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A B S T R A C T   

Energy system models (ESMs) are essential for planning the energy transition and understanding its impacts. 
However, this transition is inherently complex and cannot always be understood by using just one model. 
Consequently, efforts linking different model classes are common practice to get insights into the energy system 
and the different dimensions around it. While existing literature has focused on proposing how such multi-model 
analyses could be structured, presenting applied cases, or looking into how specific aspects of other knowledge 
domains are included in energy modelling, a high-level overview of the practice of model coupling with ESMs is 
lacking. This article puts this practice into perspective by providing an outlook on two aspects: coupling ESM 
paradigms and model coupling with other knowledge dimensions. Coupling ESMs paradigms have often been 
used to expand modelling resolution, yet further emphasis should be placed on illustrating contrasting near- 
optimal system designs and expanding the solution space beyond optimality criteria. Model coupling across 
knowledge domains is desirable when providing meaningful insights about specific themes, yet, increased 
complexity of data, multi-model frameworks, and coordination across practices would make an all-encompassing 
model impractical and calls for purpose-driven model coupling to answer specific questions about the energy 
transition.   

1. Introduction 

To mitigate global warming and meet global climate action com
mitments, a transition towards a decarbonized, clean, and sustainable 
energy system needs to take place [1]. Abstract representations of the 
energy system, or energy system models (ESMs), are instrumental for 
exploring and assessing the impacts of different energy system scenarios 
that could outline this transition [2]. Moreover, the insights provided by 
ESMs can support decision-making by providing the means to answer 
research questions validating existing energy policy, assessing new 
policy options, setting targets, and driving decisions contributing to the 
energy transition [3]. 

A wide range of ESMs exists, possessing distinct technical attributes, 
methodological considerations, and varying degrees of complexity 
[4–8]. While ESMs with more complex representations of the energy 
system are widely used for policy support, modelling efforts often still 
rely on coupling more than one tool together to complement their ca
pabilities [7]. Model coupling – or linking – can take place by, for 
example, unilaterally feeding the outputs of one model to another via 
systematic protocols; iteratively exchanging data between models; 

creating links in the code to resolve a mathematical problem jointly; or 
integrating models altogether running as one [9,10]. 

Different linking categories have been described in the literature 
[11–13], with Helgesen and Tomasgard [9] synthesizing these catego
rizations: defining soft-linking as a user-controlled information ex
change between models, hard-linking as a formal computer-led transfer 
of data with shared code from the models, and integrated models as the 
combination of models running and handling data as one. In the present 
study, soft-linking is understood as a coordinated purpose-led data ex
change between models or modelling algorithms. Among the above, 
soft-linking is most common across ESM tool developments, while 
hard-linked and fully integrated models are less frequently observed [7], 
typically presenting a simplified focus of one of the models over the 
other [14]. Other than additional model development, hard-linking or 
fully integrating models present challenges in both the computational 
effort to solve more complex mathematical constructs and data recon
ciliation and consistency. This is the case, especially when accounting 
that data assumptions, model formulations, and outputs can be quite 
heterogeneous across models [15–20], and across established modelling 
frameworks to consider (e.g., TIMES [21–42], OSeMOSYS [43–48], 
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LEAP [44–46,49–53], EnergyPLAN [30,31,34,49–51,54–102], MES
SAGE [11,103], Calliope [104,105], etc.). 

Interlinkages also facilitate an integrated modelling approach where 
complementary features can be used to obtain a cross-cutting repre
sentation of the energy system. This also allows parameters exogenous 
to a single model to be internalized within a model coupling exercise. In 
turn, this can arguably provide more holistic multidisciplinary insights 
and realism than what can otherwise be achieved with a single-model 
approach. Past studies have relied on model linking to expand their 
scenario analysis by coupling ESMs with life cycle assessment (LCA) 
[21], behavioral [22], energy demand [43], and economic models 
[23–27,54], as well as power market models and with other ESMs 
[28–35,106,107]. 

Other cross-cutting representations of the energy systems also exist 
in the form of integrated assessment models (IAMs), which are widely 
used within the context of climate policy and planning the energy 
transition. These tools model the complex interactions between the en
ergy, economy, environment, and other Earth systems, thereby 
providing encompassing representations of transition scenarios and 
their climate impacts often on a global and macro-regional scale [108]. 
However, these models present tradeoffs between their wide analytical 
range and lack of detailed bottom-up resolution of supply technologies 
and local energy demands [109]. Therefore, IAMs may need to be 
combined with other support tools like high-resolution bottom-up ESMs 
to provide a more nuanced view of the energy system [110]. Past studies 
have focused on linking IAMs to bottom-up models to assess, for 
example, the impacts of developing gas infrastructure [111] or to have 
better assessments of variable renewable integration including high 
spatial, technical and temporal modelling resolutions [36,112]. 

The trend of model coupling is further highlighted in recent studies 
that conceptualize multi-model frameworks and their key consider
ations and apply linked modelling approaches to energy system analyses 
[10,41,113,114]. In general, these frameworks present different model 
classes linked together to address questions about the energy transition, 
representing multiple dimensions of the energy system and its socio
technical context. 

For example, Crespo del Granado et al. [113] propose a modelling 
framework coupling bottom-up ESMs with top-down macro-economic 
models to broaden the analysis of energy-economic systems and high
light the strengths and limitations of both types of modelling classes. 
McCullum et al. [114] put forth a framework to link different bottom-up 
tools, including ESMs, energy demand models, and statistical tools, to 
represent the impact of end-user behavior on energy demands and the 
overall system. Similarly, Fattahi et al. [10] propose modelling frame
works consisting of ESMs linked to spatial and economic models to 
address the existing shortcomings of energy modelling methodologies. 
Gardumi et al. [42] propose a modelling framework consisting of mul
tiple tools of varying scales and outline the challenges and benefits of 
such an integrated modelling approach. In the same context, the im
plications of developing applied multi-model frameworks are put into 
perspective by Nikas et al. [115], providing an outlook of the challenges 
and recommended practices and highlighting the need for future 
actionable research under the context of the European energy transition. 
Meanwhile, a growing body of work is emerging at the European level, 
with projects aiming to establish cross-cutting links between ESMs and 
other model classes to provide answers about different aspects of the 
energy transition [116–119]. 

At the same time, recent studies have looked into the broader inte
gration of ESMs and other approaches or with specific aspects of other 
knowledge domains, although not specifically focusing on the practice 
of model coupling. For instance, studies have reviewed energy demand 
modelling and their integration with ESMs [120], the role of geospatial 
analysis in energy modelling [121–123], the integration of behavioral 
aspects [124], socio-technical transition theories [125], social and 
environmental factors in energy modelling [126,127], LCAs [128], and 
climate and weather models with ESMs [129,130]. 

However, a high-level overview of the general practice of coupling 
ESMs, putting into perspective modelling paradigms and coupling di
mensions is lacking in the existing literature. Thus, this paper provides a 
perspective on current research within the growing field of model 
coupling, looking beyond previous studies which have mostly focused 
on proposing blueprints for multi-model frameworks or providing spe
cific practical outlooks and cases. Here, a conceptual framework is 
presented to better understand why coupling across ESM paradigms is 
needed, then we contextualize coupling of ESMs to models in other 
knowledge domains and how this aligns within the landscape of the 
energy transition. 

2. Exploring new solution spaces via coupling of ESMs 

A recurring theme in energy system analysis is the coupling of ESMs 
of different scopes among each other. This is often done to reap the 
benefits of complementary features found across ESMs with different 
attributes and mathematical formulations. Such features represent 
different methodological approaches and socio-technical dimensions, 
and ultimately the modelling outcome of these can lead to representa
tions of vastly different energy system designs and societal 
configurations. 

Two predominant paradigms can be found in energy system 
modelling: simulation and optimization. Accordingly, these reflect the 
type of algorithm applied to the underlying mathematical model 
formulation of a given ESM. Henceforth, a “simulation model” can be 
broadly understood as a model resolved via a fixed set of rules that seek 
to replicate the operation of an energy system, where the modeler can 
heuristically refine parameters and potential systems for analyses. On 
the other hand, “optimization models” formulate a given energy system 
as an optimization problem solved by reaching target criteria such as 
endogenously minimizing or maximizing values for specified parame
ters or reaching an optimal equilibrium point, under a set of constraints. 
Lund et al. [131] present these approaches and contrast their theoretical 
aspects and practical applications; explicitly, they outline how these 
approaches are used in energy planning to devise scenarios. 

The scenarios formulated with simulation models can usually be 
associated with predictive scenario planning and thus show what can 
happen in the future under different assumptions without necessarily 
portraying an optimal solution, and are rather used for openly exploring 
the impacts of different alternatives and metrics [132]. In contrast, 
optimization models are more often associated with normative scenario 
planning, where scenario outputs are prescriptive, showing what should 
optimally happen under a given set of assumptions, constraints, and 
optimality criteria [2,131]. 

Coupling these two approaches can broaden the range of scenarios 
and analyses that would otherwise be achieved with only a single ESM 
by enabling complementary features or enhancing an existing frame
work’s capabilities and providing a consistent and transparent frame
work to generate different scenario alternatives. For example, 
complementarity can be seen when linking a long-term spatially explicit 
cost-optimization capacity expansion ESM with technology-rich bottom- 
up system modelling [30,31], in spatially explicit power flow optimi
zation models that feed cross-border transmission balances to a simu
lation model [55,56], or also across energy system optimization models 
with different formulations and resolution [32]. 

The linking of simulation and optimization approaches is not limited 
to coupling pre-established ESMs together. Hybrid models can also 
emerge from linking these approaches together, taking one model as a 
black-box calculation engine [133]. This is well illustrated in 
simulation-based optimization analyses, which often originate from a 
pre-existing energy system modelling framework being linked to a 
custom-fitted metaheuristic optimization algorithm. These types of al
gorithms can be simply described as optimization methods based on a 
high-level strategy or specific solution-search rationale to find 
optimality. 
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Metaheuristic optimizations can be particularly useful due to their 
ease of applicability with ESMs, ability to solve multi-objective problems 
with conflicting objectives (e.g., minimizing costs, emissions and/or 
primary energy supply, maximizing renewable energy shares), and 
reasonable computation time [134]. Moreover, they allow practitioners 
to expand the search space that would otherwise be considered for 
scenario development and potential system designs. Examples of this 
can be found in simulation-based optimization analyses that coupled 
ESMs with different algorithms, such as exhaustive search algorithms 
[57,58], multicriteria decision analysis [59], evolutionary algorithms 
[60–76] and swarm intelligence algorithms [77–79] for system design 
and capacity expansion, multi-objective algorithms for transition path
ways analysis [80,81], hill-climbing optimization of marginal CO2 
abatement [82,83], and power flow optimization for analyzing 
cross-border electricity transmission [55,56]. 

Whether coupling ESMs of different approaches or expanding their 
modelling approach dimension, it can be said that feature complemen
tarity can be found. As broadly illustrated in Fig. 1, the feasible solution 

space for one model can be expanded for exploring new system alter
natives (which represent both potentially feasible energy system designs 
and societal configurations), and includes both near-optimal or even 
contrasting sub-optimal options for a fixed set of optimality criteria and 
assumptions. This application aligns with recent studies where single 
energy system optimization models are used to generate a wide range of 
results representing diverse and vastly different nearly-optimal energy 
system configurations rather than a single optimal solution [135–141], 
which can cater for the potentially different perspectives and choices of 
result-users and decision-makers. In Fig. 1, an analogous exploration of 
near-optimal alternatives happens in the proximity of a Pareto front, 
which presents a set of optimal system representations (here, assuming a 
2-dimensional view of competing optimization objectives, such as sys
tem costs and primary energy supply). 

Meanwhile, simulation-based optimization studies typically explore 
the set of optimal solutions along the Pareto front, focusing on the best 
compromise solutions as defined by the modeler’s criteria, or generating 
new optimal sets of results by changes in assumptions [64,68,71,75]. 

Fig. 1. Conceptual illustrations of the feasible space for energy system designs under a fixed set of assumptions and overlays of the feasible modelling spaces for 
distinct ESM tools. The axes on the charts represent a simplified 2-d view of competing optimization objectives. The squares represent potentially feasible energy 
system configurations bounded by the set of Pareto optimal solutions. In the upper chart, the compromise solution (based on modelers’ criteria) is depicted as the 
closest one to the utopia or ideal point, where objectives are at practically unrealizable minima. In the lower-left chart, the shaded area represents the feasible 
solution space of a given ESM (i.e., Tool A). In the lower right chart, the dashed ovals represent envisioned modelling spaces for a different tool (i.e., Tool B), which 
overlaps and goes beyond the solution space of Tool A. The top-most right oval encapsulates sub-optimal feasible solutions for the given objectives, while the other 
ovals cover near-optimal solutions. The cross-shaded area represents the near-optimal solution space, which can be further explored when coupling models. 
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The diversity of near-optimal options close to the Pareto front, or the 
compromise solutions, is often not explored to contrast maximally 
different alternatives. However, studies have contrasted optimal solu
tions with manually-resolved scenarios from single-model simulations 
[60,77], showing how these can be found in the near-optimal space. 
Similarly, coupling ESMs of different scopes could provide a different 
avenue for exploring said space, or for exploring solutions beyond the 
feasible scope of one tool by means of the other (in Fig. 1, illustrated by 
the rightmost oval furthest away from the Pareto front). This is espe
cially relevant when considering computational overhead and solution 
times of large optimization models [142], which can be complemented 
with fast resolve times of simulation ESMs [143]. Henceforth, 
simulation-based optimization studies and coupling of ESMs could 
further illustrate the diversity of near-optimal and contrasting system 
designs within the solution space. 

3. Coupling knowledge domains and modelling dimensions 

Other knowledge domains and their respective modelling classes can 
provide different perspectives and supplement the capabilities of ESMs 
to represent parts of real-world systems. This section presents a brief 
status of linking ESMs across these domains. Then this practice is 
conceptualized under a multi-level framework. 

3.1. Archetypical coupling dimensions 

3.1.1. Energy demand 
While ESMs are often able to capture both the demand and supply 

side of the energy system, these models often rely upon demand data as 
exogenous inputs [7]. Energy demand models are therefore needed to 
better address questions regarding future demand developments, 
changes in demand profiles, effects of energy efficiency policy on de
mands, the location of demands relative to supply sources, and projected 
changes in the sectoral demands with increased levels of electrification 
and sector coupling [120]. 

A classic example of coupling between demand models and ESMs can 
be found in cases using bottom-up accounting tools (e.g., LEAP [144]) 
which feed long-term demand projections as inputs to ESMs like OSe
MOSYS [43–46,145] or EnergyPLAN [49–53]. Similarly, heating and 
cooling profiles from buildings can be captured by linking dynamic 
simulation models with ESMs [84–87]. Specific demand developments 
can be captured by coupling ESMs with sector-specific models, as has 
been the case in analyses looking into linking the data from transport 
sector scenarios [22,88–90]. Although capturing the fine details of the 
industry sector remains a challenge for ESMs [146], model linkages have 
been established to bridge this gap in studies analyzing electrification 
and fuel consumption scenarios in industry [90–92]. Additional linkages 
in the demand side can also occur when linking to models of consumer 
behaviors (e.g., consumer patterns, charging profiles of electric vehi
cles), or with geospatially explicit energy demand analyses. 

3.1.2. Geospatial dimension 
The spatial dynamics and geographical distribution of the energy 

system are accounted for to varying degrees in ESMs by considering 
different modelling resolutions and data aggregations [147]. Matching 
the level of detail and spatial aggregation of data inputs can be achieved 
via data processing with geospatial analyses and approaches. 
Geographic information system (GIS) tools are often used for this pur
pose to compile and process geo-referenced data which can then be 
aligned to ESM inputs [148]. Aside from GIS tools, other geostatistical 
methods can also be applied when aggregating climate and weather data 
for estimating wind and solar capacity factors at an adequate spatial 
resolution for these to be linked as inputs to ESMs [122,149]. 

For example, geospatial analyses have been conducted to estimate 
the distribution of energy demands, technical potentials of supply, and 
infrastructure expansion potentials and costs, subsequently linking these 

into ESMs for national (e.g., Denmark [93,94], Chile [95], the United 
Kingdom [150], Germany [121]) and European studies [92,96,97]. 
Moreover, links between GIS and ESMs have been established to itera
tively evaluated optimal shares of on- and off-grid electricity generation 
in rural areas based on estimated levelized costs from the ESMs [47], and 
for result visualization [37]. 

3.1.3. Macro-economics 
Planning the redesign of future sustainable energy systems has, 

naturally, broad implications on public finances, economic competi
tiveness, employment and the economy at large. Therefore, a long 
tradition exists where top-down macroeconomic models are used to 
understand the broader socio-economic implications of the energy 
transition. 

Examples of this can be found linking ESMs to econometric models to 
evaluate economy-wide effects of energy system scenarios [54], or with 
computable general equilibrium models to capture technological detail 
and investment flow, and how these affect economic parameters like 
gross domestic product, commodity prices, sectoral activities and con
sumption, which in turn result in changes in the energy service demands 
used by ESMs [14,23–27,103]. 

3.1.4. Social and behavioral sciences 
ESMs typically consider social aspects as exogenous narratives, input 

assumptions and ex-post discussion of their scenarios, while gathering 
insights from social sciences on factors such as human behavior, actor 
heterogeneity, public acceptance, participation and ownership, and so
cietal transformation [126,151]. Nonetheless, these factors can also be 
integrated into computer modelling and coupled with ESMs. For 
example, agent-based models (ABMs), which are capable of simulating 
actor decision-making and interactions, have been used in conjunction 
with ESMs to integrate EV charging patterns as demand profiles [98], 
the effects of market uptake of new vehicles [22], and building demand 
predictions [152,153]. Other standalone applications which could be 
linked to ESMs include agent-based modelling of capacity investment 
decisions [154]. 

System dynamic models – which can represent causal relations of 
activities and processes – can also be applied in the context of under
standing broader societal and behavioral aspects. These have been used 
as standalone applications to, for example, capture the sociopolitical 
feasibility of energy transition pathways based on governmental 
decision-making dynamics, human behavior, and societal change 
[155–157]. Nonetheless, these aspects which can commonly be associ
ated with the formulation of socio-technical pathways could also stem 
from other quantification approaches of social drivers and constraints of 
the diffusion of energy technologies applied to creating energy-related 
socio-technical narratives, such as those presented by Süsser et al. [158]. 

3.1.5. Environmental and earth sciences 
The environmental effects of the energy transition and the reduction 

of greenhouse gas (GHG) emissions are core decision drivers in the 
modelling and policy interface. Indeed, this is reflected in ESMs which 
often include CO2 and other GHG emissions in their core modelling 
capabilities. However, the scope of these calculations is usually limited 
to only include direct sector-specific emissions from combustion 
processes. 

Therefore, a large body of work has utilized alternative tools to assess 
the energy-related emissions embedded in upstream processes of the 
system; namely, applying LCA tools [128]. These often focus on a spe
cific sector or activity, gathering energy and technology mixes ex-post to 
derive life-cycle emissions and impacts. Examples of this include linking 
ESMs to LCAs assessing technologies in the electricity supply [38,39,99, 
100], buildings’ renovation rates [159], the use and integration of 
electric vehicles [101,102], and system impacts when applying 
power-to-methane [21], as well as other system-wide impact assessment 
[160–162]. 
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A key challenge of these remains in the accounting of future energy 
mixes and prospective new life-cycle inventories [163]. At the same 
time, a broader understanding of material flow models coupled to ESMs 
needs to be considered further, to assess the needs for rare earth min
erals and resources required in the long-term energy scenarios’ value 
chains, and to quantify how circular economy measures (e.g., recycling 
rates) influence material availability in energy systems [164]. Some of 
these aspects can partially be addressed by coupling ESMs with IAMs 
[108], which can include natural resource availability, however, the 
global scale and broad coverage of IAMs sit in contrast to simpler more 
targeted models [110]. Nonetheless, when linking ESMs to IAMs an 
additional interface to climate modelling is enabled, putting aspects of 
bottom-up energy modelling into perspective with regard to climate 
change mitigation. 

3.2. Representing model coupling from a multi-level perspective 

The dynamics of the energy transition include the interplay of a 
plurality of actors, disciplines, institutions, technologies and radical 
change. Neither energy systems modelling nor other science domains 
alone can capture all the aspects of said socio-technical transition [165]. 
Coordination across models is therefore needed and requires further 
development and structuration. However, these will be influenced by 
both model developments stemming from within specific expertise 
niches and the broad landscape discussions on climate change, energy, 
policy, geopolitics, grassroots movements and activism. 

A multi-level perspective, which provides an analytical framework 
for socio-technical transitions [166–168], can illustrate how the practice 
of model coupling and the dynamics across knowledge domains shape 
the modelling interface in this context. The different levels can be 
conceptualized under a nested hierarchy, starting at the bottom with 
novelty and niche areas, in the middle with established configurations or 
regimes, and at the top with exogenous landscape developments [169, 
170]. This is conceptually illustrated in Fig. 2. 

In the bottom hierarchy, different domain niches appear, 

representing the different disciplines and fields of expertise where 
modelling developments originate. This implies that at this level, mod
elers work on their own models, with limited external coordination. On 
the other end, the landscape level includes external mainstay factors 
such as climate change, sustainable development, global climate action 
commitments like the Paris Agreement, global trends, national and 
regional policy, geopolitics, and grassroots activism, all of which exert 
pressure on the lower levels driving their development and in the long 
term are also influenced by these. These two levels are connected by an 
intermediate level, which encapsulates the different pockets of con
nected niches, and which in turn is pressured by developments in the 
landscape level. 

At the middle level, modelling exercises are conceptualized as 
different model patchworks and established practices, encapsulating 
elements stemming from the niches illustrated in Fig. 2, that can 
generate insight into potential energy transition pathways. Naturally, 
the structures presented at this level influence each other, drive model 
developments in the lower individual domains, and can seep through to 
broader and actionable developments at the landscape level, for 
instance, guiding long-term energy policy and target setting to reach 
global climate commitments. This can be exemplified in the current 
European energy system modelling scene, with projects driving both 
individual model developments and innovation with multi-model en
sembles [42,115–117]. Moreover, some of these patchworks represent 
deep-rooted modelling practices and interdisciplinarity approaches, 
with developments of their own vocabulary and standards [171–173]. 
With increased structuration and model complexity, the idea of striving 
for an all-encompassing model or building highly coupled multi-model 
frameworks comes into question. These would require immense de
grees of coordination in terms of aligning modelling paradigms, reso
lution, ontologies, data harmonization, computing power and 
transparency while keeping up with developments within the niche 
domains and the timeline and happenings of the energy transition, 
which also exert further pressure to model developments and the 
coupling of models to address specific issues. More so, when also 

Fig. 2. Conceptual nested hierarchy of modelling dimensions and model coupling showing a multi-level perspective on the emerging practice of model couplings 
under the context of the energy transition. Inspired by Ref. [170]. 
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aligning additional modelling complexity to the needs and capabilities 
of both modelers and result-users [174–176], as well as the needs of 
decision-makers to have timely yet robust insights. Therefore, model 
coupling should be purpose-driven: designed to address specific research 
questions, enabling manageable degrees of complexity, resolution, and 
coordination across knowledge domains, so that it can provide action
able and timely insight for the energy transition. 

4. Summary and conclusions 

In this perspective, we present the current landscape in the practice 
of coupling energy system models. Reviewing the current status of 
coupling ESMs shows that said modelling with multi-model frameworks 
is becoming ever more prevalent. Model coupling provides multi- 
dimensional views capable of addressing questions about the potential 
pathways of the energy transition in a more encompassing manner than 
what could be achieved with a single model. 

Simulation and optimization approaches used by ESMs are 
commonplace and can provide mutually complementary aspects for 
analyzing different aspects of the future energy system. This can also be 
achieved by coupling one model class to optimization algorithms, as is 
the case in simulation-based optimization modelling. Nonetheless, these 
have mostly focused on providing a view of the Pareto optimal solutions 
under different assumptions without exploring near-optimal options 
with potentially drastically different system designs. This contrast with 
the growing field of analysis performed with optimization ESMs gener
ating alternatives to explore near-optimal yet maximally different sce
narios. Nonetheless, coupling approaches can enable a wider 
exploration of the solution space than would otherwise be obtained with 
a single-model approach. This can provide energy planners with more 
robust scenarios, and consistent scenario design frameworks, that can 
address not just near-optimality but also the incremental aspects of 
public planning that might be outside of the scope of certain optimality 
criteria. 

Coupling ESMs with other model classes rooted in other expertise 
niches allows for a nuanced view of other dimensions to consider beyond 
only the setup of the energy system itself. In turn, model coupling or 
even devising multi-model frameworks can be a valid development to 
improve modelling realism once the tradeoffs in data and modelling 
uncertainty and additional complexity are weighted. That being said, 
certain types of archetypical connections present gaps in research. 
Overall, linkages between ESMs with demand-side models, geospatial 
models, macroeconomic models, and LCA models seem to have a long- 
standing presence. However, gaps remain in establishing model links 
addressing the human and social dimensions, and links to models 
capable of evaluating upstream value chains of the material flow of re
sources needed in the future energy transition, as well as the commu
nication of methodological approach, including how and to what extent 
coupling is performed. 

Finally, model coupling should not necessarily strive to be univer
sally comprehensive but rather purpose-driven. That is, addressing 
specific and meaningful questions that can influence the energy transi
tion landscape while adequately managing complexity, modelling res
olution and interdisciplinary coordination. 
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[32] Pavičević M, Mangipinto A, Nijs W, Lombardi F, Kavvadias K, Jiménez 
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SecMOD: an open-source modular framework combining multi-sector system 
optimization and life-cycle assessment. Front Energy Res 2022;10. https://doi. 
org/10.3389/fenrg.2022.884525. 
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