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1 | Introduction

Copula models have become quite popular as a way of modelling the dependence between variables
in a way that allows for more complexity than a conventional linear correlation. They also allow the
variables to have atypical marginal distributions, which makes them a natural choice for modelling a
portfolio of financial assets. The parametric copulae that are available, may however be too restrictive
to match the observed data. Therefore, a kernel based nonparametric copula is considered as a remedy.

The challenge when using kernel based estimators is that more data is needed to obtain accurate
estimates, when compared to parametric models. Additionally, kernel based estimators rapidly lose
efficiency when modelling higher dimensional variables [Sto80]. This is especially a problem because
portfolios tend to have a lot of assets. A remedy for this was proposed in [NC16], where the kernel
based estimator was implemented in a vine copula.

The vine copula is a way of constructing a multidimensional copula as a large set of bivariate
copulae. This reduces the flexibility of the copula to only consider the pairwise dependence between
variables. The loss of flexibility has the benefit that only a set of bivariate copulae have to be es-
timated, which means it doesn’t lose efficiency in higher dimensions. It is possible that limiting the
copula to only pairwise dependencies may be unrealistic, but [NC16] shows that even in cases where
the true copula can’t be represented as a vine, a kernel based vine copula still outperforms its non-vine
counterpart at higher dimensions for small sample sizes.

While copulae can be used to model the dependence between variables, they can also be used to
model the auto-dependence as well, that is to say the dependence between a time series xt and itself at
a previous time, xs when s < t, as can be seen in [GD22]. This is a case where nonparametric copulae
are especially relevant, as the dependence tends to be far from linear.

The problem with the approach in [GD22] is that it only models a single asset. However, the
inclusion of vines allows the modelling of an arbitrarily large amount of assets. A key feature of vines
is also that with the right choice of vine it is possible to condition the assets on their previous values
in a way that is efficient for higher dimensions.

Additionally, in [NC16] their tests didn’t go beyond 10 dimensions. However, within areas like
portfolio allocation there is need for dimensions much greater than 10. Thus the thesis also tests the
efficiency of the nonparametric vine copula at dimensions up to 100.

1.1 Thesis Structure
The thesis consists of 5 chapters. Chapter 2 starts with the basic theory of copulae, where Sklar’s The-
orem is the most important aspect. The focus is on the multidimensional case since portfolios require
modeling multiple assets. The chapter also considers the probit functions use in kernel estimators for
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4.106c Chapter 1. Introduction

copula density, which theoretically can handle the problem of boundary bias in the standard kernel
estimator. It is also shown that kernel estimators become worse when estimating higher dimensional
data.

Chapter 3 introduces vines as a way to combat kernel estimators worse performance in higher
dimensions. This chapter begins with the definition of a vine and a regular vine. Later the canonical
vine is specified since it is a vine that is easiest to implement. Additionally, the chapter presents how
to estimate canonical vines as well, simulate them, both conditionally and unconditionally.

Chapter 4 applies the model to real one minute trading data from 2022 for a selection of twelve
assets. The nonparametric vine copulae are applied to the data in a variety of ways along with the
standard Gaussian copulae for comparison. The models are compared on the basis of minimizing the
5% expected shortfalls. Finally a synthetic test is conducted to see how well the nonparametric vine
copula estimates higher dimensional Gaussian data up to a dimension of 100.

The thesis concludes on Chapter 5 with a summary of the thesis and considerations for some of
the shortfalls in application and potential extensions.
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2 | Copula Theory

As Roger writes in [Nie06], copulae are functions that join or "couple" multivariate distribution func-
tions to their one-dimensional marginal distribution functions. This can also be formulated as copulae
are multivariate distribution functions whose one-dimensional margins are uniform on the interval
(0, 1). To give a formal definition of a copula, some preliminary results lead up to the definition of a
copula. The focus is on the multivariate case.

2.1 Notation
The following is a list of Notations that need to be clarified.

• R denotes the ordinary real line (−∞,∞), R denotes the extended real line [−∞,∞] and Rn

denote the extended n-space R× R× · · · × R.

• The vector notation for points in Rn is for example a = (a1, a2, · · · , an), and a ≤ b when ak ≤ bk

for all k and a < b when ak < bk for all k.

• For a ≤ b let [a, b] denote the n-box B = [a1, b1]× [a2, b2]× · · ·× [an, bn], the Cartesian product
of n closed intervals.

• The vertices of an n-box B are denoted as verB and contains all points c = (c1, c2, · · · , cn) where
each ck is equal to either ak or bk.

• I is the range [0, 1] and In is the unit n-cube and is the product I× I× · · · × I.

• An n-place real function H is a function whose domain, Dom(H), is a subset of Rn and whose
range, Ran(H), is a subset of R.

3



4.106c Chapter 2. Copula Theory

2.2 Basic Definitions and Properties
The aspects presented in this section come from [Nie06] and will be relevant for defining the joint
distribution functions for multivariate stochastic variables.

Definition 2.1
Let S1, S2, · · ·Sn be nonempty subsets of R, and let H be an n-place real function such that
Dom(H) = S1 × S2 × · · · × Sn. Let B = [a, b] be an n-box all of whose vertices are in Dom(H).
Then the H volume of B is given by

VH(B) =
∑

c∈verB

sgn(c)H(c),

where the sum is taken over all vertices c of B, and sgn(c) is given by

sgn(c) =
{

1, if ck = ak for an even number of k′s,

−1, if ck = ak for an odd number of k′ s.

The H-volume of an n-box B = [a, b] is equivalently the nth order difference of H on B such that

VH(B) = ∆b
aH(t) = ∆bn

an
∆bn−1

an−1
· · ·∆b2

a2
∆b1

a1
H(t),

where t is any element of Rn and where the first order difference of an n-place function is defined as

∆bk
ak

H(t) = H (t1, · · · , tk−1, bk, tk+1, · · · , tn)−H (t1, · · · , tk−1, ak, tk+1, · · · , tn) .

In the context of multivariate variables, if H was the joint distribution function of X then VH(B) =
P(X ∈ B). The volume VH(B) is here meant to describe a probability and for H to be a distribution
function any volume VH(B) must always be non-negative.

Definition 2.2
An n-place real function H is n-increasing if VH(B) ≥ 0 for all n-boxes B whose vertices lie in
Dom(H).

For H to be increasing is effectively a requirement for VH to function like a measure for the mul-
tidimensional space Dom(H). Specifically, within the context of probability it should function as a
probability measure for a multivariate stochastic variable. The relation to probability becomes more
clear in the next definition.

Definition 2.3
Assume that H is an n-place real function with domain Dom(H) = S1 × S2 × · · · × Sn, where
each Sk has a least element ak.

Then, H is said to be grounded if H(t) = 0 for all t in Dom(H) such that tk = ak for at least
one k.

Additionally, if each Sk is nonempty and has a greatest element bk, then H is said to have mar-
gins. Furthermore the one-dimensional margins of H are the functions Hk given by Dom(Hk) = Sk

and
Hk(x) = H (b1, · · · , bk−1, x, bk+1, · · · , bn) for all x in Sk. (2.1)

A nice consequence of H being grounded is that given a box B = [a, t] where a = (a1, . . . , an). Then
the volume VH([a, t]) = H(t), because the only vertex of B that doesn’t contain at least one ak is t
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2.3. Multivariate Copulae 4.106c

The margins as defined in Definition 2.3 are directly related to the marginal distributions of some
multivariate variable X. Such that, if H is the joint distribution of X, then the k’th variable Xk with
support Sk has marginal distribution Fk(x),

Fk(x) = Hk(x).

The concept of margins as presented also goes further than just one dimension as by fixing fewer places
in H it is possible to define higher dimensional margins of H.

Lemma 2.4
Let S1, S2, · · ·Sn be nonempty subsets of R, and let H be a grounded n-increasing function with
Dom(H) = S1 × S2 × · · · × Sn. Then H is nondecreasing in each argument, that is, if
Bx = (t1, · · · , tk−1, x, tk+1, · · · , tn) and By = (t1, · · · , tk−1, y, tk+1, · · · , tn) are in Dom(H) and
x < y, then

H (Bx) ≤ H (By) .

A formal proof will not be given, but the result is a straight forward consequence of H being n-
increasing and Bx ⊊ By.

The following lemma concerns a grounded n-increasing function with one-dimensional margins and
is needed to show that n-copulae are uniformly continuous. This lemma is also important in the proof
of the n-dimensional version of Sklar’s theorem. For proof see [Sch82].

Lemma 2.5
Let S1, S2, · · ·Sn be nonempty subsets of R, and let H be a grounded n-increasing function with
one-dimensional margins whose domain is Dom(H) = S1×S2×· · ·×Sn. Let x = (x1, x2, · · · , xn)
and y = (y1, y2, · · · , yn) be any points in Dom(H). Then

|H(x)−H(y)| ≤
n∑

k=1
|Hk (xk)−Hk (yk)| .

2.3 Multivariate Copulae
Using the theory related to the function H, it is possible to define n-dimensional subcopulae and
n-dimensional copulae as

Definition 2.6 (Subcopula)
An n-dimensional subcopula (or n-subcopula) is a function C ′ with the following properties:

1. Dom(C ′) = S1 × S2 × · · · × Sn, where each Sk is a subset of I containing 0 and 1;

2. C ′ is grounded and n-increasing;

3. C ′ has (one-dimensional) margins C ′
k, k = 1, 2, · · · , n, which satisfy

C ′
k(u) = u for all u in Sk. (2.2)

As a result of the third property, note that for every u in Dom(C ′), 0 ≤ C ′(u) ≤ 1, so that Ran(C ′) is
also a subset of I. Like the name implies a subcopula is exactly like a copula with the exception that
its domain dom(C ′) is a subset of the domain of all copulae.

5



4.106c Chapter 2. Copula Theory

Definition 2.7 (Copula)
An n-dimensional copula (or n-copula) is an n-subcopula C whose domain is In.

This definition of copulae uses several other definitions and they can all be reduced to the requirements:

1. C is a function from In to I.

2. For every u in In where at least one coordinate of u is 0.

3. If all coordinates of u are 1 except uk, then C(u) = uk;

4. For every a and b in In such that a ≤ b,

VC([a, b]) ≥ 0.

It can be shown that for any n-copula C for n ≥ 3, each k-margin of C is a k-copula for 2 ≤ k < n.

2.4 Sklar’s Theorem
Sklar’s theorem is the main result of copula theory and it says that a multivariate distribution func-
tion is represented as a composition of univariate marginal distribution functions and a copula, which
describes the dependence structure between the variables.

First, the n-dimensional distribution function is defined.

Definition 2.8
An n-dimensional distribution function is a function H with domain Rn such that

1. H is n-increasing,

2. H(t) = 0 for all t in Rn such that tk = −∞ for at least one k, and H(∞,∞, · · · ,∞) = 1.

So H is grounded, and since Dom(H) = Rn, it follows from Lemma 2.4 that the one-dimensional
margins in (2.1) of an n-dimensional distribution function, H, are themselves the one-dimensional
distribution functions F1, F2, · · · , Fn [Nie06].

Theorem 2.9 (Sklar’s theorem)
Let H be an n-dimensional distribution function with one-dimensional margins F1, F2, · · · , Fn.
Then there exists an n-copula C such that for all x in Rn,

H (x1, x2, · · · , xn) = C (F1 (x1) , F2 (x2) , · · · , Fn (xn)) . (2.3)

If F1, F2, · · · , Fn are all continuous, then C is unique; otherwise, C is uniquely determined on
Ran(F1)× Ran(F2)× · · · × Ran(Fn).
Conversely, if C is an n-copula and F1, F2, · · · , Fn are distribution functions, then the func-
tion H defined by (2.3) is an n-dimensional distribution function with one-dimensional margins
F1, F2, · · · , Fn.

The proof of Theorem 2.9 uses the two following lemmas. The first lemma is related to Theorem 2.9
but for subcopulae.

6



2.4. Sklar’s Theorem 4.106c

Lemma 2.10
Let H be an n-dimensional distribution function with one-dimensional margins F1, F2, · · · , Fn.
Then there exists a unique subcopula C ′ such that

1. Dom(C ′) = Ran(F1)× Ran(F2)× · · · × Ran(Fn),

2. For all x in Rn, H(x) = C ′ (F1 (x1) , F2 (x2) , · · · , Fn (xn)).

The second lemma is the n-dimensional extension lemma, which says that every n-subcopula can be
extended to a n-copula.

Lemma 2.11 (Extension Lemma)
Let C ′ be an n-subcopula. Then there exists a copula C such that,

C(u) = C ′(u)

for all u in Dom(C ′); i.e., any n-subcopula can be extended to a n-copula. The extension is
generally non-unique.

See [Nie06] for proof of Lemma 2.10 and 2.11 in the 2-dimensional case.

Given Lemma 2.10 and 2.11, [Nie06] proves Sklar’s theorem in Theorem 2.9 as follows:

Proof. The existence of a copula C such that (2.3) holds for all x in Rn follows from Lemmas 2.10 and
2.11. If the one-dimensional margins F1, F2, · · · , Fn are continuous, then Ran(F1) = Ran(F2) = · · · =
Ran(Fn) = I, so that the unique n-subcopula in Lemma 2.10 is an n-copula. The converse is a matter
of straightforward verification.

Equation (2.3) can be inverted to express copulae in terms of a n-dimensional distribution func-
tion and the "inverses" of the one-dimensional margins. First one need to define "quasi-inverses" of
distribution functions.

Definition 2.12 (Quasi-inverses)
Let F be a distribution function. Then a quasi-inverse of F is any function F (−1) with domain I
such that

1. If t is in Ran(F ), then F (−1)(t) is any number x in R such that F (x) = t, i.e., for all t in
Ran F ,

F
(

F (−1)(t)
)

= t

2. If t is not in Ran(F ), then

F (−1)(t) = inf{x | F (x) ≥ t} = sup{x | F (x) ≤ t}

If F is strictly increasing, then it has a single quasi-inverse, which is the ordinary inverse
which is notated. F −1.

By using quasi-inverses from Definition 2.12 the following Corollary exists as an inversion of Theorem
2.9.

Corollary 2.13
Let H, C, F1, F2, · · · , Fn be as in Theorem 2.9 , and let F

(−1)
1 , F

(−1)
2 , · · · , F

(−1)
n be quasi-inverses

7



4.106c Chapter 2. Copula Theory

of F1, F2, · · · , Fn, respectively. Then for any u in In,

C (u1, u2, · · · , un) = H
(

F
(−1)
1 (u1) , F

(−1)
2 (u2) , · · · , F (−1)

n (un)
)

.

The next theorem is a repetition of Theorem 2.9, but instead in terms of random variables and
their marginal distribution functions and their joint distribution function.

Theorem 2.14
Let X1, X2, · · · , Xn be random variables with distribution functions F1, F2, · · · , Fn, respectively,
and joint distribution function H. Then there exists an n-copula C such that (2.3) holds. If
F1, F2, · · · , Fn are all continuous, C is unique. Otherwise, C is uniquely determined on Ran(F1)×
Ran(F2)× · · · × Ran(Fn).

The n-copula C in Theorem 2.14 is called the n-copula of X1, X2, · · · , Xn.

2.5 Basic Copulae
Three basic examples of copulae are,

Example 2.15 (The comonotonicity copula)
Let U be a random variable with a uniform distribution on I and consider the random vector
consisting of n copies of U ,

U = (U, . . . , U).

Then, for every u ∈ In,

P(U ≤ u) = P (U ≤ min {u1, . . . , un}) = min {u1, . . . , un}

and the distribution function Mn : In → I defined as

Mn (u1, u2, . . . , ud) := min {u1, . . . , ud}

is a copula, which is called the comonotonicity copula.

Example 2.16 (The independence copula)
Let U1, . . . , Un be independent random variables. Suppose each of Ui is uniformly distributed on I
and consider the random vector, U = (U1, . . . , Un). Then, for every u ∈ In,

P(U ≤ u) = P (U1 ≤ u1) · · ·P (Un ≤ un) =
n∏

j=1
uj

and the distribution function Πn : In → I defined as

Πn (u1, u2, . . . , un) :=
n∏

j=1
uj

is a n-copula, which is called the independence copula.

8



2.5. Basic Copulae 4.106c

Example 2.17 (The countermonotonicity copula)
Suppose U is uniformly distributed on I and consider the random vector U = (U, 1 − U). Then,
for every u ∈ I2,

P(U ≤ u) = P (U ≤ u1, 1− U ≤ u2) = max {0, u1 + u2 − 1} .

and the distribution function W 2 : I2 → I defined as

W 2 (u1, u2) := max {0, u1 + u2 − 1}

is a 2-copula, which is called the countermonotonicity copula.

Note that W 2 is only defined as a 2-copula and not as a n-copula. There is an analogous
function W n : In → I defined as

W n(u) := max

0,

n∑
j=1

uj − (n− 1)

 .

But this function fails to be an n-copula for any n > 2 because it is not necessarily n-increasing.

To summarize the three copulae, Πn arises when the variables X1, . . . Xn are all mutually indepen-
dent.

Mn arises when X1, . . . Xn are perfectly positively correlated in the sense that for any two variables
Xk and Xk′ , k ̸= k′, then Xk = f(Xk′) for some strictly increasing deterministic function f .

W n is only a valid copula for n = 2 and it arises when X1, X2 are perfectly negatively correlated
in the sense that X2 = −f(X1) for some strictly increasing deterministic function f . The intuitive
reason for why W n only works for n = 2 is that for n = 3 to be valid X1, X2 and X3 would all have
to be perfectly negatively correlated with each other at the same time.

The functions Mn and W n have a special relation to copulae as can be seen by

Theorem 2.18 (Fréchet-Hoeffding bounds)
If C ′ is any n-subcopula, then for every u in Dom(C ′),

W n(u) ≤ C ′(u) ≤Mn(u). (2.4)

A proof of Theorem 2.18 will not be given but it follows from Lemmas 2.4 and 2.5.

Since W n represents variables that are perfectly negatively correlated (at least when n = 2) and
Mn represents variables that are perfectly positively correlated, Theorem 2.18 can be seen as stating,
that a copula (which specifies the dependence between variables) must be somewhere between perfect
positive correlation and perfect negative correlation. Theorem 2.18 is therefore analogous to the
Pearson correlation ρ having the bounds −1 ≤ ρ ≤ 1.

9
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Figure 2.1: Plots of the W 2, Π2 and M2 copulae.
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Figure 2.2: Contour plots of the W 2, Π2 and M2 copulae.

2.6 Tail Dependence
Copulae present a useful way of extending how variables can depend on each other. Conventionally,
dependence is limited to linear dependence as implied by covariance and correlation.

One type of nonlinear dependence is tail dependence, which measures the dependence between
two variables in the upper-right quadrant, λU , or in the lower-left quadrant, λL, of I2. This can be
especially useful in risk management, where one is primarily concerned with worst case scenarios. Tail
dependence tells if extreme events tend to occur simultaneously or if they occur independently. This
is referred to as the absence or presence of tail dependence [MS03]. [Nie06] defines tail dependence as,

Definition 2.19 (Tail dependence)
Let X and Y be continuous random variables with distribution functions FX and FY , respectively.
The upper tail dependence parameter λU is the limit (if it exists) of the conditional probability
that Y is greater than the 100-th percentile of FY given that X is greater than the 100-th percentile
of FX as t approaches 1 , i.e.

λU = lim
t→1−

P
[
Y > F

(−1)
Y (t) | X > F

(−1)
X (t)

]
. (2.5)

Similarly, the lower tail dependence parameter λL is the limit (if it exists) of the conditional
probability that Y is less than or equal to the 100-th percentile of FY given that X is less than

10



2.7. Gaussian Copula 4.106c

or equal to the 100-th percentile of FX as t approaches 0 , i.e.

λL = lim
t→0+

P
[
Y ≤ F

(−1)
Y (t) | X ≤ F

(−1)
X (t)

]
. (2.6)

(2.5) essentially states, that if X is above the t percentile, then the probability that Y is also above
the t percentile will converge on λU as t→ 1.

Because tail dependence is defined using the percentile t, it doesn’t actually depend on the marginals
of X and Y and only on their copula C. This is illustrated in the following theorem.

Theorem 2.20
Let X, Y, FX , FY , λU , and λL be as in Definition 2.19, and let C be the copula of X and Y . If the
limits in (2.5) and (2.6) exist, then

λU = 2− lim
t→1−

1− C(t, t)
1− t

(2.7)

and
λL = lim

t→0+

C(t, t)
t

. (2.8)

The proof of Theorem 2.20 can be found in [Nie06].

In (2.7) the copula C has an upper tail dependence coefficient equal to λU and in (2.8) the copula
C has an lower tail dependence coefficient equal to λL.

If λU lies in (0, 1], then the copula C has upper tail dependence and large events tend to occur
simultaneously. If λU = 0, then the copula C has no upper tail dependence and large events tend to
occur essentially independently. Similarly can be said for λL.

2.7 Gaussian Copula
One of the most well-known copula families is the Gaussian family of copulae. It is the traditional
candidate for modelling dependence and it is the copula that comes from the multivariate Gaussian
distribution. [MS03] defines the Gaussian copula as,

Definition 2.21
Let Φ denote the standard normal (cumulative) distribution function and Φρ,n the n-dimensional
Gaussian distribution funciton with correlation matrix ρ. Then, the Gaussian n-copula with
correlation matrix ρ is

Cρ (u1, . . . , un) = Φρ,n

(
Φ−1 (u1) , . . . , Φ−1 (un)

)
, (2.9)

The Gaussian n-copula has density

cρ (u1, . . . , un) = ∂Cρ (u1, . . . , un)
∂u1 . . . ∂un

= 1√
det ρ

exp
(
−1

2y(u)t
(
ρ−1 − I

)
y(u)

)
where yk(u) = Φ−1 (uk). Note that it is Theorem 2.9 and Corollary 2.13 that ensures the Gaussian
n-copula in (2.9) is a copula.

11



4.106c Chapter 2. Copula Theory

When n = 2 the ρ simplifies down to the coefficient of correlation between Φ−1(u1) and Φ−1(u2).
Additionally the Gaussian 2-copula becomes the countermonotonic copula, independence copula, and
comonotonic copula are obtained when ρ = −1, 0 and 1, respectively.

The Gaussian copula has zero tail dependence λU = λL = 0 when ρ ∈ (−1, 1). To see this consider
a bivariate Gaussian copula Cρ(·). The result will only consider the lower tail dependence λL. The
proof for λU can then be argued from the symmetry of Gaussian distributions.

Assume that X, Y have uniform marginals on I with Gaussian copula Cρ. Then by applying
l’Hospital’s rule to (2.8)

λL = lim
t→0+

∂Cρ(t, t)
∂t

= lim
t→0+

P (Y ≤ t | X = t) + lim
t→0+

P (X ≤ t | Y = t) (2.10)

[EMS02]. Since a Gaussian copula is an exchangeable copula, that is Cρ(X, Y ) = Cρ(Y, X), then

λL = 2 lim
t→0+

P (Y ≤ t | X = t)

This limit can be evaluated by applying the same quantile distribution to both marginals in order to
obtain a bivariate distribution where the conditional distribution is known. Let,

(S, T ) =
(
Φ−1 (X) , Φ−1 (Y )

)
So (S, T ) has a bivariate normal distribution with standardized marginals and correlation ρ. Then,

λL = 2 lim
t→0+

P
(
Φ−1 (Y ) ≤ Φ−1(t) | Φ−1 (X) = Φ−1(t)

)
= 2 lim

τ→−∞
P (T ≤ τ | S = τ)

Using the fact that T | S ∼ N
(
ρτ, 1− ρ2) it can be calculated that,

λL = 2 lim
τ→−∞

Φ
(

τ

√
(1− ρ)
(1 + ρ)

)
= 0

Thus the Gaussian copula gives an asymptotic independence provided that ρ ∈ (−1, 1). So regardless
of how high the correlation is, there is still zero tail dependence. This does bring up an important
distinction that tail dependence doesn’t mean that X and Y are independent in the tails.

The Gaussian copula for d dimensions is entirely determined by the correlation matrix ρ. ρ is also
simple to estimate regardless of how large d is, because it only depends on the correlation between
each pair of variables.

2.8 Kernel Based Estimators
In copula modeling, there is a general problem of estimating the copula density in a nonparametrically
way. The kernel estimator, which is a nonparametric density estimator, is not suitable for the support
of unit-square copula densities. There are two major problems associated with the kernel estimator.
One of the problems is that the kernel estimator is biased at the boundaries and the kernel estimator
is also sensitive to both kernel and bandwidth.

Consider a bivariate copula function C, for the random variables X and Y with marginal cdf’s FX

and FY . Assume that C is absolutely continuous and that the associated copula density of C is

c(u, v) = ∂2C

∂u∂v
(u, v) for (u, v) ∈ I. (2.11)

12
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Let the standard kernel estimator for c be ĉ∗ at (u, v) ∈ I. Given a sample {(Ui, Vi)}n
i=1 where

Ui = FX(Xi) and Vi = FY (Yi), then ĉ∗ is defined in [GCP17] as

ĉ∗(u, v) = 1
n |HUV |1/2

n∑
i=1

K

(
H

−1/2
UV

(
u− Ui

v − Vi

))
. (2.12)

Where the kernel function K : R2 → R has that
∫
R2 K(x)dx = 1 and where HUV is a bandwidth

matrix. Thus the density of ĉ∗ at a given point (u, v) will be determined by how many points from
the sample are ’close’ to it, with the bandwidth matrix, HUV , specifying what is considered close.

There are however issues with the estimator in (2.12), as explained in [GCP17]. One is that kernel
estimators are not consistent for unbounded densities, which means (2.12) will be inconsistent for many
theoretical densities like the Gaussian kernel which for most choices of correlation ρ will have at least
two corners with infinite density. This is however not necessarily an issue when estimating real data.

A much more significant problem with (2.12) is boundary bias. That is to say that along the
boundaries of I2 the estimator will be inconsistent with E [ĉ∗(u, v)] = 1

2 c(u, v) + O(h) on the edges and
E [ĉ∗(u, v)] = 1

4 c(u, v) + O(h) in corners. The reason for this is simply that when estimating c(u, v)
the kernel estimator uses how many points in the sample that are in area close to the point (u, v) to
make its estimate. However at the edges of I2 the area that is would be considered close is only half
what it would be closer to the center. Likewise at the corners the area is only a quarter.

2.8.1 Probit Transformation
The aim is to come up with a kernel-type copula density estimator that can handle the problems
with the estimator in (2.12). The idea is to transform the uniform marginals of the copula density
estimator into normal distributions by using the probit function Φ−1. Then estimate the density in
the transformed R2 domain and get an estimate of the copula density through back-transformation.

Define S = Φ−1(U) and T = Φ−1(V ) and let FST be their joint cdf, where Φ is the standard normal
cdf and Φ−1 is the quantile (probit) function. The main idea is summarized in the following way:

• If c(u, v) > 0 Lebesgue-almost everywhere over I, then (S, T ) has unconstrained support R2.

• Under mild assumptions the density of c and its first- and second-order partial derivatives can be
seen as being uniformly bounded on R2. This is also the case with an unbounded copula density
c.

• When estimating the density of c it can not suffer from boundary issues and because it has normal
margins it is expected that the density of c is very smooth and well-behaved, which makes the
estimation easy.

Now let C be the copula of FST . Given that both U and V are uniform on I then S ∼ N (0, 1) and
T ∼ N (0, 1). For the vector (S, T ) using Sklar’s theorem one has that

FST (s, t) = P(S ≤ s, T ≤ t) = C(Φ(s), Φ(t)) ∀(s, t) ∈ R2 (2.13)

Differentiating with respect to s and t, one gets

fST (s, t) = c(Φ(s), Φ(t))ϕ(s)ϕ(t) (2.14)

Inverting (2.14) the following expression is obtained for any (u, v) ∈ (0, 1)2,

c(u, v) =
fST

(
Φ−1(u), Φ−1(v)

)
ϕ (Φ−1(u)) ϕ (Φ−1(v)) .
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4.106c Chapter 2. Copula Theory

This shows that any estimator f̂ST of fST on R2 does produce an estimator of the copula density on
int(I) :

ĉ(τ)(u, v) =
f̂ST

(
Φ−1(u), Φ−1(v)

)
ϕ (Φ−1(u)) ϕ (Φ−1(v)) . (2.15)

The superscript (τ) in (2.15) is referring to the idea of transformation. It is possible to define ĉ(τ) at
the boundaries of I by continuity when it is necessary.

The transformation-based estimator in (2.15) has some nice properties. The first one is that ĉ(τ)

can not allocate any probability outside of I, because
(
Φ−1(u), Φ−1(v)

)
is not defined for (u, v) /∈ I

Secondly, if f̂ST is a bona fide density function, that is f̂ST (s, t) ≥ 0 for all (s, t) and∫∫
R2

f̂ST (s, t)dsdt = 1,

then by a change of variables u = Φ(s) and v = Φ(t), ĉ(τ)(u, v) ≥ 0 for all (u, v) ∈ I and∫∫
I

ĉ(τ)(u, v)dudv = 1.

Lastly, if f̂ST is uniformly weak or uniformly strong consistent estimator for fST , that is,

sup
(s,t)∈R2

∣∣∣f̂ST (s, t)− fST (s, t)
∣∣∣ P−a.s.−→ 0 as n→∞,

So ĉ(τ) has that uniform consistency on any compact proper subset of I.

2.8.2 The Naive Estimator
The most basic application of the standard kernel estimator (2.12) and the probit transformation is to
use (2.12) as the estimate f̂ST in (2.15):

f̂∗
ST (s, t) = 1

n |HST |1/2

n∑
i=1

K

(
H

−1/2
ST

(
s− Si

t− Ti

))
(2.16)

where (Si, Ti) is the probit transformed sample
(
Φ−1(Ui), Φ−1(Vi)

)
. However, (Ui, Vi) are only available

if the marginal cdfs FX and FY are known. The more feasible case is that the samples are estimated
as Ûi = F̂X(Xi) and V̂i = F̂Y (Yi), which are then transformed into Ŝi = Φ−1(Ûi) and T̂i = Φ−1(V̂i).
The feasible version of (2.16) is therefore,

f̂ST (s, t) = 1
n |HST |1/2

n∑
i=1

K

(
H

−1/2
ST

(
s− Ŝi

t− T̂i

))
.

By using (2.15), this leads to the following probit transformation kernel copula density estimator :

ĉ(τ)(u, v) = 1
n |HST |1/2

ϕ (Φ−1(u)) ϕ (Φ−1(v))

n∑
i=1

K

H
−1/2
ST

 Φ−1(u)− Φ−1
(

Ûi

)
Φ−1(v)− Φ−1

(
V̂i

)  (2.17)

The estimator in (2.17) is in [Gee14] called the Naive Estimator because it fails to produce good results
close to the borders although it was designed to fix boundary issues. This is illustrated later in an
example.
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2.8.3 Asymptotic Properties of the Naive Estimator
For simplicity it is assumed that K is a product Gaussian kernel, that is, K (z1, z2) = ϕ (z1) ϕ (z2),
and HST = h2I for some h > 0. The naive estimator in (2.17) is then reduced to,

ĉ(τ)(u, v) = 1
nh2ϕ (Φ−1(u)) ϕ (Φ−1(v))

×
n∑

i=1
ϕ

Φ−1(u)− Φ−1
(

Ûi

)
h

ϕ

Φ−1(v)− Φ−1
(

V̂i

)
h

 (2.18)

Given (2.15) the statistical properties does depend on those in (2.16), where

f̂ST (s, t) = 1
nh2

n∑
i=1

ϕ

(
s− Ŝi

h

)
ϕ

(
t− T̂i

h

)
. (2.19)

If fST has continuous second-order partial derivatives, then expressions are known for the bias and the
variance of the infeasible estimator f̂∗

ST in (2.16). This is also the case for this estimator’s asymptotic
normality.

In [GCP17] it is proven that when (u, v) is near one of the boundaries, then the bias and variance
of ĉ(τ)(u, v) tends to grow unboundedly. In fact along the boundaries, ĉ(τ) is only consistent over areas
where c approaches 0 smoothly. Instead ĉ(τ) will have have a lot of volatility and a large positive bias,
especially in the corners. To alleviate some of the boundary problems an adjustment can be made to
(2.15) as

ĉ(τ am)(u, v) =
f̂ST

(
Φ−1(u), Φ−1(v)

)
ϕ (Φ−1(u)) ϕ (Φ−1(v))

× 1
1 + (h2/2)

(
{Φ−1(u)}2 + {Φ−1(v)}2 − 2

) . (2.20)

This is the ’amended’ version of ĉ(τ) where the included factor will reduce the density at the
boundaries. The factor will also disappear as h goes to 0. Even this doesn’t fix the problems completely.
This is illustrated by the example from [GCP17] where a sample size of n = 1000 from the Gaussian
copula with correlation ρ = 0.3 is fitted using both the naive and the amended estimators, see Figure
2.3.

Figure 2.3: The true Gaussian copula with ρ = 0.3 on the left panel, the naive estimator is in the
middle and the amended naive estimator is on the right panel [GCP17].
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4.106c Chapter 2. Copula Theory

The figure shows that the naive estimator works decently in the center of I, but towards the bound-
aries, the estimate becomes more erratic with way too high peaks at (0, 0) and (1, 1). The rightmost
panel shows an improvement to the middle panel with the peaks at (0, 0) and (1, 1) being closer in
level to the true ones in the left panel. But the wiggly appearance of the estimate along the boundaries
remains because the large border variance isn’t affected by the amendment.

In [Gee14] it was explained that the back-transformation to the (U, V )-domain through (2.15) that
yields the result in (2.17) caused the poor fit of the naive estimator. Thus [GCP17] also includes an
improved version which has much better results, though it won’t be covered here.

Overall, kernel based estimators are an excellent way of giving the copula flexibility, which can also
be very needed, however, they suffer greatly from the so called, curse of dimensionality, as seen in the
next section.

2.9 Convergence Rate for Kernel Based Estimators

This section is based on [Sto80] and its purpose is to explain the best possible or optimal rate of
convergence for nonparametric estimators.

Let Θ be a collection of probability density functions on a fixed subset of Rd with θ ∈ Θ. Consider
a sequence of estimators,

{
T̂n(θ)

}
based on a random sample of size n from the distribution θ. Now

r > 0 is called an upper bound to the rate of convergence if for every sequence of estimators
{

T̂n(θ)
}

,

lim inf
n

sup
θ∈Θ

Pθ

(∣∣∣T̂n(θ)− θ
∣∣∣ > cn−r

)
> 0 for all c > 0 (2.21)

and
lim
c→0

lim inf
n

sup
θ∈Θ

Pθ

(∣∣∣T̂n(θ)− θ
∣∣∣ > cn−r

)
= 1. (2.22)

Here (2.21) effectively states that the members of Θ that
{

T̂n(θ)
}

are worst at estimating are in the
best case, still likely to be more than cn−r away of the true value. Likewise (2.22) states that worst
members of Θ will always be more than cn−r away from the true value, when c approaches 0. Thus
its an upper bound for what can be expected.

The parameter r is instead called an achievable rate of convergence if there is a sequence
{

T̂n(θ)
}

of estimators so that
lim

c→∞
lim sup

n
sup
θ∈Θ

Pθ

(∣∣∣T̂n(θ)− θ
∣∣∣ > cn−r

)
= 0. (2.23)

Thus for r to be achievable the worst members of Θ for T̂n to estimate are at worst within cn−1 when
c goes to ∞. Notice the contrast with (2.22) where at best the estimator will be further than cn−1

from the true value when c goes to 0.

Furthermore, r is also called the optimal rate of convergence if it is both an upper bound to the
rate of convergence and an achievable rate of convergence. It is worth noting that if r is an upper
bound to the rate of convergence and q is an achievable rate of convergence, then q ≤ r.

The optimal rate of convergence for an estimator for a probability density function θ requires some
assumptions about θ that are based on Taylor polynomials. So, let α = (α1, · · · , αd) be a d-tuple of
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non-negative integers and set |α| = α1 + · · ·+ αd and α! = α1! · · · · · ·αd!. For x = (x1, · · · , xd) ∈ Rd

set xα = xα1
1 · · · · · ·x

αd

d . Then the differential operator, Dαα, is defined by

Dα = ∂α1+···+αd

∂xα1
1 · · · ∂xαd

d

(2.24)

Let k be a non-negative integer and let Ck be the collection of k times continuously differentiable
real-valued functions g on Rd. Given g ∈ Ck, its Taylor polynomial gk of degree k is defined by

gk(x) =
∑

|α|≤k

1
α!D

αg(0)xα.

Now let p > k and M be positive constants and let U be an open neighborhood of the origin of Rd.
Let Gk

p be the collection of functions g ∈ Ck so that

|g(x)− gk(x)| ≤M∥x∥p, x ∈ U, (2.25)

where ∥x∥ =
(
x2

1 + · · ·+ x2
d

)1/2.

Definition 2.22 (Unknown density function)
Let θ0 be a fixed probability density function in Cm such that θ0(0) > 0 and 0 ≤ m ≤ k. Set
Θ =

{
θ0(1 + g) : g ∈ Gk

p , |g| ≤ 1 on Rd and
∫

θ0gdx = 0
}

. Let T̂n(θ) be an estimator of θ ∈ Θ
based on X1, X2, · · · , Xn iid. Rd-valued variables with density θ.

The optimal rate of convergence for a density function as described in Definition 2.22 is given in
the following theorem,

Theorem 2.23
Let Definition 2.22 hold. Then r = p/(2p + d) is the optimal rate of convergence.

The procedure to prove Theorem 2.23 is by showing that r is an upper bound to the rate of con-
vergence. This is done by showing that (2.21) and (2.22) hold. Next, showing that r is an achievable
rate of convergence is done by constructing a sequence

{
T̂n(θ)

}
of estimators of θ so that (2.23) holds.

The details of the proof can be found in section 3 in [Sto80].

Theorem 2.23 shows the problem with kernel based estimators is that when they are estimating d-
dimensional density functions, that follow Definition 2.22, the optimal convergence rate r will decrease.
This is also ignoring that r is the best case scenario. Therefore, kernels become impractical for
higher dimensions. However, the next chapter shows that by using vine it is possible to model higher
dimensional variables using only 2-dimensional kernel based estimators.
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3 | Vines

In the context of copulae, vines are used to specify a d-copula C as a collection of smaller 2-dimensional
copulae. The idea of using bivariate copulae to construct a d-copula was first introduced in [Joe96]
and the actual term vine was coined in [BC02].

The idea behind vines can be seen as a natural extension to the prevalence of covariance. In that
the typical focus when regarding multivariate distributions is on the pairwise interaction between vari-
ables, with covariance abbreviating that interaction as a single number. The vine instead seeks to
replace that single number as a descriptor for pairwise interaction with a bivariate copula capable of
much greater nuisance.

Assume that u = (u1, u2, . . . , ud) is some d-dimensional distribution with uniform marginals on
[0, 1]. A simple way of constructing a valid d-copula C from 2-dimensional copulae, would be by finding
the copulae between pairs of variables C1,2, C2,3, C3,4, . . . , Cd−1,d, where say, C1,2 specifies the copula
between u1 and u2. Then C can be defined as

C(u1, . . . , ud) =
∫ u1

0
· · ·
∫ ud

0

d−1∏
i=1

ci,i+1(vi, vi+1) dvd · · · dv1

where ci,i+1 is the pdf of Ci,i+1. Thus C will now accurately specify the dependence between u1 and
u2; u2 and u3; u3 and u4; and so on. As can be seen by

C(u1, u2, 1, . . . , 1) =
∫ u1

0

∫ u2

0
c1,2(v1, v2)

∫ 1

0
· · ·
∫ 1

0

d−1∏
i=2

ci,i+1(vi, vi+1) dvd · · · dv3 dv2 dv1

=
∫ u1

0

∫ u2

0
c1,2(v1, v2)

∫ 1

0
· · ·
∫ 1

0

d−2∏
i=2

ci,i+1(vi, vi+1) dvd−1 · · · dv3 dv2 dv1

=
∫ u1

0

∫ u2

0
c1,2(v1, v2) dv2 dv1 = C1,2(u1, u2)

Where
∫ 1

0 ci,i+1(vi, vi+1) dvi+1 = 1, since that is the marginal pdf for ui. This way of specifying C
is a subset of what is known as a bivariate tree specification [BC02]. In this specification the bivariate
copulae are visualized as the edges of a tree.

Definition 3.1 (Tree)
A Tree T = {N, E} is an acyclic graph, where N is its set of nodes, and E is its set of edges
(unordered pairs of nodes).

Here the set of nodes N will be a set of arbitrary elements N = {a, b, c, . . .}. A single edge e ∈ E is
denoted as e = {a, b}, if it connects the elements a and b from the set of nodes N .
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For a graph to be acyclic means that starting at any node a ∈ N , and then following a path along
the edges, without following the same edge twice, it is impossible to end up at the starting node a.
That is to say there are no ’cycles’ or ’rings’ in a tree.

The tree in the case of C has nodes representing each variable u1, . . . , ud, N = {1, . . . , d} and edges
representing each bivariate copula C1,2, C2,3, . . . , Cd−1,d, with E = {{1, 2}, {2, 3}, . . . , {d− 1, d}}.

The issue with the tree specification is that it doesn’t specify the dependence between u1 and
u3, except implicitly through the dependence both have with u2. The lacking dependence cannot be
remedied by simply including C1,3(u1, u3) as the edge {1, 3}, because this would create a cycle in the
tree T . The reason this is a problem is that C1,3 will interfere with the already present dependencies
C1,2(u1, u2) and C2,3(u2, u3), which will result in C having none of the three.

Instead the dependence between u1 and u3 can be specified such as to not interfere with C1,2 and
C2,3 by using the copula C1,3|2(F (u1|u2), F (u3|u2)), that is to say the dependence between u1 and u3
given u2. To see this consider the joint pdf of u1, . . . , u3 as

f(u1, u2, u3) = f(u3| u2, u1) · f(u2| u1) · f(u1).

Since u1 is uniform f(u1) = 1. Additionally,

f(u2| u1) = f(u2, u1)
f(u2) = c1,2(u1, u2),

f(u3| u2, u1) = f(u3, u1| u2)
f(u1| u2) =

c1,3|2(F (u1|u2), F (u3|u2)) f(u1| u2) f(u3| u2)
f(u1| u2)

= c1,3|2(F (u1|u2), F (u3|u2)) c2,3(u2, u3).
Thus in combination

f(u1, u2, u3) = c1,3|2(F (u1|u2), F (u3|u2)) c2,3(u2, u3) c1,2(u1, u2).

This can also be used for d-dimensional variables to extend the standard bivariate tree specification
given for C with d− 2 additional bivariate dependencies on the form

Ci,i+2|i+1(F (ui|ui+1), F (ui+2|ui+1)), for i = 1, . . . , d− 2

If C is equipped with these conditional copulae then it is on a bivariate vine specification, where a vine
is defined as

Definition 3.2 (Vine)
V is a vine on n elements if:

1. V = (T1, . . . , Tm).

2. T1 is a tree with nodes N1 = {1, . . . , n} and a set of edges denoted E1.

3. For i = 2, . . . , m, Ti is a tree with nodes Ni ⊂ N1 ∪ E1 ∪ E2 ∪ · · · ∪ Ei−1 and edge set Ei.

The vine in the case of C then consists of two trees V = {T1, T2}, where T1 = {N1, E1} is the first tree
used for C and contains the d− 1 copulae C1,2, C2,3, . . . , Cd,d−1.

The second tree T2 = {N2, E2}, contains the d−2 copulae C1,3|2, C2,4|3, . . . , Cd−2,d|d−1. The nodes
are the edges of T1, N2 = E1, and the set of edges are

E2 = {{{1, 2}, {2, 3}} , {{2, 3}, {3, 4}} , . . . , {{d− 2, d− 1}, {d− 1, d}}} .
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Thus the edge {{1, 2}, {2, 3}} corresponds to the copula C1,3|2, where the conditioning on 2 comes
from 2 being present in both the nodes that the edge connects. How exactly an edge relates to a
bivariate copula is given later in Definition 3.5.

This vine is still lacking some pairwise dependencies like u1 and u4. Thus additional trees can
be added to V to reach this pair along with every other missing pair. For these additional trees to
properly represent the missing pairs, they will need to be specified in such a way that the vine V will
turn into a regular vine.

Definition 3.3 (Regular Vine)
V is a regular vine on n elements if:

1. V = (T1, . . . , Tn).

2. T1 is a tree with nodes N1 = {1, . . . , n} and a set of edges denoted E1.

3. For i = 2, . . . , n, Ti is a tree with nodes Ni = Ei−1 and edge set Ei.

4. The proximity condition holds: for i = 2, . . . , n − 1, if a = {a1, a2} and b = {b1, b2} are
two nodes in Ni connected by an edge, then #a ∩ b = 1.

Thus a regular vine can be constructed by starting with the n nodes {1, . . . , n}. The first tree T1 can
then be made simply by connecting the n nodes together with the n−1 edges, e1

1, . . . , e1
n−1, such that

all nodes are connected without cycles.

The edges e1
1, . . . , e1

n−1 are now used as nodes in the second tree T2 and they are connected again
with n − 2 edges, e2

1, . . . , e2
n−2 such that all nodes are connected. Item 4, in the definition, specifies

that two nodes in T2, ej1 and ej2 can only be connected if both connect to the same node in T1.

Each edge in the regular vine will be representing a bivariate copula. Thus the fourth condition,
the proximity condition, is necessary to make the edges translatable in to copulae.

The vine specification of the d-dimensional C needs d−2 trees to become a regular vine specification.
Now the nodes for T3 are the edges E2, which means that the notation for the edges in E3 will become
quite large. Thus instead note that the copulae that correspond to the edges in E3, could be

Ci,i+3|i+1,i+2(F (ui|ui+1, ui+2), F (ui+3|ui+1, ui+2)), for i = 1, . . . , d− 3.

and in general the edges in E3 will always correspond to copulae conditioned on 2 variables. Likewise
the edges in Ei will correspond to copulae conditioned on i − 1 variables. An example how every
pairwise copulae could be defined in a d-dimensional vine copula C is

Ci,i+j|i+1,...,i+j−1 (F (ui|ui+1, . . . , ui+j−1), F (ui+j |ui+1, . . . , ui+j−1))

for i = 1, . . . , d− j, j = 1, . . . , d− 1.

where j corresponds to the tree Tj . That is the copulae between ui1 and ui2 is conditioned on all
the u’s in between them. The vine that corresponds to these copulae is known as a drawable vine or
D-vine and it has that name because its pyramid like structure is easily drawn, see Figure 3.1.

The specific variables that a copula is conditioned on will vary depending on the shape of the vine
and thus the next two definition describe how to an edge relates to a pairwise copula.
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T1:
1 2 3 4

1,2 2,3 3,4

T2:
1,2 2,3 3,4

1,3|2 2,4|3

T3:
1,3|2 2,4|3

1,4|2,3

Figure 3.1: Graph of a drawable vine for a 4-copula. Note that the edges in the previous tree become
the nodes of the next. Note that the dimensions the edges condition on are the set of dimensions that
are shared between the nodes.

Definition 3.4 (Complete Union)
For a regular vine V and any ei ∈ Ei the complete union of ei is the subset

Aei
= {j ∈ N1| ∃1 ≤ i1 ≤ i2 ≤ · · · ≤ ir = i and eik

∈ Eik
for k = 1, . . . , r,

with j ∈ ei1 , eik
∈ eik+1 for k = 1, . . . , r − 1

}
For a regular vine and an edge ei ∈ Ei the j-fold union of ei for 0 < j ≤ i− 1 is the subset

Uei
(j) = {ei−j ∈ Ei−j |∃ edges ek ∈ Ek for k = i− j + 1, ..., i− 1,

with ek ∈ ek+1 for k = i− j, ..., i− 1}

For j = 0 define Uei
(0) = {ei}.

The complete union Aei is the set of nodes in N1 that are indirectly connected to ei. For example the
edge e = {{1, 2}, {2, 3}} has Ae = {1, 2, 3}, because the two nodes it connects {1, 2} and {2, 3}
themselves also connect 1, 2 and 3. Thus if ei = {ei1 , ei2}, then Aei

can be derived recursively as

Aei
= Aei1

∪Aei2

And if ei is an edge for the first tree T1, then the complete union is simply the pair of nodes that ei

connect or
Aei

= ei, if ei ∈ E1

Definition 3.5 (Constraint set)
For e = {j, k} ∈ Ei, i = 1, . . . , m− 1, the conditioning set associated with e is

De = Aj ∩Ak,

and the conditioned sets associated with e are

Ue,j = Aj\De and Ue,k = Ak\De.
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The constraint set for V is

CV = {(Ue,j , Ue,k, De) | i = 1, . . . , m− 1, e ∈ Ei, e = {j, k}}

Thus the copula that corresponds to some edge e = {j, k} is the copula

CUe,j ,Ue,k|De

(
F
(
uUe,j

| uDe

)
, F

(
uUe,k

| uDe

))
For example the copula C1,4|2,3 could correspond to the edge e = {j, k}, where

j = {{1, 2}, {2, 3}} , k = {{2, 3}, {3, 4}}

since the complete union for an edge is the set of nodes in N1 that are connected directly or indirectly
by that edge, then,

Aj = {1, 2, 3} , Ak = {2, 3, 4}

De = {2, 3} , Ue,j = {1} , Ue,k = {4}

Note here that uDe = u{2, 3} = {u2, u3}.

Given that a bivariate copula has to be between two variables, there is an implication that #Ue,j = 1
and #Ue,k = 1. This is ensured by the proximity condition from the definition of a regular vine.

We have used the concept regular vine specification to describe how C has been specified, however
with conditioning sets a a formal definition can be given as

Definition 3.6 (Regular Vine Specification)
(F,V, C) is a regular vine specification if:

1. F = (F1, ..., Fn) is a vector of continuous invertible distribution functions.

2. V is a regular vine on n elements.

3. C = {Ce| i = 1, . . . , n− 1; e ∈ Ei} is a collection of bivariate copulae.

A joint distribution F (x1, . . . , xd) is said to realize a regular vine specification, (F,V, C), if the marginal
distributions of xi is Fi and if for each {j, k} = e ∈ Ei the copula of xUe,j

and xUe,k
given xDe

is the
copula Ce ∈ C.

Theorem 3.7
Let (F,V, C) be a d-dimensional regular vine specification. Let fi be the density of Fi ∈ F and
let cUe,j ,Ue,k|De

be the copula density of Ce for e = {j, k}, then the joint density that realises the
R-vine specification is

f1,...,d(x) =
d∏

i=1
fi(xi)

d−1∏
i=1

∏
e∈Ei

cUe,j ,Ue,k|De

(
FUe,j |De

(xUe,j |xDe), FUe,k|De
(xUe,k

|xDe
)
)

where FUe,j |De
is the cdf of xUe,j conditional on xDe .

The theorem is presented without proof though one is provided in [BC01]. The theorem provides a
straight forward approach to transforming a vine into a joint density, take for example the 4-dimensional
drawable vine from Figure 3.1. The theorem states that its joint distribution will be the product of
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its bivariate copulae corresponding to every edge of every tree, as

f1,2,3,4(x) = f1(x1) · f2(x2) · f3(x3) · f4(x4)
· c1,2 (F1(x1), F2(x2)) · c2,3 (F2(x2), F3(x3)) · c3,4 (F3(x3), F4(x4))︸ ︷︷ ︸

T1

· c1,3|2
(
F1|2(x1|x2), F3|2(x3|x2)

)
· c2,4|3

(
F2|3(x2|x3), F4|3(x4|x3)

)︸ ︷︷ ︸
T2

· c1,4|2,3
(
F1|2,3(x1|x2, x3), F4|2,3(x4|x2, x3)

)︸ ︷︷ ︸
T3

The way of obtaining the conditional cdfs like F1|2 or F1|2,3 and in general any cdf the form FUe,j |De
,

will be presented later on in the section on how to estimate vines.

3.1 Canonical Vine
The types of regular vines considered up until now have been what is known as drawable vines and as
can be seen in Figure 3.1 they have some nice properties like their inverted pyramid shape. However,
though they looks nice, the vines shape doesn’t make it easy to implement as seen in [ACFB09].

Instead, the canonical vine or C-vine will be presented. In a canonical vine, each tree Ti focuses
on a single node from Ni and every edge e ∈ Ei is connected to that node, see Figure 3.2. This focus
on a single node, for each tree, has the effect that for example, the first tree T1 could focus on the
dependency between x1 and every other variable x2, . . . , xd. The second tree T2 could then effectively
focus on the dependency between x2 and every other variable x3, . . . , xd, not including x1, because T1
already exhausted x1’s dependency.

This continues for T3 and the dependency between x3 and x4, . . . , xd up until the final tree Td.
This structure of focusing on a single variable in every tree makes practical implementation such as
estimation and simulation much simpler as compared to the drawable vine [ACFB09].

Definition 3.8 (Canonical Vine)
V is a canonical vine on n elements if it is a regular vine and

#

d−i⋂
j=1

ei
j

 = 1, ei
j ∈ Ei, i = 1, . . . , d.

That is to say that for a given tree Ti, its set of edges Ei have to all connect to the same node.

In the context of copulae, a d-copula can be constructed from a canonical vine, by choosing some
permutation of 1, . . . , d. For simplicity let the permutation P be the identity P = 1, . . . , d. The i’th
element of P now implies which node that all edges in Ei should connect to.

The first set of edges E1 give the first d−1 copulae as Cj,1 for j = 2, . . . , d. The second set of edges
E2 give the next d − 2 copulae as Cj,2|1, for j = 3, . . . , d. E3 gives the next d − 3 copulae as Cj,3|1,2,
for j = 4, . . . , d and so on.

In general, Ei gives the d − i copulae as Cj,i|1,...,i−1, for j = i + 1, . . . , d. If the permutation P
is different from the identity, then the generalization uses CPj ,Pi|P1,...,Pi−1 instead. In total this gives∑d

i=1 d− i = (d−1)d
2 bivariate copulae.
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T1:

1

2 3 4
1,2

1,3
1,4

T2:

1,2

1,3 1,4
2,3|1 2,4|1

T3: 2,3|1 2,4|1
3,4|1,2

Figure 3.2: Graph of a canonical vine for a 4-copula. Note that the edges in the previous tree become
the nodes of the next. Note that the dimensions the edges condition on are the set of dimensions that
are shared between the nodes.

While vine copula are a great way of simplifying high dimensional copulae. It should be noted that
the vine copula is limited in what multivariate copulae, that it can express. Consider for example the
3-dimensional copula density

c(u1, u2, u3) = 2 · 1
{
1{u1≤0.5} + 1{u2≤0.5} + 1{u3≤0.5} = {1, 3}

}
(3.1)

where 1{A} is an indicator function for whether A is true. Thus when

u1 ≤ 0.5, u2 ≤ 0.5 then, u3 ≤ 0.5, u1 ≤ 0.5, u2 > 0.5 then, u3 > 0.5
u1 > 0.5, u2 ≤ 0.5 then, u3 > 0.5, u1 > 0.5, u2 > 0.5 then, u3 ≤ 0.5

However it is also the case that there isn’t any pairwise dependence between the three variables,∫ 1

0
c(u1, u2, u3)dui = 1, for: i = 1, 2, 3

that is, c1,2(u1, u2) = c1,3(u1, u3) = c2,3(u2, u3) = 1. This also means that the conditional functions
F (ui|uj) = ui and that the dependence in c can’t be represented by any vine copula.

Take the canonical vine copula that uses the three bivariate copulae, c1,2, c1,3 and c3,2|1. As
mentioned c1,2 = c1,3 = 1 and therefore

c3,2|1 (F (u3|u1), F (u2|u1)) = c3,2|1 (u3, u2)

Because both F (u3|u1) and F (u2|u1) reduce to u3 and u2, then if c could be represented as a vine,
c3,2|1 should also reduce to c3,2. However since c3,2 = 1, then c3,2|1 = c3,2 would imply that c = 1,
which is false. The discrepancy here comes from c3,2|1 being dependent on the value of u1, where a
vine requires that c3,2|1 is independent of u1.

The reason vines don’t work for some copulae like (3.1) is because vines can only model simplified
Pair Copula Constructions, simplified PCC, [HAF10]. The simplified PCC requires that all conditional
copulae as in those of the form ca,b|C are independent of the conditioning set C. Where as in the case
of (3.1) the copula c requires that c3,2|1 is dependent on the actual value of u1. Common examples of
simplified PCC’s include Gaussian copulae, Student-t copulae and Clayton copulae [SJC13].
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3.2 Estimation
This section will show how to estimate a canonical vine copula, C, with permutation P = 1, . . . , d,
from a set of vectors u = u1, . . . , ud that each are uniformly distributed on [0, 1]. This is done by
estimating its set of bivariate copulae Ci,j|1,...,j−1, for every j = 1, . . . , d−1, i = j +1, . . . , d. Where
Ci,j|1,...,j−1 explains the dependence between F (ui|u1, . . . , uj−1) and F (uj |u1, . . . , uj−1).

The conditional cdfs can be derived using the recursive relation

F (ui|u1, . . . , uj) =
∂Ci,j|1,...,j−1(F (ui|u1, . . . , uj−1), F (uj |u1, . . . , uj−1))

∂F (uj |u1, . . . , uj−1) .

[ACFB09]. By letting ui,j = F (ui|u1, . . . , uj) the above equation simplifies to

ui,j =
∂Ci,j|1,...,j−1(ui,j−1, uj,j−1)

∂uj,j−1
, (3.2)

where ui,0 = ui is the original unconditional uniform vector. The easiest copulae to estimate are Ci,1,
since they specify the dependence between ui and u1 for i = 2, . . . , d. Thus whatever bivariate copula
estimation is desired like a kernel based estimator can then be applied on ui and u1 to obtain Ĉi,1.
With Ĉi,1, the set of vectors ui,1 for i = 2, . . . , d can be estimated as a transformation of ui using the
relation in (3.2)

ûi,1 = ∂Ĉi,1(ui,0, u1,0)
∂u1,0

.

Thus we now have access to estimates of ui,1 and we can use them to estimate Ci,2|1 with ûi,1 and û2,1
for i = 3, . . . , d, since Ci,2|1 specifies the relationship between ui,1 and u2,1. The estimated copulae
can then again be used to estimate the transformations ui,2 for i = 3, . . . , d as

ûi,2 =
∂Ĉi,2|1(ui,1, u2,1)

∂u2,1
.

The general process for estimating a canonical vine copula switches between using the variables pairwise
to estimate the bivariate copulae of tree Tj and then using those copulae to transform the variables
with (3.2) into conditional versions, which can then be used to estimate the bivariate copulae in Tj+1
for j = 1, . . . , d− 1. The entire process is written in Algorithm 1. The algorithm uses the notation

ui,j = hi,j(ui,j−1) =
∂Ci,j|1,...,j−1(ui,j−1, uj,j−1)

∂uj,j−1

to denote the function that transforms ui,j−1 into ui,j .

3.3 Simulation
Let u = u1, . . . , ud be a multivariate uniform distribution with some canonical vine copula C with
permutation P = 1, . . . , d. Then a sample from u can be simulated by starting with a simulation of
iid. w1, . . . , wd ∼ U [0, 1], and then deriving u1, . . . , ud as

u1 = w1

u2 = F −1(w2|u1)
...

ud = F −1(wd|u1, . . . , ud−1)
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Algorithm 1 Estimating a Canonical Vine Copula
u1, . . . , ud

for i← 1, . . . , d do
ûi,0 ← ui

end for
for j ← 1, . . . , d− 1 do

for i← j + 1, . . . , d do
Ĉi,j|1,...,j−1 ← Estimate Copula from ûi,j−1 and ûj,j−1

ûi,j ← ĥi,j(ui,j−1)
end for

end for

[ACFB09]. Because C is a canonical vine copula, the various F ’s can be derived using (3.2), restated
here as

ui,j =
∂Ci,j|1,...,j−1(ui,j−1, uj,j−1)

∂uj,j−1

Where ui,j = F (ui|u1, . . . , uj). We can now use that in a canonical vine, Ci,j|1,...,j−1 is known, for
every j = 1, . . . , d− 1, i = j + 1, . . . , d. Additionally the fact that

wj = F (uj |u1, . . . , uj−1) = uj,j−1

can be leveraged to simplify (3.2) to

ui,j =
∂Ci,j|1,...,j−1(ui,j−1, wj)

∂wj
.

By again using the notation hi,j(·) = ∂Ci,j|1,...,j−1(·,wj)
∂wj

we have that

ui,j−1 = h−1
i,j (ui,j) .

This shows a recursive relationship starting at wi = ui,i−1 and going until ui,0 = F (ui) = ui. The
recursion to transform wi into ui can be written as the single equation

ui =
(
h−1

i,1 ◦ · · · ◦ h−1
i,i−1

)
(wi)

Thus if the inverted h functions are available then ui can be found using a simple recursive relationship.
An implementation of this can be seen in Algorithm 2.

Algorithm 2 Simulating a Canonical Vine Copula
Sample w1, . . . , wd

u1 ← w1
for i← 2, . . . , d do

ui,i−1 ← wi

for j ← i− 1, . . . , 1 do
ui,j−1 ← h−1

i,j (ui,j)
end for
ui ← ui,0

end for
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3.3.1 Conditional Simulation
Let again u = u1, . . . , ud follow some canonical vine copula C with permutation P = 1, . . . , d. Addi-
tionally, assume that some of the variables in u already have known values. Then the distribution of
the remaining variables will change accordingly and the method of simulation has to change.

In this section, the set of variables from u that are assumed to be known will be u1, u2, . . . , uD for
some index 0 < D < d. The reason for assuming these variables in particular is that it is well suited
for a canonical vine with permutation P .

Let the known values be ui = vi for i = 1, . . . , D. To simulate the remaining unknown values of u,
sample from a uniform distribution on [0, 1] the values wi for i = D + 1, . . . , d. That is, sample one
value wi for each unknown value in u.

Like for unconditional simulation, the goal is to obtain the unknown variables ui using the rela-
tionship

ui = F −1(wi|u1, . . . , ui−1), (3.3)
and like in unconditional simulation this relationship was obtained using the inverted hi,j , where the
non-inverted hi,j is given as

hi,j(·) =
∂Ci,j|1,...,j−1(·, wj)

∂wj
.

The added complication is that to use the h functions, wi = ui,i−1 are required for i = 1, . . . , d. These
are known in unconditional simulation. However, here the wi are missing for i ≤ D. Instead we have
the known values vi. Thus we have to convert the known values vi into their wi counterparts using
the inverse version of (3.3)

wi = F (ui|u1, . . . , ui−1)
where ui = vi. This can again be obtained using a recursive application of hi,j , that is

wi = (hi,i−1 ◦ · · · ◦ hi,1) (vi).

However, this also reveals that to obtain wi for i = 1, . . . , D, all wj for j = 1, . . . , i − 1 are needed,
because again hi,j needs wj . Thus starting at i = 1, set w1 = v1, then for i = 2, set w2 = h2,1(v2),
then for i = 3, set w3 = h3,2 (h3,1(v3)) and so on, until and including i = D. After which the remaining
uD+1, . . . , ud can be simulated like in the unconditional case. This whole process is implemented in
Algorithm 3.

3.4 Vine Selection
In practice, the choice of vine impacts the fit and finding the optimal vine is a nontrivial problem and
not least of which because it is uncertain what metric should be used to judge optimal. [DBCK13]
considers maximizing the absolute Kendall’s Tau |τ | for each edge as optimal. However, τ measures
the ratio of concordant pairs, which isn’t the only way dependence can manifest.

An alternative could be testing the uniformity of ûi,i−1 for i = 1, . . . , d from Algorithm 1 [ACFB09],
since in theory, they should be uniformly distributed. So the optimal vine should have the most uni-
form ûi,i−1. However, testing uniformity is nontrivial when using the empirical distribution functions
to transform the original data, as they essentially forces the uniformity of ûi,0.

The amount of possible vines also becomes an issue as even when restricted to canonical vines,
there are still d!/2 possible d-dimensional canonical vines [ACFB09]. Thus [DBCK13] approaches the
problem greedily by choosing the vine’s first tree T1, as the one whose edges have the highest sum
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Algorithm 3 Simulating a Canonical Vine Copula conditional on some values uj = vj

Given vj for j = 1, . . . , D, with D < d
w1 ← v1
for i← 1, . . . , D do

ui,0 ← vi

for j ← 1, . . . , i− 1 do
ui,j ← hi,j(ui,j−1)

end for
wi ← ui,i−1

end for

Sample wi for i = D + 1, . . . , d
for i← D + 1, . . . , d do

ui,i−1 ← wi

for j ← i− 1, . . . , 1 do
ui,j−1 ← h−1

i,j (ui,j)
end for
ui ← ui,0

end for

of absolute Kendall’s Tau |τ |. The second tree T2 is chosen in the same way and so on up to and
including Td−1.

It may also be the case that selecting the right vine is more important when considering parametric
copulae, since they are inherently going to be more restrictive. That is, it is important to find the vine
that can formulate the dependence in terms of the parametric copulae. Thus in the nonparametric
version it may not be as important.

3.5 Gaussian Copula using a Vine
To finish on nonparametric vines and their estimation, their versatility is demonstrated by using it to
estimate a 3-dimensional Gaussian copula with correlation matrix 1 −0.5 0

−0.5 1 0.8
0 0.8 1

 .

The comparison of the Gaussian copula and its nonparametric vine estimation result can be seen
Figure 3.3. The most noticeable flaw in the vine is in the plot between Dim 2 and Dim 3, where the
vine estimation has a few undesirable points in the bottom right corner.
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Figure 3.3: The top row of plots shows 10000 samples from a 3-dimensional Gaussian copula. The
bottom row of plots shows 10000 samples from a nonparametric canonical vine estimation of the top
row.
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4 | Data Analysis

The goal here is to apply copula models to training data from financial assets, in order to construct
an optimal portfolio. The optimized portfolio is then used on real test data to gauge its performance.
The twelve assets considered are

SPY, NDAQ, AMD, AAPL, TSLA, NVO, NVDA, BA, LMT, GD, JPM, WFC

The assets represent a variety of different sectors and were chosen for personal reasons. The asset data
was retrieved using the Polygon API at polygon.io and spans the entire year of 2022. The data is
given in minutes and the modelling will be conducted on its log-returns. Data for all assets is not
available at every minute, and the minutes where all assets aren’t available are removed. The total
amount of data for each month from January to December is, in order,

5744, 5456, 5770, 5492, 6301, 5761, 4799, 5208, 6368, 6495, 5742, 5164

The copula models will be used to find a portfolio of the twelve assets that minimize the expected
shortfall, ES. The portfolio is assumed to be held for ten minutes, which means there are two separate
ways of creating a model for this, either by creating a model for the ten minute returns and then
finding a portfolio from that. Alternatively, creating a model for the one minute returns and then
finding a portfolio for the sum of ten one minute returns.

The functions used can be found in the authors Github repositories github.com/NickKruse18
where P10 contains everything presented in this chapter and kropula is an R package containing only
the capability for modelling with the presented nonparametric vine copulae without the application to
portfolio allocation.

As is convention the modelling will be done on the log-returns and they are assumed to be strictly
stationary.

4.1 Model Construction

4.1.1 Marginals
Let the one minute log-returns be denoted by kxt, where k refers to the asset and t the minute time.
Additionally, let xt be a 12 dimensional vector of all assets at time t. As mentioned, modelling will
be done both on the one minute log-returns and on the ten minute log-returns. Thus define the ten
minute log-returns as

k x
10t =

t+9∑
τ=t

kxτ , ∀t = 1, 11, 21, . . .

Notice that t is only defined every tenth integer.
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The minute log-returns for different assets tend to vary in both mean, variance, skewness and
kurtosis, as seen in both Table 4.1 and Table 4.2, with the majority of variation being in variance
and kurtosis. Thus modelling them requires a distribution with a significant amount of freedom in its
shape. The > 5 kurtosis for all assets also shows that they are all far from normal.

SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC
Mean -0.04 -0.05 -0.22 -0.01 -0.12 0.09 -0.14 0.01 0.10 0.05 0.02 0.06
Std. Dev 19.13 8.27 16.31 8.70 18.01 7.49 17.46 11.15 6.57 6.57 7.65 8.85
Skewness 0.05 0.07 0.16 -0.02 0.13 -0.06 -0.04 -0.21 0.41 -0.07 0.39 0.23
Kurtosis 20.34 11.56 6.74 59.72 7.80 72.49 9.45 11.01 19.22 12.47 17.93 9.13

Table 4.1: Table of sample shape parameters for all minute log-returns kxt, over the period January
to February 2022, 11200 data points. Mean and standard deviation are multiplied by 1000.

SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC
Mean -0.47 -0.51 -2.22 -0.12 -1.32 0.88 -1.52 0.07 1.02 0.50 0.19 0.59
Std. Dev 30.15 28.98 60.20 29.28 66.10 22.70 62.82 39.44 22.92 25.15 26.09 29.96
Skewness 0.07 0.43 0.00 0.20 -0.10 0.59 -0.04 -0.29 0.14 0.43 0.27 0.17
Kurtosis 6.35 9.63 5.29 6.13 6.84 7.25 5.35 6.16 6.81 6.99 5.21 5.11

Table 4.2: Table of sample shape parameters for all ten minute log-returns k x
10t, over the period January

to February 2022, 1120 data points. Mean and standard deviation are multiplied by 1000.

In this project the marginal modelling is done nonparametrically with a sample cdf. The sample
cdf uses the sample, Xk = {kxt}n

t=1, for asset k and is defined as the step function

F̃k(x) = n−1
n∑

i=1
1{kx(i)≤x},

where kx(i) is the i’th smallest element in Xk. The sample cdf for the ten minute returns, k x
10t, is

denoted as F
10k(x).

By its definition, F̃k(x) is the proportion of elements in Xk that are smaller than x. One issue
with F̃k as defined here is that the cdf will also be used for inverse transform sampling when making
simulations. Since F̃k as defined is a step function, it will be the cdf of a discrete random variable and
will only give values that are elements of Xk.

Instead, to create a continuous variable, the sample cdf will be defined with linear interpolation as

F̂k(x) =
ix +

(
x− kx(ix)

)
/
(

kx(ix+1) − kx(ix)
)

n
,

where
ix = #{y ∈ Xk|x ≥ y}

is the number of elements in Xk that are less than or equal to x. F̂k is defined such that

F̂k(x) = F̃k(x), ∀x ∈ Xk,

but when F̂k is between two elements, kx(i) and kx(i+1), then it gives a linear interpolation of F̃k

(
kx(i)

)
and F̃k

(
kx(i+1)

)
, instead of just F̃k

(
kx(i)

)
. Figures 4.1 and 4.2 showcase two linear cdfs F̃ as compared

to the samples they are derived from. They seem to match well with the samples difference in tail

32



4.1. Model Construction 4.106c

heaviness showing up in their respective cdfs.

Another benefit of F̂k being piecewise linear, is that its inverse F̂ −1
k will also be piecewise linear,

which makes inverse transform sampling easier.

Figure 4.1: A linear sample cdf F̂SP Y for the minute log-returns SP Y xt from SPY in the period of
January to February 2022, it uses 11200 points.

Figure 4.2: A linear sample cdf F̂NDAQ for the minute log-returns NDAQxt from NDAQ in the period
of January to February 2022, it uses 11200 points.

The marginals for the minute log-returns in the test period of March to December have the sam-
ple shape parameters given in Table 4.3. The modelling assumes stationarity which implies that the
marginals for the test period should have the same shape parameters as the marginals in the training
period. However, when comparing Table 4.3 to Table 4.1, there seems to be a general drop in standard
deviation and an increase in kurtosis.
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SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC
Mean -0.01 0.01 -0.05 -0.01 -0.14 0.03 -0.03 0.01 -0.01 -0.02 -0.01 -0.05
Std. Dev 24.11 6.68 13.98 8.40 15.16 6.54 14.87 11.27 7.22 6.47 7.61 8.63
Skewness 0.02 -0.15 0.13 0.14 0.13 -0.81 0.16 0.02 0.03 0.01 -0.08 -0.17
Kurtosis 40.62 18.78 15.90 19.92 14.31 80.75 16.26 13.61 17.79 11.19 28.89 22.37

Table 4.3: Table of sample shape parameters for all minute log-returns kxt, over the period March to
December 2022, 57100 data points. Mean and standard deviation are multiplied by 1000.

A bootstrapped test is applied to test if the training period and test period are generated by the
same underlying distributions. The bootstrap samples 11200 minute log-returns from the test period
with replacement and calculates a new set of shape parameters. This is done 1000 times and if a
given shape parameter from Table 4.1 is between the 25’th smallest and the 25’th largest of the 1000
replications, that is to say the 5% level, it passes the test. The results of the test can be seen in Table
4.4. The reason a bootstrapped sample has 11200 log-returns is to match the size of the training data.

From Table 4.4 it seems that both the standard deviation and kurtosis only passes 50% of the
time which is far below the expected rate of 95%. Both the mean and skewness pass for all twelve
marginals, however, this simply reflects that the mean and skewness are naturally close to zero, which
is expected in log-returns and doesn’t prove that the training and test marginals are the same. Thus
the test data fails to prove that it is generated by the same marginal distributions as the training data.
Nonetheless, modelling will continue as this doesn’t mean the modelling can’t be successful.

SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC
Mean
Std. Dev - + + + + + -
Skewness
Kurtosis - - + - -

Table 4.4: Table of whether the shape parameters from Table 4.1 fall within the bootstrapped confi-
dence intervals for the test periods shape parameters at the 5% level. An empty entry means it falls
within the confidence interval, a plus means it is too high and a minus means it is too low. It is based
on 1000 replications.

4.1.2 Copulae

The sample cdfs, F̂k, defined in the previous section are used to transform the log-returns into uni-
formly distributed variables. Denote the uniform transforms as kut = F̂k(kxt) and k u

10t = F̂
10k(k x

10t) for
the one minute and ten minute log-returns respectively.

The copula models used to model the uniform transformations will be both a nonparametric vine
copula and a Gaussian copula. The Gaussian copula will be used to benchmark the performance of
the vine copula as it is a commonly used copula model in finance. The Gaussian copula is entirely
defined by the lower triangle of its correlation matrix, which can be seen in Table 4.5 and Table 4.6
for kut and k u

10t, respectively.
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SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM
NDAQ 0.50 · · · · · · · · · ·
AMD 0.61 0.48 · · · · · · · · ·
AAPL 0.65 0.52 0.70 · · · · · · · ·
TSLA 0.59 0.46 0.73 0.67 · · · · · · ·
NVO 0.37 0.35 0.38 0.41 0.36 · · · · · ·
NVDA 0.64 0.50 0.85 0.73 0.75 0.39 · · · · ·
BA 0.56 0.43 0.56 0.55 0.54 0.31 0.57 · · · ·
LMT 0.31 0.27 0.16 0.24 0.17 0.19 0.18 0.38 · · ·
GD 0.40 0.37 0.25 0.34 0.25 0.25 0.26 0.46 0.55 · ·
JPM 0.51 0.43 0.41 0.45 0.42 0.30 0.43 0.57 0.37 0.47 ·
WFC 0.46 0.36 0.40 0.42 0.39 0.27 0.41 0.53 0.33 0.43 0.68

Table 4.5: The correlation matrix for the Gaussian copula with one minute log-returns.

SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM
NDAQ 0.58 · · · · · · · · · ·
AMD 0.61 0.53 · · · · · · · · ·
AAPL 0.68 0.58 0.73 · · · · · · · ·
TSLA 0.60 0.51 0.78 0.69 · · · · · · ·
NVO 0.42 0.44 0.44 0.46 0.44 · · · · · ·
NVDA 0.65 0.58 0.89 0.75 0.77 0.46 · · · · ·
BA 0.59 0.53 0.61 0.62 0.63 0.38 0.62 · · · ·
LMT 0.34 0.30 0.16 0.27 0.17 0.25 0.15 0.39 · · ·
GD 0.46 0.47 0.27 0.41 0.29 0.34 0.30 0.50 0.66 · ·
JPM 0.56 0.51 0.45 0.52 0.45 0.37 0.48 0.63 0.40 0.54 ·
WFC 0.49 0.42 0.42 0.47 0.43 0.36 0.42 0.58 0.39 0.52 0.67

Table 4.6: The correlation matrix for the Gaussian copula with ten minute log-returns.

Both correlation matrices show a positive correlation between all assets with the weakest correla-
tion in both matrices being between AMD and LMT at 0.16. The strongest correlation is also the
same for both matrices and is between AMD and NVDA at 0.85 and 0.89, for one minute- and ten
minute log-returns, respectively. Interestingly, the correlations for k u

10t are higher almost across the
board compared to kut.

Both kut and k u
10t are modelled using nonparametric vine copulae and both will use kernel estimates

for their bivariate copulae. Since bivariate copulae are only supported on the unit square [0, 1]× [0, 1],
kernel estimators need to be considerate of the squares boundaries.

The probit transformation presented in Section 2.8 and used by [NC16] and [GCP17] is a way of
dealing with the boundary problem. This method is implemented in the kdevine package. However,
its implementation takes 30 seconds to estimate a 12-dimensional vine from 1000 samples and an addi-
tional 13 minutes to sample 10000 samples from its estimate. Where as the implementation in kropula
for the following kernel estimator takes around a second to do both. From limited testing both also
seem to have similar performances in regards to expected shortfall, though a proper comparison is
outside the scope of the thesis.

The reason boundaries are problematic is that while more central coordinates will be effected by
points surrounding them on all sides, any coordinate on the boundary will have fewer surroundings to
draw from. This has the noticeable effect that boundary areas can have an unrealistically lower esti-
mated density. Thus instead of using a probit transformation, the proposed way of solving this problem
is using edge correction, where the points on the boundaries are increased in weight to compensate for
the reduced area to draw from. That is, the bivariate copula density c will be

ĉ(x, y) =
n∑

i=1

K (max {|x− xi|, |y − yi|})
Ein

,

where Ei is the edge correction

Ei =
∫

[0,1]

∫
[0,1]

K (max {|x− xi|, |y − yi|}) dx dy,
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and max {|x− xi|, |y − yi|} is the Chebyshev distance between (x, y) and (xi, yi). This distance met-
ric is chosen because the area that (xi, yi) will influence will resemble a square. This matches well
with the copula being defined on the [0, 1]2 square. As well, it makes computation simpler.

The kernel K is chosen as
K(d) = max

{
b− d

4b3/3 , 0
}

,

where d denotes the distance between (xi, yi) and (x, y). Thus the impact, the sample point (xi, yi)
has on the point (x, y) will decrease linearly as (x, y) moves further away. The use of the Chebyshev
distance combined with the linearly decreasing kernel, means the influence of (xi, yi) resembles a
pyramid and thus the denominator in K is the volume of a pyramid with height b and side lengths
2b. b is the bandwidth of K and here is chosen as 0.02 for the one minute log-returns and 0.03 for the
ten minute log-returns. The influence of a single point under the chosen kernel can be seen in Figure 4.3.

Figure 4.3: The area of influence of the data point (0.2, 0.4) using the presented kernel with b = 0.02.
Yellow represents a large influence and green represents a small influence. White means it has no
influence.

Choosing the bandwidth as such can seem arbitrary and a more theoretically robust approach to
choosing the bandwidth b is as the function of sample size n,

b = c · n−1/5,

for some c > 0, see [FS03]. This approach accounts for the fact that as data increases the bandwidth
must decrease at an appropriate rate to allow the estimator to convergence on the true copula. The
decision to make the bandwidths 0.02 and 0.03 is a limitation of the implementation where these band-
widths are much easier to work with. Though they do scale approximately with n−1/5, since there is
10 times as much data for the one minute log-returns and 0.03 · 10−1/5 ≈ 0.03 · 0.631 ≈ 0.02.

Both models will use the same canonical vine. As mention earlier, the canonical vine is specified
by the ordering of the variables and the chosen order for the assets will be the same as when first
introduced, which is,

SPY, NDAQ, AMD, AAPL, TSLA, NVO, NVDA, BA, LMT, GD, JPM, WFC.

It will be demonstrated later that the ordering can be potentially significant, however, no consideration
has been put into this chosen order, and no consideration will be put into finding an optimal ordering.
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Figure 4.4: Each pair of plots shows: On the left, the uniform transforms of minute log-returns for
two assets plotted against each other. On the right, the corresponding nonparametric copula density.
The correlations for the estimated Gaussian copulae is from top-left to bottom-right: 0.50, 0.53, 0.85,
0.17. All four plots use 11200 points.

Figure 4.5: Each pair of plots shows: On the left, the uniform transforms of ten minute log-returns for
two assets plotted against each other. On the right, the corresponding nonparametric copula density.
The correlations for the estimated Gaussian copulae is from top-left to bottom-right: 0.58, 0.58, 0.89,
0.17. All four plots use 1120 points.
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Figure 4.4 shows four comparisons between two one minute uniform transformations kut and k′ut

where k ̸= k′, plotted against each other. Along with a corresponding nonparametric kernel estimate
for its copula density. The copula densities match quite well. However, the dependence also doesn’t
seem to far from a Gaussian copula as it seems to be very linear, especially the dependence between
AMD and NVDA. This suggests that a Gaussian copula could be sufficient.

The few differences there are to a Gaussian copula can be seen in the higher densities in all four
corners of TSLA against LMT and the clusters along the right and left sides of SPY against NDAQ.
Though it is not guaranteed that they will have a significant impact on the model.

Figure 4.5 shows the same four comparisons as in Figure 4.4, however, this time using u
10t. The

nonparametric copula densities again match quite well. However, the heavy reduction in data are
really seen here with the densities appearing much rougher than with ut. This is a clear advantage for
the one minute models, especially in cases with much less data.

Copulae are conventionally considered when modelling the dependence between variables, however,
they can also be used to model the auto-dependence of a single variable, like the dependence between
(ut−1, ut). This could be relevant when modelling the one minute log-returns, kxt, since the model
needs to sum up to ten one minute returns, which requires an accurate model of the joint distribution
of

(xt, xt+1, . . . , xt+9) .

Figure 4.6: Each pair of plots shows: On the left, the uniform transforms of minute log-returns for a
single asset plotted against itself lagged by a minute. On the right, the corresponding nonparametric
copula density. The estimated Spearman’s rho is from top-left to bottom-right: -0.01, 0.10, 0.17, 0.17.
All four plots use 11199 points.

Looking at Figure 4.6 shows that there is some auto-dependence in the assets when plotting kut−1
against kut, which means it could be very necessary to include this in the model. Additionally their
dependence seems to be non-Gaussian with the corners having the highest densities. Along with the
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auto dependence in SPY being characteristically concentrated in two corners. The high corner densi-
ties is probably a result of asset volatility have a significant amount of auto correlation.

Thus a new nonparametric vine copula model is considered specifically for ut that uses the same
twelve assets in the same ordering. Additionally, they are included one more time lagged by one,
ut−1, for a total of 24 dimensions, with the lagged assets appearing first, to make prediction easier.
The inclusion of ut−1 should hopefully be enough to account for the auto-dependence present in the
log-returns.

Moving forward, the two Gaussian copula models will be denoted as GC and GC-10 for xt and x
10t,

respectively. The nonparametric models will be denoted as NPC and NPC-10 for the two nonparametric
models that don’t account for auto-dependence. The one model that does will be denoted as NPC-AR.
All vines for NPC, NPC-10 and NPC-AR are canonical with the identity permutation.

4.2 Simulation of the Vine Copula models
One very important consideration in regards to vine copulae is that most dependencies between two
variables aren’t directly modelled. Instead these dependencies are represented as the dependence
between two conditional versions of the original two variables. For example, the dependence between
the second variable, NDAQ, and the third variable, AMD, is given as

CNDAQ,AMD(F (xNDAQ), F (xAMD)),

but the canonical vine will capture it as

CAMD,NDAQ|SP Y (F (xAMD|xSP Y ), F (xNDAQ|xSP Y )).

Here both F (xAMD|xSP Y ) and F (xNDAQ|xSP Y ) have to be estimated which means some of the de-
pendence could be lost. This could be compounded by the fact that some pairwise dependencies go
through more than one transformation. In this specific case, the modelling is done with canonical vines,
which means the pairwise dependency between the i’th and j’th variables is subject to min{i, j} − 1
transformations before it is modelled. This all has the effect that the dependence seen in Figures 4.4,
4.5 and 4.6 could get lost in the transformation.

In fact this loss of dependence can be seen directly between the upper right plots of Figure 4.7 and
Figure 4.8. The first figure shows the simulated version of SPY against NDAQ when using the NPC
model and the higher density along the left and right sides are captured. However, The second figure
shows simulated versions of SPY and NDAQ when using the NPC-AR model and the same feature
isn’t as prominent.

This is likely because SPY and NDAQ appear as the first and second variables in the NPC model,
which means their dependence is modelled directly. For convenience the asset ordering is given again

SPY, NDAQ, AMD, AAPL, TSLA, NVO, NVDA, BA, LMT, GD, JPM, WFC.

In the NPC-AR model, however, the unlagged version of SPY and NDAQ appear as the 13’th and
14’th variables, which means their dependence is modelled indirectly after transforming both twelve
times. So some of their features are lost. The simulated versions of AMD and NVDA also seem to not
have as smooth corners in both Figure 4.7 and Figure 4.8.

The dependence of the NPC-10 model is shown between the same assets in Figure 4.9 and the
simulations seem close to their real counterparts in all four cases. The only noticeable fault is that the
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simulated versions of AMD and NVDA aren’t clustered close enough together.

Figure 4.7: Each pair of plots shows: On the left, the uniform transforms of one minute log-returns
for two assets plotted against each other. On the right, simulated versions from the NPC model. All
four plots use 11200 points.

Figure 4.8: Each pair of plots shows: On the left, the uniform transforms of one minute log-returns
for two assets plotted against each other. On the right, simulated versions from the NPC-AR model.
All four plots use 11200 points.
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Figure 4.9: Each pair of plots shows: On the left, the uniform transforms of ten minute log-returns for
two assets plotted against each other. On the right, simulated versions from the NPC-10 model. All
four plots use 1120 points.

Another important ability for the NPC-AR model specifically is the ability to simulate the log-
returns, kxt, based on its previous value kxt−1. To investigate how well it does this, the distribution
of both SP Y xt and T SLAxt given specific values of SP Y xt−1 and T SLAxt−1, respectively, are plotted
in Figures 4.10 and 4.11. The figures are both generated using the NPC-AR model.
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Figure 4.10: The conditional distribution of SPY given its previous minute value, as predicted by the
NPC-AR model. The previous value of SPY is given in percentile. The top-left distribution is the
unconditional distribution of SPY.

Figure 4.11: The conditional distribution of TSLA given its previous minute value, as predicted by
the NPC-AR model. The previous value of TSLA is given in percentile. The top-left distribution is
the unconditional distribution of TSLA.

The conditional distributions of SPY have a characteristic increase in positive values when condi-
tioned on a very negative previous value (1’st percentile) and vice-versa, when conditioned on a very
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positive value (99’th percentile). This is expected because of the two high density corners in SPY’s
auto dependence from Figure 4.6. The conditional distribution of TSLA shows that conditioned on a
median previous value, the volatility reduces noticeably and when conditioned on either a very negative
or very positive previous value, the volatility increases noticeably. This agrees with the higher density
present in all four corners of TSLA’s auto dependence.

4.3 Results
In this section, each of the five models will be compared to each other, GC, GC-10, NPC, NPC-10,
NPC-AR. The models will be benchmarked using the 5% expected shortfall. That is, each model will
construct a portfolio of the twelve assets that optimize expected shortfall. The optimization will as-
sume that each portfolio is held for ten minutes. The increased duration is done to mimic holding a
portfolio for an extended period, and practically a longer period than ten can be considered.

The data is from 2022 and it is split into training and test data, with January to February, two
months or 11200 minutes, being used for training the models and March to December, ten months or
57100 minutes, being used to test the effectiveness of the portfolios. The minute log-returns from the
training period will be denoted by kxt for the k asset and the minute log-returns from the test period
will be denoted by kyt. The ten minute log-returns will be denoted k x

10t and k y
10

t. The entire testing
period from March to December will also be referred to as the test year.

Because there isn’t a simple equation to calculate shortfall, it will be estimated using Monte Carlo
simulations. That is all five models will be used to simulate multiple paths of ten minute log-returns,
k x̃

10t , for all twelve assets. The portfolios are optimized for these paths.

The method for simulating x̃
10t differs between models. The GC-10 and NPC-10 models are the

simplest as they are specifically made to simulate ten minute log-returns directly. The GC and NPC
models are set up to simulate one minute returns, x̃t, however the models assume by construction that
x̃t are independent across time. Thus 10 one minute log-returns x̃t, x̃t+1, . . . , x̃t+9 are independently
simulated and a simulation of a single ten minute log return is then calculated as

x̃
10t =

t+9∑
τ=t

x̃t, t ∈ {1, 11, 21, . . .}.

The NPC-AR model is more complicated to simulate. Like the NPC model it is set up to simulate x̃t,
unlike the NPC model however, it doesn’t assume temporal independence. Thus simulation of the 10
minute log-returns must be done jointly as

(x̃t, x̃t+1, . . . , x̃t+9) , t ∈ {1, 11, 21, . . .}.

In practice, this is accomplished by first simulating x̃t unconditionally, then simulating x̃t+1|x̃t, then
x̃t+2|x̃t+1 and so on until x̃t+9|x̃t+8. This should give the desired joint distribution of (x̃t, x̃t+1, . . . , x̃t+9),
which can then be summed together.

The return of a portfolio after ten minutes, Pi, is the percentage increase in the asset prices kpt

between the buy date t− 1 and the sell date t + 9 multiplied by the portfolio weightings wk,

Pi =
12∑

k=1
wk

(
kpt+9 − kpt−1

kpt−1

)
.

43



4.106c Chapter 4. Data Analysis

However, given that the returns will be very small after ten minutes the approximation ex ≈ 1 + x can
be applied to use the log-asset returns kxt directly as

Pi ≈
12∑

k=1
wk

t+9∑
τ=t−1

kxτ =
12∑

k=1
wk · k x

10t. (4.1)

The expected shortfall of the portfolio, ÊS. is estimated using n simulations of portfolio returns
P̃i ,

ÊS = −
n∑

i=1
χ
(

P̃i < V̂ aRP (5%)
) P̃i

5% · n, (4.2)

where

P̃i ≈
12∑

k=1
wk · k x̃

10i, V̂ aRP̃ (5%) = P̃(5%·n),

and xi,k is the i’th sample return from the k’th asset. Thus, P̃i is the payout from the i’th set of asset
returns given the portfolio weights wk for k = 1, . . . , 12. Taken together, P̃i for i = 1, . . . , n is the
entire sample distribution of portfolio returns.

The estimated 5% Value-at-Risk, V̂ aRP̃ (5%), is the lowest 5’th percentile portfolio return, which
is just the (0.05 · n)’th smallest value from the entire sample distribution. The estimated expected
shortfall, ÊS, is then the mean of all Pi conditional on them being lower than the 5% VaR.

The weightings wk for the portfolio are chosen such that

wk = arg min
wk

ÊS, subject to:
∑

k

wk = 1.

The minimization is performed using the Nelder-Mead method from the optim function in R. The
minimization is done with a simulated sample size of n = 100000 for each of the five models. Each
model will be using their own simulations of k x̃

10i when calculating expected shortfall.

The optimal portfolio weights for all five models are given in Table 4.7 and they are somewhat
consistent across models, with all having particularly large positions on NVO and LMT. The large
position in NVO and LMT along with the low positions on AMD and TSLA reflect that they are the
assets with some of the lowest and some of the highest standard deviations, respectively, as seen in
Table 4.2. It should also be noted that these weights are somewhat stochastic, since they are based
on Monte Carlo estimates.

The OP model is a control portfolio that optimizes a portfolio to the test data. Thus its predicted
shortfall represents the lowest possible shortfall that a fixed portfolio can have over the test period.
It can thus be observed that all but one of the five models have lower predicted shortfalls. This isn’t
because their shortfalls are better than the optimal it is simply because they aren’t good at predicting
it. Additionally, the weightings for the OP portfolio also show that all five models are close to the
optimal portfolio.
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Model SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC ES
OP 0.05 0.10 0.00 0.12 -0.04 0.37 -0.07 0.00 0.25 0.02 0.15 0.05 3.54
GC-10 0.01 0.08 -0.02 0.25 -0.03 0.41 -0.12 -0.04 0.25 0.03 0.19 0.00 3.25
NPC-10 0.08 0.14 -0.03 0.15 -0.01 0.31 -0.04 0.01 0.14 0.16 0.03 0.06 3.32
GC -0.05 0.13 -0.02 0.15 -0.03 0.22 -0.05 0.00 0.31 0.09 0.14 0.11 3.02
NPC 0.00 0.12 -0.01 0.12 -0.01 0.18 -0.01 -0.04 0.26 0.20 0.08 0.11 2.94
NPC-AR 0.00 0.13 0.00 0.14 -0.03 0.29 -0.07 -0.01 0.25 0.13 0.12 0.03 3.66

Table 4.7: The optimal portfolios for minimizing expected shortfall as estimated using 100000 sample
paths of the five copula models. ES is the 5% expected shortfall as predicted by each model. The
shortfalls are multiplied by 1000.

There is significant difference between the portfolios predicted ES. GC-10 and NPC-10 give a pre-
dicted shortfall of around ≈ 3.3, where as, GC and NPC gives it at around ≈ 3 and NPC-AR predicting
it to be around ≈ 3.7. This is likely not because GC and NPC have found better portfolios and instead
because GC-10, NPC-10 and NPC-AR all predict that the distribution of portfolio returns will have
fatter tails. This is especially apparent since the OP portfolio represents the best possible portfolio for
the test year.

The higher predicted shortfalls for the NPC-AR model suggests that it predicts the ten minute
log-returns will have fatter tails. The fatter tails are possibly because it predicts that extreme one
minute log-returns increase the probability of future extreme log-returns as seen in Figures 4.6 and
4.11, which means some simulated ten minute log-returns, k x̃

10t, will also be more extreme. The fatter
tails in GC-10 and NPC-10 are likewise also a result of auto-dependence within kxt that is captured
when modelling k x

10t directly. It is unclear however why there still is a large discrepancy in the pre-
dicted shortfall of NPC-AR when compared to GC-10 and NPC-10, but it may be caused by a tenfold
difference in sample sizes.

The five portfolios from Table 4.7 is used on the test data which are the ten minute returns from
March 2022 to December 2022, k y

10
t. It is assumed that the portfolio is purchased before the first

minute at the price pt−1 and sold on the tenth minute at the price pt+9. The approximation from (4.1)
is used again to approximate the realized portfolio return directly with k y

10
t as

Pt ≈
12∑

k=1
wk · k y

10
t.

The portfolio returns for each month is calculated separately. The portfolio returns for the entire test
year are the returns from all ten months. The realized portfolio returns are used to estimate a 5%
expected shortfall using (4.2).

Table 4.8 shows the sample expected shortfall at 5% for every model for every month and over the
test year (March to December). The lowest shortfall for each month is highlighted in bold and the
second lowest in italics. The NPC-10 model performed the best having the lowest shortfall on five out
of ten months as well as the lowest shortfall over the entire test year.

the GC-10 and NPC-AR models seem to have performed comparably to each other, with GC-10
having better single month shortfalls and NPC-AR having a better test year shortfall being very close
to the shortfall of NPC-10 and being close to the best possible shortfall from the OP portfolio. The
two remaining models GC and NPC seem to share last place with both having identical year shortfalls.

While the NPC-10 model fares better in minimizing shortfall, however, it isn’t much lower com-
pared to the others, so maybe its better performance is pure chance. Perhaps more significant, is
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in regards to the NPC-AR model. Because, the predicted shortfalls given in Table 4.7 shows that
NPC-AR almost exactly predicted its realised shortfall from Table 4.8. All other models where very
far off with NPC-10 being around 0.3 points off. This could suggest that the NPC-AR model was the
only model to actually predict its shortfall.

Both GC and NPC had similar predicted shortfalls and performed comparably on the test data,
which suggests there isn’t a lot of difference between a Gaussian copula model and a nonparametric
vine copula. This is compounded by the GC-10 and NPC-10 models also performing similarly both
in prediction and realisation. Thus maybe a Gaussian copula is sufficient to explain the dependence
between assets. Or at least that a nonparametric vine copula isn’t much of an improvement.

However, one potential benefit of the nonparametric copula could come when regarding auto de-
pendence as seen with the NPC-AR model having performed well on the test data and also potentially
having been the only model to predict its shortfall.

Model Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
OP 3.61 3.53 3.95 3.68 2.88 3.98 3.69 3.29 4.00 2.99 3.54
GC-10 3.75 3.64 4.10 3.77 2.94 4.14 3.67 3.29 4.28 3.02 3.70
NPC-10 3.59 3.49 4.15 3.58 2.85 3.56 3.84 3.44 4.10 3.19 3.66
GC 3.91 3.75 4.22 4.08 3.31 3.53 4.03 3.72 4.26 3.44 3.87
NPC 3.90 3.70 4.32 3.99 3.30 3.32 4.04 3.84 4.25 3.55 3.87
NPC-AR 3.72 3.57 4.06 3.78 3.07 3.60 3.79 3.45 4.14 3.18 3.67
Data Points 577 549 630 576 479 520 636 649 574 516 5706

Table 4.8: The realized shortfalls for each month in 2022, excluding January and February, when using
the six portfolios from Table 4.7. The lowest shortfall each month is in bold and the second lowest in
italics (Not counting the OP portfolio). The shortfalls are multiplied by 1000.

4.3.1 Changing Vine
Three out of the five models uses vines, which means the choice of vine might have an effect on the
final result. All three vine models use a canonical vine with an asset ordering of

SPY, NDAQ, AMD, AAPL, TSLA, NVO, NVDA, BA, LMT, GD, JPM, WFC, (4.3)

where the NPC-AR model in particular features an extra copy of this ordering, but from the previous
minute.

A full investigation into finding the optimal vine will not be conducted here, because at 12 assets
there is simply to many possible vines. Instead to briefly explore how much a change of vines can im-
pact the result, a new nonparametric vine copula model is setup again using a canonical vine, however,
with the ordering from (4.3) being reversed. The model is derived from the NPC-AR model, because
it uses the largest vine of all models, which would suggest that it is the most sensitive to changes in
its vine. The version of NPC-AR with a different vine is denoted as R-NPC-AR.

The same procedure of constructing and testing a minimum expected shortfall portfolio, will be
conducted using the same training and test data. The portfolio can be seen in Table 4.9 with com-
parison to the normal NPC-AR model. There seems to be a slight difference in portfolio weights and
a bigger difference in its expected shortfall. How much difference exactly is obscured by the fact that
the weights are based on Monte Carlo estimates and thus have some randomness to them.
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Model SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC ES
NPC-AR 0.00 0.13 0.00 0.14 -0.03 0.29 -0.07 -0.01 0.25 0.13 0.12 0.03 3.66
R-NPC-AR -0.04 0.18 0.02 0.14 -0.02 0.24 -0.08 -0.07 0.29 0.11 0.16 0.07 3.80

Table 4.9: The optimal portfolios for minimizing expected shortfall as estimated using 100000 sample
paths of the two copula models with different vines. The shortfalls are multiplied by 1000.

To test whether the differences in Table 4.9 are caused by Monte Carlo errors, the portfolio for the
NPC-AR model is estimated 100 times using the same procedure as in Table 4.9. The sample mean
and standard deviations for the portfolio weights are then calculated, seen in Table 4.10.

NPC-AR SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC ES
Mean 0.003 0.156 -0.002 0.130 -0.033 0.275 -0.062 -0.011 0.282 0.106 0.109 0.048 3.696
Std. Dev 0.008 0.021 0.014 0.019 0.015 0.018 0.009 0.018 0.030 0.030 0.028 0.023 0.025

JB stat 1.662 1.358 5.641 0.322 2.467 1.371 0.046 1.502 1.725 1.267 0.844 2.790 3.190
p-value 0.436 0.507 0.060 0.851 0.291 0.504 0.977 0.472 0.422 0.531 0.656 0.248 0.203

Table 4.10: The sample mean and standard deviation for the optimal portfolio for NPC-AR, from
Table 4.9, based on 100 replications. JB stat is a Jarque-Bera test on each weight and it indicates that
all weights are Gaussian. The shortfall mean and standard deviation are multiplied by 1000.

The JB stats in Table 4.10 also shows that the weights are normally distributed, thus a chi squared
test can be used to test if the portfolio generated by the R-NPC-AR model is identical to the one from
the NPC-AR model. While there are 12 assets, the weights on each asset most sum to 1, which means
1 of the 12 weights is predetermined. Thus there is only 11 degrees of freedom and one asset can be
removed before testing, which will be WFC. The result of the test can be seen in Table 4.11 and shows
that R-NPC-AR is a different model to NPC-AR.

Chi Sq. test Stat df p-value
51.0 11 0.0000

Table 4.11: A chi squared test of whether the R-NPC-AR portfolio from Table 4.9 could be generated
by the NPC-AR model based on the mean and standard deviations from Table 4.10.

Table 4.12 shows the comparative performances of R-NPC-AR and NPC-AR for every month. The
R-NPC-AR uses the portfolio from Table 4.9 and it seems to have a slight increase in realized shortfall,
which could suggest that the model is worse. However, the realized shortfall still manages to be close
to its predicted shortfall. Thus it seems the vine used for modelling does impact its performance and
consideration can be put into it finding the best one. This could especially be true since the R-NPC-
AR model performs quite poorly when considering all models tested in Table 4.8.

Model Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
NPC-AR 3.72 3.57 4.06 3.78 3.07 3.60 3.79 3.45 4.14 3.18 3.67
R-NPC-AR 3.79 3.80 4.07 3.88 3.21 3.53 3.87 3.73 4.17 3.42 3.78
Data Points 577 549 630 576 479 520 636 649 574 516 5706

Table 4.12: The realized shortfalls for each month in 2022, excluding January and February, when
using the two portfolios from Table 4.9. The shortfalls are multiplied by 1000.

Lastly the distribution from the realized portfolio returns for all six models, over the entire test
year, are shown in Figure 4.12 and the realized means, Values-at-Risk and shortfalls are given in Table
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4.13. It shows that the NPC-10 model and the NPC-AR model performed best, and the NPC model
performed marginally worst in all aspects.

Figure 4.12: Histograms of the realized portfolio returns for the test year, when using the six portfolios
from Tables 4.7 and 4.9. The green line is the mean return, the blue is the 5% VaR and the red is the
5% ES.

Model GC-10 NPC-10 GC NPC NPC-AR R-NPC-AR
Mean 0.02 0.01 0.00 -0.01 0.01 0.00
VaR 2.55 2.56 2.65 2.66 2.49 2.61
ES 3.70 3.66 3.87 3.87 3.67 3.78

Table 4.13: The realized mean, the 5% Value-at-Risk and the 5% expected shortfalls for the test year,
when using the six portfolios from Tables 4.7 and 4.9. All values are multiplied by 1000.

4.4 Further on the NPC-AR Model
The previous section concluded with the NPC-AR model being considered one of the better models
with a low expected shortfall and a close match between its predicted and realized shortfalls. Addi-
tionally the model uniquely has aspects to it that are open for further exploration. Thus this section
will focus entirely on it, with further analysis and expansions.

4.4.1 Predicted vs. Realized Shortfall
The realized shortfall for the NPC-AR model in Table 4.8 was close to its predicted shortfall from Table
4.7. To test whether or not ’close’ means that the NPC-AR model correctly predicted the expected
shortfall, bootstrapping will be applied to the real portfolio returns. This will give an indication of
how much variation there is in the realized shortfalls from Table 4.8
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For each month in the test year and for the whole test year, the set of all log-returns will be pooled
together and a new sample of returns will be drawn from the pool, with replacement. The size of
the new sample will be as big as the original pool for the respective month or year. The estimated
expected shortfall ÊS is calculated for each of the new samples. This is done 1000 times.

To see if the predicted shortfall from Table 4.7 actually predicted the realized shortfall, it is tested
whether the prediction falls between the 25’th smallest and 25’th largest of the 1000 bootstrapped
shortfalls, or between the 2.5’th and 97.5’th percentiles. That is to say if the predicted shortfall passes
at the 5% level.

It should be noted that bootstrapped samples disregards any autocorrelation there is likely to be
present in the data, however this shouldn’t be a problem as given that the portfolio weights are con-
stant. The expected shortfall should only depend on the log-returns unconditional distribution.

Table 4.14 shows the two percentiles for every month and for the entire test year. The table shows
that only the month of July failed the test with a particularly low expected shortfall. All other months
including the whole year passed the test. A histogram of bootstrapped shortfalls for the test year are
shown in Figure 4.13.

All together this suggests that the predicted shortfall is the same as the realized shortfall, because
a single fail out of eleven isn’t unexpected when working at the 5% level. It should be noted that the
confidence intervals for every month are quite large, so the test isn’t that powerful when it doesn’t
have a large amount of data. But nonetheless, it shows that the predicted shortfall is at least close
enough to the realized shortfall to pass the test.

As discussed, the NPC-10 model generally performed better than the NPC-AR model in regards
to minimizing realized shortfall. The issue with that model was that its predicted shortfall was far off
its realized. Because of the large confidence interval when testing months, only the whole test year
will be tested. The test for the NPC-10 model yields a confidence of (3.47, 3.83) which is far from its
predicted shortfall of 3.32.

Shortfall Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Data Points 577 549 630 576 479 520 636 649 574 516 5706
2.5% 3.16 3.08 3.61 3.28 2.59 2.86 3.25 2.88 3.34 2.59 3.49
97.5% 4.28 4.07 4.47 4.23 3.48 4.54 4.38 4.14 4.88 3.86 3.87
Pass True True True True False True True True True True True

Table 4.14: The bootstrapped confidence intervals for the realized shortfall for each month. Pass is
based on if the predicted shortfall of 3.67 falls within the interval. The shortfalls are multiplied by
1000.
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Figure 4.13: Histograms of the bootstrapped shortfalls over the test year. The blue lines are the
confidence interval (3.49, 3.87) and the red is the predicted shortfall 3.67.

4.4.2 Higher Order Lags

One of the defining features of the NPC-AR model is its auto dependence. This is accomplished by
including lagged versions of each asset, kxt−1, together with the normal assets kxt in its multivariate
distributions. Given that the NPC-AR model has been successful, perhaps including more higher order
lagged assets could improve performance. An i’th order lag here refer to including assets on the form
kxt−i.

Additionally given that the modelling uses a vine, any number of combinations of lagged assets
could be included based on how important they seem. So maybe SP Y xt−2 has a uniquely high ex-
planatory power compared to other 2’nd order lagged assets, kxt−2. Thus it alone can be included in
the model.

The lagged assets can appear in any ordering that is desired. However, all lagged assets have to
appear before the non-lagged assets, kxt, for the purposes of prediction. This is because when condi-
tionally simulating new values, the canonical vine needs the previous values to appear earlier in the
ordering.

Thus, there are many options when regarding adding higher order lags. To focus the scope, a model
of order p includes all assets lagged at order p, xt−p, and also all lags of lower order down to order 1.
To end up with the joint distribution,

(xt−p, . . . , xt−1, xt).

Three new models will be considered with p = 2, 3, 4, respectively, since the standard NPC-AR by
definition is already of order 1. All three new models are tested using the same procedure as for the
NPC-AR model. The summarised results of that test can be seen in Table 4.15. The realized ES is
the shortfall over the entire test year. The order 1 model refers to the regular NPC-AR model. The
shortfalls, both predicted and realized, for the higher order models seem to increase with order. The
predicted and realized shortfalls also grow further away from each other.
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Order Predicted ES Realized ES Time Taken Dimensions Bi Copulae
1 3.67 3.66 30 24 276
2 3.70 3.76 59 36 630
3 4.00 3.84 113 48 1128
4 4.11 3.87 163 60 1770

Table 4.15: Predicted vs. Realized shortfall for higher orders of the NPC-AR model. Also the compu-
tation time, in seconds, to simulate 100000 ten minute sample paths, and the dimension of the copula
and the amount of bivariate copulae used by the vine. The shortfalls are multiplied by 1000.

This all suggest that while adding auto dependence is beneficial, going above a lag of order 1 is
detrimental to the performance. Table 4.15 also shows that the computation time for each model
increases rapidly with higher orders. This is because of the increase in dimensions, which in the case
of a vine copula means an increase in bivariate copulae. Specifically, for a dimension d the number of
bivariate copulae in its vine is d(d−1)

2 ≈ d2

2 . The total number of bivariate copulae in each model can
also be seen in the table and it seems to scale linearly with computation time.

A potential improvement to these results could be found by using the assumption of stationarity to
reduce the high number of bivariate copulae. This can be done by recognising that e.g. the dependence
between SPY and NDAQ at time t is identical to their dependence at time t + 1 and the vine could
be chosen to leverage that. An example of such a structure is the Stationary Vine found in [NKM22],
which can reduce the number of unique bivariate copulae down to 210, 354, 498 and 642, respectively
for orders 1, 2, 3 and 4. Though it should be noted that a reduction like this, while better for
computation, doesn’t necessarily translate to better predictions.

4.4.3 Greater Time Horizons
The model has been shown to perform well when holding a portfolio for ten minutes, however, it isn’t
clear that it works for periods longer than ten minutes. Realistically, it isn’t possible to extend the
time horizon up to a period where an investor would actually hold it, because the model needs to
calculate every minute and the test period isn’t large enough to give a meaningful comparison.

The time periods tested beyond 10 minutes, are 30, 60 and 120 minutes and the summarized results
can be seen in Table 4.16. The tests are done using the NPC-AR model. These numbers are for the
whole test year and as expected the shortfall increases with time period. The discrepancy between
predicted and realized shortfall also increases, however that might be caused by the reduction in data
points giving worse estimates for the realised shortfalls. The reduction in data points is because the
test data is partitioned into periods that are 10, 30, 60 and 120 minutes long, respectively.

Time Predicted ES Realized ES Time Taken Data Points
10 3.66 3.67 30 5706
30 6.24 6.42 99 1900
60 8.55 9.18 203 948

120 11.62 12.86 383 472

Table 4.16: Predicted vs. Realized shortfall for greater time horizons of the NPC-AR model. Also the
computation time, in seconds, to simulate 100000 sample paths, and the amount of tested data. The
shortfalls are multiplied by 1000.

A unique portfolio was generated for each time period under the assumption that the optimal port-
folio might change depending on how long it is held for. The portfolios generated can be seen in Table
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4.17. There does seem to be trends in the weightings over increasing time. The position in AAPL, GD
and JPM falls over time, while NVO, LMT and WFC increases.

Time SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC ES
10 0.00 0.13 0.00 0.14 -0.03 0.29 -0.07 -0.01 0.25 0.13 0.12 0.03 3.66
30 0.01 0.18 0.02 0.14 -0.04 0.29 -0.07 -0.04 0.28 0.08 0.16 0.01 6.24
60 0.00 0.13 -0.01 0.13 -0.02 0.30 -0.07 -0.04 0.31 0.09 0.11 0.07 8.55
120 0.00 0.13 -0.02 0.11 -0.02 0.31 -0.07 -0.02 0.37 0.01 0.08 0.10 11.62

Table 4.17: The optimal portfolios for minimizing expected shortfall as estimated using 100000 sample
paths of the four different time horizons using the same NPC-AR model. The shortfalls are multiplied
by 1000.

These trends in weighting could however be purely coincidental given that there is some randomness
at play when creating them. Thus Table 4.18 shows the chi squared test from Table 4.11 applied to
each portfolio in Table 4.17. The results are that only the 120 minute portfolio is significantly different
from the standard 10 minute one. This is perhaps not surprising given that the model only uses first
order lags to give temporal variation, so the long term trends can’t be much different from the short
term trends.

Chi Sq. test Stat df p-value
30 12.21 11 0.3483
60 9.55 11 0.5705
120 30.87 11 0.0012

Table 4.18: A chi squared test of whether the portfolios from Table 4.17 could be generated by the
NPC-AR model based on the mean and standard deviations from Table 4.10.

Table 4.16 showed a significant difference between the predicted and realized shortfalls for longer
time periods. To test if the difference is significant, the bootstrap test from Table 4.14 will be applied
to the different time period, but only for the test year. The results of the test are given in Table 4.19
and all pass which suggests there isn’t a significant difference and the little difference is a result of
fewer data points.

Shortfall 10 30 60 120
Data Points 5706 1900 948 472
Predicted 3.67 6.24 8.55 11.62
2.5% 3.49 5.89 8.14 11.01
97.5% 3.87 6.96 10.18 14.57
Pass True True True True

Table 4.19: The bootstrapped confidence intervals for the realized shortfall for each time horizon. Pass
is based on if the respective predicted shortfall falls within the interval. The shortfalls are multiplied
by 1000.

4.5 Analysis of 2021
Up until now all data used was from 2022, so to verify that the results are consistent across time,
the same models are fitted to data from the previous year, 2021. The data set consists of minute
log-returns for the same twelve assets in the period of April to December 2021. Like with 2022, the
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first two months April to May are used for training. The amount of data for each month starting from
April is,

4742, 4291, 4711, 4600, 4124, 4591, 4568, 4146, 4108

The shape parameters of the marginal distributions can be seen in Table 4.20. The big separation
from the marginals in 2022, see Table 4.1, is a sharp decrease in standard deviation across all assets.

SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC
Mean -0.07 -0.07 -0.10 -0.06 -0.05 0.04 -0.02 -0.02 -0.01 -0.07 0.01 0.06
Std. Dev 14.98 5.39 9.03 5.72 12.06 3.80 8.74 7.22 4.34 4.61 5.56 7.35
Skewness -0.21 0.02 0.04 0.25 0.34 -0.02 -0.14 0.14 0.07 -0.36 -0.09 0.34
Kurtosis 24.92 14.34 28.54 24.12 8.13 34.42 12.75 8.40 11.00 18.54 30.57 23.26

Table 4.20: Table of sample shape parameters for all minute log-returns kxt, over the period April to
May 2021, 9034 data points. Mean and standard deviation are multiplied by 1000.

Figure 4.14 shows the assets plotted against each other, like seen in Figure 4.4 for 2022. However,
unlike in 2022, the assets don’t have as much co-dependence with the coefficients of correlation for a
fitted Gaussian copula, being much lower than in 2022 and even slightly negative at times.

Figure 4.14: Each pair of plots shows: On the left, the uniform transforms of minute log-returns for
two assets plotted against each other. On the right, the corresponding nonparametric copula density.
The correlations for a Gaussian copulae is from top-left to bottom-right: 0.28, 0.42, 0.66, -0.02. All
four plots use 9034 points.

The conclusion from fitting the model to 2022 was that the NPC-10 model and the NPC-AR model
where the best. The NPC-10 model achieved the lowest realized shortfall, while the NPC-AR model
accurately predicted its shortfall. Thus only those models will be considered for fitting and testing.

The portfolios for each model are generated using the same method as 2022 and can be seen in
Table 4.21, including the optimal portfolio OP. Like in 2022, the NPC-10 model has a much lower
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predicted shortfall compared to the NPC-AR model. It is relevant to determine whether the portfolios
are actually different from those in 2022. Thus Table 4.22 shows the result of a chi squared test for
the 2021 NPC-AR portfolio against the portfolio in Table 4.11. The test rejects the null hypothesis,
so the 2021 portfolio for the NPC-AR is not the same as its 2022 counterpart.

Model SPY NDAQ AMD AAPL TSLA NVO NVDA BA LMT GD JPM WFC ES
OP 0.05 0.02 0.04 0.15 0.04 0.31 -0.06 -0.01 0.24 0.06 0.16 0.00 2.39
NPC-10 0.01 0.12 0.04 0.11 -0.02 0.40 -0.01 -0.01 0.14 0.10 0.07 0.04 1.84
NPC-AR 0.00 0.11 0.05 0.11 -0.01 0.30 -0.01 -0.01 0.21 0.17 0.09 -0.01 2.21

Table 4.21: The optimal portfolios for minimizing expected shortfall as estimated using 100000 sample
paths using the 2021 training data. The shortfalls are multiplied by 1000.

Chi Sq. test Stat df p-value
65.3 11 0.0000

Table 4.22: A chi squared test of whether the NPC-AR portfolio from Table 4.21 could be generated
by a NPC-AR model using 2022 data, based on the mean and standard deviations from Table 4.10.

The portfolios are used on the remaining months, June to December seen in Table 4.23. It seems
the same pattern emerges as in 2022. The NPC-10 model has a lower shortfall for five out of seven
months and the NPC-AR model’s predicted shortfall is much closer to its realized.

Model Jun Jul Aug Sep Oct Nov Dec Year
OP 1.79 1.94 1.87 2.33 2.17 2.45 3.70 2.39
NPC-10 2.02 1.82 1.96 2.36 2.21 2.71 3.96 2.44
NPC-AR 2.07 1.91 2.01 2.38 2.33 2.64 3.55 2.43
Data Points 471 460 412 459 456 414 410 3082

Table 4.23: The realized shortfalls for each month in 2021, excluding April and May, when using the
three portfolios from Table 4.21. The shortfalls are multiplied by 1000.

However, it seems the month of December has a much higher shortfall, in fact its comparable to the
shortfalls in 2022. Thus it seems appropriate to remove the month from the test data. With December
removed, the shortfall for the entire year, as seen in Table 4.23, is recalculated for the NPC-10 and the
NPC-AR models as 2.19 and 2.23, respectively. Which like with 2022 puts the predicted shortfall for
the NPC-AR model within 0.02 of the realized shortfall. Additionally, when using the bootstrapped
test from Table 4.14, to test if the realized shortfall is close to the predicted shortfall. The NPC-AR
model passes while the NPC-10 model fails, as seen in Table 4.24.

Thus the analysis of 2021 supports the results of 2022, that is the NPC-10 model produces
marginally lower realized shortfalls, however, the NPC-AR model is better at predicting its realized
shortfall.
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Shortfall NPC-10 NPC-AR
Predicted 1.84 2.21
2.5% 2.04 2.08
97.5% 2.34 2.39
Pass False True

Table 4.24: The bootstrapped confidence intervals for the NPC-10 and NPC-AR models using 2021
test data without December. Pass is based on if the respective predicted shortfall falls within the
interval. The shortfalls are multiplied by 1000.

4.6 Synthetic Efficiency Test for Large Dimensions

The original paper on nonparametric vine copulae [NC16] conducted a few simulation tests to demon-
strate the vines potential over the more conventional approach when modelling higher dimensions.
However, the simulation didn’t go beyond 10 dimensions, which doesn’t reflect potential use cases in
portfolio allocation, where they can be required to model hundreds of assets. Thus the test will be
repeated for higher dimensions, but with out comparing it to the conventional nonparametric model.
Additionally, only the Gaussian copula case will be considered as it provides an easily scalable model
that can be represented as a vine [NC16].

This test simulates 10000 points from a multivariate Gaussian distribution as it is the simplest
example of a Gaussian copula. The distributions will have zero mean and randomized covariance
matrices to give the data more variety. A nonparametric vine copula is then fitted to the sample with
a kernel bandwidth of 0.02. In [NC16], they compare the integrated absolute error of the joint densities
of the real distribution f with its estimator f̂ ,

IAE =
∫
Rd

|f(x)− f̂(x)|dx.

However, this metric becomes impractical in large dimensions. Instead since vine copulae are uniquely
defined by the pairwise copulae between all its variables, a simpler approach would be to only compare
the pairwise copulae of the real distribution and the estimator. Let cij be the bivariate copula between
the i’th and the j’th variables and ĉij be its nonparametric vine estimator, then the performance of
the estimator could be measured as

1
n(n− 1)

n−1∑
i=1

n∑
j=i+1

∫
[0,1]2

|cij(u)− ĉij(u)|du, (4.4)

where n is the dimension in the multivariate distribution. Figure 4.15 shows (4.4) for Gaussian dis-
tributions at a variety of dimensions. The error is virtually constant, increasing slightly with number
of dimensions. This result deviates from its counterpart in [NC16] where the error increased much
more for higher dimensions. However, that may be a result of the difference in how error is measured.
Nonetheless, Figure 4.15 suggests that the performance of the estimator doesn’t decrease in higher
dimensions.
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Figure 4.15: Equation (4.4) calculated for Gaussian distributions with dimensions 3, 5, 10, 25, 50 and
100. The shown error is the mean of 10 replications for each distribution.
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The data analysis assumes strict stationarity however, it was shown that the marginals for the test
period were different from the training period. This could call into question the conclusion that the
NPC-AR model was able to predict the expected shortfall, since that should only be valid under strict
stationarity. Thus the evidence that it predicted it in both 2021 and 2022, could be happenstance.

As mentioned, the data used for constructing the models often had missing entries. The approach
to dealing with that was to simply ignore the missing data and stitch the data that was there together.
However, this could have a negative impact on models like the NPC-AR model as it assumes that there
is a one minute gap between all data.

In fact for 2022 only 9843 of the 11200 training data have a one minute gap between them or
around 88%. This will impact performance and it likely means that the auto-dependence shown in
Figure 4.6 actually includes a significant amount of noise.

Because of the way the NPC-AR model is specified it should be possible to condition on the previous
minute, when constructing a portfolio. That is, instead of constructing a single portfolio to use over
the entire test period, the portfolio weights could be made conditional to the last minute before each
ten minute period. This may improve its performance, however likely only a slight improvement as
the auto-dependence isn’t incredible significant, and its significance will fall over the ten minute period.

As seen in Figure 4.11, the NPC-AR model used in data analysis seems to give the log-returns
some heteroskedasticity. However, this effect is temporary and more conventional models like GARCH
allow for the changing variance to persist for longer, which is also what is observed in practice.

Higher order AR components were also tried up to order 4, which concluded with order 1 being
sufficient. Though this may just be because of too many variables or because it didn’t reach far enough
into the past. A potential solution to this could be that instead of modelling using the past four val-
ues, the modelling is done with the sum of the past four values. Periods of high variance would give a
summed value further from zero, which would allow modelling in periods of changing variance.

It also doesn’t need to be only the four past values and it may instead be the infinite past expo-
nentially weighted in the sense of

Σxt = axt−1 + a2xt−2 + a3xt−3 + · · · ,

for some 0 < a < 1. Σxt can then be included as a variable in a regular vine specification in place of
a past value like xt−1.

Another potential extension would be to the vines. As vines are defined now, they only consider
pairwise dependence. However, it is possible that in a d-dimensional variable, a group of three variables
have a mutual dependency that need to be explained with a three-dimensional copula. For example,
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given a four-dimensional variable x = (x1, x2, x3, x4), it could be equipped with a copula such that
its probability density would be given by

f(x) = f1(x1) · f2(x2) · f3(x3) · f4(x4)
· c123 (F1(x1), F2(x2), F3(x3)) · c34(F3(x3), F4(x4))
· c24|3(F2|3(x2|x3), F4|3(x4|x3)) · c14|23(F1|23(x1|x2, x3), F4|23(x4|x2, x3)).

The way this differs from the standard vine is the existence of the trivariate copula c123, which under
a standard vine would be expressed as c12 · c23 · c13|2. This formulation would allow x1, x2 and x3 more
freedom in their mutual dependency.

This would need a new definition for a vine, since the edges that should represent trivariate copulae
would need to connect three nodes, that is the edge e corresponding to a trivariate copula has to be
expressed as e = {a, b, c}.

A goodness of fit test would also need to be considered, as what would justify using a trivariate
copula over a set of bivariate ones. For parametric copulae that have a probability density, that could
just be likelihood based. However, it would be challenging for kernel based copulae.

5.1 Conclusion
The goal of this project was to combine kernel based nonparametric copulae with vines. The non-
parametric vine copulae were used to model the minute log-returns for a selection of twelve assets.
The model was then used to construct a portfolio that minimized the 5% expected shortfall over a ten
minute period. The modelling was done for the two years, 2021 and 2022.

The assets marginals where modelled using their sample marginals, to account for the large amount
of variety in shape. Multiple copula models where tried on the assets uniform transforms, which in-
cludes Gaussian copulae and nonparametric vine copulae. The modelling was done on both the one
minute and ten minute log-returns.

It was found that the dependency between assets were somewhat close to a Gaussian copula, as the
models based on Gaussian copulae performed close to their nonparametric counterparts. However, a
nonparametric vine copula for the ten minute log-returns, named NPC-10, was optimal at minimizing
expected shortfall for both 2021 and 2022. However, its predicted shortfall underestimated the realized
shortfall for both 2021 and 2022.

The nonparametric vine copulae showed their value when considering the auto-dependence within
the same asset. The pairwise plots showed that the auto-dependence had a higher concentration in all
four corners, which can’t replicated by Gaussian copulae nor by other common parametric copulae.
The high corner concentration shows GARCH-like behaviour, since it means extreme log-returns are
more likely to be followed by more extreme log-returns. The nonparametric model that accounted
for the auto-dependence within the one minute log-returns, named NPC-AR, only performed slightly
worse than the NPC-10 model in terms of shortfall, however it managed to accurately predict its re-
alized shortfall for both years.

Additional extensions to the NPC-AR model were explored. The standard model only considers the
auto dependence for the log-returns and their values at the previous minute. The model was extended
to also include the values for up to four minutes back, however it was found that adding more lagged
values only decreased performance. A different extension was creating a portfolio that would be held
for more than ten minutes into the future, going up to two hours. The NPC-AR model was found to
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still be successful in this case, which implies that the NPC-AR model can be used to create a portfolio
that can be held for an arbitrary length of time.

A synthetic test was conducted where the nonparametric vine copula was set to estimate multi-
variate Gaussian distributions. The Gaussian distributions had dimensions up to and including 100.
The results where a slight but noticeable fall in performance that likely comes from the many variable
transformations necessary in vines.
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