
OIOFuzz: A Guided Model-based
Blackbox Fuzzer for OIORASP

Schematron Validation

Project Report

cs-23-ds-10-06

Aalborg University
Computer Science

Copyright © Aalborg University 2023

Computer Science

Aalborg University

http://www.aau.dk

Title:
OIOFuzz: A Guided Model-based
Blackbox Fuzzer for OIORASP Schema-
tron Validation

Theme:
Fuzzing OIORASP

Project Period:
Sprint Semester 2023

Project Group:
cs-23-ds-10-06

Participant(s):
Emil Fulei Lykke Aagreen
Frederik Arnfeldt Jensen

Supervisor(s):
Danny Bøgsted Poulsen
René Rydhof Hansen

Copies: 1

Page Numbers: 61

Date of Completion:
June 16, 2023

Abstract:

In this project we explored the poten-
tial for fuzzing OIORASP. OIORASP is
an protocol for exchange of e-business
documents and is an integral part of
the Danish IT Infrastructure. The pro-
tocol uses the OIOUBL document stan-
dard for the documents sent. Fuzzing
is an automatic test method where un-
expected inputs are constructed and
passed to the target program to ob-
serve if it trigger unexpected behav-
ior. The target is narrowed in to the
Schematron validation of the docu-
ments. We made OIOFuzz which is
a proof-of-concept implementation of
a guided model-based blackbox fuzzer
targeting OIORASP Schematron val-
idation. OIOFuzz managed to find
an error in the Schematron validation.
Therefore we concluded that it is func-
tional, but it also has room for im-
provement.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

Preface v

1 Introduction 3

2 OIORASP 6
2.1 E-business Standards . 7

2.1.1 OpenPeppol . 7
2.1.2 NemHandel . 8

2.2 OIORASP . 8
2.2.1 Protocol Overview . 8
2.2.2 Protocol Details . 9

2.3 OIOUBL - Universal Business Language 12
2.3.1 OIOUBL Properties . 13
2.3.2 Validation of OIOUBL Documents 14

2.4 Document Processing in the OIORASP Library 15

3 Fuzzing Theory 17
3.1 Fuzzing Approaches . 18

3.1.1 Blackbox Fuzzing . 18
3.1.2 Whitebox Fuzzing . 19
3.1.3 Greybox Fuzzing . 20

3.2 Fuzzing Concepts . 20
3.2.1 Mutation- and Generation-based Fuzzing 21
3.2.2 Smart and Dumb Fuzzer . 22
3.2.3 Code Coverage . 22
3.2.4 Power Scheduler . 22

3.3 American Fuzzy Lop . 22

4 Implementing OIOFuzz 24
4.1 Delimiting the OIORASP Fuzzing Target 25
4.2 Fuzzing Approach . 26
4.3 OIORASP Library Setup . 26

iii

Contents iv

4.4 OIOUBL documents . 27
4.5 Fuzzer Structure . 29
4.6 Components . 30

4.6.1 Invoice Model . 30
4.6.2 Parser . 32
4.6.3 Fuzzer . 32
4.6.4 Mutator . 33
4.6.5 Runner . 36

4.7 Classification of OIOFuzz . 36

5 Fuzzing OIORASP 37
5.1 Initial Exploration . 37
5.2 Running OIOFuzz . 38

5.2.1 Observations From Early Iterations 38
5.2.2 Experiment Setup . 39
5.2.3 Different Variations . 40

5.3 Schematron Error . 41

6 Related Work 45

7 Discussion 47
7.1 Instrumentation of the ClientExample 47
7.2 C# Fuzzer . 48
7.3 Schematron Guided Mutations . 48
7.4 Generation-based Fuzzer . 49

8 Conclusion 51

9 Future Work 52

Bibliography 54

A OIOUBL Invoice Document 57

Preface

This master thesis is written by the group cs-23-ds-10-06 in the spring semester of
2023 at Aalborg University.

Figures, listings, etc., are numbered by order of appearance.

The Harvard reference style are used for citations. All citations is in the Bibliogra-
phy at the end of the report.

We would like to thank our two supervisors Danny Bøgsted Poulsen and René
Rydhof Hansen for their guidance on our project.

Aalborg University, June 16, 2023

Emil Fulei Lykke Aagreen
<eaagre18@student.aau.dk>

Frederik Arnfeldt Jensen
<faje18@student.aau.dk>

v

Summary

It is as important as ever to secure software from threats from hackers and foreign
powers trying to gain political information. If the Danish IT infrastructure was
compromised it would have detrimental consequences to the Danish population
and the government. An important part of the Danish IT infrastructure is the OIO-
RASP protocol used for exchange of e-business documents. Therefore we aimed to
test OIORASP with fuzz testing, which is an automatic test method.

OIORASP is maintained by Nemhandel which is a branch of Erhvervsstyrelsen.
It supports business-to-business and business-to-government relationships and is
used for sending e-business documents that follow the OIOUBL document stan-
dard. OIOUBL consists of standards for 15 types of business documents, including
invoices and orders. We use fuzzing to test the OIORASP protocol.

Fuzzing is an automatic test method that focuses on finding errors and unex-
pected behavior that can easily be missed by other test methods. It does so by
constructing random inputs and passing those to the target program. Fuzzing has
become increasingly more popular over the recent years, and has evolved to be a
popular bug finding method.

We implemented a guided model-based blackbox called OIOFuzz to fuzz the
OIORASP protocol. It was focused on the Schematron validation of the protocol
and it mutated and generated parts of OIOUBL documents. It is a mutation-based
fuzzer with generation-based functionality. We ran different experiments with
OIOFuzz which showed that our approach was a little bit naïve, but it did manage
to find an error in the Schematron validation of OIORASP. The found error was
unexpected as the input passed the schema validation of OIORASP, happening just
before the Schematron validation, and therefore should be of the correct format to
be validated with the Schematron. The error happened when a field in an example
invoice document was duplicated, which is schema valid but the Schematron rules
do not account for that.

With the found error, we concluded that OIOFuzz is functional and that it
showed the potential of using fuzzing to test the OIORASP protocol. However
we also concluded that it has room for improvement and more functionality that
could enable it to find more errors could be added. We assessed that the areas that

1

Preface 2

could improve OIOFuzz the most, are functionality that could provide a broader
exploration of Schematron rules.

Chapter 1

Introduction

The modern world is more and more reliant on IT. Everything gets digitalized
from systems for companies and systems for governments infrastructure, making
the need of these systems being secure really important. As of last year Danish
companies has been target of Russian hacker attacks [15]. One of the precautions
that can be taken is the testing, verification and validation of software to find
vulnerabilities.

A method for automatic software testing that is gaining traction lately and has
been used to find thousands of vulnerabilities in different software is fuzz testing,
also referred to as fuzzing [12]. Fuzzing focuses on finding errors and unexpected
behavior in a program at runtime. It does so by constructing random inputs and
then pass those to the target program. Thereafter the output is observed, both
to verify whether unexpected behavior was encountered and to be able to utilize
information about the output to guide the fuzzer towards finding new program
behavior. Fuzzing is particularly effective for testing edge cases and finding vul-
nerabilities that might have been missed by static program analysis and manual
code inspection, such as penetration testing. Fuzzing is therefore different from
most common test method, as these aim to test correct behavior or the functional-
ity of specific features [12, 40].

In previous work, made along with two other students, we conducted a study
of the Danish IT infrastructure, to verify the efforts made to ensure the security of
it. The results of this study are presented in the chapter “Danish IT Infrastructure”
in the student report "Towards Verification of the OIORASP Protocol" [8].

We now present a summary of the chapter in the following section to motivate
the importance of testing components of the Danish IT infrastructure.

3

4

Summary of the Danish IT Infrastructure

The Danish government works towards digitalization of the Danish public sector. In
this process they established Digitaliseringstyrelsen (The Digitalization Board) in
2011 to lead the digitalization [6]. The goals of a digitalized public sector is to
lower manual work, improve productivity, and connect provided services. These
goals are to be realized through six areas: digital infrastructure, data and technol-
ogy, cyber and information security, digital service, law and digitalization, and IT
leadership. Each area has some designated strategies for adhering to the current
plan which range from 2022 to 2024 [4].

The plans for cyber and information security are based on threats assessed by
the Center for Cybersikkerhed (Center for Cyber Security) [5]. One of the threats is the
constant pressure from cyber criminals, which relentlessly attacks critical IT infras-
tructure. Another threat is from actors from foreign governmental bodies trying to
get information on foreign and safety political areas. The Danish government has
set four goals for increasing the security in a digital public sector. The goals are to
increase robustness security of critical systems, increase competences of employ-
ees, increase collaboration with private companies, and collaborate internationally
on cyber security. They realize these goals through 34 initiatives, and financed the
Danish Cyber Defense with 500 million Danish kroner to attain these goals.

When a project uses more than 30 million Danish kroner on IT solutions per
year, they need to provide a portfolio, which keeps track of certain areas of the
project [7]. The areas are; usability, technical status, documentation and domain
knowledge, economy, contracts and outsourcing, and security.

Solutions developed as part of the digital transformation of the Danish pub-
lic sector are for example MitID, borger.dk and Digital Fuldmagt [3]. MitID
is used to verify citizens, borger.dk is a platform for all publicly provided self-
services, and Digital Fuldmagt is used for citizens to pass on power of attorney
to relatives. In summary the Danish IT infrastructure connects over 2000 services,
and the main focus is on the importance of maintenance, further development,
possibility of refactoring, and scalability. Although the government has all these
goals there is no mention of verification and validation of these systems, which
would seem like an important thing. As such further testing of these systems are
very relevant.

Based on this study we found it relevant to pursue further testing of these sys-
tems and choose to focus on the OIORASP protocol which is an integral part of
Nemhandel. Nemhandel supports a big part of the Danish IT infrastructure by
facilitating the sending of electronic business documents.

With this report we aim to explore the potential of using fuzzing for automatic
testing of OIORASP. For this a guided model-based blackbox fuzzer, OIOFuzz, was
implemented and used on the publicly available .Net library for OIORASP.

5

Report Outline

In Chapter 2 we present the OIORASP protocol, used for exchanging business doc-
uments in both business-to-business and business-to-government context, as well
as the context it exists within. Additionally we present the OIOUBL e-business
document standard that are used for the documents sent with the protocol, along
with how the documents are processed in OIORASP. In Chapter 3 we present
theory on fuzzing, where the most common approaches to fuzzing and some dif-
ferent fuzzing concepts are described. In Chapter 4 we first delimits the target
to the Schematron validation in OIORASP and then describes the implementation
of OIOFuzz, a guided model-based blackbox fuzzer targeting OIORASPs Schema-
tron validation. In Chapter 5 we present experiments of fuzzing OIORASP with
OIOFuzz and results of these. Related work is presented in Chapter 6. In Chap-
ter 7 different aspects of the fuzzing harness are discussed. Our conclusion of the
project is given in Chapter 8, while future work is considered in Chapter 9.

Project Code

The code for the OIOFuzz is publicly available at:

https://github.com/fulei345/P10-Code

The code for the .NET release of the OIORASP protocol is, as of writing (June 16,
2023), publicly available at [10]:

https://rep.erst.dk/git/openebusiness/library/dotnet

Chapter 2

OIORASP

The following chapter is partially a rewrite of the chapter "E-Commerce Standard-
ization Efforts" from the student report "Towards Verification of the OIORASP Pro-
tocol" that we co-wrote with two other students [8]. Up to and including section
Section 2.2 are a rewrite, section Section 2.3 is partly a rewrite, but has been ex-
panded with more information. Section Section 2.4 is completely new.

In this chapter we introduce the OIORASP (Offentlig Information Online Re-
liable Asynchronous Secure Profile) protocol and the context it exist within. The
OIORASP protocol is used for reliable and secure transport of business documents
over the internet [9]. The protocol is used for exchanging business documents
in both business-to-business (B2B) and business-to-government (B2G) context. It
plays an important part in the Danish IT infrastructure as it is used for Danish e-
commerce. The protocol is part of efforts to standardize e-commerce in EU through
security standards, schemas, and internet protocols. It is mandatory by law to use
the OIORASP protocol in B2G context.

Security for the Danish e-commerce infrastructure is of high importance as
deficiencies would have consequences impacting all Danish citizen. Testing the
OIORASP protocol is therefore important.

As far as we know, no extensive documentation of the OIORASP protocol is
available publicly, which has resulted in parts of this chapter being written with-
out explicit sources. These parts is instead written from available guides, inspec-
tion of the source code from the OIORASP repository [10] (specifically the .Net
version of the library), and analysis of network traffic intercepted with the tool
WireShark [10].

Chapter Outline

In Section 2.1 the international and the Danish infrastructure for e-business is pre-
sented, to provide the context OIORASP exist within. The OIORASP protocol is

6

2.1. E-business Standards 7

presented in Section 2.2 with a general overview given in Section 2.2.1 and details
on the protocol in Section 2.2.2. OIOUBL, which is the document standard used
in the OIORASP protocol, is presented in Section 2.3. In Section 2.4 details on the
document processing in components of the OIORASP repository is presented.

2.1 E-business Standards

Standards for exchange of e-business documents between government, companies,
and customer exist. These standards is meant to ensure that the process is easy
and secure. Using common documents and transportation processes facilitates the
interoperability between different entities in a business process. Different com-
panies maintain various standards for e-business with the aim of facilitating the
interoperability both nationally and internationally.

One of such is the Universal Business Language (UBL) standard, which is
maintained by the Organization for the Advancement of Structured Information
Standards (OASIS) [11]. The OASIS UBL standard is an XML library of common
business documents, such as invoices, catalogues, and purchase orders. UBL is
intended to ensure interoperability in general business processes internationally.

2.1.1 OpenPeppol

OpenPeppol is a European association in charge of efforts for European e-procurement
standardization, aiming to facilitate interoperability for business processes between
European countries. It maintains the Peppol Business Interoperability Specifica-
tions (BIS) standard, which are formal requirements ensuring pan-European in-
teroperability of procurement documents. Peppol BIS is devised by the European
Committee for Standardization (CEN) during their Business Interoperability work-
shops (CEN BII). It utilize the UBL standard for the document standardization.
OpenPeppol provides technical guidelines for embedding the document standard
in existing solution for business document transportation [26, 24].

Additionally it also provides the Peppol eDelivery network, which is a central
e-business document transport solution. The Peppol eDelivery network is used to
exchange Peppol BIS business documents between local Peppol authorities in Eu-
ropean countries. Peppol maintains a centralized Service Metadata Locator (SML)
that the eDelivery network depends on, as it defines which Service Metadata Pub-
lisher (SMP) to use when retrieving delivery details. The Peppol authorities in each
European country must ensure that their Access Points and SMP services conforms
to technical service specifications [25].

2.2. OIORASP 8

2.1.2 NemHandel

Erhvervsstyrelsen (ERST) is the Danish Peppol authority. NemHandel is a branch
of ERST that provides the Danish Peppol SMP, NemHandelsRegistret (NHR). NHR
is the access that is connected to, to retrieve the required delivery details, when
sending Peppol BIS documents to Danish companies [9].

NemHandel is meant to facilitate easy and secure exchange of business docu-
ments both internationally and within Denmark. It aims to support both senders
and receivers in B2G and B2B processes. NHR, besides acting as the Danish Peppol
SMP, also acts as the Danish national SMP.

The Danish document standard for e-business is Offentlig Information Online
UBL (OIOUBL), which is a subset of document profiles from the UBL 2.0 stan-
dard. Which profiles are relevant according to the requirements of Danish national
business processes is determined by ERST [16].

2.2 OIORASP

Offentlig Information Online Reliable Asynchronous Secure Profile (OIORASP) is
the transport protocol used for exchanging business documents with companies
registered in NHR. It is the national adaption of the international family of web
service (WS) standards , and it is meant to facilitate easy and secure transport of
e-business documents. OIORASP can be considered as the Danish counterpart to
the Peppol eDelivery standard. The purpose of the protocol is to provide secure
and reliable exchange of business document in asynchronous environments [9].

According to our knowledge extensive documentation of the OIORASP is not
publicly available. Service providers registered in NemHandel has to contact
NemHandel directly for assistance when implementing the protocol.

In Section 2.2.1 a brief overview of the protocol is presented, while more details
is presented in section 2.2.2.

2.2.1 Protocol Overview

An overview of the infrastructure of the OIORASP protocol is shown in Fig-
ure 2.1 [9]. An e-business document to be send is produced in the senders own
internal business system. From there it is forwarded to an Access Point (AP),
also referred to as endpoints, which can be hosted externally. The AP handles
the transportation of the e-business document, in a secure and reliable manner,
meaning the sender does not have to implement this functionality in their business
system. From the AP the sender retrieves the address of the receivers AP from
NHR and sends the business document to the receivers AP using the OIORASP
protocol. Services such as NHR, where the addresses of registered APs can be

2.2. OIORASP 9

found, is provided by NemHandel to facilitate the functionality of the OIORASP
protocol.

Figure 2.1: From [8]. The OIORASP protocol is used to send business documents between two APs in
asynchronous environments in a reliable and secure manner [9]. The protocol is often implemented
by AP providers, s.t. businesses themselves do not have to.

The sending of document with the OIORASP protocol consist of four central steps:

1. Look up in a UDDI-server for the receivers endpoint address and UUID.

2. Download receiver certificate from an LDAP-server.

3. Check validity of the receivers certificate with a lookup to an OCSP-server,
supplemented by a validity check against a CRL.

4. Send the business document to the receiver.

An overview of the connections made and actions performed during the four
steps are presented in Table 2.1. A more detailed description of the steps is pre-
sented in Section 2.2.2. During the third step two separate connections is made.
The first connection made is to the OCSP-server and the second connection is to an
address where the CRL can be downloaded from. Further details on the requests
made and their corresponding responses are described in the following section.

2.2.2 Protocol Details

In this section details on the four central steps of the OIORASP protocol, intro-
duced in Section 2.2.1, are presented. The presented details on the protocol are
based on information gathered from inspection of the code from the .Net version of
the OIORASP repository [10] and network traffic intercepted with WireShark [38].
The intercepted network traffic is from communication between the ClientExample

from the OIORASP repository, run locally, and a NemHandel demo endpoint.

2.2. OIORASP 10

Step Access Point Action Summary
1. Endpoint lookup discoverypublic

.nemhandel.com
Request user UUID using a
GLN number. Then receiver
endpoint information is re-
quested and received. Lastly,
receiver model details are re-
trieved.

2. Certificate download crtdir.certifikat.dk LDAP search request, followed
by downloading receiver certifi-
cate.

ocsp.ica04.trust2408.com Certificate validity check by
lookup using OCSP.

3. Certificate validation
crl.oces.trust2408.com Certificate validity check

against CRL.
4. Send document demo.nemhandel.dk Send document to receiver end-

point.

Table 2.1: Summary of the four central steps of the OIORASP protocol. Each step is shown, along
with the connections made, and a short summary of the performed actions during the step. The
fourth connects to the user endpoint. In this case it is the demo endpoint provided by NemHan-
del [8].

Look Up Receiver Endpoint Address

The first of the four central steps to sending business documents with OIORASP
is to look up the address of the receiving endpoint. The receivers GLN (Global
Location Number), which is specified in the business document, is used to find the
receiving endpoint address. The GLN is sent to the NemHandel SML, which then
responds with the address for the receiving partys remote endpoint.

The NemHandel SML is an UDDI-server (Universal Description, Discovery and
Integration), containing information about registered SMPs. Information about
client endpoints is provided by the SMPs. Multiple SMPs are hosted by NemHan-
del, with the NHR being on of them, while others exist for integration testing.

The lookup on the UDDI-server consist of three SOAP (Simple Object Access
Protocol) requests, which is modelled in Figure 2.2. An exchange of UUIDs (Uni-
versally Unique Identifier) is the core essence of the requests. UUIDs is unique
identifiers, which is in this context used for schemas and services in the NemHan-
del UDDI-server. The receivers GLN is sent to the UDDI-server in the first SOAP
request and the receivers UUID is returned in the response to the sender. The
UUID is then used in the second SOAP request, which requests further informa-
tion on the receiver. Information about endpoint address and a string certificate of
the receiver is returned in the response to this request. The last SOAP request sent

2.2. OIORASP 11

is meant to gather details on the model used by the receiver. The response to this
request specifies APs containing different information on the service provided by
the receiver, part of which is the types of documents the receiver accepts.

Figure 2.2: An overview of communication when the AP of the sender requests details of the receiver
from NemHandel UDDI-server [8].

Download Receiver Certificate

The string certificate obtained from the UDDI-server response is to download the
receiver certificate object. The country code and serial number are extracted from
the string certificate. These are used to make an LDAP (Lightweight Directory
Access Protocol) search request message. This message is used for identifying and
downloading the certificate from the certificate directory. The serial number is
used for the lookup in the directory and if it is found, the response to the request
will contain a certificate object, which has accessible fields for the different parts of
the certificate.

Certificate Validation

After the receivers certificate has been downloaded, it needs to be validated to en-
sure that it is a trusted entity. The certificates used with the OIORASP protocol
are X.509 public key certificates and are part of Nets DanID public key infrastruc-
ture (PKI) [23]. An OCSP-server (Online Certificate Status Protocol), provided by
Nets, is used to validate certificates issued by NemHandel. This validation is sup-
plemented with validation of the certificate against a CRL (Certificate Revocation
List) provided by NemHandel. In the CRL it is specified which certificates that

2.3. OIOUBL - Universal Business Language 12

have been revoked and are thereby not valid any longer. The receivers certificate is
first validated with the OCSP-server and then against the CRL.

Sending The Business Document

The last of the steps is the sending of the business document. The document
is sent through a HTTP POST request to the receivers endpoint address. WS-
ReliableMessaging, a web service protocol standard used for reliable delivery of
SOAP messages, is used to establish a connection for the transport of the business
document. A WS-ReliableMessaging CreateSequence element is then used to es-
tablish a sequence of messages. This element contain the ID and ID type for both
sender and receiver and the receivers endpoint address.

A request object corresponding to the document being sent is formed, with the
endpoint address and identifiers for sender and receiver. Statens It (The Agency
for Governmental IT Services) provides the specific namespaces for each SOAP
action request. The business document is sent after being encrypted along with
signature information.

The encryption of the document is done using the AES-256-CBC block encryp-
tion algorithm and the document is signed with a RSA-SHA1 signature. The public
key of the receivers endpoint certificate is used as the encryption key for the AES-
256-CBC algorithm, s.t. only the receiver can decrypt the document.

If, e.g, the document being sent is an invoice, then a SubmitInvoiceRequest
SOAP action will be sent. If the receiver accepts the senders certificate, which is
sent alongside the SOAP message, as valid, the receiver will respond with a Sub-
mitInvoiceResponse. This response tells that the document was received success-
fully and the sequence of messages is ended with terminating SOAP messages.

2.3 OIOUBL - Universal Business Language

OIOUBL is the document standard used by the OIORASP protocol. It is a Danish
adaption of the UBL document standard and is a subset of UBL 2.0. The focus
for the UBL 2.0 standard is automating online transactions, to save on resources
and costs. OIOUBL consists of standards for the format of 15 different types of
business documents, such as orders and invoices. Some document types from
the UBL 2.0 standard are excluded from OIOUBL. OIOUBL is an extension of
OIOXML electronic invoice, an older document standard based on an older version
of UBL. Guidelines exist for each of the different document types, which describes
the document types overall class structure and contains description of classes and
elements in the document type [16]. The structure of an OIOUBL invoice document
is presented in Figure 2.3, as an example to provide an overview of the structure
of OIOUBL documents.

2.3. OIOUBL - Universal Business Language 13

Figure 2.3: Structure of an invoice document. This shows the classes and fields in the document
as well as the order they should be in. Classes are marked with a plus at the side. Mandatory
classes and fields have full lines, while optional classes and fields have dashed lines. The grey fields
and classes can always be used, while the white fields and classes only can be used with bilateral
agreement. This structure is from the guideline for the invoice document type [17].

2.3.1 OIOUBL Properties

The Common Class Library is described as the backbone of OIOUBL. The library
contains descriptions of all elements that exist in the different types of OIOUBL
documents. It is intended to produce the highest possible reusability for the ele-
ments.

Two elements that are particularly important in order to understand OIOUBL
documents are Party and EndpointID. All types of OIOUBL have two parties that
are mandatory, the party for the sender of the document and the party for the
receiver of the document. Additionally some documents may also contain other
relevant parties. The parties can have different titles between the different types of
documents, s.t. the title express the role that the party has in the business process.
A unique identifier must be assigned to a party.

The EndpointID element is a unique identifier for the endpoint at the docu-

2.3. OIOUBL - Universal Business Language 14

ments target destination. For all parties that are included in the document an
EndpointID must be specified. An EndpointID must be recognizable for the estab-
lished address register.

Code lists are another significant part of OIOUBL. They are used to specify al-
lowed values for certain elements, e.g. specific currencies or country codes that can
be used. A set of code lists exist for the Danish OIOUBL customization. The code
lists is meant to assist in achieving fully automated processing of data exchanged
for OIOUBL.

Both senders and receivers can specify which types of OIOUBL documents
they support, through the use of profiles. A ProfileID that identifies the profile
a document relates to must be specified in an OIOUBL document. A profile can
describe one or more interconnected business processes, where the processes can
be part of one or more OIOUBL documents. The profiles is used to determine
which types of documents a party must be able to send and receive, a partys role
in the business process, and which processes the party must support.

OIOUBL documents utilize several namespaces. These namespaces are ex-
pressed with alias variables in the top of the documents. Throughout the rest
of the document the alias variables is used to reference the namespaces [16].

OIOUBL Document Attributes

OIOUBL documents consists of fields and classes. The fields and classes both have
the following attributes:

• UBL-Name: The name of the field or class in UBL 2.0.

• DataType: What data type that field has e.g. Identifier, Date, Text, Code or
Numeric. For the classes the datatype is its classtype.

• Usage: Whether the field or class always can be used or if it needs bilateral
agreement.

• Cardinality: Defines how many fields or classes with this name there can be.
This can be 1, 0..1, 0..n, and 1..n.

The classes contains their own fields and subclasses, that have the same attributes [17].

2.3.2 Validation of OIOUBL Documents

XSD (XML Schema Definitions) is used to validate the structure of the OIOUBL
documents. XSD schemas define and describes the structure of an XML docu-
ment [33]. OIOUBL specifications are directly based on UBL 2.0 schemas, but with

2.4. Document Processing in the OIORASP Library 15

a few elements excluded due to business related reasons, such as not being of rel-
evance in a Danish context [16]. For OIOUBL documents, the schemas is used to
validate that the mandatory fields and classes are present in the document e.g. ID,
UBLVersionID and IssueDate. Furthermore it is also used to validate the data types
of the fields e.g. identifier, date, and numeric.

Schematron is used to validate business rules for an OIOUBL document. Schema-
tron is an XML schema language and is used to validate XML documents. Rules
and checks, which are defined XPath query patterns, are used to validate docu-
ment instances. A rule could e.g. be that an identifier or code is one of the valid
code list values or that a numeric field has some exact value. Schematron files is
written as XSLT (Extensible Stylesheet Language Transformations) stylesheets [2].

XSLT is a language used for transforming an XML document into a document
consisting of XSL (Extensible Stylesheet Language) formatting object or into other
formats similar to XML, such as HTML, by adding styling information to the doc-
ument. The XSLT transformations expresses rules for transforming source XML
trees into result XML trees. A XSLT stylesheet contains a set of template rules.
These rules consists of three parts; a pattern used to match with nodes, a set of
parameters which can be empty, and a sequence constructor which is used to
produce sequences of items through evaluation. The template rules associates a
pattern, that matches nodes in the source document, with a sequence constructor
and evaluates the sequence constructor, which will often result in construction of
new nodes for the result XML tree [35].

XSL is a language used to express stylesheets. It describes how different XML
documents should be displayed and is used in XSLT. Additionally it contains ad-
vanced styling features that are expressed by an XML document type and defines
a set of elements called formatting objects, which expresses the resulting format of
the object after a transformation [34, 31].

2.4 Document Processing in the OIORASP Library

When an OIOUBL document is sent with the OIORASP protocol, it is processed
in different phases of the protocol. These phases are visualized in Figure 2.4. The
first three phases happens at client side. Here the document is first parsed with
an XML parser. Then the document is validated, first against the schemas for the
specific type of document and then against the Schematron for the document type.
Thereafter the document is attached to a SOAP message, where it is encrypted.

The document is then sent to the server, where it goes through two more
phases. When the server receives the SOAP message from the client, it extracts
the OIOUBL document, where it is decrypted and parsed. Thereafter the server
also validates the document with the schemas and Schematron for the document
type.

2.4. Document Processing in the OIORASP Library 16

Figure 2.4: The processing of the OIOUBL document throughout client server communication in the
OIORASP protocol.

Chapter 3

Fuzzing Theory

In this chapter we will present theory on fuzzing, which will be used for testing
OIORASP. Fuzzing is an automatic test method where unexpected inputs are auto-
matically created for a target program. These inputs is then provided to the target
program in an attempt to discover bugs in the program [40]. A fuzzer cannot verify
correctness of a program in respect to a specification but is suitable to be used to
find runtime errors. After the fuzzer has run the user will have a set of inputs that
exercise different program behaviors. If some of these program behaviors leads
to a crash, the corresponding input can be used the recreate the crash and can
therefore be used to identify the bug.

The term fuzzing was used for the first time by Professor Barton Miller at the
University of Wisconsin in 1988. Miller experienced noise in a dial-up connection,
causing bad inputs to the UNIX commands at the ends of the connection. The bad
inputs led the UNIX utility programs to crash. This later inspired Miller to give
his students a programming exercise that had them creating the first fuzzers.
The Fuzzing Book [40], which has been used as the primary source for this chapter,
is an online, interactive book that covers the basics of fuzzing and state of the art
fuzzing techniques that are being researched.

Chapter Outline

The three common approaches to fuzzing, black-, white-, and greybox fuzzing,
is presented in Section 3.1. Different concepts used in fuzzing are presented in
Section 3.2. In Section 3.3 the state-of-the-art greybox fuzzer American Fuzzy Lop

is introduced, along with a look into some of the techniques it uses. It is introduced
as it is the state-of-the-art fuzzer and is used as a baseline for many other fuzzers.

17

3.1. Fuzzing Approaches 18

3.1 Fuzzing Approaches

In this section we presents the three common approaches to fuzzing; black-, white-,
and greybox fuzzing. The difference in the approaches is found in the amount of
program information that the fuzzer utilize. Blackbox fuzzing, an approach where
the fuzzer utilize only external program information, is presented in Section 3.1.1.
In Section 3.1.2 whitebox fuzzing, an approach where static analysis techniques are
used on the target program to gain program information that the fuzzer leverages,
is presented. In Section 3.1.3 greybox fuzzing, an approach where instrumentation
of the source code is used to gain program information that the fuzzer can leverage,
is presented.

A small example program is presented in Listing 3.1. The program is used
throughout this section as an example, to showcase the differences in how the
different approaches works with a concrete example. The small program takes a
string and first checks if the length of string is 24 and then checks if the character
at index eleven is an a. If both are true it raises an exception.

1 def func1(s: str) −> None:
2 if len(s) == 24:
3 if s[11] == ’a’:
4 raise Exception()

Listing 3.1: Example program using python syntax, which takes a string as an input

3.1.1 Blackbox Fuzzing

Blackbox fuzzing is a fuzzing strategy where the target program is seen as a black-
box. This means that a blackbox fuzzer is only able to observe and use exter-
nal program information for the fuzzing process, e.g. the execution time of the
program or whether the program has crashed. Blackbox fuzzers constructs new
inputs, passes them to the target program, and observes the program output.

Blackbox fuzzers advantage is the ease of implementation, as no prior knowl-
edge of the targeted program is required. The disadvantage of blackbox fuzzers is
that they are rarely able to pass certain conditional statements due to their random
construction of inputs. Not being able to pass the conditional statements makes the
testing of the target program shallow and bugs that exist deeper in the program
behavior will not be found [40].

Example 3.1 (Blackbox Fuzzing)
Consider a blackbox fuzzer being used on the small program presented in List-
ing 3.1. The fuzzer would generate random strings to pass as input for the

3.1. Fuzzing Approaches 19

func1() function. The probability of one of these string passing the first con-
straint on line 2 is already low, as it will have to be exactly 24 characters long.
The probability of the string then also passing the second constraint on line 3
is even lower, as it would then also need to have an a at index eleven. Assum-
ing that the fuzzer chooses a random string length between 1 and 1000 before
constructing the characters of the string, would give it a probability of 0.1% to
generate a string with a length of 24. Additionally assuming that the constructed
strings is composed only of letter from the Danish alphabet, both capital and non
capital, the probability of character at index eleven being an a is 1/56 ≈ 1.8%,
giving a total probability of 0.1% × 1.8% ≈ 0.0018% of the second constraints
being passed. As such, the fuzzer, will most likely have to run for a long time
to explore all lines of this small program with two nested constraints. With a
bigger target program with more constraints, the blackbox fuzzers potential for
covering the full code base will be extremely low, almost non-existing. Particu-
larly code blocks nested within multiple constraints is likely to not be explored
and potential bugs in those code blocks would not be found.

3.1.2 Whitebox Fuzzing

Whitebox fuzzing is a fuzzing strategy where information about the target pro-
grams source code is used by the fuzzer. The information can be used to guide the
fuzzer s.t. the amount of the code covered during the fuzzing process is increased
or to target specific program locations. Different techniques for gaining the infor-
mation, such as symbolically executing the target program, can be used [13].

An example of a whitebox fuzzer is SAGE, which is developed by Microsoft [14].
SAGE dynamically conducts a symbolic execution of a program to gather con-
straints on the conditional branches that are encountered throughout the execution
path. It then negates the constraints and attempts to solve them with a constraint
solver, which is used to make new inputs that can explore different program paths,
as they can be made to explore the different conditional branches.

Example 3.2 (Whitebox Fuzzer)
Consider a whitebox fuzzer being used on the small program presented in List-
ing 3.1. Like the blackbox fuzzer it will generates random strings to pass as
input to the func1() function. However, contrary to the blackbox it will before-
hand have gathered information about the two constraints and found out how to
solve them. Therefore it will be able to guide the fuzzing process to explore all
lines of the function, by making strings that will pass one, none, or both of the
constraints. The whitebox fuzzer thereby has the ability to find potential bugs

3.2. Fuzzing Concepts 20

nested deeper in the program behavior, that the blackbox fuzzer will be unlikely
to find.

Using static analysis techniques provides whitebox fuzzer with information
about the target program that can be used to guide the fuzzing process, but it
comes with the cost of often being difficult and costly to implement. Moreover full
access to the source code is also required to implement whitebox techniques. The
techniques, when implemented, also must be adjusted to the programming lan-
guage of the target program, meaning that before whitebox fuzzing is applicable,
a large programming task has to be overcome.

3.1.3 Greybox Fuzzing

Greybox fuzzing provides a middle ground between blackbox and whitebox fuzzing,
which can often be desired since blackbox fuzzing lacks information that can be
used to guide the fuzzing process, while whitebox fuzzing can be computationally
heavy and at times difficult to implement. Greybox fuzzing is a fuzzing strategy
where light weight information on the target program, e.g. code coverage, is used
to guide the fuzzing process. Techniques that can be used for greybox fuzzing are
often built into programming languages, e.g. the Python function settrace()
from the sys core module, which allows for passing a function to be called each
time a line of code is executed and can thereby be used to track which lines has
been executed [40].

Example 3.3 (Greybox Fuzzer)
Consider a greybox fuzzer, using code coverage information, being used on the
small program presented in Listing 3.1, where it will generate random strings for
the input. Like the blackbox fuzzer, the greybox fuzzer has no prior knowledge
of how to pass the two constraints in the program. However, when it manage
to generate a string that passes the first constraint on line 2, the greybox fuzzer
will gain the knowledge that the string achieved new code coverage. This guides
the fuzzer to make more string with a length of 24, as it will use the string that
passed the constraint to construct new strings. This gives it a better opportunity
of eventually also passing the second constraint.

3.2 Fuzzing Concepts

In this section we will describe some different concepts for fuzzing. First, in Sec-
tion 3.2.1, mutation- and generation-based fuzzing is presented, which use two

3.2. Fuzzing Concepts 21

different methods for constructing inputs. Secondly, in Section 3.2.2 the concept of
smart and dumb fuzzers is introduced. Then the use of code coverage for fuzzers
is introduced in Section 3.2.3, and the concept of a power scheduler is introduced
in Section 3.2.4.

3.2.1 Mutation- and Generation-based Fuzzing

As fuzzing entails automatically creating unexpected inputs for a target program
to try to discover bugs, how the input is constructed is an important considera-
tion. In this section we present two different methods for constructing the inputs:
mutation- and generation-based.

Mutation-based fuzzers uses a corpus of initial input seeds for the construction
of inputs. The initial corpus contains well formed inputs for the target program.
In order to optimize the process of finding new program behavior during fuzzing,
it is preferable that the corpus contains inputs causing diverse behaviors.

The fuzzing process for mutation-based fuzzer starts by selecting an input seed
from the corpus, which is then mutated before being passed to the target program.
The mutated input can thereafter be added to the input corpus, if it has led to
new program behavior. Mutations to the input is often made at the byte level of
the input data, s.t only singular bytes is affected by the mutation. Such mutations
do not require knowledge of the inputs structure and restrictions, and are as such
often easy to implement. Constructing input through mutations comes with the
downside that the constructed inputs are often unable to reach deep in the program
behavior, since random mutations are unlikely to find the correct values for path
constraints [40].

Generation-based fuzzers constructs input for the target program by generating
the input from scratch based on a specification of valid input. A specification
of valid inputs could e.g. be grammars. A grammar is particularly useful for
expressing the syntactical structure of an input and can therefore be used to ensure
that generated input adhere to the structure. As an example if the input that are
generated is a date, the first 4 digits needs to represent a year, and the next 4 digits
needs to represent a month and a day respectively. A grammar can then ensure
that the generated input adhere to these structural rules of the date format [40].

Using structures such as grammars allows for the possibility of deriving deriva-
tion trees of the generated input. Derivation trees allows for easy expansion and
replication of inputs, and analysis of the derivation of interesting inputs.

A downside for generation-based fuzzers is the requirement of knowing the in-
put specification before being able to implement an input generator and potentially
defining a grammar or similar to use for the generation.

3.3. American Fuzzy Lop 22

3.2.2 Smart and Dumb Fuzzer

Another way of categorizing fuzzers are as smart and dumb fuzzers [20].
A dumb fuzzer is dumb because it does not take the context of the target or

the input into account. The only thing it knows is the resulting output of a specific
input. The advantages of a dumb fuzzer is that a simple version is quick and
easy to setup. On the other hand it is unlikely to make valid instances of highly
structured inputs such as XML. As such it will also mostly, or even completely, be
stuck at the parser if the input is a file, rather than actually fuzzing the program.
A very simple blackbox fuzzer is a dumb fuzzer.

A smart fuzzer is smart since it utilizes information about the target and its
input. The information can e.g. be the code coverage archived by an input, or the
structure of the input. With this information it is more likely to find bugs since it
can reach more of the target program. The disadvantage is that it requires more
analysis of the target, and more work to setup. A lot of greybox and whitebox
fuzzer are smart fuzzers.

3.2.3 Code Coverage

An common concept in fuzzing is code coverage. Code coverage is commonly used
in testing, as it is a good measurement of how much of the program functionality
has been tested. The two most common metrics for code coverage in fuzzing is
statement coverage and branch coverage. Statement coverage is a measurement of
how many of the statements in the code that has been executed. Branch coverage
focus on whether each branch in conditional statements has been taken. Fuzzers,
particularly greybox fuzzers, uses code coverage to guide the fuzzing process s.t.
they can explore non-executed statements. They do this by choosing input seeds
that exercise new program behavior more often [40].

3.2.4 Power Scheduler

Another concept is the use of a power scheduler, which is introduced by The

Fuzzing Book [40]. A power scheduler is used to choose the next input to be
fuzzed and assigns energy to each input seed. The higher energy a seed has, the
higher is the probability of it being chosen. The power scheduler assign more en-
ergy to interesting seeds, based on some criteria. This criteria could be seeds with
more code coverage or seeds that discovers new coverage.

3.3 American Fuzzy Lop

American Fuzzy Lop (AFL) is a state-of-the-art coverage-based greybox fuzzer [39].
AFL uses light weight instrumentation of C programs, which is injected into the

3.3. American Fuzzy Lop 23

target program when it is compiled with an afl−gcc option. AFL is made to be
an all general purpose tool, that implements a range of techniques that have been
found to be effective for fuzzing.

One technique concerns coverage measurements, with branch coverage being
captured by the instrumentation injected in the target program. AFL count the
amount of times one branch of the code has been reached directly from another
branch. With A, B, and C being code branches and a execution trace A → B →
C, AFL will store the tuples (A, B) and (B, C). A global map containing the
branch coverage tuples is kept. This way of storing the branch coverage allows
AFL to differentiate between different execution traces quickly. Storing only the
tuples helps to avoid comparing large traces and thereby risking problems with
path explosions. AFL stores coarse tuple hit counts in buckets in the ranges:
1, 2, 3, 4-7, 8-15, 16-31, 32-127, +128.

A second technique used concerns avoiding computational overhead by storing
as little information as possible. A trace is only stored if it is considered interesting.
Traces that are interesting is e.g. ones where a new tuple is encountered, or where
the hit count of a tuple moves to a new bucket. As an example consider the two
traces A→ B→ C→ D→ E and A→ B→ C→ A→ E. The second trace would be
considered a interesting trace and therefore stored, as it contains two new tuples,
(C, A) and (A, E), compared to the first trace that has been explored before-
hand. An execution trace might cover a lot of branches without being considered
interesting if it does not contain any new tuples.

When an interesting trace is encountered, both the branch coverage tuples and
the mutated input producing the trace are stored. These inputs can then be used
as input seeds for further testing.

Chapter 4

Implementing OIOFuzz

In this chapter we present the implementation and general design of our fuzzing
tool OIOFuzz used to fuzz test the OIORASP protocol. We developed our own
fuzzing tool, rather than deploying an existing tool. This was chosen to get a
fuzzing tool that is highly specialised towards the OIORASP protocol. This also
means that the fuzzing tool is not meant as a general purpose tool, although it
implements well known fuzzing concepts, that are used for general purpose or for
other specialised tools. OIOFuzz is a guided model-based blackbox. It primar-
ily utilize mutation-based fuzzing but contains some functionality for generation-
based fuzzing as well.

The implementation is a proof of concept, aiming to demonstrate a fuzzing
tools potential for automatically testing the OIORASP protocol. The implemen-
tation has been made with a focus on one of the 15 business document types in-
cluded in the OIOUBL document standard, specifically the invoice document type.
A model expressing the structure and types of the elements has been made for the
invoice document type, but not for the other business document types. We have
instrumented the ClientExample, which is the OIORASP implementation of the
client side, which reside in the sample folder of their .NET repository [10]. The
ClientExample and the httpEndpointExample, which is their implementation of
the server endpoint, is their own C# project inside the library. The fuzzer is guided
by the output from the ClientExample.

Chapter Outline

First in Section 4.1, the target for fuzzing the OIORASP protocol is delimited to
focus primarily on the Schematron validation in the OIORASP protocol. The gen-
eral approach taken to fuzzing the OIORASP protocol is sketched in Section 4.2
using a flowchart. In Section 4.4 details on the OIOUBL documents, that are im-
portant for the implementation of OIOFuzz, is presented. In Section 4.3 the setup

24

4.1. Delimiting the OIORASP Fuzzing Target 25

of OIORASP server and client endpoint, as well as changes made to the library
to facilitate fuzzing it, are described. An overview of the structure of OIOFuzz is
given in Section 4.5, while details on different components of OIOFuzz is provided
in Section 4.6. Lastly we briefly assess the classification of OIOFuzz in Section 4.7.

4.1 Delimiting the OIORASP Fuzzing Target

In this section we will narrow in the target for the fuzzing of the OIORASP pro-
tocol. In Chapter 2 we described the different concepts for the OIORASP protocol
such as the process of sending the document and the validation of the documents.
Among those the validation of the documents, particularly the Schematron val-
idation, contain the most OIORASP specific components and are deemed more
susceptible to human error. Therefore this is chosen as the primary target to fuzz.

The Schematron validation is used to ensure that the document complies with
certain business rules applicable for the type of document. The Schematron vali-
dation is executed with Saxon API for .Net. Saxon is a package containing tools
for processing XML documents with XSLT, XQuery, XPath, and XML Schema [29].
The Saxon .Net API is run with the document and the XSL file for the OIOUBL
Schematron for the document type.

The Schematron validation of the documents was chosen as the target, as it
contains the most OIORASP specific components. Most of the functionality of the
OIORASP library is achieved using .Net namespaces, most often in a straightfor-
ward manner. While there is certainly potential for finding errors in the use of .Net
namespaces and integration of these, we believe there is a higher chance for bug
finding in the Schematron validation. The Schematron XSL files are custom made
for the OIOUBL documents and the files are rather big, e.g. the Schematron file for
the invoice documents is 36470 lines long, making them more susceptible to hu-
man error. Moreover the Schematron rules are not described formally elsewhere,
but only indirectly through the guidelines for the documents. Pairing that with
the use of a third party tool for the validation of the Schematron files, makes the
Schematron validation a good target for potentially finding errors.

Targeting the Schematron validation depends on the fuzzing being directed
towards creating more schema valid documents.

The Schematron validation of OIORASP is an unusual fuzzing target, since it
is a document that gets compiled. This is unlike common fuzzer targets, which is
usually a program or a network protocols that can crash.

4.2. Fuzzing Approach 26

4.2 Fuzzing Approach

A flowchart showing our process for fuzzing OIORASP is presented in Figure 4.1.
An OIOUBL document is chosen from the corpus, mutated, and then passed to
the client. In the client the document is first parsed with an XML parser and
thereafter validated with schemas and Schematron. These part are encapsulated
inside the dashed lines, to show that they are part of the client. If an error happens
at these parts, the document will be logged. While the target of the fuzzing is
the Schematron validation, the client will still go through the parsing and schema
validation and it is still possible that errors could be found there, in which case
they will be logged too, as they are important to track as well. Lastly the corpus is
updated, where the document that was used can be added, s.t. it can be used for
later fuzzing iterations.

Figure 4.1: A flowchart showing an overview of the general approach taken to fuzz the OIORASP
protocol. The part encapsulated by the dashed lines is part of the client.

4.3 OIORASP Library Setup

Certain alterations is made to the library, mostly to the demo client and server
endpoints provided as part of the library, to support the fuzzing harness.

We use a test certificate for authentication when running the OIORASP server
endpoint, as production certificates for OIORASP is only available for NemHandel
service providers. The test certificate is provided in the library. However, the demo
endpoints in the library are configured to use production certificates. Therefore the
server endpoints configuration needs to be modified to use the publicly available

4.4. OIOUBL documents 27

test certificates. This is done by adding the root certificate of the used test certificate
to the list of valid root certificates, that is contained in the configuration file.

The demo server endpoint is hosted as a IIS (Internet Information Service) ap-
plication. In order to use the test certificate with the IIS application the application
pool used for the application has to be given permission to access the test certifi-
cates private key.

The demo client endpoint is changed to simply return the URL of the locally
hosted server instead of making the UDDI lookup to get the address of the end-
point. Moreover, the LDAP and OCSP steps of the protocol are removed from the
demo client, as these steps deals with downloading and verification of the server
certificate. These steps are irrelevant for the local server with the test certificate.
This means that the client endpoint now only executes the fourth of the steps pre-
sented in Section 2.2.1.

The library were also altered with some light instrumentation to support track-
ing of code coverage.

4.4 OIOUBL documents

The OIOUBL document standard specifies highly structured documents, which
present certain challenges that needs to be considered during the fuzzing of the
documents.

One set of structural rules originates from the OIOUBL documents being of the
XML document format. Elements in XML documents consists of start-tag and a
matching end-tag. A start-tag must have a matching end-tag and elements must
be properly nested [30]. A small part of an example OIOUBL invoice document
is presented in Listing 4.1. This listing contains an OrderReference element with
three child elements. The complete document can be found in Appendix A.

1 <cac:OrderReference>

2 <cbc:ID>5002701</cbc:ID>

3 <cbc:UUID>9756b468-8815-1029-857a-e388fe63f399</cbc:UUID>

4 <cbc:IssueDate>2005-11-01</cbc:IssueDate>

5 </cac:OrderReference>

Listing 4.1: An OrderReference class and its child element, found in an example invoice document.

If the fuzzer makes changes to any of the start-tags or end-tags, e.g. <cbc:ID>

in the listing, or changes the order the tags comes in, the document will no longer
be a valid XML document. As such, when sending such a document with the
ClientExample it will not get past the XML parsing.

Additionally, the OIOUBL document standard comes with its own structural
rules, which is expressed in the schema rules that the document has to adhere
to and in the guideline for the document type. These rules specifies elements that
must be present as well as elements that can be present. The rules exist for both the

4.4. OIOUBL documents 28

root class and for the specific subclasses that can exist in the document. Moreover it
also specifies the order that the elements must appear in. The schema rules for the
OrderReference class from the invoice document type, is visualized in Figure 4.2.
The ID field in the OrderReference class is mandatory, which can be seen in the
figure as it has full lines.

Figure 4.2: Structure of the OrderReference subclass in an OIOUBL invoice document. This shows
the fields and subclasses of the class as well as the order they should be in. Classes are marked with
a plus at the side. Mandatory classes and fields have full lines, while optional classes and fields have
dashed lines [17].

If the fuzzer deletes the mandatory ID field, adds a new non-valid field, or
changes the order of the fields in the class, it will make the document invalid
according to the schema rules.

The OIOUBL documents uses namespaces to express which schema file should
be used to check a specific element. XML namespaces is identified by a URI refer-
ence which can be declared with a prefix that can be used to refer to the namespace
in the rest of the document [32]. In Listing 4.1 the namespace prefixes cac and cbc
is used in the elements tags. All elements in OIOUBL documents has a namespace
prefix. The declarations of these namespaces is presented in Listing 4.2.

1 <Invoice xmlns="urn:oasis:names:specification:ubl:schema:xsd:Invoice-2" xmlns:cac="

urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateComponents-2" xmlns:

cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicComponents-2"

Listing 4.2: Part of the namespace declaration in an example invoice document

Making changes to the namespaces or namespace prefixes, anywhere in the
document, would make the document unable to be validated as the correct schema
cannot be found for the fields using that namespace. We made a small test to
verify that the XML parser caught the error, when one of the namespaces of a field
was manually changed. This resulted in the expected parser error of the start tag

4.5. Fuzzer Structure 29

not having a matching end tag. Therefore we made OIOFuzz with a focus on not
changing the namespaces.

4.5 Fuzzer Structure

In Figure 4.3 it is shown how our fuzzing harness, OIOFuzz, interacts with OIO-
RASP. On the left side it shows the OIOUBL document being parsed to the fuzzing
harness, where it is then mutated and written to the client. The client then parses
and validates the document before sending it to the server over WCF (Windows
Communication Foundation). The server receives the document and also parses
and validates it. If that happens successfully a message stating that the response
was received is returned, otherwise an error is returned. Feedback is returned from
OIORASP to the fuzzing harness runner, whether that is successfully received re-
sponse or an error from either the client or the server. Finally the runner sends the
feedback to OIOFuzz s.t. it can be used for choosing future seeds for the fuzzing.

Figure 4.3: Overview of how the fuzzing harness, OIOFuzz, interacts with OIORASP.

In Figure 4.4 an overview of the structure of OIOFuzz is shown. The fuzzing
harness consists of 7 components. The components are a parser, fuzzer, runner,
power scheduler and a mutator consisting of a field mutator and a structure muta-
tor. The arrows is used to show that the documents are only passed in that direc-
tion and a line indicates that the documents are passed both directions. The dotted
lines indicates that the mutator uses the model when mutating the documents.
The parser takes OIOUBL documents from a given input corpus and parses them
to the internal format XMLtree s.t. they can be modified. Thereafter the fuzzer
uses the power scheduler to choose a document from the corpus to mutate. One
of the available mutators is then chosen and used to mutate the document, where-
after OIOFuzz passes the document to the runner, where the document is written
to a file. At last the runner runs the ClientExample with the mutated OIOUBL

4.6. Components 30

document and receives the feedback from it. When mutating a OIOUBL document
the field or structure mutator can be chosen. The field mutator mutates the fields
of the OIOUBL document, where it changes the values in the fields. The structure
mutator makes structural mutations on the OIOUBL document, such as moving
elements or making new elements with the use of the invoice model. The invoice
model has the specification of all the classes and fields that can be present in an
OIOUBL invoice document. The components of the fuzzing harness are described
more in-depth in Section 4.6.

Figure 4.4: Overview of the structure of the fuzzing harness. Arrows show that the documents are
only passed in that direction and a line indicates that the documents are passed both directions. The
dotted lines indicates that the mutator uses the model when mutating the documents.

4.6 Components

Details on the different components of OIOFuzz are presented in this section.

4.6.1 Invoice Model

To support the fuzzing of OIOUBL documents, a model for invoice documents
were constructed, based on the guideline for the invoice [17] and schemas from
the OIOUBL Common Class Library [10]. This model defines structural properties
and field types for the document. This could be done for other document types
but given the time that was used on making the invoice as baseline this was not
deemed feasible.

4.6. Components 31

The dataclasses Python module is used for the model. A dataclass con-
tains fields, consisting of a name and a type [28]. The model consists of dataclasses
for the root class and all classes that can exist in that type of document, with all

their fields defined in the order from the documents guideline. For subclasses the
field type is that of the dataclass for the specific class. In Listing 4.3 a part of the
dataclass for the invoice root element, is shown with its first four fields. The first
field, UBLExtensions, is a class with the dataclass of the class as its type, while
the next three are fields with the OIOUBL type Identifier, which is defined with
the type str.

1 @dataclass
2 class Invoice():
3 UBLExtensions: Optional[UBLExtensions]
4 UBLVersionID: str
5 CustomizationID: str
6 ProfileID: str

Listing 4.3: Part of the Invoice dataclass

As mentioned in Section 2.3.1 fields and subclasses in an OIOUBL class can
have different cardinalities; 0..1, 1, 0..n, 1..n. Fields and subclasses with a cardi-
nality of 1 or 1..n is mandatory, as there need to exist exactly one or at least one
such field in the class. Meanwhile fields and subclasses with a cardinality of 0..1
or 0..n is optional, as such fields can exist in the class, but does not have to. The
Python typing Optional type is used for the optional fields, which means that
it is either the type or None. The UBLExtensions class field in Listing 4.3 is an
example of an optional subclass and as such has its type defined with Optional
[UBLExtensions]. Fields with a cardinality of 0..n or 1..n, are defined with List
for their types. Concretely this means that fields with cardinality 1..n are defined
with List[type], and 0..n are defined with Optional[List[type]].

Some classes in the invoice models contains subclasses with recursive class
types. The type of these subclasses is defined with a forward reference, which the
mutator then has to convert to the real type at runtime. The existence of recur-
sive defined classes, presents certain challenges and possibilities for the fuzzing
harness. One challenge is to avoid spending too much time on making recursive
classes for one document. Another challenge arises when writing the mutated doc-
ument to a file for the ClientExample since it is very big. The possibilities consist
of the capabilities of making interesting documents that might be able to trigger
unexpected behavior.

The model provides the possibility of creating valid fields that are not already
present in the example documents used for the initial corpus. It is also used for
checking the type of a field in the Field Mutator, s.t. the mutator can choose to
use operators targeting the specific type. Additionally the model can also be used

4.6. Components 32

for generating new OIOUBL documents from scratch.
The challenge of avoiding that OIOFuzz spends too much time on making one

document because of the recursive classes is particularly worth considering as they
can be encountered many times when making new classes. When the probability
of making optional classes has been set considerably high while running OIOFuzz,
we have experienced it using hours on the same document because of how many
classes it has constructed.

4.6.2 Parser

The parser is used to parse a OIOUBL document into an object that is modifiable
in the fuzzer. The python module xml.etree.ElementTree is used for this. The
parser has one method, load_corpus, which takes a path to the folder with the
documents. This method is called with a folder containing selected valid files
from the OIORASP repository. The documents in the folder is then parsed into
ElementTrees and the method returns a list of these. The ElementTree parser is
different from the XML parser in the ClientExample. Since XML parser comes in
many different forms this could lead to a mismatch in XML parsing, which should
be taken into consideration.

4.6.3 Fuzzer

The fuzzer runs a fuzzing campaign, i.e. the whole fuzzing process, and keeps
track of the important things, e.g. the mutated documents, the code coverage. The
important parts of the fuzzer is:

• The multiple_runs method runs the fuzzing campaign, with the supplied
number of runs.

• The run method is called for each run. It starts by calling the fuzz method
which returns a document to be sent. Then the document is sent to the
ClientExample and it gets the code coverage and the outcome. The outcome
is e.g. whether an exception occurred, a crash happened or it succeeded
sending the document. The code coverage is which code blocks has been run
doing the fuzzing. After getting the result the fuzzer checks if the amount
of seeds in population with that outcome is less than the maximum amount
of the outcome defined in the settings. If it is less, the new seed is added to
the population. The population is a list of seeds consisting of the documents
available to be chosen by the power scheduler.

• The fuzz method first provide seeds to the population by returning existing
seeds. After the existing seeds has been loaded it runs the create_candidate
to make new candidates.

4.6. Components 33

• The create_candidate method uses a power scheduler to choose a can-
didate from the population. Thereafter it makes a number of mutations on
the document with the chosen mutator. The number of mutations depends
on the mutation count defined in the settings. It also checks if the seed has
been chosen more times than the amount defined for a replace count in the
settings, in which case it is removed from the population.

• The Power Scheduler assigns energy to each seed based on how interesting
they are based on some criteria. The concept of a power scheduler is de-
scribed in Section 3.2.4.

4.6.4 Mutator

The mutator consists of two separate mutators, where one is chosen at random
when mutating the OIOUBL documents. The Field Mutatormakes mutations to
the text of the documents fields, while the Structure Mutator makes structural
mutations to the document. A XML tree structure of part of an OIOUBL document
is presented in Figure 4.5. This XML tree will be used as a example for some of the
mutation operators.

Figure 4.5: OIOUBL document as a XML tree. The boxes are classes and fields and a line shows that
they are element of that class or field. The circles is the text in a field.

Field Mutator

The Field Mutatormutates the text in a field, e.g. if the field is the UBLVersionID
shown in Figure 4.5 it will mutate the string 2.0. It chooses a random field in the
document to make the mutations on.

4.6. Components 34

The mutation operators is categorized as string operators and interesting float
operators. The reason for the categorization of float operators are that the datatype
used for all fields with numeric values are floats, based on exception returned
from the client when treating all fields as strings. One of the string mutators is
replace_string_mutator which generates a whole new string to replace the
old text. Additionally the mutator has three operators for substrings and three
operators for singular characters. These operators respectively replace, delete, or
add a substring or character at a randomly chosen index of the original text string.

The field mutator has a probability of taking the type of the Field into con-
sideration, which is set in the settings. When it does the the values for the types
are generated from scratch. If the mutators does not take it into consideration the
string operators are used since all fields text can be considered as strings.

Structure Mutator

The structure mutator consist of operators to make structural changes to the OIOUBL
documents. These operators are used to duplicate, delete, move, and add new
fields. The mutation starts in its mutate method, where one of the operators is
randomly chosen. If the chosen operator is not the add_field method that cre-
ates a new field, an element in the document is chosen at random and the chosen
operator is called with the element and its parent element as input parameters.
The parent element cannot be accessed from the child Element. Therefore a map-
ping between all elements and their parent elements is created and it is used when
calling the mutation operators.

The structure mutator has four mutations operators:

• The duplicate_field method duplicates the given element at the same
position in the document with a probability specified in settings. The rest of
the time it inserts the duplicate element at a random position in the whole
document.

• The delete_field method removes the given element from the parent ele-
ment.

• The move_fieldmethod first removes the element from the document. There-
after it inserts the element back in the document at a new position.

• The add_field method creates a new valid element from the type of doc-
ument and inserts it in the document. To create a valid element it uses the
model for the OIOUBL document type. A random field for the document
type is chosen and made with the mutators make_field method. If the
field is not a subclass, make_field creates a random element of the correct
type for the field. If it is a subclass, it makes an element for the class and

4.6. Components 35

subelements for all its fields, which is found using the dataclass for the class.
The element is then inserted either at the correct position, as specified in
the model, or at a random position in the document, based on a probability
defined in the settings.

An example of a mutation done with the structure mutator is visualized in
Figures 4.6 and 4.7 with an OIOUBL document as an XML tree. In Figure 4.6
the PayeeFinancialAccount class is highlighted as it is chosen to be mutated
with the move_field method. In Figure 4.7 the class has been deleted from the
PaymentMeans class and inserted into the InvoiceLine class.

Figure 4.6: Part of an OIOUBL document as an XML tree, with the Invoice class as the root. The
boxes is classes and fields and the circles is the field text. The box in orange is the chosen class to be
mutated

4.7. Classification of OIOFuzz 36

Figure 4.7: Part of an OIOUBL document as an XML tree, with the Invoice class as the root. The box
in orange is the class after being moved.

4.6.5 Runner

The runner facilitates the communication between the fuzzer and the ClientExample.
It runs the ClientExample with the fuzzed documents, and handles the output
from the ClientExample as well as potential crashes. It has a run method which
gets the fuzzed document as an ElementTree and writes it to a file whose path is
passed to the ClientExample as an argument. Thereafter it runs its start_process
method and returns the result to the fuzzer. start_process runs the ClientExample
as a subprocess with a 30 second timeout. It then calls the method handle_feedback
with the standard output of the ClientExample. handle_feedback finds all the

manually instrumented code blocks in the standard output, and saves the code
coverage for the fuzzer. It also finds any exceptions that has occurred in the
ClientExample from the standard output.

4.7 Classification of OIOFuzz

We classify OIOFuzz as a guided model-based blackbox. It is guided since it uses
the output of the ClientExample to guide the fuzzing process. Despite it having
code coverage information it is not used for anything, as it did not provide any-
thing more than looking at the output, thus making it a blackbox fuzzer. It is
model-based since it uses a model to generate part of OIOUBL documents and to
guide the fuzzing process. Additionally it is a mutation-based fuzzer, but contains
functionality for generation-based fuzzing.

Chapter 5

Fuzzing OIORASP

In this chapter we will present experiments conducted to test OIOFuzz as well
as results of them. Experiments was done in iterations and not only on the fully
developed fuzzing harness.

An explanation of some exploration conducted early in the fuzzing process and
the outcome of it is given in Section 5.1. Then an overview of running OIOFuzz
with a basis setup and with some different variations where the setup is changed
is provided in Section 5.2. Lastly in Section 5.3 an error found in the Schematron
validation is analyzed and described.

5.1 Initial Exploration

An initial version of the fuzzing harness was made, to conduct early exploration
of the result of fuzzing OIORASP. The only mutation operators contained in the
initial fuzzing harness were simple string operators in the Field Mutator. In-
stead of choosing a random field to mutate, the Field Mutator looped through
all fields in the document and chose whether to mutate the field, with a probability
of 15% of doing so. It was set to 15% to mutate a few fields, since mutating too
many would cause the validator to catch the same error every time. The explo-
ration consisted of running a few experiments with the example invoice document
in Appendix A as initial corpus, where the output was observed after sending the
document with the ClientExample. Observation of the output were accomplished
by first logging exceptions that occurred in the ClientExample along with the doc-
ument that triggered it. Thereafter it was manually inspected what triggered the
exception.

The most common exception encountered in the early exploration was a schema
exception stating that the value of a field is not a valid value for its type, e.g. dec-
imal, boolean, or date. The commonness of this exception was not completely un-
expected, as an OIOUBL document field has a specific datatype, while the mutator

37

5.2. Running OIOFuzz 38

treated all field texts as strings. However, it does showcase that blindly mutating
the field text without taking regard of the datatype limits the exploration.

Another common exception encountered was an exception specifying that the
type of the document could not be found from the XML document. Inspection of
the source code showed that it occurred in the method FindUniqueDocumentType
, which is called earlier than the validation of the document with schemas and
Schematron. Inspecting the documents that was logged when the exception oc-
curred, showed that it happened when the invoice field CustomizationID had been
mutated. Another small experiment for further exploration of this exception was
also conducted. In this experiment only the CustomizationID field was mutated.
During this experiment an exception stating that the Schematron validation of the
document failed would sometimes occur instead. The Schematron exception mes-
sage specified that the CustomizationID field text must be OIOUBL-2.01, OIOUBL-
2.02 or OIOUBL-2.1. Further inspection showed that the Schematron exception
occurred when text was appended at the end of the string, e.g. OIOUBL-2.0192.
This indicates that FindUniqueDocumentType checks for the values with prefix
checking rather than checking the exact values. This inaccuracy does not present
any real bug, but is rather just a whimsical implementation.

5.2 Running OIOFuzz

In this section we present details about running OIOFuzz and observations made
during the process. First some observations made during early iterations of run-
ning OIOFuzz is presented in Section 5.2.1. Thereafter the general setup for run-
ning OIOFuzz is presented in Section 5.2.2, and different variations of the setup
explored are described Section 5.2.3.

5.2.1 Observations From Early Iterations

In our early iterations of running OIOFuzz with the mutators mentioned in Sec-
tion 4.6.4 we only found a few different errors. This is because it only added one of
each kind of error to the population making the population very stale. To update
the population while running we chose to delete a seed after it has been sent ten
times. We also chose to keep track of how many documents causing the different
exceptions were in population. This was done as some of the exceptions occur
more frequently that others, like XML parser errors, or schema errors, and we
wanted to avoid that the population was filled with these. Therefore a maximum
was set for all the different outcomes to limit these in the population.

5.2. Running OIOFuzz 39

5.2.2 Experiment Setup

In this section we will describe the setup of the experiments conducted with the
OIOFuzz.

The initial corpus contains 14 invoice example documents from the OIORASP
library, providing OIOFuzz with an initial corpus consisting of a small number
of valid documents to fuzz. The differences between the documents is mainly
that they have different profiles and are identified in different ways. The different
identification and respective profiles is e.g. CVR number, D-U-N-S number, and
EAN.

The experiments uses settings for different variables dictating the fuzzing pro-
cess. The variables each have a base value. The different settings, along with their
base values and a short explanation of their purpose, is presented in Table 5.1.

Name Base value Description
MUTATION_COUNT 5 Maximum number of mutations made

before sending.
PLACEMENT_PROB 95% Probability that a field is inserted at a

specific place. Else it is inserted some
random place in the document.

OPT_PROB 50% Probability of an optional field being
made

MAX_RECUR_DEPTH 30 Maximal recursion depth when creating
invoice classes

TYPE_PROB 80% Probability of mutating a field with re-
gards to its correct type

REPLACE_COUNT 10 The number of times a seed is sent before
it is getting replaced

Table 5.1: Variables in the settings for OIOFuzz, with a base value and a short description.

The MUTATION_COUNT determines the maximal amount of mutations made
to the chosen document before it is sent to the client. Its base value is set to
5 to keep the amount of mutation made low, since a high amount of mutations
will cause drastic changes to the document causing OIOFuzz to potentially miss-
ing out on exploring parts of the target. PLACEMENT_PROB is used in the
duplicate_field and add_field operators in the structure mutator. It is used
to determine whether a field should be inserted at a specific place or some random
place in the document. For the duplicate_field operator the specific place is
at the same position in the document as the field being duplicated, and for the
add_field operator the place is the correct place in the document, as specified
by the schema rules. Its base value is set to 95% to guide it towards making more

5.2. Running OIOFuzz 40

schema correct documents, while still providing some opportunity to explore mu-
tations that will most likely make non schema correct documents. Despite mainly
focusing on Schematron validation, we see a value in still letting OIOFuzz explore
making such mutations. OPT_PROB determine the probability of a field that is op-
tional for a class being made in the add_field operator. MAX_RECUR_DEPTH
is the maximal recursion depth of nested classes being made with the add_field
operator. Their base values is set to 50% and 30 respectively, chosen to ensure
that OIOFuzz does not use too much time on constructing those documents. RE-
PLACE_COUNT defines the amount of times a document is chosen as the fuzzing
seed before being replaced. Its base value is set to 10. Values for maximum amount
of seeds leading to a specific outcome is presented in Table 5.2.

Schema Schematron Unknown Fail XML Pass
5 15 50 50 5 5

Table 5.2: Maximum amount of documents giving specific outcomes allowed in the population. The
outcome describes what category of exceptions the output belongs to. Fail refers to ClientExample
crashes, XML refers to xml parsing exceptions, and Pass refers to the document being successfully
sent.

The outcome for schema error, XML parser error and Pass was set to 5 as those
is not the target of the fuzzing and we therefore want to avoid that OIOFuzz spend
too much time exploring these. The outcome Schematron error is set to 15 as those
are the target, while the outcome with unknown errors or where the ClientExample
failed is set to 50 since they are important to explore further.

5.2.3 Different Variations

Various variations of the setup was used for experiments with OIOFuzz, where
some of the settings values is changed. This was generally done by increasing
or decreasing a few or all of the values for a variation. However increasing the
values of OPT_PROB and MAX_RECUR_DEPTH results in more classes being cre-
ated with the add_field operator, causing creation of big documents and a high
runtime for singular iterations. As such these values were only decreased in the
standard variations and and special variation aimed to test the protocol ability to
handle big document was set up. The different variations did not result in any
new interesting behavior.

Constructing Big Documents

An experiment was setup where OIOFuzz was guided towards constructing bigger
documents, to test whether the ClientExample is able to properly handle those.
This was done by increasing the value of OPT_PROB and MAX_RECUR_DEPTH,

5.3. Schematron Error 41

to 70% and 50 respectively. With these settings OIOFuzz managed to construct
documents that was 707.000 KB and where OIOFuzz had generated 2057813 new
classes in the document with the add_field operator. In comparison the example
documents are normally 9 KB. However, other than taking more time, this did not
cause any new unexpected behavior.

5.3 Schematron Error

An error in the OIORASP Schematron was found with OIOFuzz, which cause the
Schematron validation of the document to fail. The validation fails because of a
type error, stating that a sequence of more than one item is not allowed as the
argument of fn:string−length(). The error occurred when OIOFuzz dupli-
cated the field PaymentNote in the class PayeeFinancialAccount. According to the
documentation, multiple instances of the PaymentNote field is allowed in the Pay-
eeFinancialAccount class. This can be seen in Table 5.3 which contains the most
commonly used fields and classes in the PaymentMeans class, which has the Pay-
eeFinancialAccount class as its subclass. The row for the PaymentNote field in the
PayeeFinancialAccount class has been marked with bold text in the table. However,
the implementation of the Schematron does not take this into account, causing the
validator to try checking the length of a string on a list of strings.

5.3. Schematron Error 42

UK-name DK-name/DK-Alternativ term Use
ID BetalingsMådeNummer 0..1
PaymentMeansCode BetalingsMådeKode 1
PaymentDueDate BetalingsDato 0..1
PaymentChannelCode BetalingsKanal 0..1
InstructionID BetalingsID 0..1
InstructionNote LangAdvisering 0..1
PaymentID KortArtsKode 0..1
PayerFinancialAccount / ID Kontonummer 0..1
PayerFinancialAccount / PaymentNote KortAdvisering 0..n
PayerFinancialAccount / FiBranch / ID Registreringsnummer 0..1
PayerFinancialAccount / FiBranch / Fi-
nancialInstitution /ID

BankID 1

PayeeFinancialAccount / ID Kontonummer 1
PayeeFinancialAccount / PaymentNote BetalingsNote 0..n
PayeeFinancialAccount / FiBranch / ID Registreringsnummer 0..1
PayeeFinancialAccount / FiBranch /
Name

BankFilialNavn 0..1

PayeeFinancialAccount / FiBranch / Fi-
nancialInstitution /ID

BankID 1

PayeeFinancialAccount / FiBranch /
Address / *

BankFilialAdresse 0..1

CreditAccount / AccountID KreditorNummer 1

Table 5.3: The PaymentMeans OIOUBL class with its most commonly used fields and subclasses. The
two first column show the name of the fields in English and Danish respectively and the last column
shows the allowed cardinality of the field [18]. The PaymentNote field in the PayeeFinancialAccount
subclass has been marked with bold text.

The Schematron causing the validation to fail is shown in Listing 5.1, specif-
ically the string − length(cac : PayeeFinancialAccount/cbc : PaymentNote)> 20
check. The rule also checks if the PaymentMeansCode field in the PaymentMeans
class has a value of 42, which it has in the used example document. The PayeeFi-
nancialAccount with a duplicated PaymentNote field is shown in Listing 5.2.

1 <xsl:if test="(cbc:PaymentMeansCode = '42') and string-length(cac:

PayeeFinancialAccount/cbc:PaymentNote)> 20">

2 <Error>

3 <xsl:attribute name="context">

4 <xsl:value-of select="concat(name(parent::*),'/',name())"/>

5 </xsl:attribute>

6 <Pattern>(cbc:PaymentMeansCode = '42') and string-length(cac:

PayeeFinancialAccount/cbc:PaymentNote)> 20</Pattern>

7 <Description>[F-LIB133] PaymentMeansCode = 42, PaymentNote must be no more

5.3. Schematron Error 43

than 20 characters</Description>

8 <Xpath>

9 <xsl:for-each select="ancestor-or-self::*">/<xsl:value-of select="name()"/>

[<xsl:value-of select="count(preceding-sibling::*[name(.)=name(current

())])+1"/>]</xsl:for-each>

10 </Xpath>

11 </Error>

12 </xsl:if>

Listing 5.1: Schematron rule for the length of the string in PaymentNote

1 <ns3:PayeeFinancialAccount>

2 <ns2:ID>1234567890</ns2:ID>

3 <ns2:PaymentNote>A00095678</ns2:PaymentNote>

4 <ns2:PaymentNote>A00095678</ns2:PaymentNote>

5 <ns3:FinancialInstitutionBranch>

6 <ns2:ID>1234</ns2:ID>

7 </ns3:FinancialInstitutionBranch>

8 </ns3:PayeeFinancialAccount>

Listing 5.2: PayeeFinancialAccount class with a duplicated PaymentNote field

This error occurs as an assert error when the ClientExample is compiled in
debug version and a popup windows comes up. It is an unhandled assertion,
indicating that it is an unexpected error. The reason that it is unexpected is that
the document has already been validated with schema and should therefore be
guaranteed to be of the correct format to be validated with Schematron. This is
a strange implementation since assert should only be used validate internal stuff
and not be used on the input of a user, such as the OIOUBL document we try to
send with the ClientExample [1]. When ClientExample is compiled in release
version the assert error does not occur and instead only the exception stating that
the document could not be Schematron validated occurs.

Additionally it was observed that three other similar Schematron rule exists.
One of them is where the only difference in the rule is that the PaymentMeansCode
fields value is checked if it is 31 instead of 42. The other two are for the PayerFi-
nancialAccount, which is also a subclass of the PaymentMeans class, instead of
the PayeeFinancialAccount and has the same check for values of the PaymentNote
field. It can be seen in Table 5.3 that multiple occurrences of the PaymentNote
field in the PayerFinancialAccount class is also allowed. To verify that the same er-
ror occur with these rules a PayerFinancialAccount with a PaymentNote field was
added to the example document, as the class is not present in the document. Then
a document for each combination of values and duplication of the PaymentNote
field was sent with the ClientExample. As expected all these lead to the same
error appearing. However OIOFuzz never managed to find the other errors when
we ran it. The reason for this is that it would need to make some very specific mu-
tations to trigger them, which is extremely unlikely without some way to guide it

5.3. Schematron Error 44

towards those mutations. The PaymentMeansCode field already has a value of 42
in the example documents and a PayeeFinancialAccount exist with a PaymentNote
field, meaning that the document were only one mutation away from finding the
error it found, i.e. duplicating the PaymentNote field. Meanwhile to trigger the
other errors it would have to either change the value of the PaymentMeansCode
field to exactly 31, add a PayerFinancialAccount class and thereafter duplicate its
PaymentNote field or do both of those things.

Chapter 6

Related Work

In this chapter related work to fuzzing XML and Schematron is presented.

Peach fuzzer

Peach fuzzer is a smart fuzzer that can use both generation- and mutation-based
fuzzing [21]. It uses its own custom files, called Peach Pit files, to define the
structure and type information of the files that is to be fuzzed. Peach provides
a fuzzing engine with robust monitoring capabilities, where the user can specify
their own fuzzing strategy and mutators. It is commonly used to fuzz file formats,
network protocols, and APIs. Peach has been used in the paper "Model-based
whitebox fuzzing for program binaries" [27], where it is used to model the target
file format, to generate new chunks and to integrity check the fuzzed documents.

Skyfire

Skyfire is a data-driven seed generation fuzzer [36]. It targets highly structured
files such as XML and Schematron files. The authors of the paper collects a high
amount of samples and their corresponding grammar to extract their semantics
rules and the frequency of production rules. Skyfire then use these to learn a
probabilistic context grammar (PCSG) for the model which is used to generate
well-distributed seeds. These seeds are then used to fuzz several open-source XSLT
and XML engines. They tested generating seeds with Skyfire + AFL against AFL
on crawled seeds. The result was that they increased the line code coverage with
20% and function coverage with 15%. They found 19 new memory corruption bugs
and 32 denial-of-service bugs.

45

46

Superion

Superion is a grammar-aware greybox fuzzer [37]. It builds upon AFL and targets
more structured input like XML. Using a grammar for the file formats it makes
an abstract syntax tree (AST) of the parsed inputs. They introduce two grammar-
aware mutation strategies, with one being a tree-based mutation. Tree-based muta-
tions replaces subtrees in test input AST with another subtree from another test in-
put AST. They tested the program on one XML engine and three JavaScript engines
and compared their results against AFL and jsfunfuzz [19] which is a grammar-
aware fuzzer. Compared to those they improved 16,7% on line code coverage and
8,8% on function coverage. They also found 21 new vulnerabilities.

Chapter 7

Discussion

In this chapter we discuss different aspects of our fuzzer OIOFuzz. While it man-
aged to find an error in the Schematron validation, we believe it has certain defi-
ciencies. We will discuss the deficiencies and how they could be improved.

First in Section 7.1 we discuss our instrumentation of the ClientExample and
how this could be improved. Then in Section 7.2 we present the idea of making our
fuzzer in C# instead and the benefits that could archive. Thirdly we discuss how
we did not take the Schematron file more into consideration and how a Schema-
tron guided fuzzer would look like in Section 7.3. At last in Section 7.4 we discuss
making OIOFuzz fully generation-based instead of being mutation-based with el-
ements of generation-based.

7.1 Instrumentation of the ClientExample

We instrumented the ClientExample as part of our early exploration, as this seemed
beneficial. In the end it did not help very much, since the ClientExample covered
the same few branches of code, when given the documents constructed by OIO-
Fuzz. It therefore cannot be used to guide the OIOFuzz anymore than the output
of the ClientExample, since those branches are just different exceptions thrown or
a successful sending. Instrumenting the ClientExample was also mostly done on
the called functions, calls to other libraries and its exception handling.

In order to gain more information from the instrumentation, the compiled dll
files from the OIORASP library and other libraries they use, such as Saxon, could
also have been instrumented. This would give us more information about what
happens when those libraries is called. We could potentially have used Scharpfuzz
or WinSharpFuzz [22] which is a fork of Scharpfuzz, as instrumenting dll is part
of their fuzzing process. Since we are focusing on Schematron, this could give us
more information of what happens in Saxon when it process the Schematron file
and validates the document. However it might not give enough information to be

47

7.2. C# Fuzzer 48

really beneficial, since Saxon is an engine that compiles Schematron to validate it
and it would not give information on which Schematron rules are checked.

7.2 C# Fuzzer

Instead of writing OIOFuzz in Python it could have been written in C#. This could
have provided the benefit of not having to write the document to a file before
sending it to the ClientExample, which slows the fuzzing process down. One way
of ensuring this could be to incorporate the ClientExample in our fuzzer, where
the fuzzer would parse the document, potentially using the XML parser from the
ClientExample, fuzz it and then pass it to the ClientExample as a object or string.
As the ClientExample is setup to parse a document at a specific file path, how it is
processed would have to be altered s.t. it receives the document directly instead.

7.3 Schematron Guided Mutations

OIOFuzz was built around the idea of wanting to take advantage of the example
documents provided with the library. Therefore OIOFuzz was made as a mutation-
based fuzzer, where the mutator was designed with a focus on the different compo-
nents of the example documents i.e. classes, fields and text in fields. The target was
narrowed in to the Schematron validation, the focus on this target was achieved
by guiding OIOFuzz towards making more documents that are valid according
to the schema rules. However making mutation based on the Schematron for the
document types could have been more beneficial, since the mutation would then
be more focused on different Schematron rule and be capable of exploring a higher
number of them.

A potential way of doing so is making a mechanism for guiding OIOFuzz to
choose mutations based on Schematron rules. One way that such mechanism can
be envisioned to function is where a Schematron rule is first randomly chosen.
Thereafter it would identify which fields are contained in the rule and mutate
those. If a field that are contained in the rule does not exist in the document,
the field would have to be made along with all non existing ancestor classes.
Furthermore which mutations is made could be based on the constraints spec-
ified in the rule. As an example consider the Schematron rule in Listing 7.1.
The rule is defined inside a template associated with the PaymentMeans class
in the Invoice document, meaning that it involves classes and fields from the
PaymentMeans class. On line 1 in the listing it can be seen that the contained
fields are PaymentMeansCode and ID in the PayeeFinancialAccount subclass.
As such OIOFuzz would then identify these fields as targets for the mutations.
Furthermore if it were to take the constraints in the rule into account, it could e.g.

7.4. Generation-based Fuzzer 49

determine that the PaymentMeansCode fields needs to have a value of 31 before
this rule can be broken and then set the value of the field to that.

1 <xsl:if test="(cbc:PaymentMeansCode = '31') and not(cac:PayeeFinancialAccount/cbc:ID

)">

2 <Error>

3 <xsl:attribute name="context">

4 <xsl:value-of select="concat(name(parent::*),'/',name())"/>

5 </xsl:attribute>

6 <Pattern>(cbc:PaymentMeansCode = '31') and not(cac:PayeeFinancialAccount/cbc:ID

)</Pattern>

7 <Description>[F-LIB107] PaymentMeansCode = 31, ID element is mandatory</

Description>

8 <Xpath>

9 <xsl:for-each select="ancestor-or-self::*">/<xsl:value-of select="name()"/>[

<xsl:value-of select="count(preceding-sibling::*[name(.)=name(current())

])+1"/>]</xsl:for-each>

10 </Xpath>

11 </Error>

12 </xsl:if>

Listing 7.1: Schematron rule for the length of the string in PaymentNote

A proper version of such a mechanism would require more analysis of the
Schematron rules and how to more beneficially make mutations based on them.
Furthermore it might need the functionality to solve the constraints in the rules to
give enough of a benefit to OIOFuzz, which would give a higher computational
overhead.

7.4 Generation-based Fuzzer

OIOFuzz was made as a mutation-based fuzzer with elements of generation, through
the add_field operator, which generates new fields and subclasses. It could
alternatively have been made as a fully generation-based fuzzer, generating the
OIOUBL document from scratch. Using the invoice model it is already possible
to generate whole invoice document. However it is almost impossible for those
documents to be valid or close to valid, as the model lacks consideration of field
attributes and exact values of field specified by code listings. While the aim is not
to generate valid document it is preferred that they can be close to valid, other-
wise they would always be caught early by the schema validation. To generate
documents that are closer to being valid the model needs to handle the field at-
tributes and consider allowed values as specified in the code listings. Handling
those elements would require a more in depth analysis of them.

Having a fully generation-based fuzzer would potentially enable a broader ex-
ploration of the Schematron rules, as more fields and classes would be gener-
ated with the their correct attributes and values from code listings. However the

7.4. Generation-based Fuzzer 50

mutation-based fuzzing harness was a suitable approach since we had the pro-
vided example documents.

Chapter 8

Conclusion

We aimed to explore the potential of fuzz testing the OIORASP protocol, as this
is a key part of the Danish IT infrastructure. For the exploration we first studied
the OIORASP protocol and described the overall structure of the protocol and the
OIOUBL documents that are sent with the protocol. Then theory on fuzzing was
studied, and different fuzzing concepts were presented. Thereafter we delimited
the target into the Schematron validation of the OIORASP protocol. A fuzzing
harness OIOFuzz was set up and the structure and implementation of it were
described. Different experiments of using OIOFuzz on the OIORASP protocol
were set up and run.

We made a proof of concept implementation of a guided model-based black-
box fuzzer targeting OIORASPs Schematron validation, and managed to find an
error in the Schematron validation with it. However, as we discussed in Chap-
ter 7 it lacked some features to be better capable of finding more errors than it
did. In particular more features for guiding OIOFuzz to broader exploration of the
Schematron rules are desired, as it would give the most benefits.

Based on all this we conclude that this project was a first step in fuzzing the
OIORASP protocol and showcased its potential of finding bugs. With further de-
velopment there is potential for finding more bugs, as the developed fuzzing tool
has areas where possible improvements can be made.

51

Chapter 9

Future Work

While OIOFuzz were able to fuzz OIORASPs Schematron validation and managed
to find an error in it, it is also clear that it has room for improvement. In this chap-
ter we will present the future work deemed as the most beneficial for improving
OIOFuzz.

Expanding the Generation of Elements

An area of OIOFuzz that should be expanded upon is the generation of new ele-
ments using the document model. The implemented invoice model lacks handling
of field attributes and consideration of the allowed values specified by the code
listings. Expanding the model to handle those would lead to a broader exploration
of the Schematron rules. The broader exploration is a result of new elements being
generated with some of these values and attributes, as a lot of the Schematron rules
check for these values and attributes. With such expansion OIOFuzzs potential for
finding errors in the Schematron validation phase would increase.

Models for More Document Types

As described earlier the only document type we made a model for was the invoice
document type. This is only one of the 15 different types of OIOUBL business
document. For a full test of OIORASPs Schematron validation models should
also be made for the rest of the document types. As described in Section 4.6.1
it took a considerable amount of time to manually make the first model by look-
ing through OIOUBL guidelines for invoice documents [17]. Therefore the future
work of making models for all the other document types would preferably be
made with an automated process. This could be done by using the schema files
OIOUBL uses to validate the documents. The important schema files for this task
are UBL-CommonAggregateComponents-2.1.xsd and the schema file for the doc-
ument type. The UBL-CommonAggregateComponents-2.1.xsd contains the defini-

52

53

tion of all classes in all document types. The schema files can found in the common
folder in the OIORASP library. Making these models would get us more access to
more example documents which OIOFuzz could handle with the partial genera-
tion. We could also possible find more Schematron errors since each document
type has its own Schematron file to validate it.

Bibliography

[1] Casey Casalnuovo et al. “Assert Use in GitHub Projects”. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering. Vol. 1. 2015, pp. 755–
766. doi: 10.1109/ICSE.2015.88.

[2] Chimezie Ogbuji. Validating XML with Schematron. https://www.xml.com/
pub/a/2000/11/22/schematron.html. Accessed: June 16, 2023. 2000.

[3] Digitaliseringsstyrelsen. It-løsninger - Danmarks digitale infrastruktur. https:
//digst.dk/it-loesninger/. Accessed: June 16, 2023. 2021.

[4] Digitaliseringsstyrelsen. Mål- og resultatplan. https://digst.dk/om-os/om-
digitaliseringsstyrelsen/. Accessed: June 16, 2023. 2021.

[5] Digitaliseringsstyrelsen. National strategi for cyber- og informationssikkerhed. https:
//fm.dk/media/25359/national-strategi-for-cyber-og-informationssikkerhed_

web-a.pdf. Accessed: June 16, 2023. 2021.

[6] Digitaliseringsstyrelsen. Om Digitaliseringsstyrelsen. https://digst.dk/om-
os/om-digitaliseringsstyrelsen/. Accessed: June 16, 2023.

[7] Digitaliseringsstyrelsen. Vejledning til model for porteføljestyring af statslige it-
systemer. https://digst.dk/media/28086/vejledning-til-model-for-
portefoeljestyring-af-statslige-it-systemer-april-2022.pdf. Ac-
cessed: June 16, 2023. 2021.

[8] Emil F.L Aagreen, Frederik A Jensen, Mikkel T Jensen, Tobias B.S Hansen.
Towards Verification of the OIORASP Protocol. https://projekter.aau.dk/
projekter/files/512993360/cs_22_ds_9_05.pdf. Accessed: June 16, 2023.
2022.

[9] Erhvervsstyrelsen. En teknisk introduktion til NemHandel. https://nemhandel.
dk/vejledning-en-teknisk-introduktion-til-nemhandel. Accessed: June
16, 2023.

[10] Erhvervsstyrelsen. OIORASP Repository. https://rep.erst.dk/git/openebusiness/
library/dotnet. Accessed: June 16, 2023.

[11] G. Ken Holman. Universal Business Language Version 2.2. http://docs.oasis-
open.org/ubl/os-UBL-2.2/UBL-2.2.html. Accessed: June 16, 2023.

54

https://doi.org/10.1109/ICSE.2015.88
https://www.xml.com/pub/a/2000/11/22/schematron.html
https://www.xml.com/pub/a/2000/11/22/schematron.html
https://digst.dk/it-loesninger/
https://digst.dk/it-loesninger/
https://digst.dk/om-os/om-digitaliseringsstyrelsen/
https://digst.dk/om-os/om-digitaliseringsstyrelsen/
https://fm.dk/media/25359/national-strategi-for-cyber-og-informationssikkerhed_web-a.pdf
https://fm.dk/media/25359/national-strategi-for-cyber-og-informationssikkerhed_web-a.pdf
https://fm.dk/media/25359/national-strategi-for-cyber-og-informationssikkerhed_web-a.pdf
https://digst.dk/om-os/om-digitaliseringsstyrelsen/
https://digst.dk/om-os/om-digitaliseringsstyrelsen/
https://digst.dk/media/28086/vejledning-til-model-for-portefoeljestyring-af-statslige-it-systemer-april-2022.pdf
https://digst.dk/media/28086/vejledning-til-model-for-portefoeljestyring-af-statslige-it-systemer-april-2022.pdf
https://projekter.aau.dk/projekter/files/512993360/cs_22_ds_9_05.pdf
https://projekter.aau.dk/projekter/files/512993360/cs_22_ds_9_05.pdf
https://nemhandel.dk/vejledning-en-teknisk-introduktion-til-nemhandel
https://nemhandel.dk/vejledning-en-teknisk-introduktion-til-nemhandel
https://rep.erst.dk/git/openebusiness/library/dotnet
https://rep.erst.dk/git/openebusiness/library/dotnet
http://docs.oasis-open.org/ubl/os-UBL-2.2/UBL-2.2.html
http://docs.oasis-open.org/ubl/os-UBL-2.2/UBL-2.2.html

Bibliography 55

[12] Patrice Godefroid. “Fuzzing: Hack, Art, and Science”. In: Commun. ACM
(2020), 70–76. doi: 10.1145/3363824. url: https://doi.org/10.1145/
3363824.

[13] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. “Grammar-Based
Whitebox Fuzzing”. In: Association for Computing Machinery, 2008. isbn:
9781595938602.

[14] Patrice Godefroid, Michael Y Levin, and David Molnar. “SAGE: whitebox
fuzzing for security testing”. In: Communications of the ACM 55.3 (2012), pp. 40–
44.

[15] Hans-Henrik Busk Stie, Karen Wiis Weiss. Dansk firma lagt ned af russiske
hackere - er gået i højeste kriseberedskab. https://nyheder.tv2.dk/samfund/
2022-03-02-dansk-firma-lagt-ned-af-russiske-hackere-er-gaaet-i-

hoejeste-kriseberedskab. Accessed: June 16, 2023. 2022.

[16] IT- og Telestyrelsen. OIOUBL Intro. https://www.oioubl.info/documents/
en/en/Intro/OIOUBL_INTRO.pdf. Accessed: June 16, 2023. 2007.

[17] IT- og Telestyrelsen. Online OIOUBL Dokumentation - Invoice. https://www.
oioubl.info/documents/en/en/Dokument/oioubl_guide_faktura.pdf.
Accessed: June 16, 2023. 2007.

[18] IT- og Telestyrelsen. Online OIOUBL Dokumentation - Payment means and Pay-
ment terms. https://www.oioubl.info/documents/en/en/Guidelines/
OIOUBL_GUIDE_PAYMENT.pdf. Accessed: June 16, 2023. 2015.

[19] Jesse Ruderman. Introducing jsfunfuss. https://www.squarefree.com/2007/
08/02/introducing-jsfunfuzz/. Accessed: June 16, 2023.

[20] Matt. A guide to fuzz testing. https://testfully.io/blog/fuzz-testing/.
Accessed: June 16, 2023.

[21] Michael Eddington. Peach Fuzzer. https://peachtech.gitlab.io/peach-
fuzzer-community/. Accessed: June 16, 2023.

[22] Nathaniel Bennett. WinSharpFuzz: Coverage-based Fuzzing for Windows .NET.
https://github.com/nathaniel-bennett/winsharpfuzz. Accessed: June 16,
2023.

[23] Nets DanID A/S. CPS - Certification Practice Statement. https://www.nets.
eu/dk-da/kundeservice/NemID-Til-Private/Documents/CPS_3.1.pdf.
Accessed: June 16, 2023.

[24] Peppol. Peppol BIS Specifications – An Overview. https://peppol.eu/what-
is-peppol/peppol-profiles-specifications/. Accessed: June 16, 2023.

[25] Peppol. Peppol eDelivery Network – An Overview. https://peppol.eu/what-
is-peppol/peppol-transport-infrastructure/. Accessed: June 16, 2023.

https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
https://nyheder.tv2.dk/samfund/2022-03-02-dansk-firma-lagt-ned-af-russiske-hackere-er-gaaet-i-hoejeste-kriseberedskab
https://nyheder.tv2.dk/samfund/2022-03-02-dansk-firma-lagt-ned-af-russiske-hackere-er-gaaet-i-hoejeste-kriseberedskab
https://nyheder.tv2.dk/samfund/2022-03-02-dansk-firma-lagt-ned-af-russiske-hackere-er-gaaet-i-hoejeste-kriseberedskab
https://www.oioubl.info/documents/en/en/Intro/OIOUBL_INTRO.pdf
https://www.oioubl.info/documents/en/en/Intro/OIOUBL_INTRO.pdf
https://www.oioubl.info/documents/en/en/Dokument/oioubl_guide_faktura.pdf
https://www.oioubl.info/documents/en/en/Dokument/oioubl_guide_faktura.pdf
https://www.oioubl.info/documents/en/en/Guidelines/OIOUBL_GUIDE_PAYMENT.pdf
https://www.oioubl.info/documents/en/en/Guidelines/OIOUBL_GUIDE_PAYMENT.pdf
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://testfully.io/blog/fuzz-testing/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://github.com/nathaniel-bennett/winsharpfuzz
https://www.nets.eu/dk-da/kundeservice/NemID-Til-Private/Documents/CPS_3.1.pdf
https://www.nets.eu/dk-da/kundeservice/NemID-Til-Private/Documents/CPS_3.1.pdf
https://peppol.eu/what-is-peppol/peppol-profiles-specifications/
https://peppol.eu/what-is-peppol/peppol-profiles-specifications/
https://peppol.eu/what-is-peppol/peppol-transport-infrastructure/
https://peppol.eu/what-is-peppol/peppol-transport-infrastructure/

Bibliography 56

[26] Peppol. What is Peppol? https://peppol.eu/what-is-peppol/. Accessed:
June 16, 2023.

[27] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. “Model-Based
Whitebox Fuzzing for Program Binaries”. In: ASE ’16. Singapore, Singapore:
Association for Computing Machinery, 2016, pp. 543–553. isbn: 9781450338455.
doi: 10.1145/2970276.2970316. url: https://doi.org/10.1145/2970276.
2970316.

[28] Python. dataclasses — Data Classes. https://docs.python.org/3/library/
dataclasses.html. Accessed: June 16, 2023.

[29] Saxonica. What is Saxon? https://www.saxonica.com/html/documentation10/

about/whatis.html. Accessed: June 16, 2023.

[30] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). https://www.w3.
org/TR/2008/REC-xml-20081126/. Accessed: June 16, 2023. 2008.

[31] W3C. Extensible Stylesheet Language (XSL) Version 1.1. https://www.w3.org/
TR/xsl/. Accessed: June 16, 2023.

[32] W3C. Namespaces in XML 1.0 (Third Edition). https://www.w3.org/TR/xml-
names/. Accessed: June 16, 2023. 2009.

[33] W3C. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. https:
//www.w3.org/TR/xmlschema11-1/. Accessed: June 16, 2023. 2012.

[34] W3C. What is XSL? https://www.w3.org/Style/XSL/WhatIsXSL.html.
Accessed: June 16, 2023. 2021.

[35] W3C. XSL Transformations (XSLT) Version 2.0 (Second Edition). https://www.
w3.org/TR/2021/REC-xslt20-20210330/. Accessed: June 16, 2023. 2021.

[36] Junjie Wang et al. “Skyfire: Data-Driven Seed Generation for Fuzzing”. In:
2017 IEEE Symposium on Security and Privacy (SP) (2017), pp. 579–594.

[37] Junjie Wang et al. “Superion: Grammar-Aware Greybox Fuzzing”. In: CoRR
abs/1812.01197 (2018).

[38] WireShark. WireShark. https://www.wireshark.org/. Accessed: June 16,
2023.

[39] Zalewski, Michał. Technical whitepaper for afl-fuzz. https://lcamtuf.coredump.
cx/afl/technical_details.txt. Accessed: June 16, 2023. 2014.

[40] Andreas Zeller et al. The Fuzzing Book. Retrieved 2021-10-26 15:30:20+02:00.
CISPA Helmholtz Center for Information Security, 2021. url: https://www.
fuzzingbook.org/.

https://peppol.eu/what-is-peppol/
https://doi.org/10.1145/2970276.2970316
https://doi.org/10.1145/2970276.2970316
https://doi.org/10.1145/2970276.2970316
https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html
https://www.saxonica.com/html/documentation10/about/whatis.html
https://www.saxonica.com/html/documentation10/about/whatis.html
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/Style/XSL/WhatIsXSL.html
https://www.w3.org/TR/2021/REC-xslt20-20210330/
https://www.w3.org/TR/2021/REC-xslt20-20210330/
https://www.wireshark.org/
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://www.fuzzingbook.org/
https://www.fuzzingbook.org/

Appendix A

OIOUBL Invoice Document

OIOUBL Invoice example document, used as one of the document in the initial
seed corpus

1 <?xml version="1.0" encoding="UTF-8"?>

2 <Invoice xmlns="urn:oasis:names:specification:ubl:schema:xsd:Invoice-2" xmlns:cac="

urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateComponents-2" xmlns:

cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicComponents-2" xmlns

:ccts="urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters-2"

xmlns:sdt="urn:oasis:names:specification:ubl:schema:xsd:SpecializedDatatypes-2"

xmlns:udt="urn:un:unece:uncefact:data:specification:

UnqualifiedDataTypesSchemaModule:2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="urn:oasis:names:specification:ubl:schema:xsd:

Invoice-2 UBL-Invoice-2.0.xsd">

3 <cbc:UBLVersionID>2.0</cbc:UBLVersionID>

4 <cbc:CustomizationID>OIOUBL-2.02</cbc:CustomizationID>

5 <cbc:ProfileID schemeAgencyID="320" schemeID="urn:oioubl:id:profileid-1.2">

Procurement-OrdAdv-BilSim-1.0</cbc:ProfileID>

6 <cbc:ID>A00095678</cbc:ID>

7 <cbc:CopyIndicator>false</cbc:CopyIndicator>

8 <cbc:UUID>9756b4d0-8815-1029-857a-e388fe63f399</cbc:UUID>

9 <cbc:IssueDate>2005-11-20</cbc:IssueDate>

10 <cbc:InvoiceTypeCode listAgencyID="320" listID="urn:oioubl:codelist:

invoicetypecode-1.1">380</cbc:InvoiceTypeCode>

11 <cbc:DocumentCurrencyCode>DKK</cbc:DocumentCurrencyCode>

12 <cbc:AccountingCost>5250124502</cbc:AccountingCost>

13 <cac:OrderReference>

14 <cbc:ID>5002701</cbc:ID>

15 <cbc:UUID>9756b468-8815-1029-857a-e388fe63f399</cbc:UUID>

16 <cbc:IssueDate>2005-11-01</cbc:IssueDate>

17 </cac:OrderReference>

18 <cac:AccountingSupplierParty>

19 <cac:Party>

20 <cbc:EndpointID schemeID="DK:CVR">DK16356706</cbc:EndpointID>

21 <cac:PartyIdentification>

22 <cbc:ID schemeID="DK:CVR">DK16356706</cbc:ID>

57

58

23 </cac:PartyIdentification>

24 <cac:PartyName>

25 <cbc:Name>Tavleverandøren</cbc:Name>

26 </cac:PartyName>

27 <cac:PostalAddress>

28 <cbc:AddressFormatCode listAgencyID="320" listID="urn:oioubl:codelist:

addressformatcode-1.1">StructuredDK</cbc:AddressFormatCode>

29 <cbc:StreetName>Leverandørvej</cbc:StreetName>

30 <cbc:BuildingNumber>11</cbc:BuildingNumber>

31 <cbc:CityName>Dyssegård</cbc:CityName>

32 <cbc:PostalZone>2870</cbc:PostalZone>

33 <cac:Country>

34 <cbc:IdentificationCode>DK</cbc:IdentificationCode>

35 </cac:Country>

36 </cac:PostalAddress>

37 <cac:PartyTaxScheme>

38 <cbc:CompanyID schemeID="DK:SE">DK16356706</cbc:CompanyID>

39 <cac:TaxScheme>

40 <cbc:ID schemeAgencyID="320" schemeID="urn:oioubl:id:taxschemeid-1.1">63</

cbc:ID>

41 <cbc:Name>Moms</cbc:Name>

42 </cac:TaxScheme>

43 </cac:PartyTaxScheme>

44 <cac:PartyLegalEntity>

45 <cbc:RegistrationName>Tavleleverandøren</cbc:RegistrationName>

46 <cbc:CompanyID schemeID="DK:CVR">DK16356706</cbc:CompanyID>

47 </cac:PartyLegalEntity>

48 <cac:Contact>

49 <cbc:ID>23456</cbc:ID>

50 <cbc:Name>Hugo Jensen</cbc:Name>

51 <cbc:Telephone>15812337</cbc:Telephone>

52 <cbc:ElectronicMail>Hugo@tavl.dk</cbc:ElectronicMail>

53 </cac:Contact>

54 </cac:Party>

55 </cac:AccountingSupplierParty>

56 <cac:AccountingCustomerParty>

57 <cac:Party>

58 <cbc:EndpointID schemeAgencyID="9" schemeID="GLN">5798009811578</cbc:

EndpointID>

59 <cac:PartyIdentification>

60 <cbc:ID schemeAgencyID="9" schemeID="GLN">5798009811578</cbc:ID>

61 </cac:PartyIdentification>

62 <cac:PartyName>

63 <cbc:Name>Den Lille Skole</cbc:Name>

64 </cac:PartyName>

65 <cac:PostalAddress>

66 <cbc:AddressFormatCode listAgencyID="320" listID="urn:oioubl:codelist:

addressformatcode-1.1">StructuredDK</cbc:AddressFormatCode>

67 <cbc:StreetName>Fredericiavej</cbc:StreetName>

68 <cbc:BuildingNumber>10</cbc:BuildingNumber>

69 <cbc:CityName>Helsingør</cbc:CityName>

59

70 <cbc:PostalZone>3000</cbc:PostalZone>

71 <cac:Country>

72 <cbc:IdentificationCode>DK</cbc:IdentificationCode>

73 </cac:Country>

74 </cac:PostalAddress>

75 <cac:Contact>

76 <cbc:ID>7778</cbc:ID>

77 <cbc:Name>Hans Hansen</cbc:Name>

78 <cbc:Telephone>26532147</cbc:Telephone>

79 <cbc:ElectronicMail>Hans@dls.dk</cbc:ElectronicMail>

80 </cac:Contact>

81 </cac:Party>

82 </cac:AccountingCustomerParty>

83 <cac:Delivery>

84 <cbc:ActualDeliveryDate>2005-11-15</cbc:ActualDeliveryDate>

85 </cac:Delivery>

86 <cac:PaymentMeans>

87 <cbc:ID>1</cbc:ID>

88 <cbc:PaymentMeansCode>42</cbc:PaymentMeansCode>

89 <cbc:PaymentDueDate>2005-11-25</cbc:PaymentDueDate>

90 <cbc:PaymentChannelCode listAgencyID="320" listID="urn:oioubl:codelist:

paymentchannelcode-1.1">DK:BANK</cbc:PaymentChannelCode>

91 <cac:PayeeFinancialAccount>

92 <cbc:ID>1234567890</cbc:ID>

93 <cbc:PaymentNote>A00095678</cbc:PaymentNote>

94 <cac:FinancialInstitutionBranch>

95 <cbc:ID>1234</cbc:ID>

96 </cac:FinancialInstitutionBranch>

97 </cac:PayeeFinancialAccount>

98 </cac:PaymentMeans>

99 <cac:PaymentTerms>

100 <cbc:ID>1</cbc:ID>

101 <cbc:PaymentMeansID>1</cbc:PaymentMeansID>

102 <cbc:Amount currencyID="DKK">6312.50</cbc:Amount>

103 </cac:PaymentTerms>

104 <cac:TaxTotal>

105 <cbc:TaxAmount currencyID="DKK">1262.50</cbc:TaxAmount>

106 <cac:TaxSubtotal>

107 <cbc:TaxableAmount currencyID="DKK">5050.00</cbc:TaxableAmount>

108 <cbc:TaxAmount currencyID ="DKK">1262.50</cbc:TaxAmount>

109 <cac:TaxCategory>

110 <cbc:ID schemeAgencyID="320" schemeID="urn:oioubl:id:taxcategoryid-1.1">

StandardRated</cbc:ID>

111 <cbc:Percent>25</cbc:Percent>

112 <cac:TaxScheme>

113 <cbc:ID schemeAgencyID="320" schemeID="urn:oioubl:id:taxschemeid-1.1">63</

cbc:ID>

114 <cbc:Name>Moms</cbc:Name>

115 </cac:TaxScheme>

116 </cac:TaxCategory>

117 </cac:TaxSubtotal>

60

118 </cac:TaxTotal>

119 <cac:LegalMonetaryTotal>

120 <cbc:LineExtensionAmount currencyID ="DKK">5050.00</cbc:LineExtensionAmount>

121 <cbc:TaxExclusiveAmount currencyID ="DKK">1262.50</cbc:TaxExclusiveAmount>

122 <cbc:TaxInclusiveAmount currencyID ="DKK">6312.50</cbc:TaxInclusiveAmount>

123 <cbc:PayableAmount currencyID ="DKK">6312.50</cbc:PayableAmount>

124 </cac:LegalMonetaryTotal>

125 <cac:InvoiceLine>

126 <cbc:ID>1</cbc:ID>

127 <cbc:InvoicedQuantity unitCode="EA">1.00</cbc:InvoicedQuantity>

128 <cbc:LineExtensionAmount currencyID="DKK">5000.00</cbc:LineExtensionAmount>

129 <cac:OrderLineReference>

130 <cbc:LineID>1</cbc:LineID>

131 </cac:OrderLineReference>

132 <cac:TaxTotal>

133 <cbc:TaxAmount currencyID="DKK">1250.00</cbc:TaxAmount>

134 <cac:TaxSubtotal>

135 <cbc:TaxableAmount currencyID="DKK">5000.00</cbc:TaxableAmount>

136 <cbc:TaxAmount currencyID="DKK">1250.00</cbc:TaxAmount>

137 <cac:TaxCategory>

138 <cbc:ID schemeAgencyID="320" schemeID="urn:oioubl:id:taxcategoryid-1.1">

StandardRated</cbc:ID>

139 <cbc:Percent>25</cbc:Percent>

140 <cac:TaxScheme>

141 <cbc:ID schemeAgencyID="320" schemeID="urn:oioubl:id:taxschemeid-1.1">63

</cbc:ID>

142 <cbc:Name>Moms</cbc:Name>

143 </cac:TaxScheme>

144 </cac:TaxCategory>

145 </cac:TaxSubtotal>

146 </cac:TaxTotal>

147 <cac:Item>

148 <cbc:Description>Hejsetavle</cbc:Description>

149 <cbc:Name>Hejsetavle</cbc:Name>

150 <cac:SellersItemIdentification>

151 <cbc:ID schemeAgencyID="9" schemeID="GTIN">5712345780121</cbc:ID>

152 </cac:SellersItemIdentification>

153 </cac:Item>

154 <cac:Price>

155 <cbc:PriceAmount currencyID="DKK">5000.00</cbc:PriceAmount>

156 <cbc:BaseQuantity unitCode="EA">1</cbc:BaseQuantity>

157 <cbc:OrderableUnitFactorRate>1</cbc:OrderableUnitFactorRate>

158 </cac:Price>

159 </cac:InvoiceLine>

160 <cac:InvoiceLine>

161 <cbc:ID>2</cbc:ID>

162 <cbc:InvoicedQuantity unitCode="EA">2.00</cbc:InvoicedQuantity>

163 <cbc:LineExtensionAmount currencyID="DKK">50.00</cbc:LineExtensionAmount>

164 <cac:OrderLineReference>

165 <cbc:LineID>2</cbc:LineID>

166 </cac:OrderLineReference>

61

167 <cac:TaxTotal>

168 <cbc:TaxAmount currencyID="DKK">12.50</cbc:TaxAmount>

169 <cac:TaxSubtotal>

170 <cbc:TaxableAmount currencyID="DKK">50.00</cbc:TaxableAmount>

171 <cbc:TaxAmount currencyID="DKK">12.50</cbc:TaxAmount>

172 <cac:TaxCategory>

173 <cbc:ID schemeAgencyID="320" schemeID="urn:oioubl:id:taxcategoryid-1.1">

StandardRated</cbc:ID>

174 <cbc:Percent>25</cbc:Percent>

175 <cac:TaxScheme>

176 <cbc:ID schemeAgencyID="320" schemeID="urn:oioubl:id:taxschemeid-1.1">63

</cbc:ID>

177 <cbc:Name>Moms</cbc:Name>

178 </cac:TaxScheme>

179 </cac:TaxCategory>

180 </cac:TaxSubtotal>

181 </cac:TaxTotal>

182 <cac:Item>

183 <cbc:Description>Beslag</cbc:Description>

184 <cbc:Name>Beslag</cbc:Name>

185 <cac:SellersItemIdentification>

186 <cbc:ID schemeAgencyID="9" schemeID="GTIN">5712345780111</cbc:ID>

187 </cac:SellersItemIdentification>

188 </cac:Item>

189 <cac:Price>

190 <cbc:PriceAmount currencyID="DKK">25.00</cbc:PriceAmount>

191 <cbc:BaseQuantity unitCode="EA">1</cbc:BaseQuantity>

192 <cbc:OrderableUnitFactorRate>1</cbc:OrderableUnitFactorRate>

193 </cac:Price>

194 </cac:InvoiceLine>

195 </Invoice>

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	2 OIORASP
	2.1 E-business Standards
	2.1.1 OpenPeppol
	2.1.2 NemHandel

	2.2 OIORASP
	2.2.1 Protocol Overview
	2.2.2 Protocol Details

	2.3 OIOUBL - Universal Business Language
	2.3.1 OIOUBL Properties
	2.3.2 Validation of OIOUBL Documents

	2.4 Document Processing in the OIORASP Library

	3 Fuzzing Theory
	3.1 Fuzzing Approaches
	3.1.1 Blackbox Fuzzing
	3.1.2 Whitebox Fuzzing
	3.1.3 Greybox Fuzzing

	3.2 Fuzzing Concepts
	3.2.1 Mutation- and Generation-based Fuzzing
	3.2.2 Smart and Dumb Fuzzer
	3.2.3 Code Coverage
	3.2.4 Power Scheduler

	3.3 American Fuzzy Lop

	4 Implementing OIOFuzz
	4.1 Delimiting the OIORASP Fuzzing Target
	4.2 Fuzzing Approach
	4.3 OIORASP Library Setup
	4.4 OIOUBL documents
	4.5 Fuzzer Structure
	4.6 Components
	4.6.1 Invoice Model
	4.6.2 Parser
	4.6.3 Fuzzer
	4.6.4 Mutator
	4.6.5 Runner

	4.7 Classification of OIOFuzz

	5 Fuzzing OIORASP
	5.1 Initial Exploration
	5.2 Running OIOFuzz
	5.2.1 Observations From Early Iterations
	5.2.2 Experiment Setup
	5.2.3 Different Variations

	5.3 Schematron Error

	6 Related Work
	7 Discussion
	7.1 Instrumentation of the ClientExample
	7.2 C# Fuzzer
	7.3 Schematron Guided Mutations
	7.4 Generation-based Fuzzer

	8 Conclusion
	9 Future Work
	Bibliography
	A OIOUBL Invoice Document

