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Chapter 1

Introduction

The following sections delve into the research and motivation behind the work.
Background and Motivation of the project are introduced, followed by the Prob-
lem Formulation, Objectives, and the State of the Art. Finally, the Scope with its
Limitations is presented.

1.1 Background

Climate change is one of the major global challenges the world faces today. Ac-
cording to NASA, in the last 20 years, 19 have been the warmest ever recorded.[1]
The impact of climate change is already evident in many forms such as the shrink-
ing of the arctic sea ice, rising sea levels and extreme weather events. For example,
over the course of the last century, the average temperature rose by 0.98°C. With-
out any endeavors to reduce carbon emissions, the effects of global warming will
worsen and the temperature is expected to rise by a tremendous 1.5°C by 2050.[2]

Power generation is one of the main causes of climate change. Generating elec-
tricity and heat by burning fossil fuels has a major contribution to climate change
accounting for over 75% of global greenhouse gas emissions and nearly 90% of all
carbon dioxide emissions.[3] To mitigate this problem, installed renewable capacity
needs to triple by 2030. Using renewable energy resources rather than fossil fuels
to generate electricity reduces greenhouse gas emissions from the power sector and
contributes to climate change mitigation. For example, photovoltaic solar systems
(PV) and wind turbines (WT) have increased significantly in recent years and their
installed capacity reached 3,500,000 MW in 2023. [4]

While renewables are less polluting than fossil fuel generators in terms of emis-
sions, power supply from renewable sources is dependent on variable natural re-
sources, making them unpredictable and unable to provide a steady source of

3



4 Chapter 1. Introduction

energy. To mitigate this issue, energy storage systems are implemented to bal-
ance consumption with production in both grids and micro-grids. For this reason,
hybrid power systems of wind turbines, solar panels and energy storage are a com-
mon solution to contribute to cost reduction as well as to the increase in overall
system economic profit.

According to the Danish Energy Agency, the average wholesale electricity price
in January 2023 was 107.6 euros per megawatt-hour, down nearly seven per cent
from January 2022. A number of factors have contributed to the rise in electricity
prices in Europe since 2021, including a drop in wind power generation due to
low wind speed, increased heating demand due to cold winters, and increases in
natural gas and coal prices depicted in Figure 1.1.[5]

Figure 1.1: Average Monthly Wholesale Price in Denmark in the last 4 years [6]

Due to the unstable prices of energy and other essential commodities, a grow-
ing number of consumers are now considering becoming prosumers - consumers
with local generation.[7]

This trend has been fueled by a combination of factors, including the rise of re-
newable energy technologies, the increasing availability of affordable energy stor-
age solutions, and a desire among consumers to take control of their own energy
use and reduce their reliance on traditional energy providers.[8] By becoming pro-
sumers, these individuals not only gain greater energy independence and flexi-
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bility, but they also contribute to a more sustainable and resilient energy system
overall. As such, the trend towards prosumption is likely to continue to grow in
the years ahead, as more and more people recognize the benefits of taking charge
of their own energy use.[9]

The incentives invested on wind technology considerably solidified the wind
industry.

Initially, bellow 50kW of rated power was considered small wind turbine but
soon 3-15 kW becomes as well attractive.[10] Combined with the unstable energy
market and its corresponding increase of energy price; the threshold has lowered
for consumers who would potentially benefit from reducing their energy consump-
tion expenses within a scaled investment to become prosumers.[11] Sequentially, a
similar evolution were followed by the solar energy industry.[12] Moreover, solar
energy exhibits some complementary behaviour with wind generation since the
"trough" of one corresponds with the "peaks" of the other.[13]
Prosumers have a Net Metering or Feed-in-Tariffs whose returns are significantly
lower than energy producers. That is why their main focus is to minimize energy
exchange with the grid. In order to maximize self-consumption or minimize inter-
action with the grid, a battery energy storage system (BESS) and a proper energy
management system (EMS) are required.

Currently, both industrial and research Energy Management Systems target-
ing prosumers focus on minimizing the electricity bill. They use metrics such
as self-consumption ratio (energy self-consumed divided by the total energy con-
sumed).[14] Usually it is taken into account the effect of local generation, fixed
load, and BESS. However, it can only match the economic interests of the pro-
sumer by also quantifying the operational costs (as assets degradation).

The energy storage unit is the component with the shortest useful lifespan. The
most vulnerable component to the user decision and architecture (renewable inte-
gration). Authors in [15] exhibit differences up to 20% of end-of-life time accelera-
tion when the operational conditions differ from the standard ones. Its degradation
follows complex behaviours (ageing and idling) that require moderate computa-
tional resources and they are often linearized for EMS decision-making processes.

1.2 State of Art

The actual distribution of prosumers in Europe is unknown, but it is estimated
that almost a quarter of electricity consumption (680 TWh) could be covered by
prosumers in 2050.[16].
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Table 1.1: Types of Lithium Batteries

Energy Management Systems

As the adoption of distributed energy resources (DERs), such as solar photovoltaic
systems, energy storage devices, and electric vehicles, continues to increase, the
reliance on energy management systems (EMS) for prosumers has become increas-
ingly important. These systems enable users to schedule their energy consumption,
reduce costs, and enhance the reliability and resilience of their energy supply.[13]

Sampling time plays a crucial role in providing the accuracy of data for real-
time decision-making, system optimization, and load dispatch. A suitable sam-
pling time ensures that the EMS can react to changing conditions, such as fluc-
tuations in energy generation, consumption patterns, or grid constraints, while
balancing the computational and communication requirements of the system.

To provide an overview of the current energy management systems available
for prosumers, Table 1.2 presents a summary of a selection of EMS solutions,
highlighting their developers, key features, target prosumers, and sampling time
ranges.
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Table 1.2: Types of EMS

Current solutions

Fuzzy Clustering Methods (FCM) are commonly implemented to account for the
presence of uncertainties in production and consumption. The proposed solu-
tions usually conclude with a sensitivity analysis, indicating potential deviations,
tolerances, extreme scenarios, and their associated cost effects. However, these
deviations are computed from the same “environment", referring to the set of ex-
pressions, model and hypothesis, which most of the time does not provide enough
context to rigorously “validate a model.

With the recent developments in Artificial Intelligence and Deep Learning; Re-
inforcement Learning implementation (Actor-Critic methods) is being proposed
for Energy Trading[17], Optimum Scheduling, Internet of Things... The “Depreci-
ation expenditure" in these projects is usually linearized with some “usage rate",
and their deviations generally fall within an acceptable tolerance. However, the
most critical component involved in energy trading, the Energy Storage System
(e.g., Lithium Battery, PtX), exhibits a highly non-linear depreciation behaviour[18].
Even the definition of “depreciation" is a subject of debate - whether it should re-
fer to capacity fade, power fade, or both; which has an effect not only on life
expectancy but also on performance[19]. These wrong estimations may have dra-
matic consequences including negative Return on Investment, profitability, or even
question the feasibility of the entire project.
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1.3 Problem Formulation

In the realm of solar and wind generation, the best and latest exogenous forecasting
Hybrid Model has acknowledged success in combining time-series models (histori-
cal observations), structural models (meteorological parameters) and Kalman Filter
to correct the model parameters. However, this succes corresponds to periods day-
to-day; the short-term fluctuations have too many degrees of freedom to rely on
(wind burst, clouds, etc). When sizing the components and the return of invest-
ment, a Cap-ex analysis is usually performed by prosumers based on measured
hourly wind and solar resources and consumption; while the energy management
system controls the power flow every 15 minutes; and the fluctuations in weather
such as clouds or wind bursts may manifest in fractions of a second. Those changes
in instantaneous power are out of the reach of Energy Management control and ne-
glected in long-term economic analysis while their effect on battery life may not be
negligible. The challenge presented can be formulated as:

• How is the accuracy of the battery’s useful lifetime affected by sampling
time?

• What sampling time should the Energy Management system use?

• How to verify the battery’s cost-effectivenes from an Energy Management
system?

1.4 Objectives

This Master Thesis focuses on prosumers in the context of a liberalized electricity
market with financial compensation for renewable production as Denmark in 2023.
The main goal of developing an EMS can be divided in:

• To take into account the effect of sampling time.

• To pursue the financial interest of the prosumer.

• To design and verify a post-processing algorithm that estimates the progress
of battery degradation in function of its performance.

• To design and verify a suitable model that simulates the varying conditions
experienced by the battery suitable for degradation analysis.

• To quantify the impact of sampling time on the precision of battery degrada-
tion estimation in the model and data.

• To design a suitable EMS that accounts for a cost-efficient system
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• To analyze the relationship between cost-efficiency and cost-efficacy

• To develop a simple and effective method to capability EMS.

1.5 Methodology

A prosumer micro-grid will be carefully designed where the necessity of a battery
may be questionable. The sizing of the consumption will be profiled as a rural area
with the largest household load.

The weather data (wind speed, solar radiance and ambient temperature) is pro-
vided by Photovoltaic Systems Laboratory with the fastest sampling frame (200ms).
This data will be re-sampled to contrast with the desired periods in order to mimic
typical weather data provided by public domain.

The impact of EMS in the battery will be analyzed with the help of MAT-
LAB/Simulink. The load profiles will be generated to replicate a common house-
hold electrical consumption. Thus, the unique power curve of each appliance is
characterized and randomized within time restrictions and seasonal behaviour.
A Simulink Model is designed to simulate the power exchange between the bat-
tery unit and the load, local generation feeded by weather data and external grid.
This simulation results will provide the State-of-Charge profile over time. A post-
processing unit is developed in MATLAB to extract the number and depth of the
cycles as well as measuring the time that the battery has been idling from the SoC
profile. This information will be sorted and processed to compute the Capacity
fade of the battery as the addition of cycling aging and calendar aging described by
[19].This process will be repeated with different sampling times in order to quan-
tify the relation between accuracy and sampling time.
After selecting the most balanced sampling time between accuracy and computa-
tional resources and time an Energy Management System algorithm is designed
in Simulink with Stateflow chart and its effect in the battery and system’s cost-
effectiveness is analyzed.

1.6 Scope and Limitations

During the creation of the project, certain aspects were simplified or neglected to
ensure the project’s focus and scope were maintained. As a result, the following
restrictions have been taken into account:

• Power fade of the battery is neglected.

• Temperature of the PV cell is not considered
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• Degradation of the generation components is neglected.

• The system’s load flow will be represented by active power (cos(ϕ) = 1)
without considering voltage levels.

• The PV system operates only on MPP (maximum power point)



Chapter 2

System Description

Among the various existing hybrid systems, this project focuses on one particular
Wind-Solar-Battery hybrid system. This Chapter will provide a detailed overview
of the components involved in this hybrid system.

2.1 Prosumer Characterization

Models of the Wind-Solar-Battery hybrid system were developed and validated in
[20]. For the purpose of this thesis, these models have been simplified by focusing
in load flow. All input variables (Wind Speed, Temperature, Solar Irradiance) and Load
were provided by the Aalborg University Labaratory.

Figure 2.1: Power and Signal Flow of Prosumers Wind-PV-Battery System’s Architecture

11
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Table 2.1: Sizes of the components

COMPONENT MODEL SPECS

WT OLW_10kW 15m/10kW

PV BP Solar BP3220N Module 220W
BESS [6kW] [6kWh] [95 RT 0E. . ...... ff%]

LOAD HOUSEHOLD 1 YEAR GENERATED DATA

The Table 2.1 provides brief descriptions of all components utilized in this the-
sis. The following sections delve into more detailed definitions and performance
models.

2.1.1 Wind Turbine Model

A small wind turbine is modeled in Simulink taking into account the Roughness
and height effect, Rotor inertia effect and Power Curve

Figure 2.2: Simplified Simulink Model of Wind Turbine

Roughness and Height Effect:

Takes into consideration the difference between the measured wind speed height
(Hmeasured), the wind turbine hub’s height (HHUB) and its environment roughness
(z) described in Equation 2.1. For the context of a common prosumer, the environ-
ment roughness coefficient is set to 0.25 for rural areas.

UHUB = Umeasured ·
ln(

HHUB

z
)

ln · (Hmeasured

z
)

(2.1)

Rotor Inertia Effect:

The fluctuation of the wind is smothered with the inertia provided by the rotors
weight. Authors in [20] validated the implementation of a first-order low-pass-



2.1. Prosumer Characterization 13

filter as equivalent of this smoothing effect of natural constant τvω computed from
the Expression 2.2 and discretized using Backward-Euler Method.

τvω =
ωrated ∗ J
3 · Trated

· Urated

UHUB
(2.2)

Power Curve:

The power curve used in the model is a look-up table of the model OLW-10kW
provided by the manufacturers.

Figure 2.3: OLW-10kW Power Curve Provided by the Manufacturers [21]

2.1.2 Solar Photovoltaic System

The Photovoltaic system (PV) has been modeled in Simulink. This model incorpo-
rates the area effect, which smothers the output signal according to the size of the
solar panel area acting as a low-pass-filter. The power has been modelled with the
’Sandia Model’ [22], which predicts power output under maximum power point
tracking (MPPT) conditions for each individual solar cell. The pa is composed of
total installed power of 6kWp.
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Figure 2.4: Simplified Simulink Model of PV

2.1.3 Battery Energy Storage System

A energy storage system is modeled with mathematical expressions to compute the
SoC over time taking into account the Round trip efficiency following the proposition
from [20].

Figure 2.5: Simplified Simulink Model of Battery Energy Storage System with StateFlow EMS

Battery model parameters

The storage model has been parameterized by:

• Prated : Maximum symmetric charging / discharging power in kW.

• Erated : Maximum energy storage capacity in Kwh.

• ϵRT: Round trip efficiency.

• Prequested: Power required to balance the micro-grid (demand positive / gen-
eration negative) in kW.
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• Preq_Battery: Power requested to the battery by the Battery Management System
in kW.

• Pava_out: Power supplied by the battery (discharge positive / charge negative)
in kW.

• SoCBESS: State of the charge.

SoC estimation

The estimation of the State-Of-Charge of the battery has been computed with the
Cuolomb Counting Method validated from [23].

2.1.4 Battery Management System

#1

SoC(t)<=SoCmin

Discharged

SoC(t)>=SoCmax

Overcharged

Operational #2

DischargedImport Local Discharge

Export Local Charge

#1
Battery State

#2
Power Balance

START END

P_REQ(t)>0

Overcharged

Yes
No

Figure 2.6: Stages of Battery Management System
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In the previous flowchart Figure 2.6 the basic energy management system algo-
rithm is depicted in two stages:

• Battery State: In the first stage the current State of Charge is compared with
upper and lower limits to define its state as Discharged, Operational or Over-
charged.

• Power Balance: In the second stage the sign of the power signal and the state
of the battery define four operational actions: Export, Import, Local Charge, or
Local Discharge.

The details of each state are defined in the following set of expressions:

• Start: Initialize the input variables:

PLOAD(t); PGEN(t)); SoC(t) (2.3)

• And the parameters:

Pcharge_max == Pdischarge_max = Pbat_max (2.4)

• Battery State:
BatteryState = f (SoC(t)) (2.5)

• Power Balance:

PBAL(t) = PGEN(t)− PLOAD(t) + PBAT(t) + PGRID(t) = 0 (2.6)

PREQ = PLOAD(t)− PGEN(t) = PBAT(t) + PGRID(t) (2.7)

And finally, the resulting action states :

• Import & Export:
PBAT(t) = 0; PGRID(t) = PREQ(t) (2.8)

• Local Charge:
PBAT(t) = max{PREQ(t),−Pbat_max} (2.9)

PGRID(t) = min{0, Pbat_max + PREQ(t)} (2.10)

• Local Discharge:
PBAT(t) = min{PREQ(t), Pbat_max} (2.11)

PGRID(t) = max{0, PREQ(t)− Pbat_max} (2.12)
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2.1.5 Prosumers Load

Figure 2.7: Prosumers Load in one day during winter

Figure 2.7 depicts a high-resolution household load, generated based on a proba-
bilistic distribution reflecting the realistic load profiles and usage patterns of every
appliance distinguishing weekdays and weekends as well as seasonal behaviour
according to Cluster 4 in [24].

2.2 Post-Processing Block

In this project the degradation of the battery (remaining useful lifetime) is defined
as capacity fade due to Cycle aging and Calendar aging computed into a MATLAB
function box which parameters are introduced and validated in [19]:

• Cycle aging is the capacity fade due to depth of discharge and number of
cycles. Is computed by the equation 2.13 where cd, nc and SoC_av represent
the depth of discharge, number of cycles in that level and average state of
charge in that cycle respectively.

C fcyc = 0.021 · e−0.1943·SoC_av · cd0.7162 · nc0.5 (2.13)
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• Calendar aging is the capacity fade due to idle. It is depicted in expression
2.14 where SoC_l and t represent the energy level and time in months the
storage system is idling, respectively.

C fcal = 0.1723 · e0.007388·SoC_l · t0.8 (2.14)

In order to compute C fcyc in the expression 2.13, the SoC profile is simulated
for one year with the highest resolution and replicated. The cycles are extracted
using Rainflow residue processing algorithm for fatigue damage estimation [25], sorted by
depth of discharge and energy level in bins of 5% and counted. Parallelly, another
algorithm collects and sorts the idling time and storage level for Equation 2.14.

2.3 Scenarios and Study Cases

The behaviour of the battery degradation is simulated and processed under dif-
ferent scenarios as architecture configurations and two cost-benefit cases with and
without taking into account battery degradation and deviation.

Scenario A: Wind-PV-Battery

Scenario B: Wind-Battery

Scenario C: PV-Battery



Chapter 3

Simulation Results

Other authors [] computed the End-of-Life Time (80% initial Capacity criteria) as
the time that takes to reach 20% of Degradation. However, this time is computed
modelling one year and assuming a linear progress the following years. Figure
[] exhibits the difference between linearizating one year or replicating the same
cycles through six following years (364 weeks). Nevertheless, replication of cycles
is not accurate either since the repeating of same cycles in the battery prevents
significantly the degradation. In realistic modelling of 7 years those following cy-
cles would be with different depth of charge and their corresponding degradation
would be higher.

3.1 Effect on sampling time

As introduced in Section 2.3 three different scenarios are analysed and compared.
Each of these scenarios represents a different architecture of the power system,
highlighting the variations in design and potential outcomes.

3.1.1 Scenario A: Wind-PV-Battery

In this scenario different sampling times are implemented is the simulation of an
architecture of wind turbine [10kW], solar panel [6kW], characterized household
load and storage system [6kW].

19
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Figure 3.1: SCENARIO 1 - Cycling fade Figure 3.2: SCENARIO 1 - Idling fade

3.1.2 Scenario B: Wind-Battery

The second scenario stands for the architecture with only wind turbine.

Figure 3.3: SCENARIO 2 - Cycling fade Figure 3.4: SCENARIO 2 - Idling fade

3.1.3 Scenario C: PV-Battery

The third scenario stands for the architecture with only PV.
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Figure 3.5: SCENARIO 3, Cycling fade Figure 3.6: SCENARIO 3, Idling fade

The previous section drives the following possible conclusions:

• The calendar error rate is negligible. The micro-idling periods are randomly
enhanced and diminished cancelling each other.

• The cycling error has the highest fluctuations. The 1-second resolution signal
is indistinguishable from the highest 200 ms. However, the rest of them
differs in different scenarios.

• Wind and solar have different effects on the error rate. In order to explore
this relation further scenarios have been simulated with different wind-solar
integration.

3.1.4 Summary of results

Figure 3.7 exposes the variation of maximum error rates when computing cycle
degradation in different sampling times. The horizontal axis represents wind in-
tegration as multiples of the initial 10kW while the vertical axis represents solar
integration as multiples of 6kW. The color bar represents the corresponding error
rate in % as the maximum error found following procedures from previous section.
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Figure 3.7: Error rate in different integration scenarios

As suspected, solar production includes more high-frequency variations that
may affect the battery’s life-time. The previous map Figure 3.7 suggests that the
more solar panel power we add to the installation, the more high frequency fluc-
tuations we miss, and therefore higher error rate between cycling degradation in
different sampling times. Over some limit, in this case 150% of initial installed
power, the production becomes saturated and the error rate decreases.

3.1.5 Further Analysis

As outlined in Subsections 2.1.1 and 2.1.2 the modelling on the Wind Turbine and
Solar panels, the implementation of the Rotor inertia effect and Spacial smoothing
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effect have some similarities. In fact, both act as low-pass filters to weather fluctua-
tions.

Figure 3.8: Rotor inertia effect vs Spacial smoothing effect

Therefore, all energy exchange in the frequency band acting between the sam-
pling time and the corner frequency of the solar panel’s area-smooth effect, and
their corresponding cycles information will be lost.





Chapter 4

Assesment Studies

In this chapter, two different optimization methods are characterized. First, Section
4.1 represents an explotative iterative method where some parameters are tuned
until finding the best point of minimum cost or maximum profit. However, bat-
tery degradation is not considered in the procedure. Second, Section 4.2 represents
another candidate solution from a much more powerful tool (e.g. RL trained bot)
which counts with forecasts, consumption patterns, and estimates within confi-
dence levels. Ideally, this agent could estimate the cost of the next cycle and decide
whether it will be profitable or not.

4.1 Test Case A

There are many approaches to developing an Energy Management System (EMS).
In this project, the EMS presented in the subsequent section represents a basic ap-
proach created using StateFlow in MATLAB. Notably, this model was made for the
singular priority of cost reduction, not having a trade-off with battery degradation.

Figure 4.1: Energy Management System’s stages

25
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As mentioned in the Section 2.1.4 the energy management system is repre-
sented in two stages: Battery State and Power Balance. However, the approach taken
introduces an additional stage that operates in parallel with the battery state, Day
Phase. Day phase is a decision maker of whether energy should be imported or
exported.

Figure 4.2: Day Phase and Battery State

Referring to the grantt chart in Figure 4.2, it is evident that the Day Phase
results in four different outcomes. These outcomes vary based on the time of day,
categorized as either <15:00 representing day or >15:00 representing night with the
energy price at that moment. For a clearer perspective, decisions made throughout
a single day are illustrated in Figure 4.3. This figure highlights that the price limit
is determined daily, based on the average import energy price and is dividing the
day on either high or low energy prices.
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Figure 4.3: Figure A: Price and Set Price Limit; Figure B: Day Phase Decision

The "Power Balance" stage, depicted in Figure 4.4 and detailed in Section 2.1.4,
outlines the operational framework of the developed EMS. The system is designed
to consistently maintain power balance. This is achieved by integrating power
requested with two prior stages, resulting in five specific outcomes, all of which
are detailed in Section 2.1.4. For a visual representation of the EMS operation and
its decision-making processes, refer to the grantt chart represented in the Figure
4.4.
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Figure 4.4: Power Balance of the Energy Management System

The developed EMS with the SoC 0-100% has been optimized for cost reduction,
resulting in a total accumulated cost of around 2000 kr over one year shown in the
Figure 4.5. However, an analysis of battery degradation under this system shows
a significant reduction in battery lifespan, with the battery reaching its end-of-life
in just 6 years shown in the Figure 4.6.
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Figure 4.5: Accumulated Energy Cost in One Year Using Developed EMS

Figure 4.6: Capacity fade under EMS conditions
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This data indicates that while the EMS effectively minimizes costs, it does so
by compromising battery longevity. The shortened operational life of the battery
could lead to increased replacement costs. Therefore, the current EMS approach
is not optimal due to its inability to balance cost efficiency with battery lifespan
considerations.

4.2 Test Case B

When optimizing the EMS performance, one problem arrives: Either we count
for the non-linear behaviour, limiting the number of iterations or we linearize the
problem to reduce its computational requirements. Most of the authors opt for
the second option since it allows them to explore all the latest machine learning
and optimisation tools. In contrast, in proper optimization statements [26] the
algorithm seems undeniably effective. “If the cost of using the battery for the
next cycle compensates the outcome, is profitable”. However, that represents the
very well-known dilemma of “marginal cost vs average cost". The cost of the next
cycle is equivalent to the marginal price of using the battery must be compared
with the cost of the energy, taking into account forecasting, available energy and
consumption patterns. However, since the "cost" of using the battery is highly
non-linear, the depreciation (capacity fade) corresponding to the first cycles is the
highest. Using that marginal cost would be an error, since the algorithm may fall
into a local minimum by not using the battery at all or the opposite case, when
using the battery is not cost-effective over its lifetime but the following cycles are
relatively affordable. Figure 4.8 display the Marginal curve of the energy used by
the battery during its lifetime.
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Figure 4.7: Capacity fade for 25 cases

Figure 4.8: Marginal Cost of Energy
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4.3 Proposed Method

In this section, we investigate the possible incoherence and we propose a method
to overcome them. In order the find the optimum point, the candidate points are
extracted from a Pareto chart:

Figure 4.9: Pareto chart

Marginal cost does not represent average cost, thus the minimum point 40-
100% from Figure 4.9 represents the highest efficiency in battery discharge, but not
the best cost-effective option from the user’s point of view. Combining the average
cost with the expense of a new battery acquisition (from lifetime results) a new
distribution is found in Figure 4.10.
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Figure 4.10: System’s effective cost per year

As was expected, in an installation where the battery inclusion was question-
able, the more we use the battery (augmenting it’s limits on the depth of discharge)
the less profit we achieve from it. However, this solution can not be found in any
iterative process or marginal cost computation.
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Comparison & Conclusion

Section 4.1 represents an optimized cost function with the best solution found
at 2060 DKK in energy imported per year and 6 years of the battery’s expected
lifetime. However, its effective cost, taking into account battery acquisition cost,
would be 6225 DKK, 24% higher than that of the simpler Pareto-lifetime method
proposed in Section 4.2.

Table 5.1: Results comparison
METHOD Cost of Imported Energy [DKK] Battey’s Lifetime [years] Effective yearly cost [DKK]

Iterative Optimization 2060 6 6225

Marginal Cost 2240 6.5 6085
Pareto 3590 14 5035

Table 5.1 highlights the importance of a validated method to compare the cost-
effectiveness of any given Energy Management System or Battery Management
System and suggests considering that:

• Pre-analysis of the installation’s profitability is critical.

• The non-linear effect of the battery’s depreciation is predominant in economic
analysis,

• The “Marginal Cost vs Average Cost” analysis may be much more capable
than single decision-based algorithms at pursuing users economic interest.

• Any EMS / BESS algorithm candidate should be contrasted with a simple
and validated economic analysis.

• The “Pareto-Front with Battery Acquisition Cost” method may serve as vali-
dation method.

35
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5.1 Future Work

This Master Thesis project has focused on providing a base work frame for the
upraising research into the battery optimization field. It aimed to achieve the
largest and most solid impact in the current State-of-Art, given its time, workforce
and resources. The tasks that were not within this project’s scope, but would
provide an excellent opportunity to enhance this work, are listed below:

• Some key cases were analysed in the relationship between solar integration
and sampling time. However, they were all considered in the same household
profile. Different load sizes and patterns (farm, industry, neighbourhood)
could provide interesting results.

• Power fade has not been taken into account, since manufacturers use capacity
fade to define their warranty. However, its effect, within a voltage and current
simulated environment may give a more technical and detailed point of view.

• Figure 3.8 quantifies the frequency gap of lost information, which indicated
that the amount of energy and its power profile contained in that frequency
band may be estimated by characterizing solar radiance fluctuations with
distribution parameters as variance (normal distribution - white noise), scale
(Weibull distribution), skewness, kurtosis...etc.

• Histogram in Figure5.1 identifies exactly the cycles that are being lost in high
frequency fluctuations. The estimation of those cycles is another workaround
to be able to work within larger sampling times.

Figure 5.1: Histogram of Battery Cycles
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