoriserer specifikke modeller afhængigt
af de karakteristika der findes i det pågældende query. Til sam-
menligning laves også en naiv ensemble voting model som ikke
favoriserer nogen modeller.

Den første hypotese undersøger hvorvidt koncentrationen
af de kendte fakta igennem tidsperioder har en påvirkning
på ydeevnen af de forskellige modeller. Både samlet ydeevne og
ydeevne for tidsforudsigelse bliver undersøgt her, og vi forventer
at der er bedre ydeevne når der er en høj koncentration af kendte
faktum i den tidsperiode som et givent query omhandler. Evaluerin-
gen af denne hypotese begynder med at opdele vores dataset i tre
partitioner, en partition for tidsperioder med højest koncentration
af kendte faktum, en med lav koncentration af kendte faktum, og
en med mellem koncentration, som ikke bliver brugt. Dette sikrer
os en stor forskel i koncentrationen af data i mellem det høje og det
lave koncentrationssæt. Metoderne evalueres over disse to datasæt.
Det viste sig at på ICEWS og WikiData er der bedre ydevne på
datasættet med den lave koncentration, men på YAGO er der en
stor forbedring på datasættet med den høje koncentration. Siden
vores forventede resultat kun kunne observeres i én af de tre dataset
betyder det at at hypotesen er afkræftet. Den samme undersøgelse
blev også gjort for tidsforudsigelser specifikt. Her kan man se en
stor forbedring i ydeevne på datasættet med høj koncentration i
forhold til datasættet med lav koncentration, hvilket betyder at
underhypotesen om tidsforudsigelser er bekræftet.

Den anden hypotese undersøger hvorvidt en samlet gennem-
snitsforudsigelse for tidsforudsigelser mellem flere modeller
generelt giver bedre resultater end tidsforudsigelser lavet af hver
model individuelt. Dette kan lade sig gøre da tid er en kontinuerlig
værdi og det derfor er muligt at finde et gennemsnit, i modsætning
til andre elementer af grafen. Tidsforudsigelser af hver individuel
model på ICEWS har nogenlunde samme middelafvigelse fra den
forudsagte tid til den rigtige tid. Her fik den gennemsnitslige tid
et bedre resultat end hver af de andre metoder. På de to andre
datasæt har tre af modellerne betydelig værre middelafvigelse i
forudsigelserne, så den gennemsnitlige forudsigelse får værre resul-
tater af at inkludere dem i gennemsnittet. Dette betyder at denne
hypotese er sand i nogle situationer, men at forudsigelserne er
stærkt afhængeige af middelafvigelsen i forudsigelserne af de indi-
viduelle modeller.

Den tredje hypotese undersøger relationer og den omkring-
liggende struktur i grafen for at kategorisere relationerne som
symmetriske, antisymmetriske og inverse, og hvordan det
påvirker ydeeven af modeller som teoretisk ikke burde være

i stand til at modellere de relationer, sammenlignet med mod-
eller som kan. Til dette formål laves der seks nye datasæt, to
for symmetriske og ikke-symmetriske, to for antisymmetriske
og ikke-antisymmetriske, og to for inverse og ikke-inverse. Mod-
ellerne bliver evalueret på disse datasæt, og sammenlignet for deres
ydeevne. Hvad vi fandt frem til var at DE-TransE, som ikke burde
kunne håndtere symmetri, har betydeligt værre ydeevne på sym-
metriske relationer end de sammenlignede modeller. Udover det
fandt vi at DE-DistMult, som hverken burdte kunne modellere
antisymmetriske eller inverse relationer, kan modellere antisym-
metriske og inverse relationer omtrent lige så godt som DE-SimplE.
Generelt kan vi se at der er en forbindelse mellem kategorien af rela-
tioner, egenskaberne af modellerne og deres resultater med datasæt
af forskellige relationskategorier. Dog har vi også resultater der
viser at modeller kan få gode resultater på trods af deres teoretiske
begrænsninger.

Resultaterne fra hypoteserne bliver brugt til at lave ORB-E som
er vores regelbaserede ensemblemodel. I ensemblemodellen har
metoder en vægt baseret på karakteristika af et query og deres
ydeevne for det karakteriska. Vægten bestemmer hvor stor en
påvirkning den metode har for ensemblemodellens evaluering af
det pågældende query. Til at sammenligne med ORB-E laver vi
også en naiv ensemblemodel, som giver hver model den samme
vægt, så alle modeller har samme indflydelse for alle queries. Re-
sultaterne viser at ORB-E er bedre end alle de andre metoder på
ICEWS, YAGO, og WikiData. Den naive model har en ydeevne som
er på cirka samme niveau som de andre individuelle modeller. Dette
viser at de forskellige karakteristika af et query kan bruges til at
forbedre ensemble metoder ved dynamisk tildeling af vægte.

Til sidst lavede vi også nogle ablationsstudier for at nærmere
undersøge effekten af de forskellige karakteristika på ORB-E. De
12 forskellige studier er delt op i tre dele. Syv studier hvor et enkelt
karakteristika er fjernet, fire hvor alle karakteristika er fjernet und-
tagen et og et enkelt hvor vægten af et enkelt karakteristika er blevet
justeret. Forskellen i disse ablationsstudier er lille, men generelt kan
vi se at forudsigelsesmålet som karakteristika har den bedste posi-
tive indflydelse på ORB-E. Udover det kan man se at det er på YAGO
der er størst forskel på resultaterne af ablationsstudierne, hvilket
antyder at her er de forskellige query-karakteristika vigtigere.
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Abstract
The performance of link prediction on Temporal Knowledge Graphs
(TKGs) has improved in the last decade via development of several
new and diverse Knowledge Graph Embedding (KGE) methods.
In this paper, the strengths and weaknesses of several temporal
KGE methods are examined, with focus on the temporal data den-
sity of the overall Knowledge Graph (KG) and temporal properties
of relations determined by the structure of the surrounding KG.
The results of this analysis are used to create a new ensemble vot-
ing method ORB-E with query-specific model weights based on
the characteristics of the query and model performance relative
to that characteristic. The characteristics are target of prediction,
temporal data density, properties of relations and overall scores of
models. The rules that determine the weights of each model reflect
which query characteristics have the most importance for different
methods, datasets, and overall. We find that prediction target is
the most influential characteristic, and that query-specific weight
assignment has better performance than a static weight assignment.
Link prediction preformance is increased for time prediction on
temporally dense data but not other prediction targets and the the-
oretical expressivity of methods does not always reflect the actual
performance of the models. Additionally, the domain of time pre-
dictions is analyzed to determine their accuracy under different
circumstances and we find that most methods are not capable of
predicting time within an acceptable error margin. A strategy that
utilizes the continuous nature of time information and combines
predictions of multiple models is presented, and can be used to
improve time predictions when models have equal precision.

Code: https://github.com/cs-23-mi-10-01
Date: 15 June, 2023

1 Introduction
A Knowledge Graph (KG) is a data structure that stores multi-
relational data, typically in the form of a directed, edge-labelled
graph, where nodes represent entities and edges represent relations.
Information is stored as facts of format (ℎ, 𝑟, 𝑡), where elements ℎ
and 𝑡 are entities and element 𝑟 is a relation. A Temporal Knowledge
Graph (TKG) is a KG where the facts have been extended with a
time information element 𝜏 , either as a singular timestamp or as a
timespan. A query is a fact with a missing element. A Knowledge
Graph Embedding (KGE) is a low-dimensional, numerical repre-
sentation of a KG, and facilitates link prediction, which aims to
find the missing fact element of a query. This makes up the core of
Question Answering (QA) systems, as it is the main way to infer
facts in a KG. The result of link prediction on a query is a ranked
list of most probable answers and the quality of an embedding can

be determined by the average rank of the correct answers [Hogan
et al. 2021].

The goal of this paper is to analyze the characteristics of link
prediction queries to find which characteristics suit which types of
models, enabling the construction of an ensemble method where
models are prioritized according to the analysis findings and charac-
teristics in the query. These characteristics depend on the informa-
tion available in the elements of the query, as well as the structure
of the KG and the available temporal information.

This work is a continuation of our previous work [Ipsen et al.
2022], where we investigated characteristics of selected KGE meth-
ods and their influence on link prediction. In the previous work,
we found indications that the quality of the predictions is highly
dependent on the target of the prediction, which we in this work
examine more thoroughly as a preliminary experiment by testing
on multiple datasets and splits of those datasets.

We formulate hypotheses on the role of temporal data density
in link prediction results, potential of combining time predictions
of models and methods’ ability to model relations with different
properties. Temporal density refers to the amount of facts within a
timespan, and datasets are split into sparse and dense partitions,
enabling us to examine model performance depending on the tem-
poral density. The possible relation properties are symmetric, anti-
symmetric and inverse, and each relation can have more than one
assigned property, based on the structure and temporal information
of the surrounding graph. Finally, the findings are utilized in the
construction of an ensemble model ORB-E with dynamic weights
across different models, depending on the characteristics of the
query. It is evaluated against a naive version that assigns the same
weight to each included model. Additionally, we make use of the
continuous nature of timestamps to examine the degree of precision
in time predictions to determine if they are sufficiently accurate to
be used in QA systems, and present an approach of how to improve
precision using joint selection of most probable timestamps over
several models.

Our contributions are an in-depth analysis of query character-
istics, and how they affect the performance of link prediction for
each KGE method. We perform link prediction on both entities,
relations and timestamps, of which only entities are standard prac-
tice. Time and relation predictions are both a focus in this work,
which is not widely studied in other articles. We evaluate accuracy
of time predictions, which is also not widely studied. Furthermore,
the results gained from this analysis are utilized to create a new
ensemble method called ORB-E, which yield better results than all
individual models across all datasets.
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The notation used is documented in section 2 and the related
work is examined in section 3. Section 4 contains an in-depth expla-
nation of our hypotheses, the intuition behind them and how we
intend to examine them. Our selection of methods and datasets are
explained in section 5 and section 6 respectively. The experiments
not conducted as part of a hypothesis are covered in section 7 and
the experiments conducted to evaluate hypotheses are covered in
section 8. Details about the ensemble method and how it uses the
results are explained in section 9. The discussion, conclusion and
future prospects of our work are detailed in section 10, section 11,
and section 12 respectively.

2 Background and Notation
Let E, R and T represent the set of all entities, relations and
timestamps respectively. For simplicity, T is discretized to a suit-
able granularity (days for ICEWS, years for WikiData and YAGO),
and represented by a continuous and unbroken ordered sequence
of unique integers. In addition, the missing timestamp ∅ is also con-
tained in T . Facts 𝑓 are represented as (ℎ, 𝑟, 𝑡, 𝜏), where ℎ, 𝑡 ∈ E,
𝑟 ∈ R and 𝜏 ∈ T 2. 𝜏 is a timespan consisting of two timestamps,
where 𝜏⊢ refers to the first timestamp, and 𝜏⊣ refers to the last. 𝑓ℎ is the
head element, 𝑓𝑟 is the relation, 𝑓𝑡 is the tail, and 𝑓𝜏 is the timespan
of fact 𝑓 . Let 𝜁 represent all true facts in a world, and 𝜁 ′ represent
all false facts. Let G be a temporal knowledge graph, which is a
subset of 𝜁 , and contains facts 𝑓 ∈ G. Let 𝜂𝑟 ⊂ G represent all facts
in the KG where 𝑟 is the relation in the fact.

A relation 𝑟 is temporally symmetric if (𝑒1, 𝑟 , 𝑒2, 𝜏) ∈ 𝜁 ⇔
(𝑒2, 𝑟 , 𝑒1, 𝜏) ∈ 𝜁 for some entities 𝑒1, 𝑒2 ∈ E and timespans 𝜏 ∈
T 2. A relation 𝑟 is temporally antisymmetric if (𝑒1, 𝑟 , 𝑒2, 𝜏) ∈
𝜁 ⇒ (𝑒2, 𝑟 , 𝑒1, 𝜏) ∈ 𝜁 ′ for some entities 𝑒1, 𝑒2 ∈ E and timespans
𝜏 ∈ T 2. A relation 𝑟−1 is the temporally inverse of relation 𝑟 if
(𝑒1, 𝑟 , 𝑒2, 𝜏) ∈ 𝜁 ⇔ (𝑒2, 𝑟−1, 𝑒1, 𝜏) ∈ 𝜁 for some entities 𝑒1, 𝑒2 ∈ E
and timespans 𝜏 ∈ T 2.

Each KG is split into a number of train sets 𝑅𝑖 , validation sets
𝑉𝑖 and test sets 𝑇𝑖 . No facts are shared among the sets within the
same split 𝑅𝑖 ∩ 𝑉𝑖 = ∅, 𝑉𝑖 ∩ 𝑇𝑖 = ∅, 𝑅𝑖 ∩ 𝑇𝑖 = ∅, but all facts are
contained in the sets 𝑅𝑖 ∪𝑉𝑖 ∪𝑇𝑖 = G.

The quality of models is evaulated using the Mean Reciprocal
Rank (MRR) metric, which is a real number between 0 and 1, and
higher is better. We explicitly define significant differences in MRR
scores, for use in hypothesis evaluation. We define the MRR score 𝑏
to be significantly higher than theMRR score 𝑎 if𝑏 > 𝑎+(1−𝑎) ·0.08.
Conversely, we define the MRR score 𝑏 to be significantly lower
than the MRR score 𝑎 if 𝑏 < 𝑎 − (1 − 𝑎) · 0.08.

3 Related Work
This paper is a continuation of [Ipsen et al. 2022], where different
embedding methods are analyzed through an exploration of the
quality of results when the models make link predictions. The main
observation made from that analysis is that the most influential
contributing factor that influence the quality of the results is the
relations and the structure of the KG that surrounds them. This is
the reasoning for what this paper concerns, and this paper serves to
further examine the structure of the KG surrounding the relations,
increase reliability of the findings from the previous paper, and

find other contributing factors that can influence the quality of the
results.

As this paper is a direct continuation of [Ipsen et al. 2022], the
related work of that paper is also applicable here. It covers the differ-
ent categories of TKG embedding methods, namely transformation,
tensor decomposition, and neural network. Transformational meth-
ods use geometric functions to score facts in the embedding. Tensor
decomposition methods use tensor and eigenvector products to
decompose tensors into low-dimentional representations that is
used to score the facts. Neural network methods use a number of
learned layers to score facts based on the numerical representation
of the elements of the facts. We have been unable identify an in-
fluential, recent, and temporal neural network method, which we
could replicate the results of and therefore neural network methods
are not included in this study. Influential transformational methods
include RotatE [Sun et al. 2019], TeRo [Xu et al. 2020], and ChronoR
[Sadeghian et al. 2021]. Influential tensor decomposition methods
include TNTComplEx [Lacroix et al. 2020], TimePlex [Jain et al.
2020], and ATiSE [Xu et al. 2019]. Influential neural network meth-
ods include TFLEX [Lin et al. 2022] and Re-Net [Jin et al. 2019]. A
temporal model agnostic method takes an existing non-temporal
embedding method and modifies it, such that temporal information
is added to the embeddings. Influential model agnostic methods
include diachronic embeddings [Goel et al. 2019] and time aware
representations [García-Durán et al. 2018].

Temporal accuracy metrics have previously been defined for
scoring functions using a measure that compares absolute distances
between elements of intervals [Surdeanu 2013], and using bounding
boxes to evaluate the intersections and hulls between intervals [Jain
et al. 2020]. These metrics are mostly made for scoring functions
and not statistical evaluation of time predictions, as they represent
the scores as ameasure that cannot be evaluated directly by humans,
and it is difficult to interpret if the results are usable in a QA context
from these metrics alone.

Relation properties such as symmetry, antisymmetry, and inver-
sion have been defined in non-temporal contexts [Schmidt 2010].
These properties define the structure of the KG surrounding the
relation, and some methods are incompatible with some of these
properties [Chami et al. 2020; Gregucci et al. 2023].

4 Hypotheses
We formulate the following three hypotheses on properties of TKG
queries. They are constructed such that the results quantify the
strengths and weaknesses of each method such that they can be
used in the construction of an ensemble method. The hypotheses
concern prediction quality, which is measured using MRR score.
For simplicity’s sake only MRR is used as evaluation metric for the
hypotheses.

4.1 Hypothesis on Time Density
As a dataset has varying amounts of data in different time periods,
we considered whether the prediction quality is affected by the
temporal density of the data. This led to the hypothesis:

H1: Prediction quality is significantly higher on
queries where the timestamps are in a temporally

2/13



ORB-E: Ensemble Method withQuery-Specific Weight Assignment Depending onQuery Characteristics

dense partition of the training dataset, compared
to a sparse partition.

The significance of results refer to differences in MRR scores
that are above a certain threshold, as defined in section 2.

H1 will be examined by creating two non-continuous partitions
that contain test facts, a sparse partition where the temporal density
is low and a dense partition where the temporal density is high.
The two partitions should have approximately the same number
of facts in order to make fair comparisons between them. These
partitions are illustrated for YAGO in figure 1. Intuitively, we expect
the MRR score to be higher in the dense part of the dataset, as the
amount of available data at each point in time is larger.

1,800 1,900 2,000
0

100

200

Time

N
o.
of

fa
ct
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Figure 1: Dense and sparse partitions on YAGO. Dense
partition marked in yellow, sparse in blue. Facts from
before year 1700 are not included.

Additionally, we hypothesize that temporal density greatly im-
pacts time predictions:

H1-A: Prediction quality of time predictions is
significantly higher on dense data partitions, than
on sparse data partitions.

This subhypothesis is created from an intuition that the possibil-
ity of making a time prediction that is closer to the correct answer
is higher when the data is spread over a shorter period of time.

Construction of the datasets requires the function range and
num. The function range maps a timespan to a set of timestamps
T 2 → P(T ), where P(T ) is the power set of T . It is defined as

range(𝜏) = {𝑖 ∈ T | 𝜏⊢ ≤ 𝑖 ∧ 𝑖 < 𝜏⊣} (1)

where 𝜏 is a timespan, 𝜏⊢ is the beginning timestamp and 𝜏⊣ is the
ending timestamp. The result of range(𝜏) is a set of timestamps that
contain all timestamps between the beginning timestamp and the
end timestamp of 𝜏 . The beginning timestamp and all intermediate
timestamps are included, but not the end timestamp.

The range function is then used to define the function num,
which maps a timespan to a natural number T 2 → N. This function
describes how many facts in G that are contained in the timespan.
The function is defined as

num(𝜏) = |𝑁 |
𝑁 = {𝑓 ∈ G | range(𝜏) ∩ range(𝑓𝜏 ) ≠ ∅} (2)

where 𝑁 is the set of all facts where the timestamp overlaps with 𝜏 .
For every fact 𝑓 ∈ G we find the number of facts num(𝑓𝜏 ) in the

timespan 𝑓𝜏 of 𝑓 , and arrange the values in a sorted sequence of
numbers 𝑂 . The sparse partition 𝑇𝑃 of test set 𝑇 is defined as the
subset of𝑇 where the number of facts that falls within the timespan
of 𝑓𝜏 is lower than 𝑝 for all 𝑓 ∈ 𝑇 :

𝑇𝑃 = {𝑡 ∈ 𝑇 | num(𝑡𝜏 ) < 𝑝} (3)

where 𝑝 is the 25th percentile value of 𝑂 . The dense partition 𝑇𝐷 is
similarly defined as a subset of 𝑇 where the number of facts that
falls within the timespan of 𝑓𝜏 is higher than 𝑑 for all 𝑓 ∈ 𝑇 :

𝑇𝐷 = {𝑡 ∈ 𝑇 | num(𝑡𝜏 ) > 𝑑} (4)

where 𝑑 is the 75th percentile value of 𝑂 . Note that by these defini-
tions the partitions are not continuous.

The MRR score of each method is calculated over the 𝑇𝐷 and 𝑇𝑃
test sets, on several datasets. For both hypotheses, if the score is
significantly higher in 𝑇𝐷 than 𝑇𝑃 , then the hypothesis is deemed
true.

4.2 Hypothesis on Joint Timestamp Selection
We observed that timestamps are a continuous value and therefore
has varying degrees of error which can be measured using Mean
Average Error (MAE). As such it is possible to find the average
between a number of different timestamps enabling us to combine
the answers of models, where the result is an average of the answers.
From this we have created the hypothesis:

H2: Time predictions produced by taking the mean
average of all models have a lower MAE than time
predictions produced by each individual model.

To evaluate the models individually, as well as to compare them
with the average results of all models, we use MAE between the
predicted timestamp and the correct timestamp, over all time pre-
diction tasks. It is defined as

MAE(𝑇,𝑚) = 1
|𝑇 |

∑︁
𝑓 ∈𝑇

|𝑝𝜏⊢ − 𝑓𝜏
⊢| (5)

where 𝑇 is a test set containing only prediction tasks targeting the
first timestamp,𝑚 is a model, 𝑝𝜏 is the timespan of the predicted
fact of model𝑚 when evaluating 𝑓 , and 𝑓𝜏 is the timespan of 𝑓 .

We evaluate theMAE of the individual models, to see how precise
they are at making time predictions. To our knowledge, this way
of evaluating time predictions has no precedent in other papers. As
such, we will instead evaluate whether the results are within an
acceptable range for potential use in QA systems.

If the MAE of the joint timestamp results is lower than the MAE
of each individual model, the hypothesis is deemed true.
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4.3 Hypothesis on Relation Properties
This hypothesis is inspired by the fact that some embedding meth-
ods are unable to handle specific properties.

H3: Prediction quality of queries with certain tem-
porally constrained relation properties is signifi-
cantly higher on methods, which theoretically can
model those properties, than methods which can-
not.

For this hypothesis we compare DE-TransE, DE-DistMult andDE-
SimplE as they resemble one another and have varied combinations
of relation properties that they can and cannot model. For more
information on the selected methods see section 5.

The relation properties selected for analysis are symmetry, an-
tisymmetry, and inversion. Reflection, composition and hierarchy
were considered but disregarded. Reflection was disregarded be-
cause all considered methods are capable of modeling it and because
we found no relation with that property in any of the datasets. Com-
position was disregarded because composition is made up of multi-
ple facts, and as such it is more affected by incomplete data than
other relation properties. Additionally, we found no occurences of
composition in the data, possibly due to aforementioned vulner-
ability. Hierarchy was disregarded as we were unable to identify
a KGE method which was both capable of modeling that relation
property and temporal.

This hypothesis is divided into several subhypotheses specific
to each relation property.

H3-A: DE-TransE has worse performance than DE-
DistMult and DE-SimplE on link prediction tasks
in which the relation in the queries has the sym-
metric property.

As TransE is a straightforward translational method in Euclid-
ian space, it is incapable of modelling symmetry [Goel et al. 2019].
Theoretically, DE-TransE has the same limitation with temporal
symmetric relations, which are relations that happen simultan-
iously between two entities. An example of such a relation could be
is_married. The problem is illustrated in figure 2. The purpose of H3-
A is to empirically analyze the practical impact of this theoretical
limitation.

John

Janeis married
2018-2023

is married
2018-2023

Figure 2: Illustration of DE-TransE embedding of the
relation is_married. John is married to Jane, which is
modelled with a translation from John to Jane (green),
but when the same translation is applied to Jane the
result is unknown (yellow).

H3-B: DE-DistMult has worse performance than
DE-TransE and DE-SimplE on link prediction tasks
in which the relation in the queries has the anti-
symmetric property.

DistMult uses pairwise interactions in diagonal matrices, and as
such cannot model edge direction, which in turn means it cannot
model antisymmetry [Goel et al. 2019]. Theoretically, DE-DistMult
has the same problem, but for temporal antisymmetric relations,
which are relations where an entity performs an action to another
entity and that other entity cannot do the same action back in the
same timespan. An example of such a relation is owes money, as two
people cannot owe eachother money as one debt will cancel out the
other. The problem is illustrated in figure 3. The purpose of H3-B
is to empirically analyze the practical impact of this theoretical
limitation.

owes
money Jack Peter Kate

Jack ×
Peter

Kate

Figure 3: Illustration of DE-DistMult embedding of the
relation owes money. The relation exists between Jack
and Peter, but it is unknown who owes who money, as
DistMult cannot model the hatched cells.

H3-C: DE-DistMult has worse performance than
DE-TransE and DE-SimplE on link prediction tasks
in which the relation in the queries has the inver-
sion property.

As DistMult cannot model edge direction, it also cannot model
inversion [Goel et al. 2019]. Theoretically, DE-DistMult has the
same problem, but for temporal inverse relations, which are pairs
of relations, where when one entity relates to another with one
type, they are also related in the opposite direction with the other
type, both relations happening in the same timespan. An example
of such a pair is the relations host_a_visit and make_a_visit. The
purpose of H3-C is to empirically analyze the practical impact of
this theoretical limitation.

To analyze these subhypotheses, the test sets are divided into
sets of facts that contain only relations of that type and sets of facts
that contain all but that relation. The first step is to assign a number
of soft labels to each relation, using a function for each relation
property that maps each relation to a real number R → [0, 1]. We
define a threshold for each of the relation properties, and classify
each relation as being symmetric, antisymmetric, and/or inverse
if the soft label for that relation is higher than or equal to the
threshold. Alternative approaches are discussed in subsection 10.1.
This function describes how many facts fulfill the requirements for

4/13



ORB-E: Ensemble Method withQuery-Specific Weight Assignment Depending onQuery Characteristics

that relation. The reason soft labels are used is that TKGs are not
complete, and some relations might be missing from the graphs.

The symmetry soft label for relation 𝑟 is

sym(𝑟 ) = |𝑆 |
|𝜂𝑟 |

𝑆 = {(𝑒1, 𝑟 , 𝑒2, 𝜏) ∈ 𝜂𝑟 | (𝑒2, 𝑟 , 𝑒1, 𝜏) ∈ 𝜂𝑟 }
(6)

where 𝜂𝑟 ⊂ G is the set of all facts in G where the relation is 𝑟 ,
𝑒1, 𝑒2 ∈ E, and 𝜏 is a timespan.

The antisymmetry soft label for relation 𝑟 is

asym(𝑟 ) = |𝐴|
|𝜂𝑟 |

𝐴 = {(𝑒1, 𝑟 , 𝑒2, 𝜏) ∈ 𝜂𝑟 | (𝑒2, 𝑟 , 𝑒1, 𝜏) ∉ 𝜂𝑟 }
(7)

The inversion soft label for relation 𝑟 is

inv(𝑟 ) = max
𝑟𝑛∈R\{𝑟 }

|𝐼𝑟𝑛 |
|𝜂𝑟𝑛 |

𝐼𝑟𝑛 = {(𝑒2, 𝑟𝑛, 𝑒1, 𝜏) ∈ 𝜂𝑟𝑛 | (𝑒1, 𝑟 , 𝑒2, 𝜏) ∈ 𝜂𝑟 }
(8)

whereR\{𝑟 } isR without the element 𝑟 . inv(𝑟 ) finds the 𝑟𝑛 with the
highest percentage of instances where there for a fact (𝑒1, 𝑟 , 𝑒2, 𝜏)
exists a different fact (𝑒2, 𝑟𝑛, 𝑒1, 𝜏).

Any relation can be classified with any number of relation prop-
erties. The threshold for symmetry is 0.8, for antisymmetry is 1.0,
and for inverse is 0.8. The set of facts where the relation is sym-
metric (𝑇𝑆 ), as well as the set of test facts where the relation is
non-symmetric (𝑇 ′

𝑆
), on test set 𝑇 is defined

𝑇𝑆 = {𝑓 ∈ 𝑇 | sym(𝑟 ) ≥ 0.8}
𝑇 ′
𝑆 = {𝑓 ∈ 𝑇 | sym(𝑟 ) < 0.8} (9)

Similarly, the antisymmetric test facts 𝑇𝐴 , the non-antisymmetric
test facts𝑇 ′

𝐴
, the inverse test facts𝑇𝐼 , and the non-inverse test facts

𝑇 ′
𝐼
are defined, using their respective thresholds.
Themodels are evaluated over these property specific test sets for

each dataset and compared to one another. The difference between
the score of the test set of a relation property and the test set
without that relation property is worse for a model that cannot
express that relation property than the difference between those
scores for models that can express that property. If this is the case
the hypothesis is deemed true.

5 Methods
The selected methods are of DE-TransE, DE-DistMult, DE-Simple,
ATiSE, TeRo, and TimePlex. In table 1, an overview of what each
method is designed for is provided. Methods have been selected
such that they are diverse in the relation properties that they are
theoretically capable of modelling and overall approach. In this
section, a general outline of the method approaches are given.

DE is a model-agnostic method, meaning it adapts existing non-
temporal methods to the use of temporal information. Here we use
it on the methods TransE, DistMult and SimplE.

DE-TransE is based on the TransE [Bordes et al. 2013] method,
a method used as a benchmark for many embedding approaches.
TransE embeds entities and relations as vectors in Euclidian space,
models relations as a translation between head and tail entity and
scores the facts by Euclidian distance calculation. TransE is unable

Table 1: Overview of method and characteristics. T:
Transformation, TD: Tensor decomposition.

Method Category Symmetry Antisymmetry Inversion
DE-TransE T × ✓ ✓

DE-DistMult TD ✓ × ×
DE-SimplE TD ✓ ✓ ✓

ATiSE TD ✓ ✓ ✓
TeRo T ✓ ✓ ✓

TimePlex TD ✓ ✓ ✓

to model symmetry as that would require embedding both entities
with the same vector and the symmetric relation to be a 0 distance
vector. This would make it impossible to differentiate between the
entities in all other relations.

DE-DistMult is based on the DistMult [Yang et al. 2015]method, a
method that like TransE uses a single vector to embed each relation
and entity. Unlike TransE it scores facts as summations of element
wise products of the embedding vectors. As the ordering of elements
in the element-wise product does not affect the result, DistMult
cannot model edge direction, which in turn means that it cannot
model antisymmetry or inversion.

DE-SimplE is based on SimplE [Kazemi and Poole 2018] which
in turn is based on Canonical Polyadic [Hitchcock 1927] embed-
ding. SimplE embeds relations and entities using two vectors each.
Relation embeddings have a vector 𝑟 for forward relations and a
vector 𝑟−1 for reverse relations. Entity embeddings have a vector
ℎ for head entities, and a vector 𝑡 for tail entities. The score func-
tion is then defined as the average of the element wise product of
the embeddings of the elements in two facts, namely (ℎ, 𝑟, 𝑡) and
(𝑡, 𝑟−1, ℎ).

Methods modified with DE [Goel et al. 2019] are extended such
that the base method includes temporal information by making the
entity embeddings dependent on time. Eachmodel has a part of their
entity embedding vector values that are impacted by timestamp.
DE adds two learnable embedding vectors for each entity, one
for dependency on time, and one for a bias. The resulting entity
embedding values are found by multiplying the time-dependent
vector values with the timestamp, adding them to a bias value, using
an activation function on them, and then multiplying them with
the non time-dependent embedding. The part of embedding vector
values that are not dependent on the timestamp are simply the
unaltered original embedding vector values.

ATiSE [Xu et al. 2019] is a method that uses additive time series
decomposition to model changes and uncertainty in the data over
time. The additive time series is a combination of a linear func-
tion, a sine function and a random function, to describe trends,
seasonal changes and noise respectively. Each entity and relation
has a seperate time series to represent how those elements change
over time, following the patterns that those elements demonstrate.
Entities and relations are embedded as vectors, and they follow
Gaussian probability distributions. The score function considers
the difference between the probability distribution of entities in
head and tail positions of a fact, and their similarity to the prob-
ability distribution of the relation of the fact at a certain time. To
compare the probability distributions, ATiSE uses Kullback–Leibler
divergence.
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TeRo [Xu et al. 2020] embeds entities and relations as vectors in
complex space and uses element-wise rotations in complex space
to model entities at specific timestamps. The scoring function is
defined as the distance between the time-specific head entity plus
the relation, and the conjugate of the time-specific tail entity.

TimePlex [Jain et al. 2020] is a model that embeds entities and
timestamps in complex vector space, and each relation with three
vectors in complex space. The first relation embedding vector repre-
sents a relation that is true for a head entity at a specific timestamp,
the second relation embedding represents a relation that is true
for a head entity and a tail entity, the third relation represents a
relation that is true for a tail entity and a specific timestamp. The
score function uses element-wise products between the head, rela-
tions, tail and timestamps, the latter embeddings in the products
being the conjugate of those vectors. In addition, the score function
also includes two additional scores, where one of them considers
recurrences of events, the other considers time constraints between
pairs of facts with certain relations.

6 Datasets
When selecting datasets for model evaluation we require the data
to be at least partly temporal. Prevalence in related work is also
valued highly, as it enables us to compare our implementation with
the original implementation when both are evaluated over the same
data.

Table 2: Statistics of datasets. Incomplete time refers to
facts where at least one timestamp is missing. There are
no facts where all timestamps are missing.

Dataset ICEWS WikiData YAGO
# Facts 96730 40621 20507

# Entities 7128 12554 10623
# Relations 230 24 10

Time Period 2014 19–2020 -431–2844
# Incomplete Time 0 6134 8813

The selected graphs are ICEWS [Boschee et al. 2015], WikiData
[Vrandečić and Krötzsch 2014], and YAGO [Mahdisoltani et al. 2015;
Pellissier Tanon et al. 2020]. ICEWS is a number of fully temporal,
event-based KGs specific to the domain of crisis alerts, where each
graph contains facts from a single year. The granularity of time
steps in ICEWS is one day, and the dataset contains one timestamp
per fact. These timestamps are treated as timespans with the same
beginning and end time. ICEWS is particularly noted for its con-
sistency and uniform temporal distribution of data. WikiData and
YAGO are partly temporal, general knowledge KGs and are not
constrained to any certain time span. WikiData has a time step
granularity of one year and YAGO has a granularity of one day.
Both represent time as a timespan with a beginning and an end.
WikiData is particularly noted for its size and YAGO for its focus on
temporal data and ability to represent uncertainty in timestamps.

Specifically we use the datasets ICEWS141 , WikiData12K [Das-
gupta et al. 2018], and YAGO11K [Dasgupta et al. 2018], henceforth
referred to simply as ICEWS, WikiData and YAGO. Statistics of the
1ICEWS14 exists in at least two versions: One with 7128 entities [García-Durán et al.
2018] and one with 12498 [Trivedi et al. 2017]. We use the first version.

datasets can be found in table 2. Date and month information has
been removed from YAGO for the sake of uniformity, making the
granularity of time steps one year for both WikiData and YAGO.
All datasets have at least one timestamp for each fact. 3% of facts in
WikiData are missing the beginning timestamp and 12% are missing
the end timestamp. No facts in YAGO are missing the beginning
timestamp and 43% of facts are missing the end timestamp.

7 Preliminary Experiments
As a preliminary step, the overall MRR scores of each model on
every dataset are evaluated, to determine the general performance
of the models. These scores are compared with the scores from
the original papers to verify that our implementations have similar
performance to the original implementations. These results are
presented in Appendix G. TimePlex uses both beginning and end
timestamp. As ICEWS only has one timestamp, TimePlex is trained
on ICEWSwith the available timestamp as the beginning timestamp
and a blank timestamp as the end timestamp. As can be seen in
Appendix F, the performance of TimePlex is significantly lower
for time predictions on ICEWS than on other datasets. This might
have been mitigated if the model was trained using the available
timestamp as both the beginning and the end timestamp.

Additionally, some of the models have been evaluated using
different splits of the datasets, to support the reliability of the obser-
vations from our previous work [Ipsen et al. 2022]. We discovered
that for models trained on ICEWS, tail predictions are most accu-
rate, followed by the head, relation, and then timestamp predictions.
To investigate whether this is a coincidence, we created three new
splits of ICEWS, trained DE-TransE, DE-SimplE, ATiSE and TeRo on
those splits, and checked the quality of predictions of these models
on the new splits. The same pattern emerged, confirming that the
predictions on ICEWS follows this expected result on prediction
targets.

The same experiment was conducted using the datasets Wiki-
Data and YAGO. These datasets and new splits all exhibited a differ-
ent pattern from ICEWS for prediction targets. In both new datasets
and all their splits, the relation prediction is most accurate, followed
by the tail, head and then time predictions. This is likely because
Wikidata and YAGO have considerably fewer relations than ICEWS,
and it is therefore less likely to be incorrect. The results indicate
that the performance is generally best when making tail predic-
tions, followed by head, relation and then time, however if some
fact element has a considerably lower amount of possible answers,
that might increase the expected performance for predictions on
that fact element.

The overall performance, as well as the performance when pre-
dicting on specific fact elements have been illustrated for each
model and the original split of each dataset in Appendix F. The
alternative splits have similar results.

8 Hypothesis Evaluation
This section contains the evaluation of hypotheses presented in
section 4. We determine differences in MRR results to be significant
according to the definition in section 2.
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8.1 Time Density
Hypothesis H1 concerns the temporal density of datasets and we
expect the results to be more accurate the more dense the data is.
To evaluate it we consider prediction quality of models on dense𝑇𝐷
and sparse 𝑇𝑃 partitions of test sets. These two partitions contain
approximately the same number of facts, but the sparse partition
is spread over a longer period of time than the dense partition.
Overview and statistics of test sets can be found in Appendix B and
Appendix C. Results can be seen in table 3.

Table 3: MRR scores on dense (𝑇𝐷 ) and sparse (𝑇𝑃 ) parti-
tions of test sets. Significant results marked with ▲ or
▼.

ICEWS WikiData YAGO
𝑇𝑃 𝑇𝐷 Diff. 𝑇𝑃 𝑇𝐷 Diff. 𝑇𝑃 𝑇𝐷 Diff.

DE-T 0.28 0.27 −.01 0.47 0.43 −.04 0.39 0.39 –
DE-D 0.38 0.37 −.01 0.43 0.40 −.03 0.28 0.34 +.06▲
DE-S 0.43 0.41 −.02 0.45 0.41 −.04 0.29 0.36 +.07▲
TR 0.45 0.44 −.01 0.53 0.46 −.07▼ 0.28 0.34 +.06▲
AT 0.43 0.42 −.01 0.52 0.45 −.07▼ 0.31 0.41 +.10▲
TP 0.38 0.35 −.03 0.29 0.22 −.07▼ 0.17 0.15 −.02

In the results, we see a trend that predictions on ICEWS and
WikiData are slightly better in the sparse partition compared to the
dense partition, which contradicts the hypothesis. The difference
is not considered significant for any results on ICEWS, but three
results on WikiData are significant. It is also noted that the trend
is consistent throughout the results for these datasets. It is worth
noting that ICEWS has a particularly consistent density throughout
the dataset causing the dense and sparse partitions to be more
similar than in other datasets and therefore we did expect the
difference in prediction quality to be smallest on this dataset. On
YAGO results from two of the models contradict the hypothesis,
and the results from the other four models support the hypothesis
by a significant amount. These results resemble the expected results
much better. As YAGO is the dataset with the largest temporal range
it might also be the dataset that benefits the most from higher data
density. Overall, the results indicate that H1 is false. However, as
the results on one dataset do support the hypothesis and we have
an indication that temporal density is more important the larger
the temporal range then it is possible that a more detailed analysis
would lead to a different conclusion.

The hypothesis H1-A concerns the temporal density of datasets
specifically for queries where the prediction target is a timestamp.
Once again, we expect the results to be more accurate the more
dense the dataset is, but we also expect the difference to bemore pro-
nounced when only evaluating timestamp predictions. The results
can be seen in table 4.

Once again we expect the differences to be smallest on ICEWS
due to the similarities in temporal density between dense and sparse
partitions. This is confirmed by the data where we see 0.01 as the
biggest difference between sparse and dense partitions.

The DE methods have very low accuracy of timestamp predic-
tions on the WikiData and YAGO datasets in general. While it is
noted that the sparse partition yields a better accuracy than the

Table 4: MRR scores for timestamp predictions on dense
(𝑇𝐷 ) and sparse (𝑇𝑃 ) partitions of test sets. Significant
results marked with ▲ or ▼.

ICEWS WikiData YAGO
𝑇𝑃 𝑇𝐷 Diff. 𝑇𝑃 𝑇𝐷 Diff. 𝑇𝑃 𝑇𝐷 Diff.

DE-T 0.10 0.09 −.01 0.01 0.00 −.01 0.01 0.00 −.01
DE-D 0.09 0.08 −.01 0.00 0.00 – 0.00 0.00 –
DE-S 0.09 0.08 −.01 0.00 0.00 – 0.01 0.00 −.01
TR 0.17 0.18 +.01 0.26 0.29 +.03 0.18 0.25 +.07▲
AT 0.15 0.16 +.01 0.19 0.24 +.05 0.08 0.16 +.08▲
TP 0.02 0.02 – 0.17 0.25 +.07▲ 0.05 0.12 +.07

dense one in half the cases, all scores are so low that it is not pos-
sible to determine which factors affected them and how, making
them unsuitable for a detailed analysis.

TeRo, ATiSE and TimePlex yield moderately or significantly
better results on dense than sparse partitions of WikiData and
YAGO as expected. Similarly to the results for predictions on all
prediction targets YAGO seems to be particularly affected by data
density, but it is worth noting that results in general are better on
WikiData.

As such, these results indicate that H1-A is true and that the
quality of time predictions is greatly impacted by the temporal
density of the data.

8.2 Joint Timestamp Selection
Hypothesis H 2 concerns making time predictions by using the
average of the best prediction of several models.

To evaulate this, the models are compared using the MAE score
achieved when making time predictions. The MAE is in days for
ICEWS, and years for WikiData and YAGO. The scores are also
compared to theMAE score of predictions achieved when all models
jointly select a timestamp answer. The results of this evaluation
can be seen in table 5. Error distributions of the individual methods
can be found in Appendix E.

Table 5: MAE of top time predictions of each model, and
joint selection. The most and least accurate time in the
interval prediction of TeRo and ATiSE is noted.

ICEWS WikiData YAGO
Model (days) (years) (years)

DE-TransE 90.51 1003.50 863.69
DE-DistMult 87.90 978.24 791.51
DE-SimplE 93.66 966.97 814.93

TeRo 129.75 76.93–102.53 358.14–642.29
ATiSE 137.39 85.39–153.25 94.57–579.43

TimePlex 122.87 21.90 148.27
Selection 84.71 513.83 389.76

When TeRo and ATiSE make time predictions, they attempt
to predict both the beginning and end timestamp of the query,
resulting in a time interval prediction. When contributing to the
joint timestamp selection, a timestamp in the middle of the time
interval is used instead.

The results show that the MAE score is lower in predictions on
ICEWS when jointly selecting the answer timestamp. An average
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error of 90+ days is very high in ICEWS, as this dataset only spans a
year. This means the average error range is 6 months, which is half
of the dataset. For TeRo, ATiSE and TimePlex, the result indicates
that the predicted timestamp is random, which is supported by
their error distribution in Appendix E. Joint timestamp selection
seems to average out wrong answers in both directions for each
method, and thereby achieves a higher score, supporting H2.

On WikiData TimePlex has the highest precision, and the dif-
ference between the MAE of the most precise model and the least
precise model DE-TransE is very high at ~1000 years. The results
on WikiData indicate that this dataset is difficult for the DE models
to make time predictions on, and the MAE scores of these three
models seem to indicate that the predicted answer is random, which
is again supported by the error distribution in Appendix E. Joint
selection achieves a score that is in the middle between the two
extremes, and as it is decided using the mean average of the time
predictions of all contributing models, the DE models make the
results significantly worse.

For YAGO the same pattern asWikiData emerges. However Time-
Plex is significantly worse on this dataset and ATiSE has the best
score when comparing the closest timestamp in its time span. The
joint time prediction is once again impaired by the worst models.

The results show that the overall error of time predictions is
high. The best MAE result on ICEWS is 84.71 days, which is an
unacceptable average error in a QA context, as the purpose of
queries on ICEWS is to make early predictions on critical events
like military operations or civilian unrest. These need to be highly
accurate to be useful. Similarly, having an average error of 94+
years on YAGO is unacceptable, as queries like birth dates and war
periods need to be somewhat precise to be useful. On the other
hand, TimePlex achieves an MAE score of 21.90, which is accurate
enough to be useful in some contexts that do not require high
accuracy, e.g. when asking about when technological ages like the
industrial age began and ended. TimePlex is the only examined
model that attempts to optimize time predictions, and as such it is
encouraging that it achieves the only useful result, but it still only
achieves it on one of the three examined datasets.

Overall, this indicates thatH2 is true if the base models have
approximately equal precision. A more complex voting mechanism
when jointly selecting timestamps might yield better results, such
as giving less weight to less accurate models, or using more than
just the top scoring prediction for each model.

8.3 Relation Properties
Hypothesis H3 concerns relations with certain properties and their
connection to model performance.

To evaluate this, the methods have been evaluated on test sets
divided into a number of different relation properties, each test set
containing no relation predictions.

For an overview of what each test set contains, see Appendix B.
In Appendix C the number of facts in each test set is detailed, as
well as the number of types of relations.

ICEWS is the dataset best suited for analysis of this hypothesis,
as there is a higher number of relations, with more varied rela-
tion properties. All three sub-hypotheses of H3 refer to specific
methods, and what they can and cannot represent. They are all
diachronic embedding methods, and they will be compared to the
other diachronic embedding methods, as they share the most char-
acteristics with each other, but differentiate in the relations they
can and cannot model.

To evaluate each subhypothesis we have analyzed and compared
the performance of DE-TransE, DE-DistMult, and DE-SimplE on
the different test sets, as can be seen in table 6. Some datasets have
no relations with some properties and those results are therefore
blank.

H3-A concerns symmetric relations. As DE-TransE cannot model
symmetry but DE-DistMult and DE-SimplE can, we expect DE-
TransE to achieve worse results on symmetric than non-symmetric
relations, in relation to the results for DE-DistMult and DE-SimplE
on those relations. On WikiData no relations met the requirements
of the soft label and therefore there is no data for that dataset. On
both ICEWS and YAGO, the symmetric relations seem to be sim-
pler than the non-symmetric relations for the embedding methods
to model – They all achieve a better performance on the sym-
metric dataset than the non-symmetric dataset. What can also be
observed is that DE-TransE has less of an improvement between
the symmetric test sets and the non-symmetric test sets compared
to DE-DistMult and DE-SimplE, as was theorised in H3-A. This
is illustrated for ICEWS in figure 4a. On ICEWS the performance
of DE-TransE is similar across the symmetric test set and the non-
symmetric, whereas the performance of the compared models is
significantly better on the symmetric test set. On YAGO DE-TransE
performs significantly better on symmetric than non-symmetric
relations, but the performance of the compared models is improved

Table 6: MRR scores on partitions of test sets with (𝑇𝑆 , 𝑇𝐴, 𝑇𝐼 ) and without (𝑇 ′
𝑆
, 𝑇 ′

𝐴
, 𝑇 ′

𝐼
) certain properties. Significant results

marked with ▲ or ▼.

Symmetry Antisymmetry Inversion
Method 𝑇 ′

𝑆
𝑇𝑆 Diff. 𝑇 ′

𝐴
𝑇𝐴 Diff. 𝑇 ′

𝐼
𝑇𝐼 Diff.

IC
EW

S DE-TransE 0.24 0.26 +0.02 0.23 0.32 +0.09▲ 0.24 0.34 +0.11▲
DE-DistMult 0.33 0.48 +0.15▲ 0.35 0.38 +0.03 0.35 0.44 +0.10▲
DE-SimplE 0.34 0.48 +0.14▲ 0.36 0.39 +0.03 0.36 0.49 +0.13▲

W
D

DE-TransE – – – 0.11 0.14 +0.03 – – –
DE-DistMult – – – 0.12 0.14 +0.02 – – –
DE-SimplE – – – 0.12 0.14 +0.03 – – –

YA
G
O DE-TransE 0.06 0.32 +0.26▲ 0.32 0.06 −0.26 ▼ – – –

DE-DistMult 0.03 0.63 +0.60▲ 0.63 0.03 −0.60 ▼ – – –
DE-SimplE 0.04 0.62 +0.59▲ 0.62 0.04 −0.58 ▼ – – –
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(c) Inversion

Figure 4: Comparison of differences in performance of models between test sets that contain a given relation property,
and test set that do not contain that property in ICEWS.

by a larger margin. The results are not as strong as we initially
anticipated, but they still indicate that DE-TransE performs worse
on symmetric relations than other models do, compared to their
performance on non-symmetric relations. This indicates thatH3-A
is true.

H3-B concerns antisymmetric relations. As DE-DistMult cannot
model antisymmetry but DE-TransE and DE-SimplE can, we expect
DE-DistMult to achieve worse results on antisymmetric than non-
antisymmetric relations, in relation to the results for DE-TransE
and DE-SimplE on those relations. On ICEWS only DE-TransE has
significantly better performance on the antisymmetric relations
than non-antisymmetric relations. OnWikiData all models perform
similarly and on YAGO all models perform worse on the antisym-
metric relations. The differences in improvement for antisymmetry
on ICEWS are illustrated in figure 4b. As the figure shows, only
DE-TransE performs significantly better than DE-DistMult, and the
performance of DE-DistMult is almost the same as DE-SimplE. We
expected both DE-TransE and DE-SimplE to perform better across
all datasets, but this is evidently not the case. The same pattern is
evident on YAGO, but there are no differences in improvement on
WikiData. Therefore, the results indicate that DE-DistMult perfoms
similarly on antisymmetric relations and non-antisymmetric rela-
tions as other methods despite the theoretical disadvantage that
DE-DistMult has, which indicates that H3-B is false.

H3-C concerns inverse relations. As DE-DistMult cannot model
inversion but DE-TransE andDE-SimplE can, we expect DE-DistMult
to achieve worse results on inverse than non-inverse relations, in
relation to the results for DE-TransE and DE-SimplE on those rela-
tions. OnWikiData and YAGO no relations met the requirements of
the soft label and therefore there is no data for those datasets. The
differences in improvement for ICEWS are illustrated in figure 4c.
The comparison shows that DE-DistMult has higher performance
on the inverse test set than the non-inverse test set, but that the
other models improve by a larger margin, which is what we ex-
pected to see. The difference is however not very pronouced, and
the performance is overall similar to the performance of DE-SimplE.
These results are not remarkable enough to confirm the hypothesis,
and therefore the results indicate that H3-C is false, however this

result is only based on a single dataset, and therefore not very well
supported.

Overall these results indicate that H3 is true for some methods
and relation properties. This indicates that the performance of a
model can in some cases be predicted by the theoretical limitations
of the methods, but the model can also achieve good results despite
them.

9 Ensemble Model
Using our findings from the hypotheses, we create Our Rule-Based
Ensemble method ORB-E. The architecture is based off of the vot-
ing ensemble method presented by [Otte et al. 2022]. Additionally,
a naive ensemble is also created as a baseline for performance
comparisons with ORB-E. The models of both methods have been
previously trained indidually, before they are included in the ensem-
ble methods. The naive ensemble method uses voting [Mohammed
and Kora 2023] where each method has the same weight when
deciding the answer to a query. ORB-E uses voting as well, but
uses rules to assign different weights to each model based on our
findings and the information contained in a query. This way each
method has a different level of importance, depending on the query.

9.1 Naive Voting Ensemble
The naive voting ensemble method assigns the same weight to each
model. The queries in the test set are evaluated by each model.
The answers from each model are assigned points based on the
reciprocal rank, such that the highest scoring prediction has a
score of 1/1, the second highest 1/2 and so on. The scores are then
added together for each possible element that can be an answer to
the query across all of the models. The element with the highest
combined score is the answer of the naive ensemble method.

9.2 Rule-Based Voting Ensemble
The rule-based voting ensemble method ORB-E is similar to the
naive one, except a specific weight distribution for the models is
found for each query, assigning the most weight to the model that
is most suited to answer that query.
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Table 7: Evaluation over all prediction targets. Naive-E is our naive voting ensemble method and ORB-E is our rule-based.
Best results are highlighted in bold.

ICEWS WikiData YAGO
Method MRR hits@1 hits@3 hits@10 MRR hits@1 hits@3 hits@10 MRR hits@1 hits@3 hits@10

DE-TransE 0.23 0.10 0.31 0.47 0.35 0.28 0.36 0.47 0.30 0.23 0.33 0.40
DE-DistMult 0.31 0.21 0.38 0.52 0.32 0.26 0.34 0.43 0.24 0.19 0.25 0.36
DE-SimplE 0.34 0.24 0.38 0.52 0.33 0.27 0.35 0.45 0.25 0.21 0.25 0.36

ATiSE 0.37 0.25 0.43 0.60 0.41 0.31 0.45 0.60 0.32 0.26 0.35 0.45
TeRo 0.41 0.30 0.47 0.62 0.43 0.33 0.46 0.62 0.30 0.19 0.36 0.51

TimePlex 0.25 0.17 0.28 0.40 0.25 0.14 0.27 0.49 0.18 0.11 0.19 0.31
Naive-E 0.34 0.26 0.37 0.50 0.42 0.33 0.45 0.59 0.29 0.24 0.32 0.39
ORB-E 0.43 0.32 0.47 0.63 0.43 0.34 0.46 0.64 0.38 0.31 0.40 0.51

The characteristics that affect the weight distribution are based
on the results of the hypotheses presented in section 4 and evaluated
in section 8, as well as the previous work by [Ipsen et al. 2022].
The score for each characteristic is calculated individually for each
dataset. These characteristics are as follows:

• The overall model score, i.e. theMRR score amodel achieves
across all prediction targets.

• The density of the data in that timespan i.e. sparse or dense.
• The properties of the relation i.e. symmetry, antisymme-

try and inversion, where each property is an independent
characteristic.

• The false properties of the relation i.e. non-symmetry, non-
antisymmetry and non-inversion. If a relation is not sym-
metric then it has the non-symmetric characteristic and
vice-versa.

• The prediction target i.e. head, relation, tail, or timestamp.

For a total of 13 possible characteristics.
The formula for weight distribution is defined as:

weight (𝑚,𝑞) =∑︁
𝑐∈𝐶

{
norm(𝑠𝑐 )𝑚 · 𝑑𝑠𝑐 ·𝜓𝑐 if 𝑐 is a characteristic of 𝑞
0 otherwise

(10)

where weight (𝑚,𝑞) is the weight of a model𝑚 for a query 𝑞. 𝐶 is
the set of all characteristics, 𝑠𝑐 is a list of real numbers that contains
the score for each model for characteristic 𝑐 on a specific dataset,
norm is a min-max normalization function, norm(𝑠𝑐 )𝑚 returns the
normalized score for model 𝑚, 𝑑𝑠𝑐 is the absolute difference be-
tween the minimum and maximum value of 𝑠𝑐 , and𝜓𝑐 is a constant
variable that modifies the importance of characteristic 𝑐 , and is used
for controlling the ablation studies. 𝜓𝑐 can be configured to give
certain characteristics higher impacts.

The difference value 𝑑𝑠𝑐 is used as a way to account for the
impact of a characteristic. If all models have similar results for that
characteristic, then it does not have a large impact on the score,
and 𝑑𝑠𝑐 will have a low value, and thereby reduce the effect that
characteristic has on the weight distribution. 𝜓𝑐 is set to 1 for all
characteristics in ORB-E.

To find the final weight distribution for a query 𝑞, the value
of weight (𝑚,𝑞) for each model is normalized with the softmax
function, in order to get a distribution that totals 1.

9.3 Ensemble results
The results of the ensemble models can be seen in table 7, along
with the overall scores of other models. The naive method has
rather average scores across all datasets. ORB-E has the best results
in all metrics across all datasets. TeRo has the same score as ORB-E
in a few cases like MRR on WikiData.

This indicates that the query characteristics investigated in this
paper are able to use the advantages of several different models to
improve the overall results of a link prediction task.

9.4 Ablation study
The ablation study is split into 11 different studies: Six where a sin-
gle characteristic is disabled, four where only a single characteristic
is enabled, and one where each relation property only gets one third
of the weight. An example of the six studies where a characteristic
is disabled, is the no overall ablation study disables the overall score
when calculating the weight distribution. An example of the four
single charateristic studies is the only overall study, where every
characteristic other than the overall scores is disabled. For only
time density and only property disabling all other characteristics
means that some queries have no applicable characteristic e.g. 50%
of the facts are not in either dense or sparse time partitions. In
these cases the naive weight distribution is used. The study where
each relation property is reduced to one third of the weight is
conducted to balance out the impact of relation properties on the
weight distribution, as there are three possible relation properties.

The scores for all the ablation studies can be seen in table 8.
On ICEWS the no property study has the shared highest score.
Here all the relation properties are disabled when calculating the
weight, which indicates that relation properties do not contain
useful information in this dataset. Additionally, when only the
properties were used in the weight calculation in the only property
study, the score is the second lowest among the ablation studies,
which further supports this. However the other shared highest
score is no false property ablation score, which means that it could
be the false properties specifically that decrease the performance.

On WikiData we can see that only property and only target have
the best performance. This trend can also be seen in that no property
is worse than both no true property and no false property, and no
target is worse than the original ORB-E. The two ablation studies
with the worst performance are only overall and only time density.
The only overall study is similar to the naive method, except the
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static weights are assigned based on the overall score of each model.
It has worse performance than ORB-E but better than Naive-E,
indicating that dynamic weights improve performance. The only
time density study is the only one across all datasets that is worse
than its respective naive solution, which suggests that incorporating
time density lowers the performance for WikiData, which supports
the result of hypothesis H1, which indicated that time density and
performance were not connected.

Lastly on YAGO the study only target has the best performance.
This ablation study is consistently one of the top performing studies
across the datasets, which suggests that this characteristic contains
the most information. On YAGO we see the biggest differences in
score, which indicates that the question characteristics are more
important on this dataset than the others.

Table 8: Ablation MRR scores. Comparison scores rela-
tive to ORB-E.

Method ICEWS WikiData YAGO
Naive-E 0.343 0.419 0.295
ORB-E 0.426 0.434 0.378

no overall 0.425 −.001 0.435 +.001 0.383 +.005
no time density 0.426 – 0.435 +.001 0.379 +.001
no true property 0.426 – 0.433 −.001 0.378 –
no false property 0.427 +.001 0.431 −.003 0.375 −.003

no property 0.427 +.001 0.428 −.006 0.372 −.006
no target 0.425 −.001 0.433 −.001 0.368 −.010

only overall 0.426 – 0.421 −.013 0.343 −.045
only time density 0.420 −.006 0.417 −.018 0.356 −.022

only property 0.421 −.005 0.436 +.002 0.375 −.003
only target 0.426 – 0.436 +.002 0.391 +.013
1/3 property 0.426 – 0.431 −.003 0.375 −.003

The scores of these ablation studies are very similar to each other
and ORB-E, so it is difficult to make any definitive conclusions about
what characteristics of the query influence link prediction the most.
As some ablation studies achieve better performance than ORB-E on
different datasets, ORB-E should not be considered a static configu-
ration, but should be adapted to a specific dataset by configuring
the hyperparameters. We can however conclude that the target
characteristic seems to be the most impactful as the performance is
consistently decreased when this characteristic is excluded, and the
study only target is consistently either better or as good as ORB-E.
We also conclude that dynamic weight assignment improves per-
formance as the static only overall study performs considerably
worse than ORB-E on WikiData and YAGO and no overall study
performs better than ORB-E on the same datasets, whilst barely
impacting performance on ICEWS. Additionally, relation properties
seem difficult to use as the study only properties achieves a better
score than ORB-E on WikiData, but a worse score on the other two
datasets.

10 Discussion
In this section we present some of the considerations made through-
out the project, detail alternatives and explain the reasoning behind
our choices.

10.1 Alternative Approaches to Relation
Properties

Relation properties are determined using a soft label approach. This
section details alternative approaches and their advantages and
disadvantages.

Ideally, we would extract the properties of relations directly from
metadata about the source graphs, as this would accurately depict
the properties of the relations. However, most KGs do not contain
this metadata, and none of the KGs used in this paper has complete
metadata information, making this approach unfeasible.

Another alternative approach is manual assignment of properties
based on notions about what each relation models. This approach
risks misinterpreting the purpose of the relations, resulting in prop-
erty assignment that do not reflect the data, and involves additional
work to include each dataset.

We chose to do soft label assignment, as it depicts the relevant
data, does not require a complete KG unlike hard label assignment,
and makes it easy to add new datasets.

Based on the labels assigned to each relation, we considered us-
ing data materialization, to create more complete KGs. This would
include modifying the dataset with new facts that can be inferred
from the relation properties e.g. adding (𝑒1, 𝑟 , 𝑒2, 𝜏) if (𝑒2, 𝑟 , 𝑒1, 𝜏)
exists and 𝑟 has the symmetric property. We chose not to do this,
as we still could not guarantee a complete KG after data material-
ization, and it would make it impossible to compare our results to
other works that was learned on the original dataset.

The soft label thresholds were selected empirically. We identified
some relations that we expect to have certain properties, and the
thresholds were selected such that those relations were assigned
the expected relation properties.

10.2 Errors in WikiData Dataset
During this project we discovered that the WikiData dataset con-
tains multiple errors.

Timestamps in WikiData are formatted as yyyy-mm-dd and
uses # in place of numbers where values are unknown. However,
there are 54 instances where the timestamps contain only one or
two characters in the year value. The data appears to be correct in
most of these cases, but we have identified at least two instances of
factual errors in these timestamps.

As the scale of the errors appears to be negligible and because
identifying and correcting the errors would be both time consuming
and prevent accurate comparison between the results of this and
other papers, we elected to make no changes.

10.3 Time Predictions of DE Methods
The DE methods split a timestamp into three parts, year, month and
day. This could be detrimental when doing time predictions, as the
three values are predicted individually, however single month have
the same importance as 31 days and one year is equal to 12 months.
This decreases performance as if the month is predicted wrong, it
gets a much larger error than if the day is predicted wrong. The
error distributions in Appendix E indicate that this is the case. This
could be alleviated by predicting time as a continuous value, such
that each year is equal to 365. This would eliminate year and month
having more importance than day.

11/13



Astrid Ipsen, Jeppe W. Lindberg, and Jonas C. Lindberg

10.4 Extendability of ORB-E
ORB-E is a configurable method that uses results from multiple
models. As such it is possible to adjust the importance of each
characteristic and extend the method with additional models and
characteristics without retraining any of the models. Extending
ORB-E with additional methods requires training a model of that
method on the selected datasets, modifying the output to have the
same format as the other models in ORB-E, and evaluating it over
all specified test sets. Additional adjustments like adjusting weights
of other models in relation to the new model are automatically
performed by ORB-E. The complexity of ORB-E scales linearly with
the number of models. Extending ORB-E with additional charac-
teristics requires defining those characteristics, creating suitable
experiments and evaluating all models on those experiments. E.g.
adding the characteristic time density required defining sparse and
dense values of timestamps for all datasets, creating test sets corre-
sponding to those values and evaluating all models over those test
sets.

11 Conclusion
We have analyzed the TKG embedding methods DE-TransE, De-
DistMult, DE-SimplE, ATiSE, TeRo and TimePlex to evaluate their
performance depending on the charactersitics of queries. The in-
spected characteristics are the temporal density of data, the relation
properties symmetry, antisymmetry, and inversion, and prediction
target which has been included and expanded upon from a previous
set of findings.

We find that the overall score of predictions is not particularly
impacted by the temporal density of the data, however time predic-
tions specifically score higher in temporally dense partitions. Our
findings also support that DE-TransE, which theoretically cannot
model symmetry, is indeed worse at symmetric relations than other
models, while DE-DistMult, which theoretically cannot model anti-
symmetry and inversion, is not worse at antisymmetric or inverse
relations than other models.

The findings are used in a new ensemble model ORB-E where the
results are used to calculate query-specific weights for each model.
ORB-E achieves better performance than each individual model,
as well as an ensemble model that assignes the same static weight
to each model. This suggests that it is possible to achieve a better
performance by taking a model’s advantages and disadvantages
into account.

Finally, we use the continuous nature of timestamps to examine
the accuracy of time predictions and improve them.We find that the
difference between the predicted and correct timestamp is generally
too large to be useful in most QA systems. However, if all models
are equally accurate in their top timestamp answer, the average of
all predictions is more accurate than each indvidual model.

12 Future Work
In this paper the ensemble method ORB-E is presented. ORB-E is
a rule-based voting ensemble method that does not use learning
to calculate score values, and is instead driven by the results of
link prediction on pretrained models. Alternative approaches could
make better use of learning in ORB-E to increase performance. One
possible alternative is to use the defined characteristics and create

a learnable score vector for each characteristic that contains param-
eters, one parameter for each model per characteristic. The score
vector for each characteristic is then trained to maximize the MRR
score of the ensemble over a validation set of queries. With this
implementation, it would be possible to inspect the learned score
vectors to find what characteristics influence performance posi-
tively and negatively, and find the most important characteristics
for each dataset. Another possible alternative is to not use pre-
defined characteristics, and instead rely on the learned ensemble
model to find the characteristics to score the models individually. In
this version, a vector representation of the query could facilitate the
learned model to infer information in the query, and assign weights
from the inferred information. This version could theoretically get
a higher score than the previous implementation, but analysis to
find the influential characteristics would be difficult.

Accuracy of time predictions is too low to be useful for answering
real queries. To mitigate this, it might be useful to optimize time
predictions by creating a method which uses the error difference
as a part of the scoring function. The accuracy of joint timestamp
selection could be improved by prioritizing methods with better
accuracy, using more than one prediction result form each model,
and combining values with something other than the mean. This
could result in a method that can more accurately answer temporal
questions in a QA system.

A two-step prediction approach could be used to first estimate
whether the timestamp is within a dense or sparse subset of the
dataset and use the result for model weight assignment when pre-
dicting time could improve ensemble performance in time predic-
tions.

More detailed and accurate data could enable additional temporal
signals in the data, as temporal events can permanently change an
entity, and therefore change the behaviour that entity will have in
all following relations. A method that accounts for the state of the
entity at a given point in time, depending on which relations that
entity has been a part of earlier, could improve performance.
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A Glossary

KG Knowledge Graph
KGE Knowledge Graph Embedding

MAE Mean Average Error
MRR Mean Reciprocal Rank

QA Question Answering

TKG Temporal Knowledge Graph

B Overview of Test Sets

Table 9: Test sets, and what they contain

Test set Contains
𝑇𝐷 Dense partiton timestamps
𝑇𝑃 Sparse partition timestamps
𝑇𝑆 Symmetric relations
𝑇 ′
𝑆

Non-symmetric relations
𝑇𝐴 Anti-symmetric relations
𝑇 ′
𝐴

Non-antisymmetric relations
𝑇𝐼 Inverse relations
𝑇 ′
𝐼

Non-inverse relations

C Test Set Statistics

Table 10: Number of facts in each test set

Dataset |R | |𝑇𝐷 | |𝑇𝑃 | |𝑇 ′
𝑆
| |𝑇𝑆 | |𝑇 ′

𝐴
| |𝑇𝐴 | |𝑇 ′

𝐼
| |𝑇𝐼 |

ICEWS 220 7422 6687 22902 3987 23253 3636 25581 1308
WikiData 24 4248 3924 16248 0 580 15668 16248 0

YAGO 10 2068 2000 7500 704 704 7500 8204 0

D Time Density Figures
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Figure 5: Dense and sparse partitions on ICEWS. Dense
partition marked in yellow, sparse in blue.
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Figure 6: Dense and sparse partitions on WikiData.
Dense partition marked in yellow, sparse in blue. Facts
from before year 1700 are not included.
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E Time Prediction Error Distribution
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Figure 7: Distribution of predictions on timestamps for
DE-TransE on ICEWS.
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Figure 8: Distribution of predictions on timestamps for
DE-DistMult on ICEWS.
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Figure 9: Distribution of predictions on timestamps for
DE-SimplE on ICEWS.
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Figure 10: Distribution of predictions on timestamps for
ATiSE on ICEWS.
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Figure 11: Distribution of predictions on timestamps for
TeRo on ICEWS.
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Figure 12: Distribution of predictions on timestamps for
TimePlex on ICEWS.
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Figure 13: Distribution of predictions on timestamps for
DE-TransE on WikiData.
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Figure 14: Distribution of predictions on timestamps for
DE-DistMult on WikiData.
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Figure 15: Distribution of predictions on timestamps for
DE-SimplE on WikiData.
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Figure 16: Distribution of predictions on timestamps for
TeRo on WikiData. Blue indicates the best timestamp
in the interval prediction, yellow indicates the worst.
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Figure 17: Distribution of predictions on timestamps for
ATiSE on WikiData. Blue indicates the best timestamp
in the interval prediction, yellow indicates the worst.
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Figure 18: Distribution of predictions on timestamps for
TimePlex on WikiData.
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Figure 19: Distribution of predictions on timestamps for
DE-TransE on YAGO.
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Figure 20: Distribution of predictions on timestamps for
DE-DistMult on YAGO.
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Figure 21: Distribution of predictions on timestamps for
DE-SimplE on YAGO.
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Figure 22: Distribution of predictions on timestamps
for TeRo on YAGO. Blue indicates the best timestamp
in the interval prediction, yellow indicates the worst.
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Figure 23: Distribution of predictions on timestamps for
ATiSE on YAGO. Blue indicates the best timestamp in
the interval prediction, yellow indicates the worst.

−2,000 −1,000 0 1,000
0

10

20

30

Error

#
O
cc
ur
en
ce
s

Figure 24: Distribution of predictions on timestamps for
TimePlex on YAGO.
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F Comparisons of scores between prediction targets on the original splits of all datasets and all models

DE-TransE DE-DistMult DE-SimplE ATiSE TeRo TimePlex
0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

sc
or
e

Head Relation Tail Time

Figure 25: ICEWS, split original
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Figure 26: WikiData, split original
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Figure 27: YAGO, split original
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G Comparisons with original papers

Table 11: MRR results of the methods on only head and tail predictions on the given datasets, along with models scores
from the original papers.

ICEWS WikiData YAGO
Method Our MRR Paper Our MRR Paper Our MRR Paper

DE-TransE 0.31 0.33 0.21 – 0.12 –
DE-DistMult 0.48 0.50 0.20 – 0.12 –
DE-SimplE 0.50 0.53 0.21 – 0.13 –

TeRo 0.52 0.56 0.26 0.30 0.18 0.19
ATiSE 0.52 0.55 0.24 0.28 0.17 0.17

TimePlex 0.37 0.60 0.26 0.33 0.22 0.24

Table 12: MRR results of the methods on all prediction targets on the given datasets along with the score from the original
papers, that only does head and tail predicion.

ICEWS WikiData YAGO
Method All MRR Paper All MRR Paper All MRR Paper

DE-TransE 0.23 0.33 0.35 – 0.30 –
DE-DistMult 0.31 0.50 0.32 – 0.24 –
DE-SimplE 0.34 0.53 0.33 – 0.25 –

TeRo 0.41 0.56 0.43 0.30 0.30 0.19
ATiSE 0.37 0.55 0.41 0.28 0.32 0.17

TimePlex 0.25 0.60 0.25 0.33 0.18 0.24
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