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A B S T R A C T   

The smart building-integrated photovoltaic (SBIPV) systems have become the important source of electricity in 
recent years. However, many sociological and engineering challenges caused by temporal and spatial changes on 
demand-side and supply-side remain. In this paper, the barriers and traditional data utilization of SBIPV system 
causing the above challenges are summarized. Data-driven SBIPV was firstly proposed, including four aspects: 
Data Sensing, Data Analysis, Data-driven Prediction, and Data-driven Optimization. Data sensing goes beyond 
the technical limitations of a single measurement and can build the bridge between demand- and supply-side. 
Then, the demand-side response and electricity changes in supply-side under various environmental changes 
will also become clear by Data Analysis. Data-driven Prediction of load and electricity supply for the SBIPV is the 
basis of energy management. Data-driven Optimization is the combination of demand-side trading and disturbed 
system optimization in the field of engineering and sociology. Furthermore, the perspective of data-driven SBIPV, 
technologies and models, including all four data-driven features to make automated operational decisions on 
demand- and supply-side are also explored. The data -driven SBIPV system requiring much greater policy 
ambition and more effort from both supply and demand side, especially in the areas of data integration and the 
mitigation of SBIPV system.   

1. Introduction 

The energy system is changing from traditional fixed producers to 
mobile and distributed providers of high-proportion renewable energy 
supply. The photovoltaic (PV) equipment plays a critical role in the 
current transitional period and will contribute to the ongoing energy 
transition [1]. The PV system saves conventional energy and obviates 
the electricity generation by peaking power plant and the emissions 
from diesel generators [2]. Although the largest share of PV applications 
is held by utility-scale systems [3], which account for almost 62% of the 

total installed capacity, building-integrated photovoltaic systems (BIPV) 
have been identified as one of the main tracks for extensive market 
penetration of PV and the most promising applications [4,5]. 

Compared with the utility-scale PV systems, BIPV is gaining popu-
larity due to the lack of wide space and the large availability of roof [6]. 
Space flexibility makes BIPV can be installed on the building skin, 
enabling the combination of electricity generation and other functions 
of the building materials. Potential room for growth means product 
technology can be merged with BIPV technology for better performance 
[7]. However, BIPV also faces challenges from the supply-side and the 
demand-side [8]. In demend side, the electricity demand response and 

** Corresponding author. Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing, 100124, 
China. 
* Corresponding author. 

E-mail addresses: zhengguangliu@ieee.org (Z. Liu), guozhilingcc@csis.u-tokyo.ac.jp (Z. Guo), chenqi@cug.edu.cn (Q. Chen), 13311457590@126.com (C. Song), 
shangwl_imperial@bjut.edu.cn (W. Shang), mengy@plan.aau.dk (M. Yuan), zhang_ronan@csis.u-tokyo.ac.jp (H. Zhang).  

Contents lists available at ScienceDirect 

Energy 

journal homepage: www.elsevier.com/locate/energy 

https://doi.org/10.1016/j.energy.2022.126082 
Received 8 July 2022; Received in revised form 11 October 2022; Accepted 10 November 2022   

mailto:zhengguangliu@ieee.org
mailto:guozhilingcc@csis.u-tokyo.ac.jp
mailto:chenqi@cug.edu.cn
mailto:13311457590@126.com
mailto:shangwl_imperial@bjut.edu.cn
mailto:mengy@plan.aau.dk
mailto:zhang_ronan@csis.u-tokyo.ac.jp
www.sciencedirect.com/science/journal/03605442
https://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2022.126082
https://doi.org/10.1016/j.energy.2022.126082
https://doi.org/10.1016/j.energy.2022.126082
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2022.126082&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy 263 (2023) 126082

2

management allow people to choose the time period and flexibly mode 
of electricity, so the competitiveness of BIPV systems needs to be further 
improved [9]. On supply-side, the variability of sunlight and climate 
difference bring more unprediction for PV power output [10]. 

The data-driven smart Building-integrated photovoltaic (SBIPV) 
systems is a concept we proposed which could meet future needs on both 
demand and supply-side. There have been many papers presented the 
recent progress of BIPV systems. However, many of them only focused 
on the development on the supply-side [11] and ignored the 
demand-side. Yu et al. [12] summarized the changes in optical, thermal, 
and power generation efficiency of the BIPV systems; however, the 
impact of demand-side data was not investigated. The possibility of 
further analysis of data obtained from equipment such as inverters was 
verified in the review of Alim [13], but the changes in demand-side data 
were not deeply analyzed. The progress of BIPV and the factors affecting 
energy system prediction were discussed by Singh et al. [14], but the 
demand-side data was still not taken into account. 

Most reviews mentioned above proved the flexibility and resilience 
of the BIPV. However, in addition to the lack of demand-side data 
considerations, the increasing impact of explosive full-link data was also 
not explored, which is exactly the main driving force for the trans-
formation of future energy systems. Debbarma et al. [15] made a 
detailed summary of buildings integrated with PV and confirmed the 
superiority of the BIPV systems, but the large-scale data brought by the 
BIPV promotion was not considered. Baljit et al. [16] reviewed the 
design, energy performance, and cost of BIPV for large-scale application, 
but no summary was made for data mining. A blueprint of the future 
BIPV was also presented in the review of Baljit [17], but the impact of 
the various data was not taken into consideration. Biyik [18] confirmed 
the possibility of further improvement in power generation of the BIPV 
systems, but the coupling data-driven optimization of BIPV and the 
energy system was always absent [19,20]. 

All these issues lead to difficulties and challenges in effectively 
achieving the utilization of the full data link in BIPV systems [21,22]. To 
address these issues, this paper aims to effectively reviewed the tech-
nology progress in SBIPV system from the view of data, and try to discuss 
the data-driven method beyond the traditional obstcales of BIPV system. 
The paper first briefly summarizes current data utilization situations on 
the BIPV systems and the barriers that prevent from BIPV systems to 
data-driven SBIPV system in supply- and demand-side. Afterwards, four 
aspects of data-driven smart building-integrated photovoltaic systems 
are firstly presented, including both supply- and demand-side. The 
data-driven SBIPV systems was identified should have the following four 
characteristics: Data Sensing, Data Analysis, Data-driven Prediction, and 
Data-driven Optimization. These four features can be described in detail 

as follows:  

● Data sensing: collection of traditional supply-side data, including 
weather, roof angel, etc., and the demand-side data, involving daily 
demand, price, etc., also show massive growth. These directly 
measurable supply and demand data constitute the most basic 
feature of SBIPV.  

● Data analysis: analyzation of data obtained from direct or indirect 
measurement of data Sensing constitutes the second feature of 
SBIPV. Data Analysis of SBIPV can not only mine the residential 
behaviors in demand-side but also reflect different shading and 
various electricity consumption in supply-side.  

● Data-driven prediction: The information obtained from the data 
analysis and data sensing can be used to predict the future trend of 
the supply-side and the energy variation of demand-side. Data- 
driven prediction is affected by long-term and short-term output 
forecasts on the supply-side and load changes on the demand-side 
[23]. 

● Data-driven optimization: The optimization puts forward higher re-
quirements for policy guiding, distributed energy system design, and 
peer-to-peer (P2P) trading. The SBIPV systems will be able to effec-
tively connect the supply-side and demand-side as an interface 
through data-driven optimization. 

After this, the perspectives of data-driven SBIPV systems including 
the important research directions and solutions for above dilemma are 
proposed. The structure diagram of data-driven SBIPV systems is shown 
in Fig. 1. 

In the next parts of this paper, Section 2 represents the data utili-
zation and barriers of traditional BIPV systems. Sections 3-6 show four 
features of data-driven SBIPV systems, including data sensing, data 
analysis, data-driven prediction, and data-driven optimization. All four 
aspects are explained based on supply-side and demand-side. Section 7 
draws out the perspective of data-driven SBIPV systems. All features and 
views of data-driven SBIPV systems are summeraized in Section 8. 

2. Traditional data utilization and barriers of BIPV systems 

2.1. Traditional data utilization 

The number of BIPV systems in the energy girds is growing at an 
unprecedented speed, which bring various data [24]. General approach 
to achieve building integrated photovoltaic systems and implementation 
barriers of current method has been reviewed in many papers [25,26]. 
From data collection [27], processing [28], to optimization [29], they 
all face huge challenges. Options for current data utilization can be 
classified into supply-side and demand-side. In supply-side, data are 
always collected through meteorological instruments, temperature re-
corders, inverters, and other equipment to monitor photovoltaic 
equipment [30]. Various sensors make data collection not only frag-
mented, but often in different formats and lacking effective manage-
ment. Besides, the availability of meteorological data and the lack of 
sensing data limit the accuracy and application range of related pre-
diction methods [31]. A considerable amount of useful data is discarded 
due to lack of effective planning and policy guidance, which could have 
been used to further improve service quality and power supply. 

In demand-side, the data collection is usually done by the residential 
meter. The data collected by sensors inside the buildings are usually less 
concerned. Besides, most of the demand-side electricity meters usually 
have data loss and missing, which makes the availability of collected 
data is poor [32]. The way of analysis the collected data is relatively 
direct and can be devide as: monitoring the current status of BIPV sys-
tems to ensure the safety and reliablity [33] and making predictions 
about the future trends of BIPV systems. Many AI method is introduced 
for data utilization including CNNs [34], Long Short-term Memory 
(LSTM) Networks [35], Gated Recurrent Unit (GRU) [36], Artificial 

Nomenclature 

Abbreviations 
PV Photovoltaic 
BIPV Building-integrated photovoltaic 
SBIPV Smart building-integrated photovoltaic 
PVT Photovoltaic thermal 
GIS Geographic information system 
P2P Peer-to-peer 

Abbreviations 
CNN Convolutional neural network 
ANN Artificial Neural Networks 
LSTM Long Short-term Memory Networks 
BIPVT Building-integrated photovoltaic thermal 
MLP Multilayer Perceptron 
SVM Support Vector Machine  
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Neural Networks (ANNs) [37], Multilayer Perceptron (MLP) [38], Sup-
port Vector Machine (SVM) [39], etc. Data analysis that takes into ac-
count the residential comfort and electricity economy is very rare, and 
traditional data analysis is difficult to use the interaction between users 
and the grid to promote photovoltaic consumption [40]. 

Except for the weak data sensing and analysis, global prediction and 
optimization from the modules level, PV equipment level, to BIPV sys-
tems level is also an important aspect to make full use of the full-link 
data and minimize the irreversible loss [41]. However, most optimiza-
tion methods to improve system efficiency always emphasize the data on 
single supply-side and data-driven BIPV flexibility services are still 
lacking. 

2.2. Barriers of current BIPV systems 

Current status and barriers of BIPV systems has been effectively 
explained in many papers [42], but none of analysis has been made from 
the view of data. For supply-side of BIPV systems, the Geographic In-
formation Systems (GIS) data for early evaluation, grid-side data during 
operation monitoring, post-installation maintenance data, and other 
data usuful for BIPV systems have not effectively collected. For 
demand-side, internal sensor data including indoor temperature, house 
occupancy and other data that can effectively coordinate building 
flexibility are absent. Besides, the lack of effective analysis and limita-
tions of prediction and optimization methods make the data-driven 
SBIPV systems is hard to choose the best technical option. Lack and 
discard of data; poor quality of data analysis; limitations of prediction; 
variability of optimization. These disadvantages made the realization of 
the data-driven SBIPV systems at the current stage is still a big challenge. 
The comparsion of BIPV/Photovoltaic Thermal (PVT) reviews in recent 
10 years has been shown in Table 1. 

The barriers that prevent from the promption of SBIPV can be 

summarized as: (1) There is lack of wider collection and sensing data for 
the supply-side and demand-side when BIPV systems is concerned. (2) 
Limitations of data analysis between the sensing data and the user de-
mand on time, space and energy grade. (3) Mismatches between the load 
and source prediction at various time scales limit the potential of BIPV 
systems. (4) Geographical obstruction of microgrid, lack of guiding 
policy and communication barriers of combinatorial optimization. 

The detailed solutions of these barriers and the corresponding fea-
tures of data-driven SBIPV systems will be presented in section 3-6. The 
solutions can be expressed as four aspects as following: (1) Data Sensing: 
collection of both supply-side data and demand-side data, especially 
advanced Sensors for PV panels, GIS data, smart residential electricity 
meters, and indoor sensors data. (2) Data Analysis: analyzation of data 
obtained from direct or indirect measurement of data Sensing, including 
shading impact, roof area, electricity consumption behavior, and indoor 
information (3) Data-driven Prediction: long-term and short-term 
output forecasts on the supply-side and load changes on the demand- 
side. (4) Data-driven Optimization: effective policy guiding, better 
distributed energy system design, and P2P trading. 

3. Data sensing of SBIPV systems 

Achieving effective sensing of data will be the first step to effectively 
play the role of the data-driven SBIPV systems [58]. For future per-
spectives of SBIPV systems, the data sensing is the cornerstone, further 
analyzation and effective prediction of large-scale supply-side and 
demand-side data will build a bridge for the coupling of various energy 
systems [59]. The data-driven optimization of the SBIPV systems will 
help realize an optimal solution for the demand and supply-side. On the 
supply-side, data sensing can mainly be achieved by data acquisition 
equipment; on the demand-side, the data sensing can reflect through 
smart meters and indoor sensors. The data sensing process in SBIPV 

Fig. 1. Structure diagram of data-driven SBIPV systems.  
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Table 1 
The comparsion of BIPV/PVT reviews in recent 10 years.  

Research/studies Year Main points Supply-side Demand- 
side 

Full-link 
data 

Electricity Heat 

Zhang et al. [43] 2012 (1) The global market potential of (PV) and (PV/T). 
(2) The main characteristics, current situation, research priorities, and difficulties/barriers. 
(3) The experimental/theoretical studies applied to PV/T. 
(4) The results and problems in each research method category. 

✓ ✓ × ×

Mellit et al. [44] 2014 (1) AI-based methods for MPPT. 
(2) Special attention on the cost, complexity, efficiency and possible realization. 
(3) Future trends and challenges of MPPTs into FPGA. 

✓ × × ×

Aste et al. [45] 2014 (1) PVT configurations and related performance parameters. 
(2) PVT was subdivided according to the main elements. 
(3) The major developments of BIPV systems. 

✓ ✓ ✓ ×

Baljit et al. [16] 2016 (1) BIPV/T technology optimization. 
(2) BIPVT was compared with BIPV in terms of design, energy performance and economy. 
(3) Different working fluids for BIPV/T on roofs/walls. 
(4) On-site installation examples according to climatic conditions. 

✓ × × ×

Agathokleous et al. 
[46] 

2016 (1) The optimum air gap between for a BIPV system. 
(2) heat transfer analysis of double skin facades and air flow 
(3) Nu number in double skin facades and heat transfer coefficients. 

✓ ✓ × ×

Yang et al. [47] 2016 (1) Major developments, experimental and numerical studies of BIPV/T technology. 
(2) The research, development, application and current status of BIPV/T systems and modules. 

✓ ✓ × ×

Rajoria et al. [48] 2016 (1) BIPV systems was analyzed by heat load leveling. 
(2) Translucent BIPVT has higher efficiency. 

✓ ✓ × ×

Debbarma et al. 
[15] 

2017 (1) Current applications of BIPV and BIPV-T technology. 
(2) BIPV and BIPVT systems discussion from thermal modeling, energy and exergy analysis. 
(3) The latest development on a global scale. 

✓ ✓ × ×

Biyik et al. [18] 2017 (1) A comprehensive review of BIPV in terms of power generation, nominal power, efficiency, 
types, and performance evaluation methods. 
(2) The feasibility of improving the efficiency of BIPV. 

✓ × × ×

Debbarma et al. 
[49] 

2017 (1) Various technologies involved in BIPV and BIPVT and their functions. 
(2) BIPV and BIPVT device applications were analyzed in terms of cost and aesthetics. 
(3) The significant advantages and potential for BIPV. 

✓ × ✓ ×

Shukla et al. [2] 2017 (1) BIPV products and their market potential. 
(2) International standards and specifications for BIPV 
(3) The progress of BIPV materials. 
(4) A life cycle assessment of BIPV. 

✓ × × ×

Sultan et al. [50] 2018 (1) Photovoltaic/thermal energy (PV/T) technology progress and application. 
(2) Recent work in PV/T technology. 
(3) Various types of BIPV systems are described in performance, design, fabrication, simulation and 
experimental evaluation. 

✓ ✓ × ×

Alim et al. [13] 2019 (1) Australia is behind in the solar power race. 
(2) The typical energy payback period for solar panels is around 10–15 years. 
(3) Most of the energy was wasted due to low quality inverters. 
(4) The selection procedure should be followed to select a BIPV system. 
(5) Lower initial capital costs and increased public awareness were necessary. 

✓ × ✓ ×

Ravyts et al. [51] 2019 (1) A potential BIPV electrical architecture. 
(2) System-level standards for BIPV installations, providing a frame of reference for comparing 
electrical architectures. 
(3) Modularity is achieved and engineering costs are minimized. 

✓ × × ×

Agathokleous et al. 
[42] 

2020 (1) Status of BIPV systems applications. 
(2) Technical barriers of BIPV. 
(3) Future perspectives and recommendations for BIPV systems promotion. 

✓ × ✓ ×

Ghosh et al. [17] 2020 (1) A comprehensive review of progress on BIPV. 
(2) Different possible photovoltaic applications. 
(3) Potential future BIPV applications. 

✓ × × ×

Sarkar et al. [20] 2020 (1) A brief overview of developments and recent trends in BIPV systems and their technologies. 
(2) The power-voltage (PV) characteristics of various BIPV products at different solar radiation 
values. 
(3) Replacing with BIPV photovoltaic array modules, architectural or residential components can 
reduce the cost. 

✓ × × ×

Yu et al. [12] 2021 (1) The development of BIPV windows and shading shutters. 
(2) The power generation, thermal properties, and optical properties of BIPV windows were 
discussed. 
(3) The development and performance of BIPV blinds. 

✓ ✓ × ×

Kuhn et al. [7] 2021 (1) A structured overview of BIPV technology design options. 
(2) The analysis of the German BIPV market. 
(3) Design options for complete electrical systems from sub-module level design parameters to 
building energy systems. 

✓ × ✓ ×

Yu et al. [52] 2021 (1) The design and performance of BIPVT systems. 
(2) BIPVT systems were devided according to thermal energy utilization and various design. 
(3) Power output, thermal performance, and effects on building loads. 

✓ ✓ ✓ ×

Rounis et al. [3] 2021 (1) Overview of PVT and BIPV systems 
(2) Wind-driven convection was simulated and measured. 
(3) Testing and modeling of BIPV systems. 

✓ ✓ × ×

Rajoria et al. [53] 2021 ✓ ✓ × ×

(continued on next page) 
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systems is shown in Fig. 2. 

3.1. Supply-side: sensors for PV panels and GIS 

To collect more data from PV panels and environment, data-driven 
probabilistic net load monitoring methods and sensors should be 
applied [32]. Different types of sensors shoul be widely installed on PV 
panels to monitor common power output, including real-time power, 
output voltage, and transmission current [60]. For SBIPV systems, de-
vices including inverters and boost valves are often equipped with 
various sensors to monitor the active power [61,62], reactive power, 
harmonic frequencies, node voltage waveforms and other common 
power quality on the supply-side [63]. Besides, the environmental pa-
rameters of PV penels would include meteorological data, such as wind 
direction, wind speed, air temperature, humidity, air pressure and other 
data. Through the sensors in PV panels, different paraments of PV panels 
can be effectively collected and transferred to terminal of users, which 
can be used to the decision-making of residents. Based on the online 
prediction method and feedback from sensors, many control strategies 

have been improved and proved [64,65]. 
Besides, because of the GIS data has demonstrated its principal role 

in exploiting geographical information to develop a spatial decision 
support system so as to locate solar facilities [66]. The utilization of GIS 
data can detect the potential of solar power generation in the early 
planning of the construction. The value of its data collection has been 
verified in South Korea [67], Iran [68], Italy [69], Australia [70] and 
other countries. Most GIS data will be presented in the form of images. 
The cameras in drone and satellite can clarify the house inclination, 
house area, house type, the potential area, and the location of the cloud 
layer. So the GIS data should undoubtedly be included in the data 
sensing to achieve effective scheduling and reasonable distribution of PV 
panels in roof. 

3.2. Demand-side: residential electricity meters and indoor sensors 

The multi-source information on both demand and supply-sides are 
useful to evaluate opportunities and challenges for SBIPV systems [71]. 
Resident data represent the distribution and habits of electricity 

Table 1 (continued ) 

Research/studies Year Main points Supply-side Demand- 
side 

Full-link 
data 

Electricity Heat 

(1) Progress of BIPVT systems was reviewed. 
(2) Technical developments, experimental and numerical studies, and parametric effects. 

Chinnaiyan et al. 
[19] 

2021 (1) The application of phase change materials in BIPV system. 
(2) The reduction effect of the surface temperature of the photovoltaic system. 
(3) Passive methods employing phase change materials for BIPV. 

✓ ✓ × ×

Singh et al. [14] 2021 (1) Various factors that affect the design and performance of BIPV system applications, such as air 
gap, ventilation rate, and tilt angle of PV shading devices, etc. 
(2) The results of possible factors with the building location. 

✓ × × ×

Akram et al. [54] 2022 (1) Failure detection methods and recent advancements in BIPV. 
(2) Automatic or AI based methods, their implementation and applications are discussed. 

✓ × × ×

Nuria et al. [55] 2022 (1) The features of BIPV modules, a reference for BIPV manufacturers, and BIPV designers. 
(2) Optical properties of BIPV modules, such as light transmittance or color rendering 

✓ × × ×

Tamer et al. [56] 2022 (1) Current weather metrics as predictors of future weather metrics 
(2) Lifetime GWP and cost of energy 
(3) Current weather metrics as predictors of future weather metrics and energy generation/ 
consumption 

✓ × × ×

Ghosh et al. [57] 2022 (1) Three different generations PV based fenestration integrated photovoltaics (FIPV) 
(2) Benign energy-generating components and passive energy-saving are both concomitantly 
possible using photovoltaic (PV) window fenestration 

✓ × × ×

This paper 2022 Traditional data utilization and barriers of BIPV systems. (1) Four features of data-driven SBIPV 
system: Data sensing; Data analysis; data-driven prediction; data-driven optimization. 
(2) Perspective of data-driven SBIPV systems. 

✓ ✓ ✓ ✓  

Fig. 2. Data sensing of SBIPV systems.  
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consumption of individuals and are of great significance for the SBIPV 
systems to achieve effective scheduling and reasonable distribution of 
PV panels. In addition, the measured data can be used in SBIPV systems 
to reduce peak loads (peak clipping or peak shaving), shift load from 
on-peak to off-peak (load-shifting), increase the flexibility of the load 
(flexible load shape), and reduce general energy consumption (strategic 
conservation). The aggregation and collection of these data is of great 
significance for further improving user experience, improving service 
quality, and improving building energy flexibility [72]. The applications 
and designs involved in this process have been confirmed by a number of 
studies to be possible and reproducible [73]. 

The data of resident electrical consumption is mainly collected by 
residential meters, which can effectively help deploy BIPV systems in 
next step: data analysis. The improvement of the power market, wide-
spread application of intelligent communication, and smart meters have 
made it possible for the demand-side to participate in the optimal 
operation of the distribution network [74]. The data gotten from meters 
can provide a reference for PV installation height determination, 
manpower maintenance, boost location selection and inverter selection 
for the BIPV systems [75,76]. Weak PV technology conditions (including 
low conversion efficiency and reliability) and low PV electricity pene-
tration levels would result in insufficience of data sensing in SBIPV 
systems [77,78]. The indoor sensors can realize the monitoring of the 
room occupancy and effective measurement of temperature and hu-
midity. These indoor data usually affect the user’s subsequent electricity 
consumption behavior, which would play important role in improving 
the electricity services of the buildings. Baran Yildiz et al. conducted an 
effective evaluation [79] on the excess power generation of BIPV sys-
tems and domestic electric hot water systems based on Australian 
electric/heating data of demand-side. The experiments on Sweden also 
confirmed the potential of demand-side [80]. Because of the thermal 
inertia of buildings, the data of indoor sensors would undoubtedly play 
more important roles in demand-side management. 

Data sensing is the primary feature of the SBIPV systems. The 
measured and conneted data are significant for PV equipment and 
provide insights into a new structure to create a connected infrastruc-
ture. However, not all data can be measured. Using the data already 
measured to obtain potential information is the second feature of the 
SBIPV systems: Data analysis. 

4. Data analysis of SBIPV systems 

After data sensing, the data can be further analyzed to explore po-
tential value and guide the operations of SBIPV systems. During all 

methods of data analysis, the GIS is always ignored. Actually, the GIS 
can function as a tool in finding resource and system-efficient locations 
for SBIPV systems, and created a more refined observations [81,82]. 
This technology can enable the data analysis of the SBIPV systems by 
collecting data of various sensors. and it has helped decision maker 
achieve refined observations under a great penetration rate of SBIPV. 
The data analysis of SBIPV systems is shown in Fig. 3. 

4.1. Supply-side: shading impact and roof area 

One of the most critical problems which affect the performance of 
BIPV systems is shading. Shading may result from soiling, trees, build-
ings [83], or chimneys [84]. Some results [85] shown that soiling seri-
ously affects performance of PV panels. Winter rains are adequate to 
keep surfaces cleaned. The PV arrays always get entirely or partially 
shaded by the passing clouds, neighboring buildings and towers, trees, 
and utility and telephone poles [86,87]. Complicated shading causes the 
photovoltaic panels to be affected differently by shadows. When the 
shading covers all the photovoltaics, the power generation efficiency is 
almost zero. At this time, the photovoltaic effect stops and the photo-
voltaic panels no longer operate [88]. 

Under partial shading conditions, the PV characteristics get more 
complex with multiple peaks. The partial shading can lead to more than 
10–20% of annual reduction in power production in residential appli-
cations [89]. For such problems, there exist different solutions. Detec-
tion and classification of shading [90] and adjustment of the PV arrays 
[91] can increase both power generation and PV reliability. This the 
most usual method. But for other situation, eapecially cities, situations 
will become various. In cities, the high-rise buildings and vegetation 
[92,93] are also the main reasons for output reduction. For this 
delimma, the meteorological data will effectively help the data analysis 
on the power generation [94–96]. The GIS data analysis including roof 
angle, shading impact, roof area, house type, ground inclination, oc-
clusion classification [54], guano, snow, and smog [97]. Recent research 
progress in these directions is crucial for future SBIPV systems [98]. 
When extreme weather happening, residents can clean up the PV panels 
earlier to reduce grid dependence baseds on the weather data. 

The GIS detection involves roof angel classification, gross area 
calculation, roof, and orientation analysis [99,100]. The data analysis 
needs to consider complex geometries [101], non-uniform irradiance 
conditions, and partial shading [102,103]. Only by using GIS detection, 
PV systems can be installed at the optimum inclination angle [104,105] 
and achieve the best performance of power generation [106]. The suc-
cessful development of solar markets relies heavily on the 

Fig. 3. Data analysis of SBIPV systems.  
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GIS-assessment of the roof surface area available before equipment 
installation, and area (including potential area) of the buildings have a 
profound impact on the BIPV systems [107]. Robustness of the 
GIS-assessment of the BIPV systems has been verified successively in 
China [65], the United States [108], Sweden [109] and South Korea 
[110]. The suitability of each roof for PV deployment and the charac-
teristics can be analyzed for a minimum SBIPV systems [111,112]. It is 
worth mentioning that the construction costs of BIPV systems are usu-
ally different for different types of land and buildings. The installation 
area of different types of buildings varies, with suburbs generally having 
more potential areas than cities. Land acquisition costs for public 
infrastructure such as airports and hospitals are also very different from 
slums. This must be noted during the analysis. 

The combination of GIS and semantic segmentation is another novel 
method characterized by cost-effectiveness and data consistency. The 
semantic segmentation for PV panels includes the analysis of homoge-
neous texture and heterogenous color of PV panels and image data of 
buildings [113]. Although the data of the area of houses and rooftop PV 
panels in local areas can be obtained through cameras, the detection and 
analysis of satellite/aerial imagery is a more appropriate approach. The 
highly similar texture of PV panels in most BIPV systems and different 
colors under various optical conditions are the key to identifying PV 
panels. The automatic detection of PV panels using support vector ma-
chine (SVM) [114], deep learning [106], and convolutional neural 
network (CNN) [115] have also been verified in data sets of many cities. 
The GIS analysis will be an economical solution for BIPV detection in 
future. 

4.2. Demand-side: electricity consumption behavior and indoor 
information 

Through the analysis of the power data and load type, the division of 
electricity consumption labels can be realized to achieve accurate power 
transmission and intelligent load shedding [116]. The labels of residents 
could further reduces power consumption and heat loss. In addition, the 
division of labels facilitates the integrated control of storage and loads in 
PV and residential buildings [117]. For users, on the one hand, elec-
tricity consumption data can be used to further coordinate the power 
grid with building-integrated photovoltaics, which will suppress the 
generation of harmonics and improve the power quality. On the other 
hand, the behavior of users can promote optimal utilization of electrical 
and thermal energy storage devices. The data analysis derived from 
eletricity consumption will be fed back to the strategy on user and 
realize the information cycle. Different strategies on users would creat 
diversified electricity consumption habits and satisfaction degrees [118] 
with the BIPV systems. 

Besides, for energy companies, the consumption behavior of users 
will be more complex and diverse in the future [119]. The trend of this 
complexity may bring more uncertainty on the combination of power 
supply solutions. So the data analysis will be more necessary for business 
company. In the SBIPV systems, the user load data will be affected by 
demand-side pricing, indoor temperature, humidity, resulting in 
changes in housing occupancy and load [120]. However, demand-side 
data is still mainly affected by the subjective will of users, which is 
affected by the environment. Some researches have proven that passive 
behavior of existing buildings can be improved through the integration 
of active BIPV systems [121]. The analysis of indoor information opens a 
window for researchers to formulate more effective energy strategies. 
Through the indoor sensors, it is possible to evaluate the electricity 
consumption changes in advance. In fact, it is increasingly evident that 
data analysis [122,123] by artificial intelligence (AI) can greatly 
contribute to the flexible electricity response in SBIPV systems by 
automating processes while analyzing the data of indoor sensors [124]. 

Data analysis is another major feature of SBIPV systems. The BIPV 
systems generates various data in production, sales, and utilization. The 
analysis of these skyrocketing data may mining unexpected value in 

energy markets. The analysis of these data allows people to examine the 
whole system more macroscopically and provides novel solutions for the 
sites where the data cannot be directly measured. However, the data 
sensing and analysis are only applicable to the existing data, and the 
future prediction is still difficult [125]]. Using the data sensing and data 
analysis to predict the future is the third feature of the SBIPV systems: 
data-driven prediction. 

5. Data-driven prediction of SBIPV systems 

The high penetration rate of the BIPV systems introduces random-
ness and uncertainty to the distribution system [126,127], and therefore 
its future may show various possibilities. The data-driven predcition is 
an another feature for various future possibilities. Traditional prediction 
may always use physical models which requires complex calculations to 
estimate the parameters. So the environmental uncertainty limit the 
integration of physical model promotion. In the future, the Data-driven 
Prediction of the SBIPV systems will be more popular and the 
data-driven prediction of SBIPV system is shown in Fig. 4. 

5.1. Supply-side: power output prediction of PV and cyclical changes 

Basically, the PV generation output prediction can be conducted with 
AI algorithms and physical modeling. Physical models and machine 
learning technologies are also gradually merged for higher reliability. 
Regardless of how the prediction horizons are defined, the time scale of 
the models must be clearly defined. Output forecasts are usually at the 
millisecond, second, minute, hour, and day level. At this level, Artificial 
intelligence (AI) models, such as CNNs [128] and recurrent neural 
networks (RNNs) [129,130], have already produced promising results in 
PV generation prediction based on historical data analysis. The predic-
tion by AI can effectively map the complex interdependence between 
short periods. These data-driven short time prediction models are mostly 
divided into three categories: time series [131,132], numerical weather 
prediction (NWP) [133] and sky imaging [134]. Although the accuracy 
of the time series models is ideal, the meteorological data and historical 
may not be available at remote locations [135]. Numerical weather 
prediction and sky imaging will also play more important roles in some 
places where weather data are not accessible [136]. Energy system is 
moving towards an active, more flexible, smarter and decentralized 
system. This transition requires SBIPV systems operators to dynamically 
predict power flow [137,138]. Accurate prediction of the future can help 
to effectively avoid possible accidents [139] and achieve efficient 
dispatch of electrical energy in SBIPV systems [140,141]. From the 
existing research, the combination of AI models, physical methods, and 
empirical formulas may be a better way and have more possibilities 
[142,143]. 

In terms of long-term forecasts, seasonal and annual cyclical changes 
are important references for achieving power supply stability. In the 
annual and quarterly forecasts, the regularity is more prominent [144]. 
Photovoltaic power presents volatility, annual periodicity, and adjacent 
similarity [145], which are usually determined by the regularity of 
climate change, like plum rain [146], and the periodicity of local eco-
nomic development. Usually, rapid economic development, influx of 
people, and expand of immigrants usually show an increasing trend in 
annual electricity consumption. Whereas the population is severely 
aging and the economy is in recession, the annual power consumption 
usually shows a decreasing trend. In addition, the power consumption 
also shows regularity [147], which should be considered when deploy-
ing the BIPV systems [148], the planning of the position of energy 
storage stations, and the size of the SBIPV systems [149,150]. The en-
ergy storage stations in suitable locations can effectively reduce power 
transmission losses, ensure the technical and economic balance of 
demand-side response, and avoid power interruptions in extreme 
weather conditions. Robust optimization, convex optimization, 
sequence learning, etc., are usually introduced to determine the size of 
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the SBIPV systems [151,152]. 

5.2. Demand-side: load prediction 

The urban electricity load is changing with the promotion of 
renewable energy. Changes of load in the United States [153], China 
[154] and India [155] have been proven the huge impact on city-level 
load. For the SBIPV systems, it will be important to reasonably predict 
the load changes. It is worth mentioning that the electricity load vari-
ation during the COVID-19 leads to more diversity in the load type 

[156]. The shutdowns caused by Covid-19 are likely to increase energy 
consumption by home office users. At high voltage levels trading 
mechanisms like contracts for ancillary services [157] and balancing 
markets [158] can predict the economically efficient supply of system 
flexibility services [159]. But for medium and low-voltage levels, with 
real-time load prediction of the SBIPV systems, arrangements for power 
consumption [160], energy storage [161], and electricity price [162] 
could be enabled for medium and low-voltage levels. The AI prediction 
models would play an important role in this process, which can tackle 
various challenges [163]. Based on the consumers load change, the 

Fig. 4. Data Prediction of SBIPV systems.  

Fig. 5. Classification of AI approaches for demand prediction [122].  
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acquisition of user’s attributes and preferences can be got. After the 
dynamic pricing [164], scheduling and control of devices [165], the 
SBIPV systems can find the way to incentivize participants or reward in a 
fair and economically efficient way. The AI techniques used for load 
prediction are shown in Fig. 5. 

Data-driven Prediction is another major feature of SBIPV systems. 
The prediction on the demand-side and supply-side can allow people to 
make reasonable predictions, make sufficient preparations for the evo-
lution of the entire system and provide an interface for the coupling of 
the SBIPV systems. The prediction on the demand-side and supply-side 
can allow people to make reasonable predictions, make sufficient 
preparations for the evolution of the entire system and provide an 
interface for the coupling of the SBIPV systems. Optimizing the current 
energy system by data-driven prediction and achieving systematic 
optimization will be another major feature of the SBIPV systems: data- 
driven optimization. 

6. Data-driven optimizations of SBIPV systems 

The data-driven optimization of the combination of the SBIPV sys-
tems and the energy system is diverse. Due to the diversity of renewable 
energy, energy storage methods, and user demand energy types, data- 
driven optimization often has various methods. With the development 
of the microgrid [166], policy planning [167] and P2P trading, the 
future optimization coupling of the SBIPV systems and energy system 
have being show more complexity and flexibility. The data-driven 
optimization of the SBIPV systems has been shown in Fig. 6. 

6.1. Supply-side: policy guiding and distributed energy system design 

The flexibility of combining power generation with buildings still 
lacks regulations and standards to manage the energy system is the next 
perspective of data-driven optimization in supply-side. Many countries 
have formulated the goal of using solar PV in construction [168,169], 
but compared with various application scenarios [170], solar PV policy 
guiding is still not enough [171]. The performance metrics of the BIPV 
systems established based on energy policies or industry standards have 
a profound impact on the construction planning of the building [172, 
173]. These effective guidance on the supply-side is of great significance 
for alleviating the pressure of power supply and energy storage, which 
can realize the economical utilization of energy. Various distributed 
system design has different effects on building exterior, system effi-
ciency and energy storage [174]. Although China [175], Europe [176], 
the United States [177], the Middle East [178], and other countries have 

successively issued various laws and regulations. The implemented pilot 
projects and case studies have also reached a level that can be 
commercialized, but due to the uniqueness of the building and the cost 
constraints of photovoltaics, most policies and legal guidance measures 
have significant time and space limitation [179]. Effective policy guid-
ing of the supply-side will affect the willingness of SBIPV systems users 
to choose PV equipment. Most of the policies still remain on the con-
struction, operation, and maintenance of BIPV, and the rules of relevant 
guidance for users’ energy management are not enough. More useful 
measured data for technology and policy planning should be taken into 
consideration [180]. At the same time, for cogeneration systems, the 
thermal inertia of the building can promote the intelligent building 
services. At this level, quite a few cases have been performed [181], 
giving valid verification of the reproducibility of the SBIPV system [182, 
183]. However, because of the different climatic conditions and eco-
nomic development in different places, the rules made are generally 
often geographically limited [184]. 

In addition to the policy guidance, how to reasonably carry out 
distributed energy planning and design depends on whether the 
coupling of the SBIPV systems and other energy systems can achieve a 
stable power supply. The changes in data collection and utilization 
methods will show big potential in this data-driven optimization [185]. 
In all disturbed energy system, the combination of PV panels with the 
microgrid shows huge superiority [186]. Due to the variety of combi-
nations of individual microgrids, it usually includes Wind-solar hybrid 
systems, PV-geothermal systems [187,188], PV-electric vehicle systems 
[189], etc. The residual power of these microgrids can still be sponta-
neously connected to the grid or energy storage. The robustness of en-
ergy storage system using battery with BIPV through linear 
programming has been confirmed [190]. 

The effective combination of microgrid and photovoltaic will un-
doubtedly coordinate power supply and creat more income for residents 
in microgirds. The user has changed from a consumer to a prosumer. The 
biggest contribution of this data-driven optimziation is the large po-
tential of microgrid transactive energy systems at the distribution level 
in reducing transmission losses, decreasing electric infrastructure 
expenditure, and improving supply reliability [191]. Through distrib-
uted energy system design, human beings can enhance the local energy 
use, cutt electricity bills, and realize the interaction of information flow 
and energy flow in the SBIPV network. 

6.2. Demand-side: P2P trading 

For SBIPV systems, data-driven optimization not only means a 

Fig. 6. Data-driven Optimization of SBIPV systems.  
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combination with multiple energy sources but also a cross-combination 
of the environment [192], economy [193], and policy [194] for SBIPV 
systems. Under the traditional paradigm, electricity trading is usually 
realized through a centralized energy trading system, which needs to 
actively organize consumers to participate in the electricity market. This 
type of centralized energy transaction not only has high transaction 
costs, but also has low management efficiency [195]. Therefore, atten-
tion should be shifted from panel production to electricity trading. In an 
open electricity market, the electricity price and the way of information 
dissemination significantly affect user choice. A key question that re-
mains unresolved is how to coordinate various numbers of distributed 
energy resources, especially when each one with different owners and 
characteristics, and the P2P trading is considered as a possible solution 
[196]. 

The peer-to-peer energy trading enables between sharing economy of 
consumers within the local distribution network. P2P energy trading is 
decentralized, usually through direct end-to-end electricity trading. 
Different from centralized energy trading, the P2P trading model en-
courages multi-party transactions, and energy matching can be carried 
out according to user preferences. The advent of blockchain technology 
[197] and the increasing penetration of rooftop PV systems have pre-
sented a new opportunity for P2P energy trading. In electricity markets 
including the SBIPV systems, communities may enjoy cheap electricity 
prices and will support solar energy. However, there exists a consider-
able knowledge gap between market mechanisms and energy exchanges 
[198]. Challenges arise in the auction to ensure individual rationality, 
incentive compatibility, budget balance, and economic efficiency. The 
transition to a low-carbon future with a high proportion of renewable 
energy changes citizens from passive energy consumers to active energy 
prosumers [199,200]. Through the P2P trading, the transition to a 
low-carbon future would change citizens from passive energy consumers 
to active prosumers [201]. The P2P trading will further promote the 
transformation of demand-side management. Cooperating with 
demand-side microgrid optimization, P2P trading, and policy guidance. 
It can be predictably the SBIPV systems will have a new look after 
data-driven optimzation. 

Current power networks and consumers are undergoing a funda-
mental shift. For SBIPV systems, data-driven optimization not only 
means a combination with multiple energy sources but also a cross- 
combination of the environment, economy, and policy for SBIPV sys-
tems. The four perspectives of data-driven SBIPV systems can break 
through the barriers of traditional BIPV systems, and the roadmap to the 
Data-driven SBIPV systems is presented in next section. 

7. Perspective of data-driven SBIPV systems 

It is foreseeable that the SBIPV systems will contribute to the energy 
transition and will play a vital role in shaping future energy systems. At 
the current stage, BIPV faces four major problems: (1) Lack of effective 
collection of massive data derived from classification under the high 
penetration rate of BIPV; (2) Limitations of data analysis between the 
sensing data and the user demand; (3) Mismatches between the load and 
source prediction at various time scales; (4) Geographical obstruction of 
microgrid, lack of guiding policy and communication barriers of 
combinatorial optimization. The roadmap to data-driven SBIPV systems 
for above dilemma should include the following important research 
directions: 

● Great data sensing and excellent business model of distributed pho-
tovoltaics connected to the microgrid. The dynamic models of 
rooftop photovoltaic arrays and grid-connected systems, which 
should include the coupling effects of transient power characteristics 
of rooftop photovoltaics and distribution network transient charac-
teristics. The building-integrated photovoltaic business model must 
considering the multiple investment entities, operating entities, and 
consummers.  

● Data analysis of high-penetration building-integrated photovoltaic 
access capability. Evaluation of the ability of building-integrated 
photovoltaics to connect to the distribution network considering 
power supply capacity. Data analysis with comprehensive consider-
ation of access capability, personal safety, and system efficiency in 
different application scenarios.  

● Power supply and load coordinated control technology with smart 
building-integrated photovoltaic systems based on data-driven pre-
diction. Technologies for distributed photovoltaic, energy storage, 
and controllable load optimization coordinated power regulation 
with balance boundary of source-load coordination in data-driven 
SBIPV systems; Optimal strategy for indoor and outdoor multi- 
scenario power supply and consumption system network with 
demand-side energy storage.  

● Data-driven SBIPV system and other energy system collaborative 
operation and maintenance technology. Online fault diagnosis 
method and technology of photovoltaic modules (strings) based on 
artificial intelligence and P2P. An intelligent building-integrated 
photovoltaic operation, maintenance, and monitoring system that 
integrates demand-side and supply-side data. 

The perspective of data-driven smart building-integrated photovol-
taic (SBIPV) systems will be able to effectively coordinate data sensing, 
data analysis, data-driven prediction, and data-driven optimization. 

8. Conclusion 

SBIPV has become an important part of energy transformation. In 
this paper, recent papers related to SBIPV systems were comprehen-
sively summarized from the view of data. The traditional data utilization 
and the barriers of current SBIPV systems were discussed. For data- 
driven SBIPV systems, related methods are divided into four aspects, 
including data sensing, data analysis, data-driven prediction and data- 
driven optimization. Furthermore, we proposed the roadmap for real-
izing the data-driven SBIPV systems. The main findings of this paper can 
be listed as follows:  

(1) The traditional utilization of data sensing and weak analysis is the 
key to hinder the data-driven optimization and prediction of 
building-integrated photovoltaics. Excellent and substantial data 
should be further collected.  

(2) After the detailed summary of barriers in traditional building- 
integrated photovoltaic systems, we firstly proposed the 
concept of data-driven smart building-integrated photovoltaics 
systems, and devided it as four aspects: data sensing, data anal-
ysis, data-driven prediction, and data-driven optimization. 

(3) The data sensing is the cornerstone for data-driven SBIPV sys-
tems, effective analyzation and precise prediction will build the 
bridge for data-driven optimization of SBIPV systems. So far, the 
potential of demand-side data has not been fully developed, but 
GIS may provide a novel method for supply and demand 
coordination. 

(4) The roadmap to data-driven SBIPV systems still need a lot of ef-
forts in various technologies. But collective effect of technologies 
including P2P trading, artificial intelligence, and others would 
bring new possibilities to this evolutionary. 

We hope this review would be helpful for researchers to make better 
utilization of solar energy, achieve flexible interaction between energy 
flow and information flow, and go far beyond what might be tradi-
tionally characterized as “energy” issues. 
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