Studies of MLSS Impact on Fouling Propensity using TMP Steps with Relaxation

Bugge, Thomas Vistisen; Christensen, Morten Lykkegaard; Keiding, Kristian

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
INTRODUCTION

• From intuition, an increase in MLSS would lead to an increased fouling rate in a MBR system.
• However, as described in literature the impact of MLSS on the fouling propensity is not that straightforward (1).
• Generally, the net transport of material (N) to the membrane surface can be described by the convective flux, diffusion, surface and particle interactions and hydrodynamics as described below (2).

\[N = J_c - \frac{dC}{dy} + p(\zeta) + q(r) \quad \text{Eq. 1} \]

• MLSS is included in the convective flux but will also affect the other mechanisms – especially the effect on hydrodynamics is tricky.
• In this study, the impact of MLSS on fouling propensity and reversibility was investigated by short term pressure step experiments.

TMP STEP METHOD

• The applied TMP step method includes intermediate low pressure steps enabling studies of fouling reversibility (3).
• The total and irreversible fouling rates are calculated using Eq. 2 and 3 for comparison of fouling propensity under varying conditions.

\[\frac{dR_{\text{tot}}}{dt} = \frac{(J_a - J_h) \cdot \mu \cdot 1}{\text{TMP}} \quad \text{Eq. 2} \]
\[\frac{dR_{\text{irr}}}{dt} = \frac{(J_a - J_h) \cdot \mu \cdot 1}{\text{TMP}} \quad \text{Eq. 3} \]

FOULING REVERSIBILITY

• In conflict with intuition, increased MLSS lead to a decrease in fouling rate under the given operational conditions - probably due to scouring effects of the large sludge particles.
• Current work includes modeling of TMP step results with the aim to design experiments that enables more thorough studies of fouling mechanisms, e.g. blinding of the fouling cake.

CONCLUSIONS

• The figure shows the flux (J_a) of each step as function of pressure for the three different MLSS levels applied.
• It is seen that the most significant flux decline is obtained with 6 g/L whereas almost no flux decline is observed with 14 g/L.

REFERENCES

1. Lousada-Ferreira et al., 2010. MLSS concentration: Still a poorly understood parameter in MBR filterability. Desalination, 250, 618-622.

ACKNOWLEDGEMENTS

This study is funded through MEMBIO (Danish membrane bioreactor technology), which is a innovation consortium supported by the Danish Ministry of Science and Technology. More information: www.membio.dk. The authors would like to thank Lisbeth Wybrandt, Henrik Koch and Kim Markholt for technical support and Nicolas Heinen and Jessica Bengtsson from Alfa Laval A/S for putting their know-how and expertise for our disposal.